WO2023010653A1 - 一种盘式电机转子、成型方法及双气隙电机转子结构 - Google Patents

一种盘式电机转子、成型方法及双气隙电机转子结构 Download PDF

Info

Publication number
WO2023010653A1
WO2023010653A1 PCT/CN2021/118745 CN2021118745W WO2023010653A1 WO 2023010653 A1 WO2023010653 A1 WO 2023010653A1 CN 2021118745 W CN2021118745 W CN 2021118745W WO 2023010653 A1 WO2023010653 A1 WO 2023010653A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
limiting
circumferential
motor rotor
block
Prior art date
Application number
PCT/CN2021/118745
Other languages
English (en)
French (fr)
Inventor
孙显旺
陈翾
Original Assignee
浙江盘毂动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110894707.1A external-priority patent/CN113572286A/zh
Priority claimed from CN202110894564.4A external-priority patent/CN113612358B/zh
Priority claimed from CN202110894563.XA external-priority patent/CN113612326B/zh
Application filed by 浙江盘毂动力科技有限公司 filed Critical 浙江盘毂动力科技有限公司
Publication of WO2023010653A1 publication Critical patent/WO2023010653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the invention relates to the field of disc motors, in particular to a disc motor rotor, a molding method and a double air gap motor rotor structure.
  • Motor refers to an electromagnetic device that converts or transmits electric energy according to the law of electromagnetic induction. Its main function is to generate driving torque as a power source for electrical appliances or various machinery.
  • the motor includes a stator and a rotor.
  • the stator is the static part of the electric motor. It is mainly composed of a stator core and a stator winding. The role of the stator is to generate a rotating magnetic field so that the rotor is cut by the magnetic force lines in the magnetic field to generate current.
  • motors can be divided into radial field motors and axial field motors.
  • Axial field motors are also called disc motors. They have the characteristics of small size, light weight, short axial dimension and high power density, and can be used in most thin installation occasions. use and is therefore widely used.
  • the existing rotor generally includes a cage, a protective ring and a magnetic steel. There are several slots on the periphery of the cage, and the magnetic steel is clamped with the cage through the slots. to fix.
  • the switched reluctance motor is a motor designed on the principle that the magnetic circuit structure always prefers the minimum reluctance. In this motor, soft magnetically permeable materials can be used instead of magnetic steel, thereby greatly reducing the cost of the motor.
  • axial field switched reluctance motors there are few related designs of axial field switched reluctance motors. In the switched reluctance motor, it is necessary to use a magnetic block with excellent magnetic permeability to improve its motor performance. At present, the magnetic block formed by stacking sheet-shaped silicon steel sheets has excellent magnetic permeability, but the magnetic block formed by stacking sheet-shaped silicon steel sheets Medium-silicon steel sheets and silicon steel sheets are discrete, making it difficult to carry out industrial production.
  • disc motor rotor discs can be divided into single-air-gap rotor discs and double-air-gap rotor discs.
  • CN201820928635.1 is a single-air-gap rotor disc.
  • the single-air-gap rotor disc only needs to be provided with a single-side air gap , At the same time, it has the structure of the magnetic back, so this kind of rotor disk has a large design space, and the magnetic steel and other components are convenient to fix.
  • CN201821895450.1 discloses a double-air-gap rotor disk of a disk motor.
  • this double-air-gap rotor disk due to the need to set double air gaps, only the middle cage of the entire rotor disk realizes the fixing of magnetic steel and other components. Design space is small.
  • the initial fixation of the magnet steel is achieved through the groove protrusion structure on the magnet steel and the cage and the retaining ring, and then the cage, magnet steel and retaining ring are further fixed by glue.
  • the glue is easy to loosen and fail, and the most likely result is that the position of the retaining ring is biased, causing the motor to fail.
  • CN201910091883.4 discloses a double-air-gap rotor disc of a disc motor.
  • this patent an attempt is made to solve the position offset problem of the retaining ring, but the retaining ring is generally wound with fiber materials to improve its tensile strength.
  • the strength of the retaining ring will be greatly reduced if the structure such as opening holes is made in the retaining ring.
  • the present invention provides a disc motor that is easy to form, and utilizes lamination of substrates to form a non-magnetic cage and coiling to form a magnetic steel to improve strength and reduce costs, and to facilitate industrialized mass production
  • a forming method of the rotor, and a rotor which prevents magnetic steel from shaking and falling off and ensures reliable operation of the rotor is obtained by using the forming method.
  • the invention also provides a double-air-gap motor rotor structure of the rotor magnets which prevents the magnets from shaking and falling off and ensures reliable operation of the rotor.
  • the present invention provides a disc motor rotor, comprising:
  • a non-magnetic cage the non-magnetic cage has a radial limiter and a plurality of circumferential limiters, and the plurality of circumferential limiters are spaced apart and connected to the radial To the limit piece;
  • a magnetically permeable assembly the magnetically permeable component has a plurality of magnetically permeable blocks, each of the magnetically permeable blocks is held between two adjacent circumferential limiters, and the magnetically permeable blocks are connected to the magnetically permeable blocks
  • the circumferential limiting member abuts and forms a limiting channel
  • a ring assembly the ring assembly is sleeved on the outside of the magnetic conduction block, and the magnetic conduction block is abutted and fixed between the radial limiter and the ring assembly;
  • each axial limiting nail is held in a limiting channel.
  • the circumferential limiting member is provided with a first groove
  • the magnetic conductive block is provided with a second groove.
  • the first groove is opposite to the second groove and forms the limiting channel.
  • the magnetic permeable block has a trapezoidal shape as a whole, and the magnetic permeable block is formed by stacking a plurality of magnetic permeable sheets of different sizes along the height direction of the trapezoid, and the second groove is opened on the side of the trapezoid And run through each magnetic sheet.
  • the magnetic conductive sheet has an arc-shaped structure
  • the trapezoidal bottom of the magnetic conductive block has an arc-shaped protrusion
  • the trapezoidal top of the magnetic conductive block has an arc-shaped groove.
  • the axial limiting nail is inserted into the ring assembly.
  • the ring assembly includes an inner ring, and a plurality of guide holes are opened on the inner ring, each of the guide holes is respectively opposite to one of the limiting passages, and makes the axial limit The positioning nail is inserted into the limiting channel through the guide hole.
  • the ring assembly further includes an outer ring, the outer ring is sheathed on the outer side of the inner ring and fixes the axial limiting nail.
  • the axis limiter is abutted and fixed between the radial limiter and the outer ring.
  • the outer ring includes at least one fiber tow, the fiber tow is wound around the outside of the inner ring, and is cured with a binder to form the outer ring.
  • the non-magnetic cage includes multiple layers of first base materials, and the multiple layers of the first base materials are laminated and hot-pressed along the rotor axis to form the non-magnetic cage.
  • the present invention also provides a method for forming a disk motor rotor, comprising the following steps:
  • a non-magnetic cage is provided, wherein the non-magnetic cage has a radial limiter and a plurality of circumferential limiters, and the plurality of circumferential limiters are spaced apart and extend outwards connected to the radial limiter;
  • step (a) further comprises the following steps:
  • the first base material has a radial limiting portion and a circumferential limiting portion, and in the step (a1), the radial limiting portion of the multi-layer first base material
  • the radial limiting member is formed by superimposing and hot-pressing the parts, and the circumferential limiting part of the multi-layer first base material is laminated and hot-pressed to form the circumferential limiting member.
  • the circumferential limiting member has an upper limiting area, a central recessed area, and a lower limiting area arranged in the axial direction, and the width of the circumferential limiting part located in the central recessed area is respectively The width is smaller than the width of the circumferential limiting parts located in the upper limiting area and the lower limiting area, so that the middle recessed area forms a first groove.
  • step (b) further includes the following steps:
  • the stamped second base material has a plurality of magnetically permeable pieces and a yoke, and a plurality of the magnetically permeable blocks are arranged on the yoke at intervals, and then in the step (b2) wherein, the yoke is rolled to form the yoke, and a plurality of the magnetically permeable sheets are rolled one by one to form a plurality of circularly arranged magnetically permeable blocks.
  • the magnetically conductive sheet has a concave portion, and in the structure of each magnetically conductive block, a plurality of concave portions on the magnetically conductive sheet form a second groove, and the second groove A limiting channel is formed opposite to the first groove.
  • each of the magnetic permeable blocks a plurality of the magnetic permeable sheets are stacked in a radial direction with gradually increasing width to form the magnetic permeable block.
  • step (f) further includes the following steps:
  • the yoke is removed.
  • the present invention also provides a double-air-gap motor rotor structure, including a cage, a magnetic permeable component, a plurality of axial limit nails and a ring component, the cage has a diameter
  • the magnetically permeable component has a plurality of magnetically permeable blocks, and the multiple magnetically permeable blocks are arranged in a ring and are fixed between the radial limiter and the ring assembly.
  • the ring assembly It includes an inner ring and an outer ring, the inner ring is an auxiliary ring without a regular arrangement of fiber bundles, the outer ring is a stressed ring with a regular arrangement of fiber bundles, and a fixing hole is opened on the inner ring , the outer ring is constrained to the outer side of the inner ring along the circumferential direction of the rotor, one end of the axial limit nail is inserted into the fixing hole, and the other end is inserted into the cage or/and the magnetic block.
  • the outer ring is formed by winding carbon fiber rings, and the inner ring is made of metal materials.
  • the cage further has a plurality of circumferential limiting members, and the plurality of circumferential limiting members are arranged along the circumferential direction of the rotor and are connected to the radial limiting members by extending outwards, And the circumferential limiting member is spaced apart from the magnetic permeable block.
  • the circumferential limiting member abuts against the magnetic conductive block to form a limiting channel, and the axial limiting nail is held in the limiting channel to prevent the magnetic guiding block from The magnetic block moves axially along the rotor.
  • the circumferential limiting member is provided with a first groove
  • the magnetic conductive block is provided with a second groove.
  • the first groove is opposite to the second groove and forms the limiting channel.
  • the axial limiting nail abuts between the radial limiting member and the outer ring along the radial direction of the rotor.
  • the axial limiting nail is in interference fit with the limiting channel.
  • the cage includes a multi-layer first base material, which is laminated and hot-pressed along the rotor axis to form the cage, and the magnetically conductive block includes a multi-layer
  • the magnetic permeable sheets of different sizes are arc-shaped, and multiple layers of the magnetic permeable sheets are stacked and hot-pressed along the radial direction of the rotor in a manner of increasing in size to form the magnetic permeable block.
  • the radial limiter and the ring assembly are fixed at both radial ends of the magnetic permeable block to radially fix the magnetic permeable block; the magnetic permeable block is fixed to two adjacent between the circumferential limiters for circumferential fixation; and use the axial limit nails to cooperate with the magnetic block to prevent the magnetic block from moving axially, which not only has a simple and novel structure, It also effectively improves the fixing effect of the magnetic block, avoiding shaking and falling off, which will affect the performance of the rotor.
  • the ring assembly includes an inner ring and an outer ring, so as to prevent stress deformation of the inner ring and avoid failure of the radial fixing effect of the inner ring on the magnetic block.
  • the non-magnetic cage is laminated by hot-pressing multiple layers of the first substrate, and the magnetic block is laminated with magnetic sheets of different sizes, and the size is gradually increased.
  • the forming convenient and quick but the forming of the magnetic permeable block is more convenient and quick by stacking, and the multiple magnetic permeable plates are connected to the yoke during the rolling and stacking process to prevent them from being
  • the magnetic conductive sheets are scattered, and after rolling and stacking the magnetic conductive blocks, the yoke can be cut off.
  • a plurality of the magnetic conductive sheets are closely attached and fixed on the radial limit. Between the position piece and the inner ring, the magnetic conductive sheet is prevented from being separated, which is conducive to industrialized mass production, and the structure is simple and novel, and the cost is effectively reduced.
  • Fig. 1 is the schematic structural view of the disk motor rotor of the present invention
  • Fig. 2 is a schematic structural view of the non-magnetic cage of the present invention.
  • Fig. 3 is a structural schematic diagram of the magnetic permeable component of the present invention.
  • Fig. 4 is a schematic structural view of the inner ring of the present invention.
  • Fig. 5 is a schematic structural diagram of the assembly of the non-magnetic cage, the magnetic component and the inner ring of the present invention
  • Fig. 6 is a structural schematic diagram of the cut yoke of the present invention.
  • Fig. 7 is a structural schematic diagram of the magnetic permeable block of the present invention.
  • FIG. 8 is a schematic structural view of the first substrate of the present invention.
  • Fig. 9 is a schematic structural view of the circumferential limiting member of the present invention.
  • Fig. 10 is a schematic structural view of the second substrate of the present invention.
  • Fig. 11 is a flow chart of the forming method of the disk motor rotor of the present invention.
  • the disc motor rotor includes:
  • a non-magnetic cage 100a the non-magnetic cage 100a has a radial limiter 110 and a plurality of circumferential limiters 120, the plurality of circumferential limiters 120 are spaced apart and extend outward connected to the radial limiter 110;
  • a magnetically permeable assembly 200 the magnetically permeable assembly 200 has a plurality of magnetically permeable blocks 210, each of the magnetically permeable blocks 210 is held between two adjacent circumferential limiters 120, and the The magnetic block 210 abuts against the circumferential limiting member 120 and forms a limiting channel;
  • a ring assembly 300 the ring assembly 300 is sleeved on the outside of the magnetic block 210, and the magnetic block 210 is abutted and fixed between the radial limiter 110 and the ring assembly 300;
  • a plurality of axial limiting nails 400, each axial limiting nail 400 is held in a limiting channel.
  • the radial limiter 110 and the ring assembly 300 are fixed at both radial ends of the magnetic permeable block 210 to radially fix the magnetic permeable block 210; the magnetic permeable block 210 is fixed on between two adjacent circumferential limiting members 120 for circumferential fixing; and use the axial limiting nail 400 to cooperate with the magnetic block 210 to prevent the magnetic block 210 from Axial movement not only has a simple and novel structure, but also effectively improves the fixing effect of the magnetic block 210, avoiding shaking and falling off and affecting the performance of the rotor.
  • the circumferential limiting member 120 is provided with a first groove 121
  • the magnetic permeable block 210 is provided with a second groove 211, when the magnetic permeable block 210 and the peripheral
  • the first groove 121 is opposite to the second groove 211 and forms the limiting channel.
  • the circumferential limiting member 120 is provided with the first grooves 121 along both sides of the rotor circumferential direction, and the magnetic permeable block 210 is formed along both sides of the rotor circumferential direction.
  • Second grooves 211 are respectively opened, so that after the magnetic permeable block 210 is embedded in the two circumferential limiters 120, the magnetic permeable block 210 forms two sides along the circumferential direction of the rotor respectively.
  • the limiting channel that is, each of the magnetic conductive blocks 210 corresponds to two axial limiting nails 400, and the two axial limiting nails 400 are respectively arranged on two circumferential sides of the magnetic conductive block 210. side, further preventing the magnetic block 210 from moving axially.
  • the axial limiting pin 400 is partially embedded in the first groove 121 and partially embedded in the second groove 211 , thereby preventing the magnetic block 210 from moving axially.
  • the axial limiting nail 400 is adapted to the cross-sectional shape of the limiting channel, which can be circular, square or triangular, and is not limited again.
  • the cross-sectional shape of the relative combination of the first groove 121 and the second groove 211 is consistent with the limiting channel, taking a circle as an example, the first groove 121 and the second groove
  • the cross-sectional shapes of 211 are all semicircular, and the combination of the two forms a limiting channel with a circular cross-section, wherein the cross-sectional areas of the first groove 121 and the second groove 211 can be consistent, of course
  • the cross-street area of the second groove 211 may be larger than the cross-sectional area of the first groove 121, so as to increase the contact area between the axial limit nail 400 and the magnetic block 210, and lift the shaft.
  • the fixing effect of the limiting nail 400 on the axial movement of the magnetic permeable block 210 is consistent with the limiting channel, taking a circle as an example, the first groove 121 and the second groove
  • the cross-sectional shapes of 211 are all semicircular, and the combination of the two forms a limiting channel with a circular cross-section, where
  • the ring assembly 300 includes an inner ring 310, and a plurality of guide holes 311 are opened on the inner ring 310, each of the guide holes 311 is opposite to one of the limiting passages , and the axial limiting pin 400 is inserted into the limiting channel through the guide hole 311 .
  • the inner ring 310 not only fixes the magnetic block 210 in the radial direction with the radial limiting member 110, but also opens the guide hole 311 so that the axial limiting nail 400 pass through, and then insert and fix the axial limiting nail 400 to the ring assembly 300 .
  • the inner ring 310 is also in contact with the outer side of the circumferential limiting member 120, and the inner ring 310 can be made of glass fiber and other materials, which has high insulation performance, strong heat resistance, and good corrosion resistance. etc. to prolong the service life of the inner ring 310.
  • the ring assembly 300 further includes an outer ring 320 sleeved on the outer side of the inner ring 310 and fixing the axial limiting nail 400 .
  • one end of the first groove 121 extends to the end surface of the circumferential limiting member 120 connected to the radial limiting member 110 , and the other end extends to the circumferential limiting member 120 and the radial limiting member 110 .
  • the second grooves 211 respectively extend to the radial ends of the magnetic block 210, so that the axial limit nail 400 is kept on the Behind the limiting channel formed by the first groove 121 and the second groove 211, and under the action of the outer ring 320, the axis limiting member 400 is abutted and fixed on the radial limiting channel. between the position piece 110 and the outer ring 320 .
  • the outer ring 320 further prevents stress deformation of the inner ring 310 , so as to avoid failure of the radial fixing effect of the inner ring 310 on the magnetic block 210 .
  • the outer ring 320 includes at least one fiber tow, the fiber tow is wound outside the inner ring 310 and cured by a binder to form the outer ring 320 .
  • the fiber tow can be made of carbon fiber to improve strength and avoid damage to the outer ring 320, wherein the adhesive can be glue.
  • the magnetic block 210, the circumferential limiter 120, the inner ring 310 and the outer ring 320 are consistent in size along the rotor axial direction and are relatively thin, thereby forming a disc as shown in FIG. 1 type motor rotor.
  • the size of the outer ring 320 along the radial direction of the rotor is larger than the size of the inner ring 310 along the radial direction of the rotor, so as to improve the overall strength of the outer ring 320, thereby improving The fixing effect of the outer ring 320 on the inner ring 310 and the axial limiting nail 400 respectively.
  • the size of the outer ring 320 along the radial direction of the rotor is 1.5 times or more than the size of the inner ring 310 along the radial direction.
  • the non-magnetic cage 100a includes a multi-layer first base material 1000, and the multi-layer first base material 1000 is formed by lamination and hot pressing along the axial direction of the rotor.
  • the above non-magnetic cage 100a The forming of the non-magnetic cage 100a is convenient and fast, and the structural strength of the non-magnetic cage 100a is improved at the same time.
  • the first base material 1000 has a radial limiting portion 1100 and a circumferential limiting portion 1200, and the radial limiting portion 1100 of the first base material 1000 is laminated and hot-pressed to form a
  • the radial limiting member 110 , the circumferential limiting portion 1200 of the first base material 1000 of multiple layers are laminated and hot-pressed to form the circumferential limiting member 120 .
  • the first base material 1000 can be made of a composite material, and under heat and pressure, multiple layers of the first base material 1000 can be thermally laminated and fixed, wherein the first base material 1000 can be self-adhesive, or it can be used in Adhesive is applied between two adjacent layers of the first substrate 1000 to achieve hot-melt lamination.
  • the radial limiting part 110 is circular, so that the radial limiting part 110 formed by superposition is a cylinder, and at this time, the magnetic block 210 abuts against the radial limiting part 110 on the outer wall.
  • a plurality of the circumferential limiting portions 1200 are spaced from and connected to the outer peripheral edge of the radial limiting portion 110 , and the circumferential limiting portion 1200 is away from the side of the radial limiting portion 1100 (ie, the outer side ) is arc-shaped, so that the outer side of the superimposed circumferential limiting member 120 is arc-shaped, so as to fit and install the ring-shaped inner ring 310 .
  • a fitting part 130 for fitting the magnetic permeable block 210 is formed between two adjacent circumferential limiters 120. Referring to FIG. 2, the shape of the fitting part 130 and the magnetic permeable block 210 unanimous.
  • the circumferential limiting member 120 has an upper limiting area 1201 , a middle recessed area 1202 and a lower limiting area 1203 arranged axially along the rotor, and the circumferential limiting portion 1200 located in the middle recessed area 1202
  • the widths are smaller than the widths of the circumferential limiting parts 1200 located in the upper limiting area 1202 and the lower limiting area 1203 , so that the middle recessed area 1202 forms the first groove 121 .
  • the width of the circumferential limiting portion 1200 refers to its size in the circumferential direction of the rotor. Due to the above-mentioned structure, both sides of the central recessed area 1202 are respectively recessed inwards, thereby forming a spacer located in the circumferential direction of the rotor. The first grooves 121 on both sides of the circumferential limiting member 120 in the circumferential direction. It can be seen that the circumferential limiting part 120 structure as shown in FIG. 9 is formed by reducing the width of the circumferential limiting part 1200 located in the central recessed area 1202 .
  • the width of the circumferential limiting portion 1200 located in the upper limiting area 1202 is consistent with the width of the circumferential limiting portion 1200 located in the lower limiting area 1203 .
  • the size of the upper limiting area 1202 and the lower limiting area 1203 in the axial direction of the rotor are consistent, so that the first groove 121 is kept at the position of the circumferential limiting member 120 in the axial direction of the rotor. centre position.
  • the magnetic permeable block 210 includes multiple layers of magnetic permeable sheets 2100 of different sizes, and the multiple layers of the magnetic permeable sheets 2100 are laminated along the radial direction of the rotor in a manner of gradually increasing in size to form the magnetic permeable Block 210.
  • a plurality of the magnetic permeable sheets 2100 are arc-shaped, and the magnetic permeable sheets 2100 can also be made of composite materials, and the magnetic permeable blocks 210 can be formed by stacking multiple layers of the magnetic permeable sheets 2100 by using viscosity.
  • the forming of the magnetic permeable block 210 is more convenient and quick by stacking, and when the multiple magnetic permeable sheets 2100 are rolled and stacked, the multiple magnetic permeable sheets 2100 are connected to the yoke 2200 to prevent them from rolling During the manufacturing process, the magnetic permeable sheets 2100 are discrete, and after being rolled and stacked into the magnetic permeable block 210, the yoke portion 2200 can be cut off. Between the radial limiting member 110 and the inner ring 310, the magnetic conductive sheet 2100 is prevented from being separated, which is beneficial to industrialized mass production.
  • the plurality of magnetic permeable pieces 2100 have the same size along the axial and radial directions of the rotor, and the size along the circumferential direction of the rotor gradually increases, so that the superimposed magnetic permeable block 210 is trapezoidal to fit
  • the fitting portion 130 is arranged in a trapezoidal shape.
  • the two radial ends of the magnetic permeable block 210 are arc-shaped respectively, so as to fit and assemble the outer sidewall of the radial limiting portion 1100 which is curved and the inner ring 310 which is annular.
  • the magnetic permeable block 210 has a trapezoidal shape as a whole, and the magnetic permeable block 210 is formed by stacking a plurality of magnetic permeable sheets 2100 of different sizes along the height direction of the trapezoid.
  • the magnetic conductive piece 2100 has an arc-shaped structure
  • the trapezoidal bottom of the magnetic conductive block 210 has an arc-shaped protrusion, that is, the side close to the radial limiter 110 has an arc-shaped protrusion.
  • the trapezoidal top of the magnetic block 210 is an arc-shaped groove, that is, the side close to the inner ring 310 is an arc-shaped groove, so that the two sides of the magnetic block 210 can fit the arc-shaped radial limit. bit piece 110 and the inner ring 310.
  • the magnetic conductive sheet 2100 is provided with recesses 2110 on both sides along the circumferential direction of the rotor, so that the plurality of recessed portions 2110 on the magnetic conductive sheet 2100 form second grooves 211 .
  • the second groove 211 is opened on the trapezoidal side of the magnetic permeable block 210 and runs through each magnetic permeable piece 2100 .
  • the radial limiter 110 and the ring assembly 300 are fixed at both radial ends of the magnetic permeable block 210 to radially fix the magnetic permeable block 210;
  • the block 210 is fixed between two adjacent circumferential limiters 120 for circumferential fixation; and the axial limit nail 400 is used to cooperate with the magnetic block 210 to prevent the guide
  • the magnetic block 210 moves axially, which not only has a simple and novel structure, but also effectively improves the fixing effect of the magnetic block 210, avoiding shaking and falling off and affecting the performance of the rotor.
  • the ring assembly 300 includes an inner ring 310 and an outer ring 320 to prevent stress deformation of the inner ring 310 and avoid failure of the radial fixing effect of the inner ring 310 on the magnetic block 210 .
  • the non-magnetic cage 100a is formed by hot-compression lamination of multiple layers of the first base material 1000, and the magnetic block 210 is composed of magnetic sheets 2100 of different sizes, which are stacked in a gradually larger size. It is not only convenient and quick to form, but also conducive to the industrialized mass production of rotors, and the structure is simple and novel, which effectively reduces costs.
  • the forming method of the disk motor rotor includes the following steps:
  • (b) Provide a magnetically permeable assembly 200, wherein the magnetically permeable assembly 200 has a plurality of magnetically permeable blocks 210 and a yoke 220, and a plurality of the magnetically permeable blocks 210 are annular and arranged at intervals on the yoke 220 superior;
  • step (a) further comprises the following steps:
  • the non-magnetic cage 100a is formed by laminating multiple layers of the first base material 1000, and the first base material 1000 can be made of a composite material, which not only makes the forming of the non-magnetic cage 100a easier It is convenient and fast, and also effectively improves the strength of the non-magnetic conductive holder 100a, thereby improving the support and fixing effect of the non-magnetic conductive holder 100a on the magnetic conductive block 210.
  • the first base material 1000 has a radial limiting portion 1100 and a circumferential limiting portion 1200, and then in the step (a1), the radial limiting portion of the multi-layer first base material 1000
  • the position portion 1100 is laminated and hot-pressed to form the radial limiting member 110
  • the circumferential limiting portion 1200 of the multi-layer first base material 1000 is laminated and hot-pressed to form the circumferential limiting member 120 .
  • the size and arrangement of the circumferential limiting portion 1200 are designed according to the number of poles of the motor and the size of the magnetic block 210 .
  • the circumferential limiting member 120 has an upper limiting area 1201 , a middle recessed area 1202 and a lower limiting area 1203 arranged axially, and the circumferential limiting portion 1200 located in the middle recessed area 1202
  • the widths are respectively smaller than the widths of the circumferential limiting portions 1200 located in the upper limiting area 1202 and the lower limiting area 1203 , so that the middle recessed area 1202 forms the first groove 121 .
  • the width of the circumferential limiting portion 1200 located in the middle recessed area 1202 is determined by the shape of the axial limiting nail 400 , so it can be adjusted according to the shape of the axial limiting nail 400 .
  • the width of the circumferential limiting portion 1200 of the central recessed area 1202 is sufficient.
  • the size of the radial limiting portion 1100 of the multi-layer first base material 1000 remains unchanged, and by changing the size of the circumferential limiting portion 1200 in the circumferential direction of the rotor, a
  • the first groove 121 of the axial limiting nail 400 facilitates the formation of the non-magnetic cage 100a and the first groove 121 thereon.
  • said step (b) further comprises the following steps:
  • the second base material 2000 is continuously transported to the stamping equipment, and stamped by the stamping equipment, and the stamped second base material 2000 is transported to the rolling device, so that the second The base material 2000 is rolled to form the magnetic permeable component 200 , so as to make the forming of the magnetic permeable component 200 more convenient and fast, and at the same time ensure the structural stability of the magnetic permeable block 210 .
  • the stamped second base material 2000 has a plurality of magnetically permeable pieces 2100 and a yoke portion 2200, and a plurality of the magnetically permeable blocks 210 are arranged at intervals on the same side of the yoke portion 2200, and further on the In step (b2), the yoke 2200 is rolled to form the yoke 220 , and a plurality of the magnetic permeable sheets 2100 are rolled one by one to form a plurality of circularly arranged magnetic permeable blocks 210 .
  • the function of the yoke part 2200 is to connect a plurality of the magnetic permeable sheets 2100 , and enable the multiple magnetic permeable sheets 2100 to be rolled continuously, and then the yoke part 2200 can be cut off later.
  • a plurality of magnetic conductive sheets 2100 are connected to the yoke portion 2200, so as to prevent the magnetic conductive sheets 2100 from being separated during the rolling process, and to be stacked into a conductive sheet during rolling.
  • the yoke portion 2200 can be cut off, which makes the forming of the magnetic block 210 more convenient and quick, and is conducive to industrialized mass production.
  • the punching equipment leaves a continuous yoke 2200 after punching the second base material 2000, and magnetically conductive sheets 2100 arranged at intervals, and between two adjacent magnetically conductive sheets 2100 The space corresponds to the position for fitting the circumferential limiting member 120 .
  • each of the magnetic permeable blocks 210 increases gradually along the radial direction of the rotor, so the stamping area of the punching equipment gradually becomes smaller, thereby making the magnetic permeable blocks 210 fan-shaped.
  • the punching equipment continuously punches the second base material 2000 nine times in a first area, so that the second base material 2000 forms eight pieces of the first size.
  • the magnetic permeable sheet 2100 and then use the rolling equipment to roll eight magnetic permeable sheets 2100 of the first size, and make the eight magnetic permeable blocks 210 sequentially and continuously arranged in a ring, while the The stamping equipment stamps the second base material eight times in a second area, so that the second base material 2000 forms eight magnetic permeable sheets 2100 of the second size, and then the eight magnetic conductive sheets 2100 are formed by using the rolling equipment.
  • the magnetically permeable sheet 2100 of the second size is wound around the eight magnetically permeable sheets 2100 of the first size, and corresponds to each other, so as to form the magnetically permeable assembly 200 as shown in FIG. 3 .
  • the second size is greater than the first size, which refers to the size along the circumferential direction of the rotor, so that the plurality of magnetic permeable sheets 2100 in each magnetic permeable block 210 are along the radial direction of the rotor and
  • the magnetic permeable block 210 is formed by stacking in a manner that the circumferential dimension gradually increases. Since the second size is larger than the first size, the second area is smaller than the first area.
  • the rolling equipment rolls the stamped second base material 2000 at the same angular velocity, so that the plurality of magnetic permeable sheets 2100 of each magnetic permeable block 210 can correspond one-to-one , to prevent the displacement deviation from affecting the forming effect of the magnetic permeable block 210 .
  • the magnetic permeable sheet 2100 has a concave portion 2110, and in the structure of each magnetic permeable block 210, the concave portions 2110 on a plurality of the magnetic permeable sheets 2100 form the first Two grooves 211 , the second groove 211 is opposite to the first groove 121 to form a limiting channel.
  • the size of the second groove 211 is determined according to the size of the axial limiting nail 400 .
  • first base material 1000 is laminated along the axial direction of the rotor, and the second base material 2000 is rolled around the axial direction of the rotor.
  • said step (f) further comprises the following steps:
  • the fiber tow is wound outside the inner ring 310 and cured with a binder so that the fiber tow forms the outer ring 320 .
  • the yoke 220 is removed to obtain a disc motor rotor.
  • the yoke 220 can be cut off by wire cutting or grinding machine to form the disc motor rotor structure as shown in Fig.
  • the axial dimension of the outer ring 320 is consistent with that of the rotor, and the axial dimension of the disc motor rotor is relatively thin, so as to be suitable for installation in a thin installation space.
  • step (f) further comprises the following steps:
  • the non-magnetic cage 100a is formed by laminating multiple layers of the first base material 1000, and the first base material 1000 can be made of a composite material, which not only makes the forming of the non-magnetic cage 100a easier It is convenient and fast, and also effectively improves the strength of the non-magnetic conductive holder 100a, thereby improving the support and fixing effect of the non-magnetic conductive holder 100a on the magnetic conductive block 210.
  • the magnetic permeable component 200 utilizes the second base material 2000, and is stamped and rolled into shape under the action of the stamping equipment and the rolling device, and then the yoke 220 can be removed, so that the magnetic permeable component
  • the forming of 200 is more convenient and fast, and at the same time, the stability of the structure of the magnetic conductive block 210 is ensured.
  • a plurality of magnetic conductive sheets 2100 are connected to the yoke 2200 to prevent the magnetic conductive sheet from The 2100 is discrete during the rolling process, and after being rolled and stacked into the magnetic block 210, the yoke 2200 can be cut off, which makes the forming of the magnetic block 210 more convenient and quick, and is conducive to industrialized mass production.
  • the rotor structure of the double air gap motor includes a cage 100b, a magnetic permeable component 200, a plurality of axial limit nails 400 and a ring component 300, and the cage 100b has A radial limiter 110, the magnetic permeable component 200 has a plurality of magnetic permeable blocks 210, the plurality of magnetic permeable blocks 210 are arranged in a ring, and are fixed on the radial limiter 110 and the ring assembly 300, the ring assembly 300 includes an inner ring 310 and an outer ring 320, the inner ring 310 is an auxiliary ring without a regular arrangement of fiber bundles, and the outer ring 320 is an auxiliary ring with a regular arrangement of fiber bundles Stress ring, the inner ring 310 is provided with a fixing hole 311, the outer ring 320 is constrained to the outside of the inner ring 310 along the circumference of the rotor, one end of the axial limit nail 400 is inserted into the fixing hole 31
  • the radial limiter 110 and the ring assembly 300 respectively correspond to the radial ends of the magnetic block 210, so as to radially fix the magnetic block 210, thereby preventing the magnetic block 210 from The radial movement is limited by the axial limiting nail 400 and the magnetic conductive block 210 to prevent the magnetic conductive block 210 from moving axially and effectively improve the fixing effect on the magnetic steel.
  • the ring assembly 300 includes an inner ring 310 and an outer ring 320 arranged radially along the rotor and arranged from inside to outside, and the outer ring 320 exerts a binding force on the inner ring 310 to prevent the inner ring from being damaged during the high-speed centrifugal rotation of the rotor.
  • the fixing effect of the component 300 on the magnetic block 210 effectively prevents the magnetic block 210 from shaking and falling off, and improves the performance and reliable operation of the rotor.
  • the outer ring 320 is formed by winding carbon fiber ring, and the inner ring 310 is made of metal or glass fiber material. It can be seen that the strength of the inner ring 310 is higher than that of the outer ring 320 , and the fixing hole 311 can be opened therein to fix the axial stopper 400 .
  • the carbon fibers are solidified with a binder to form the outer ring 320, and the binder may be glue.
  • the binder may be glue.
  • carbon fiber has the characteristics of high temperature resistance, friction resistance and corrosion resistance, so the strength of the outer ring 320 is effectively improved, the damage of the outer ring 320 is avoided, and the service life of the outer ring 320 is extended.
  • one end of the axial limiting pin 400 is inserted into the fixing hole 311 , and the other end is inserted into the magnetic block 210 . That is, the axis limiting nail 400 limits the magnetic block 210 to prevent the magnetic block 210 from moving axially.
  • one end of the axial limiting nail 400 is inserted into the fixing hole 311 , and the other end is inserted into the holder 100 b.
  • the axial limiting nail 400 serves to fix the inner ring 310 .
  • one end of the axial limiting nail 400 is inserted into the fixing hole 311 , and the other end is inserted into the holder 100 b and the magnetic block 210 .
  • the axial limiting nail 400 also limits the magnetic block 210 to prevent the magnetic block 210 from moving axially.
  • the holder 100b also has a plurality of circumferential limit Positioning member 120, a plurality of circumferential limiting members 120 are arranged along the circumferential direction of the rotor and connected to the radial limiting member 110 by extending outward, and make the circumferential limiting member 120 and the guide
  • the magnetic blocks 210 are arranged at intervals.
  • each magnetic permeable block 210 along the circumferential direction of the rotor hold the circumferential limiter 120 respectively, and the magnetic permeable block 210 abuts against the two circumferential limiter 120 between, so that the circumferential limiting member 120 fixes the magnetic permeable block 210 in the circumferential direction, so as to prevent the magnetic permeable block 210 from moving along the circumferential direction of the rotor.
  • the fixing structure of the rotor magnetic steel further includes a plurality of axial limiting pins 400, and the circumferential limiting member 120 abuts against the magnetic block 210 to form a limiting
  • the axial limiting nail 400 is held in the limiting channel to prevent the magnetic block 210 from moving axially of the rotor.
  • the axial limiting nail 400 is in interference fit with the limiting channel.
  • the two are closely matched to prevent displacement of the axial limiting nail 400 after being matched with the limiting channel, thereby affecting the performance of the axial limiting nail 400 .
  • the circumferential limiting member 120 is provided with a first groove 121
  • the magnetic permeable block 210 is provided with a second groove 211, when the magnetic permeable block 210 and the peripheral
  • the first groove 121 is opposite to the second groove 211 and forms the limiting channel.
  • the circumferential limiting member 120 is provided with the first grooves 121 along both sides of the rotor circumferential direction, and the magnetic permeable block 210 is formed along both sides of the rotor circumferential direction.
  • Second grooves 211 are respectively opened, so that after the magnetic permeable block 210 is embedded in the two circumferential limiters 120, the magnetic permeable block 210 forms two sides along the circumferential direction of the rotor respectively.
  • the limiting channel that is, each of the magnetic conductive blocks 210 corresponds to two axial limiting nails 400, and the two axial limiting nails 400 are respectively arranged on two circumferential sides of the magnetic conductive block 210. side, further preventing the magnetic block 210 from moving axially.
  • the axial limiting pin 400 is partially embedded in the first groove 121 and partially embedded in the second groove 211 , thereby preventing the magnetic block 210 from moving axially.
  • the axial limiting nail 400 is adapted to the cross-sectional shape of the limiting channel, which can be circular, square or triangular, and is not limited again.
  • the cross-sectional shape of the relative combination of the first groove 121 and the second groove 211 is consistent with the limiting passage, taking a circle as an example, the first groove 121 and the second groove
  • the cross-sectional shapes of 211 are all semicircular, and the combination of the two forms a limiting channel with a circular cross-section, wherein the cross-sectional areas of the first groove 121 and the second groove 211 can be consistent, of course
  • the cross-street area of the second groove 211 may be larger than the cross-sectional area of the first groove 121, so as to increase the contact area between the axial limit nail 400 and the magnetic block 210, and lift the shaft.
  • the fixing effect of the limiting nail 400 on the axial movement of the magnetic permeable block 210 is consistent with the limiting passage, taking a circle as an example, the first groove 121 and the second groove
  • the cross-sectional shapes of 211 are all semicircular, and the combination of the two forms a limiting channel with a circular cross-section, where
  • the inner ring 310 is provided with a plurality of fixing holes 311, each of the fixing holes 311 is respectively opposite to one of the limiting channels, and the axial limiting nail 400 The fixing hole 311 is inserted into the limiting channel.
  • the inner ring 310 not only fixes the magnetic permeable block 210 radially with the radial limiting member 110, but also opens the fixing hole 311 so that the axial limiting nail 400 pass through, and then insert and fix the axial limiting nail 400 to the ring assembly 300 .
  • the inner ring 310 is also in contact with the outer side of the circumferential limiting member 120, and the inner ring 310 can be made of glass fiber and other materials, which has high insulation performance, strong heat resistance, and good corrosion resistance. etc. to prolong the service life of the inner ring 310.
  • the outer ring 320 is sleeved on the outer side of the inner ring 310 and fixes the axial limiting pin 400 .
  • the axial limiting nail 400 abuts between the radial limiting member 110 and the outer ring 320 along the radial direction of the rotor.
  • one end of the first groove 121 extends to the end surface of the circumferential limiting member 120 connected to the radial limiting member 110 , and the other end extends to the circumferential limiting member 120 and the radial limiting member 110 .
  • the second grooves 211 respectively extend to the radial ends of the magnetic block 210, so that the axial limit nail 400 is kept on the Behind the limiting channel formed by the first groove 121 and the second groove 211, and under the action of the outer ring 320, the axis limiting member 400 is abutted and fixed on the radial limiting channel. between the position piece 110 and the outer ring 320 .
  • the outer ring 320 further prevents stress deformation of the inner ring 310 , so as to avoid failure of the radial fixing effect of the inner ring 310 on the magnetic block 210 .
  • the magnetic block 210, the circumferential limiter 120, the inner ring 310 and the outer ring 320 are consistent in size along the rotor axial direction and are relatively thin, thereby forming the rotor as shown in FIG. 1 Fixed structure of magnetic steel.
  • the size of the outer ring 320 along the radial direction of the rotor is larger than the size of the inner ring 310 along the radial direction of the rotor, so as to improve the overall strength of the outer ring 320, thereby improving The fixing effect of the outer ring 320 on the inner ring 310 and the axial limiting nail 400 respectively.
  • the size of the outer ring 320 in the radial direction of the rotor is 1.5 times or more than the size of the inner ring 310 in the radial direction.
  • the cage 100b includes a multi-layer first base material 1000, and the multiple layers of the first base material 1000 are laminated and hot-pressed along the axial direction of the rotor to form the cage 100b.
  • the stacking method not only the strength of the cage 100b is improved, but also it is beneficial to industrial mass production.
  • the first base material 1000 has a radial limiting portion 1100 and a circumferential limiting portion 1200, and the radial limiting portion 1100 of the first base material 1000 is laminated and hot-pressed to form a
  • the radial limiting member 110 , the circumferential limiting portion 1200 of the first base material 1000 of multiple layers are laminated and hot-pressed to form the circumferential limiting member 120 .
  • the first base material 1000 can be made of a composite material, and under heat and pressure, multiple layers of the first base material 1000 can be thermally laminated and fixed, wherein the first base material 1000 can be self-adhesive, or it can be used in Adhesive is applied between two adjacent layers of the first substrate 1000 to achieve hot-melt lamination.
  • the radial limiting part 110 is circular, so that the radial limiting part 110 formed by superposition is a cylinder, and at this time, the magnetic block 210 abuts against the radial limiting part 110 on the outer wall.
  • a plurality of the circumferential limiting portions 1200 are spaced from and connected to the outer peripheral edge of the radial limiting portion 110 , and the circumferential limiting portion 1200 is away from the side of the radial limiting portion 1100 (ie, the outer side ) is arc-shaped, so that the outer side of the superimposed circumferential limiting member 120 is arc-shaped, so as to fit and install the ring-shaped inner ring 310 .
  • a fitting part 130 for fitting the magnetic permeable block 210 is formed between two adjacent circumferential limiters 120. Referring to FIG. 2, the shape of the fitting part 130 and the magnetic permeable block 210 unanimous.
  • the circumferential limiting member 120 has an upper limiting area 1201 , a middle recessed area 1202 and a lower limiting area 1203 arranged axially, and the circumferential limiting portion 1200 located in the middle recessed area 1202
  • the widths are respectively smaller than the widths of the circumferential limiting portions 1200 located in the upper limiting area 1202 and the lower limiting area 1203 , so that the middle recessed area 1202 forms the first groove 121 .
  • the width of the circumferential limiting portion 1200 refers to its size in the circumferential direction of the rotor. Due to the above-mentioned structure, both sides of the central recessed area 1202 are respectively recessed inwards, thereby forming a spacer located in the circumferential direction of the rotor. The first grooves 121 on both sides of the circumferential limiting member 120 in the circumferential direction. It can be seen that the circumferential limiting part 120 structure as shown in FIG. 9 is formed by reducing the width of the circumferential limiting part 1200 located in the central recessed area 1202 .
  • the width of the circumferential limiting portion 1200 located in the upper limiting area 1202 is consistent with the width of the circumferential limiting portion 1200 located in the lower limiting area 1203 .
  • the size of the upper limiting area 1202 and the lower limiting area 1203 in the axial direction of the rotor are consistent, so that the first groove 121 is kept at the position of the circumferential limiting member 120 in the axial direction of the rotor. centre position.
  • the magnetic permeable block 210 includes multiple layers of magnetic permeable sheets 2100 of different sizes, and the multiple layers of the magnetic permeable sheets 2100 are laminated along the radial direction of the rotor in a manner of gradually increasing in size to form the magnetic permeable Block 210.
  • a plurality of the magnetic permeable sheets 2100 are arc-shaped, and the magnetic permeable sheets 2100 can also be made of composite materials, and the magnetic permeable blocks 210 can be formed by stacking multiple layers of the magnetic permeable sheets 2100 by using viscosity.
  • the plurality of magnetic permeable pieces 2100 have the same size along the axial and radial directions of the rotor, and the size along the circumferential direction of the rotor gradually increases, so that the superimposed magnetic permeable blocks 210 are fan-shaped to fit
  • the fitting portion 130 is fan-shaped.
  • the radial ends of the magnetic permeable block 210 are respectively arc-shaped, so as to fit and assemble the outer sidewall of the radially limiting part 1100 which is curved and the inner ring 310 which is annular.
  • the magnetic conductive sheet 2100 is provided with recesses 2110 on both sides along the circumferential direction of the rotor, so that the plurality of recessed portions 2110 on the magnetic conductive sheet 2100 form second grooves 211 .
  • the radial limiter 110 and the ring assembly 300 are fixed at both radial ends of the magnetic permeable block 210 to radially fix the magnetic permeable block 210;
  • the block 210 is fixed between two adjacent circumferential limiters 120 for circumferential fixation; and the axial limit nail 400 is used to cooperate with the magnetic block 210 to prevent the guide
  • the magnetic block 210 moves axially, which not only has a simple and novel structure, but also effectively improves the fixing effect of the magnetic block 210, avoiding shaking and falling off and affecting the performance of the rotor.
  • the ring assembly 300 includes an inner ring 310 and an outer ring 320 arranged along the radial direction of the rotor and arranged from the inside to the outside.
  • the outer ring 320 exerts a binding force on the inner ring 310 to prevent the rotor from centrifuging at high speed.
  • the stress deformation of the ring 310 prevents the radial fixing effect of the inner ring 310 on the magnetic block 210 from failing. Compared with the prior art, it avoids glue failure and affects the fixing effect on the magnetic block 210.
  • the fixing effect of the component 300 on the magnetic block 210 effectively prevents the magnetic block 210 from shaking and falling off, and improves the performance and reliable operation of the rotor.
  • the cage 100b is formed by hot-compression lamination of multiple layers of the first base material 1000
  • the magnetically permeable block 210 is formed by laminating magnetically permeable sheets 2100 of different sizes in a gradually increasing size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本发明提供了一种盘式电机转子、成型方法及双气隙电机转子结构,包括非导磁保持架,非导磁保持架具有径向限位件和周向限位件,多个周向限位件间隔且向外延伸地连接于径向限位件;导磁组件,导磁组件具有多个导磁块,每一导磁块被保持于相邻的两个周向限位件之间,并且导磁块与周向限位件抵接并形成一限位通道;环组件,环组件套设于导磁块外侧,并使导磁块抵接固定于径向限位件和环组件之间;多个轴向限位钉,每一轴向限位钉被保持于一限位通道内,径向限位件和内环对导磁块进行径向固定,相邻的两个周向限位件对导磁块进行周向固定,并利用所述轴向限位钉对所述导磁块进行轴向固定,防止所述导磁块晃动和脱落。

Description

一种盘式电机转子、成型方法及双气隙电机转子结构 技术领域
本发明涉及盘式电机领域,尤其涉及一种盘式电机转子、成型方法及双气隙电机转子结构。
背景技术
电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置,它的主要作用是产生驱动转矩,作为电器或各种机械的动力源。电机包括定子和转子,定子是电动静止不动的部分,主要由定子铁芯、定子绕组组成,定子的作用是产生旋转磁场,以使转子在磁场中被磁力线切割而产生电流。
其中电机可分为径向磁场电机和轴向磁场电机,轴向磁场电机也称为盘式电机,其具有体积小、重量轻、轴向尺寸短和功率密度高等特点,可在多数薄型安装场合使用,因此被广泛使用。现有的转子一般包括保持架、保护环和磁钢,保持架周缘设有若干卡槽,磁钢通过卡槽与保持架卡接,保护环套设于磁钢的外周缘,以对磁钢进行固定。
开关磁阻电机是一种以磁路结构总是偏好于最小磁阻为原理设计的电机,在这种电机中可以使用软导磁材料替代磁钢,从而大幅度缩减电机成本。目前轴向磁场开关磁阻电机相关设计还较少。在开关磁阻电机需要使用导磁性能优异的导磁块以提升其电机性能,目前通过片状硅钢片堆叠形成的导磁块导磁性能优异,但是在片状硅钢片堆叠形成的导磁块中硅钢片与硅钢片是离散的,难以进行工业化生产。
另一方面,盘式电机转子盘可分为单气隙转子盘和双气隙转子盘,如CN201820928635.1是一种单气隙转子盘,单气隙转子盘由于只需要设置单侧气隙,同时具有导磁铁背的结构,因此这种转子盘设计空间大,磁钢等部件固定方便。
CN201821895450.1公开了一种盘式电机双气隙转子盘,在这种双气隙转子盘中,由于需要设置双气隙,整个转子盘只有中间的保持架实现对磁钢等部件的固定,设计空间小。在传统工艺上会通过磁钢和保持架上的凹槽凸起结构以及保持环实现对磁钢的初步固定,然后通过胶水进一步实现对保持架、磁钢和保持环三者的固定。但是在转子高速转动时,胶水易松动失效,最容易导致的结果就是保持环位置偏置,造成电机失效。
CN201910091883.4公开了一种盘式电机双气隙转子盘,在该专利中尝试对保持环位置偏置问题进行解决,但是保持环一般由纤维材料缠绕而成以提高其拉伸强度,当尝试在保持环 进行开孔等结构则会导致保持环强度大幅降低。
发明内容
为了解决上述问题,本发明提供了一种成型方便,并利用基材叠压形成非导磁保持架以及卷制形成磁钢,以提升强度和降低成本,及便于开展工业化批量生产的盘式电机转子的成型方法,以及利用该成型方法获得避免磁钢晃动和脱落,并确保转子可靠运行的转子。本发明还提供了一种避免磁钢晃动和脱落,并确保转子可靠运行的转子磁钢的双气隙电机转子结构。
依本发明一个方面,本发明提供了一种盘式电机转子,包括:
一非导磁保持架,所述非导磁保持架具有一径向限位件和多个周向限位件,多个所述周向限位件间隔且向外延伸地连接于所述径向限位件;
一导磁组件,所述导磁组件具有多个导磁块,每一所述导磁块被保持于相邻的两个所述周向限位件之间,并且所述导磁块与所述周向限位件抵接并形成一限位通道;
一环组件,所述环组件套设于所述导磁块外侧,并使所述导磁块抵接固定于所述径向限位件和所述环组件之间;
多个轴向限位钉,每一所述轴向限位钉被保持于一所述限位通道内。
作为优选的技术方案,所述周向限位件开设有一第一凹槽,所述导磁块开设有一第二凹槽,当所述导磁块与所述周向限位件抵接时,所述第一凹槽与所述第二凹槽相对并形成所述限位通道。
作为优选的技术方案,所述导磁块整体呈梯形,所述导磁块由多个不同尺寸的导磁片沿梯形高度方向堆叠而成,所述第二凹槽开设于所述梯形侧边并贯穿每个导磁片。
作为优选的技术方案,所述导磁片呈弧形结构,所述导磁块梯形底部呈弧形凸起,所述导磁块梯形顶部呈弧形凹槽。作为优选的技术方案,所述轴向限位钉插接于所述环组件。
作为优选的技术方案,所述环组件包括一内环,所述内环上开设有多个导向孔,每一所述导向孔分别与一所述限位通道相对,并使所述轴向限位钉通过所述导向孔被插入于所述限位通道。
作为优选的技术方案,所述环组件还包括一外环,所述外环套设于所述内环外侧并固定所述轴向限位钉。
作为优选的技术方案,所述轴线限位件抵接固定于所述径向限位件与所述外环之间。
作为优选的技术方案,所述外环包括至少一纤维丝束,所述纤维丝束缠绕于所述内环外 侧,并利用粘结剂固化形成所述外环。
作为优选的技术方案,所述非导磁保持架包括多层第一基材,多层所述第一基材沿转子轴向且被叠合热压形成所述非导磁保持架。
依本发明另一个方面,本发明还提供了一种盘式电机转子的成型方法,包括以下步骤:
(a)提供一非导磁保持架,其中所述非导磁保持架具有一径向限位件和多个周向限位件,多个所述周向限位件间隔且向外延伸地连接于所述径向限位件;
(b)提供一导磁组件,其中所述导磁组件具有多个导磁块和一轭件,多个所述导磁块呈环形且间隔地排列于所述轭件上;
(c)嵌合所述周向限位件于相邻的两个所述导磁块之间,并抵接于所述轭件上,以使所述导磁块210与所述周向限位件之间形成一限位通道;
(d)套设一内环于所述导磁块外侧,并使所述内环上的导向孔与所述限位通道一一对应;
(e)逐一将多个轴向限位钉依次穿过所述导向孔并插入于所述限位通道;
(f)套设一外环于所述内环外侧,并固定所述轴向限位钉。
作为优选的技术方案,所述步骤(a)进一步包括以下步骤:
(a1)叠合热压多层第一基材以形成所述非导磁保持架。
作为优选的技术方案,所述第一基材具有径向限位部和周向限位部,进而在所述步骤(a1)中,多层所述第一基材的所述径向限位部叠合热压形成所述径向限位件,多层所述第一基材的所述周向限位部叠合热压形成所述周向限位件。
作为优选的技术方案,所述周向限位件具有沿轴向排列的上部限位区、中部凹陷区和下部限位区,位于所述中部凹陷区的周向限位部的宽度,其分别小于位于上部限位区和所述下部限位区的周向限位部的宽度,以使所述中部凹陷区形成第一凹槽。
作为优选的技术方案,所述步骤(b)进一步包括以下步骤:
(b1)藉由一冲压设备冲压所述第二基材;
(b2)藉由一卷制设备并以相同角速度卷制冲压后的所述第二基材,以形成所述导磁组件。
作为优选的技术方案,冲压后的所述第二基材具有多个导磁片和一轭部,多个所述导磁块间隔设置于所述轭部上,进而在所述步骤(b2)中,所述轭部卷制形成所述轭件,多个所述导磁片逐一卷制形成多个环形排列的所述导磁块。
作为优选的技术方案,所述导磁片上具有凹陷部,进而在每个所述导磁块的结构中,多个所述导磁片上的凹陷部形成第二凹槽,所述第二凹槽与所述第一凹槽相对形成限位通道。
作为优选的技术方案,在每个所述导磁块的结构中,多个所述导磁片沿径向且以宽度渐大的方式被叠合形成所述导磁块。
作为优选的技术方案,所述步骤(f)进一步包括以下步骤:
缠绕纤维丝束于所述内环外侧,并利用粘结剂固化以使纤维丝束形成所述外环。
作为优选的技术方案,在步骤(e)和(f)之间进一步包括以下步骤:
去除所述轭件。
依本发明另一个方面,本发明还提供了一种双气隙电机转子结构,包括一保持架、一导磁组件、多个轴向限位钉和一环组件,所述保持架具有一径向限位件,所述导磁组件具有多个导磁块,多个所述导磁块呈环形排列,且固定于所述径向限位件与所述环组件之间,所述环组件包括一内环和一外环,所述内环为非具有纤维束规则排列结构的辅助环,所述外环为具有纤维束规则排列结构的受力环,所述内环上开设有固定孔,所述外环沿着转子周向束缚在内环外侧,所述轴向限位钉一端插入所述固定孔,另一端插入所述保持架或/和所述导磁块内。
作为优选的技术方案,所述外环由碳纤维环缠绕而成,所述内环由金属材料制成。
作为优选的技术方案,所述保持架还具有多个周向限位件,多个所述周向限位件沿着转子周向排列且向外延伸地连接于所述径向限位件,并使所述周向限位件与所述导磁块间隔设置。
作为优选的技术方案,所述周向限位件与所述导磁块抵接并形成一限位通道,所述轴向限位钉被保持于所述限位通道内,以防止所述导磁块沿转子轴向移动。
作为优选的技术方案,所述周向限位件开设有一第一凹槽,所述导磁块开设有一第二凹槽,当所述导磁块与所述周向限位件抵接时,所述第一凹槽与所述第二凹槽相对并形成所述限位通道。
作为优选的技术方案,所述轴向限位钉沿着转子径向抵接于所述径向限位件和所述外环之间。
作为优选的技术方案,所述轴向限位钉与所述限位通道为过盈配合。
作为优选的技术方案,所述保持架包括多层第一基材,多层所述第一基材沿转子轴向且被叠合热压形成所述保持架,所述导磁块包括多层不同尺寸的导磁片,所述导磁片呈弧形,且多层所述导磁片沿转子径向且以尺寸渐大的方式被叠合热压形成所述导磁块。
与现有技术相比,本技术方案具有以下优点:
所述径向限位件与所述环组件固定于所述导磁块径向的两端,以对所述导磁块进行径向 固定;所述导磁块固定于相邻的两个所述周向限位件之间,以进行周向固定;并利用所述轴向限位钉与所述导磁块配合,以防止所述导磁块发生轴向移动,这样不仅结构简单新颖,还有效提升导磁块的固定效果,避免出现晃动和脱落现象而影响转子性能。另外,所述环组件包括内环和外环,防止所述内环应力变形,避免所述内环对所述导磁块的径向固定效果失效。并且所述非导磁保持架是由多层第一基材热压叠合而成,以及所述导磁块是由不同尺寸的导磁片,并以尺寸渐大的方式叠合而成,不仅成型方便快捷,通过堆叠的方式使得导磁块的成型更加方便快捷,并且多个导磁片在卷制且叠合的过程中,多个导磁片是连接轭部的,以防止其在卷制过程中出现导磁片离散的现象,并在卷制堆叠成导磁块后,切除轭部即可,此时多个所述导磁片紧密贴合,且固定于所述径向限位件与所述内环之间,防止导磁片离散,有利于开展工业化批量生产,而且结构简单新颖,有效降低成本。
以下结合附图及实施例进一步说明本发明。
附图说明
图1为本发明所述盘式电机转子的结构示意图;
图2为本发明所述非导磁保持架的结构示意图;
图3为本发明所述导磁组件的结构示意图;
图4为本发明所述内环的结构示意图;
图5为本发明所述非导磁保持架、导磁组件和所述内环组装的结构示意图;
图6为本发明所述轭件切割后的结构示意图;
图7为本发明所述导磁块的结构示意图;
图8为本发明所述第一基材的结构示意图;
图9为本发明所述周向限位件的结构示意图;
图10为本发明所述第二基材的结构示意图;
图11为本发明所述盘式电机转子的成型方法的流程图。
图中:100a非导磁保持架、100b保持架、110径向限位件、120周向限位件、121第一凹槽、130嵌合部、200导磁组件、210导磁块、211第二凹槽、220轭件、300环组件、310内环、311导向孔、320外环、400多个轴向限位钉、1000第一基材、1100径向限位部、1200周向限位部、1201上部限位区、1202中部凹陷区、1203下部限位区、2000第二基材、2100导磁片、2110凹陷部、2200轭部。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
如图1至图6所示,所述盘式电机转子,包括:
一非导磁保持架100a,所述非导磁保持架100a具有一径向限位件110和多个周向限位件120,多个所述周向限位件120间隔且向外延伸地连接于所述径向限位件110;
一导磁组件200,所述导磁组件200具有多个导磁块210,每一所述导磁块210被保持于相邻的两个所述周向限位件120之间,并且所述导磁块210与所述周向限位件120抵接并形成一限位通道;
一环组件300,所述环组件300套设于所述导磁块210外侧,并使所述导磁块210抵接固定于所述径向限位件110和所述环组件300之间;
多个轴向限位钉400,每一所述轴向限位钉400被保持于一所述限位通道内。
其中所述径向限位件110与所述环组件300固定于所述导磁块210径向的两端,以对所述导磁块210进行径向固定;所述导磁块210固定于相邻的两个所述周向限位件120之间,以进行周向固定;并利用所述轴向限位钉400与所述导磁块210配合,以防止所述导磁块210发生轴向移动,这样不仅结构简单新颖,还有效提升导磁块210的固定效果,避免出现晃动和脱落现象而影响转子性能。
如图2和图3所示,所述周向限位件120开设有一第一凹槽121,所述导磁块210开设有一第二凹槽211,当所述导磁块210与所述周向限位件120抵接时,所述第一凹槽121与所述第二凹槽211相对并形成所述限位通道。
具体地,所述周向限位件120沿着所述转子周向的两侧,其分别开设有所述第一凹槽121,所述导磁块210沿着所述转子周向的两侧分别开设有第二凹槽211,以使所述导磁块210嵌入于两个所述周向限位件120后,所述导磁块210沿着所述转子周向的两侧分别形成所述限位通道,即每个所述导磁块210分别对应两个所述轴向限位钉400,且两个所述轴向限位钉400分设于所述导磁块210周向的两侧,进一步避免所述导磁块210发生轴向移动。
更具体地,所述轴向限位钉400部分嵌入于所述第一凹槽121内,部分嵌入于所述第二凹槽211内,进而防止所述导磁块210发生轴向移动。其中所述轴向限位钉400与所述限位通道的横截面形状适配,可呈圆形、方形或三角形等,再次不受限制。另外所述第一凹槽121 与所述第二凹槽211相对组合的横截面形状与所述限位通道一致,以圆形为例,所述第一凹槽121与所述第二凹槽211的横截面形状均呈半圆形,两者组合形成了横截面呈圆形的限位通道,其中所述第一凹槽121与所述第二凹槽211的横截面积可一致,当然所述第二凹槽211的横街面积可大于所述第一凹槽121横截面积,以增加了所述轴向限位钉400与所述导磁块210的接触面积,提升所述轴向限位钉400对所述导磁块210轴向移动的固定效果。
如图1至图5所示,所述环组件300包括一内环310,所述内环310上开设有多个导向孔311,每一所述导向孔311分别与一所述限位通道相对,并使所述轴向限位钉400通过所述导向孔311被插入于所述限位通道。
其中所述内环310除了与所述径向限位件110,以对所述导磁块210进行径向固定外,还通过开设所述导向孔311,以使所述轴向限位钉400穿过,进而使所述轴向限位钉400插接固定于所述环组件300。另外所述内环310还与所述周向限位件120的外侧抵接,所述内环310可采用玻璃纤维等材质制成,其具有绝缘性号、耐热性强、抗腐蚀性好等特点,以延长所述内环310的使用寿命。
如图1所示,所述环组件300还包括一外环320,所述外环320套设于所述内环310外侧并固定所述轴向限位钉400。
具体地,参考图2,所述第一凹槽121的一端延伸至周向限位件120与所述径向限位件110连接的端面上,另一端延伸至周向限位件120与所述内环310套接的端面上,参考图3,所述第二凹槽211分别延伸至所述导磁块210径向的两端,这样在所述轴向限位钉400保持在所述第一凹槽121和所述第二凹槽211相对组成的限位通道后,并在所述外环320的作用下,以使所述轴线限位件400抵接固定于所述径向限位件110与所述外环320之间。
所述外环320除了固定所述轴向限位钉400外,还进一步防止所述内环310应力变形,避免所述内环310对所述导磁块210的径向固定效果失效。
所述外环320包括至少一纤维丝束,所述纤维丝束缠绕于所述内环310外侧,并利用粘结剂固化形成所述外环320。所述纤维丝束可采用碳纤维,以提升强度,避免所述外环320损坏,其中所述粘结剂可为胶水。
所述导磁块210、所述周向限位件120、所述内环310和所述外环320沿转子轴向的尺寸保持一致,并且较薄,进而形成了如图1所示的盘式电机转子。
如图1所示,所述外环320沿着所述转子径向上的尺寸,其大于所述内环310沿所述转子径向上的尺寸,以提升所述外环320的整体强度,进而提升所述外环320分别对所述内环310和所述轴向限位钉400的固定效果。作为优选地,所述外环320沿所述转子径向上的尺 寸,为所述内环310沿所述径向上尺寸的1.5倍或以上。
如图1、图8和图9所示,所述非导磁保持架100a包括多层第一基材1000,多层所述第一基材1000沿转子轴向且被叠合热压形成所述非导磁保持架100a。使得非导磁保持架100a成型方便快捷,并同时提升非导磁保持架100a结构强度。
参考图8,所述第一基材1000具有径向限位部1100和周向限位部1200,多层所述第一基材1000的所述径向限位部1100叠合热压形成所述径向限位件110,多层所述第一基材1000的所述周向限位部1200叠合热压形成所述周向限位件120。所述第一基材1000可采用复合材质,并在热压下以使多层所述第一基材1000热熔叠合固定,其中所述第一基材1000可自带粘性,或者利用在相邻的两层所述第一基材1000之间涂刷粘结剂,以实现热熔叠合。
其中,所述径向限位部110呈圆形,以使叠合形成所述径向限位件110呈圆柱体,此时所述导磁块210抵接于所述径向限位件110的外侧壁上。多个所述周向限位部1200间隔且连接于所述径向限位部110的外周缘,并且所述周向限位部1200远离所述径向限位部1100的一侧(即外侧)呈弧形,以使叠合形成的周向限位件120的外侧呈弧形,以适配安装呈环形的所述内环310。另外相邻的两个所述周向限位件120之间形成用于嵌合导磁块210的嵌合部130,参考图2,所述嵌合部130与所述导磁块210的形状一致。
参考图9,所述周向限位件120具有沿转子轴向排列的上部限位区1201、中部凹陷区1202和下部限位区1203,位于所述中部凹陷区1202的周向限位部1200的宽度,其分别小于位于上部限位区1202和所述下部限位区1203的周向限位部1200的宽度,以使所述中部凹陷区1202形成第一凹槽121。
具体地,所述周向限位部1200的宽度指的是其在转子周向上的尺寸,由于采用上述结构,以使所述中部凹陷区1202的两侧分别向内侧凹陷,进而形成分设于所述周向限位件120周向两侧的所述第一凹槽121。可见通过减小位于所述中部凹陷区1202的周向限位部1200的宽度,以形成如图9所示的周向限位件120结构。
更具体地,位于上部限位区1202的周向限位部1200的宽度,其与位于所述下部限位区1203的周向限位部1200的宽度一致。另外所述上部限位区1202与所述下部限位区1203在转子轴向上的尺寸一致,以使所述第一凹槽121保持在所述周向限位件120沿转子轴向上的中间位置。
如图7所示,所述导磁块210包括多层不同尺寸的导磁片2100,多层所述导磁片2100沿转子径向且以尺寸渐大的方式被叠合形成所述导磁块210。多个所述导磁片2100呈弧形片状,所述导磁片2100也可采用复合材质,并利用粘性以使多层所述导磁片2100叠合形成所 述导磁块210。通过堆叠的方式使得导磁块210的成型更加方便快捷,并且多个导磁片2100在卷制且叠合的过程中,多个导磁片2100是连接轭部2200的,以防止其在卷制过程中出现导磁片2100离散的现象,并在卷制堆叠成导磁块210后,切除轭部2200即可,此时多个所述导磁片2100紧密贴合,且固定于所述径向限位件110与所述内环310之间,防止导磁片2100离散,有利于开展工业化批量生产。
多个所述导磁片2100在其沿着转子轴向、径向上的尺寸一致,而沿着转子周向的尺寸渐大,以使叠合形成的所述导磁块210呈梯形,以适配呈梯形的所述嵌合部130。并且所述导磁块210径向的两端分别呈弧形,以适配组装呈曲面的所述径向限位部1100的外侧壁,以及呈环形的所述内环310。
详细说明,所述导磁块210整体呈梯形,所述导磁块210由多个不同尺寸的导磁片2100沿梯形高度方向堆叠而成。
更加详细地说明,所述导磁片2100呈弧形结构,所述导磁块210梯形底部呈弧形凸起,即靠近所述径向限位件110的一侧呈弧形凸起,所述导磁块210梯形顶部呈弧形凹槽,即靠近所述内环310的一侧呈弧形凹槽,以使所述导磁块210的两侧能够适配呈弧形的径向限位件110和所述内环310。继续参考图7,所述导磁片2100沿转子周向的两侧分设有凹陷部2110,以使多个所述导磁片2100上的凹陷部2110形成第二凹槽211。所述第二凹槽211开设于所述导磁块210的梯形侧边并贯穿每个导磁片2100。
综上所述,所述径向限位件110与所述环组件300固定于所述导磁块210径向的两端,以对所述导磁块210进行径向固定;所述导磁块210固定于相邻的两个所述周向限位件120之间,以进行周向固定;并利用所述轴向限位钉400与所述导磁块210配合,以防止所述导磁块210发生轴向移动,这样不仅结构简单新颖,还有效提升导磁块210的固定效果,避免出现晃动和脱落现象而影响转子性能。另外,所述环组件300包括内环310和外环320,防止所述内环310应力变形,避免所述内环310对所述导磁块210的径向固定效果失效。并且所述非导磁保持架100a是由多层第一基材1000热压叠合而成,以及所述导磁块210是由不同尺寸的导磁片2100,并以尺寸渐大的方式叠合而成,不仅成型方便快捷,还有利于开展转子的工业化批量生产,而且结构简单新颖,有效降低成本。
如图1至图11所示,所述盘式电机转子的成型方法,包括以下步骤:
(a)提供一非导磁保持架100a,其中所述非导磁保持架100a具有一径向限位件110和多个周向限位件120,多个所述周向限位件120间隔且向外延伸地连接于所述径向限位件110;
(b)提供一导磁组件200,其中所述导磁组件200具有多个导磁块210和一轭件220,多个所述导磁块210呈环形且间隔地排列于所述轭件220上;
(c)嵌合所述周向限位件120于相邻的两个所述导磁块210之间,并抵接于所述轭件220上,以使所述导磁块210与所述周向限位件120之间形成一限位通道;
(d)套设一内环310于所述导磁块210外侧,并使所述内环310上的导向孔311与所述限位通道一一对应;
(e)逐一将多个轴向限位钉400依次穿过所述导向孔311并插入于所述限位通道;
(f)套设一外环320于所述内环310外侧,并固定所述轴向限位钉400。
所述径向限位件110和所述内环310对所述导磁块210进行径向固定,相邻的两个所述周向限位件120对所述导磁块210进行周向固定,并利用所述轴向限位钉400对所述导磁块210进行轴向固定,以防止所述导磁块210发生轴向移动。并且所述盘式电机转子的成型方法方便快捷,并有效防止转子因导磁块210晃动或脱落而报废,避免影响转子性能,进而延长使用寿命。根据本发明的一个实施例,所述步骤(a)进一步包括以下步骤:
(a1)叠合热压多层第一基材1000以形成所述非导磁保持架100a。
所述非导磁保持架100a是由多层所述第一基材1000叠合热压成型,所述第一基材1000可采用复合材质,不仅使得所述非导磁保持架100a的成型更加方便快捷,还有效提升所述非导磁保持架100a的强度,进而提升所述非导磁保持架100a对所述导磁块210的支撑固定效果。
具体地,所述第一基材1000具有径向限位部1100和周向限位部1200,进而在所述步骤(a1)中,多层所述第一基材1000的所述径向限位部1100叠合热压形成所述径向限位件110,多层所述第一基材1000的所述周向限位部1200叠合热压形成所述周向限位件120。
根据电机极数以及所述导磁块210大小等因素设计所述周向限位部1200的尺寸以及排列关系。
更具体地,所述周向限位件120具有沿轴向排列的上部限位区1201、中部凹陷区1202和下部限位区1203,位于所述中部凹陷区1202的周向限位部1200的宽度,其分别小于位于上部限位区1202和所述下部限位区1203的周向限位部1200的宽度,以使所述中部凹陷区1202形成第一凹槽121。
位于所述中部凹陷区1202的周向限位部1200的宽度,其由所述轴向限位钉400的形状决定的,因此可根据所述轴向限位钉400的形状,来调整位于所述中部凹陷区1202的周向限位部1200的宽度即可。
其中多层所述第一基材1000的所述径向限位部1100尺寸保持不变,而通过改变所述周向限位部1200在所述转子周向的尺寸,以形成用于卡合所述轴向限位钉400的第一凹槽121,使得所述非导磁保持架100a及其上的所述第一凹槽121成型方便。
根据本发明的一个实施例,所述步骤(b)进一步包括以下步骤:
(b1)藉由一冲压设备冲压所述第二基材2000;
(b2)藉由一卷制设备并以相同角速度卷制冲压后的所述第二基材2000,以形成所述导磁组件200。
所述第二基材2000持续地传输至所述冲压设备处,由所述冲压设备进行冲压,冲压完成后的所述第二基材2000传输至所述卷制设置,以使所述第二基材2000卷制形成所述导磁组件200,以使所述导磁组件200的成型更加方便快捷,并同时保证所述导磁块210结构的稳定性。
具体地,冲压后的所述第二基材2000具有多个导磁片2100和一轭部2200,多个所述导磁块210间隔设置于所述轭部2200的同一侧,进而在所述步骤(b2)中,所述轭部2200卷制形成所述轭件220,多个所述导磁片2100逐一卷制形成多个环形排列的所述导磁块210。所述轭部2200的作用是连接多个所述导磁片2100,并使多个所述导磁片2100能够连续卷制,再后续可切除所述轭部2200。
更具体地,在第二基材2000卷制的过程中,多个导磁片2100是连接轭部2200的,防止导磁片2100在卷制过程中出现离散现象,并在卷制堆叠成导磁块210后,切除轭部2200即可,使得导磁块210的成型更加方便快捷,且有利于开展工业化批量生产。
参考图3和图10,所述冲压设备冲压所述第二基材2000后留下一连续的轭部2200,以及间隔设置的导磁片2100,相邻的两个所述导磁片2100之间对应了用于嵌合所述周向限位件120的位置。
另外每个所述导磁块210沿转子径向方向尺寸渐大,因此所述冲压设备冲压的面积逐渐变小,进而使所述导磁块210呈扇形。以八个数量的所述导磁块210为例,所述冲压设备以第一面积连续冲压所述第二基材2000九次,以使所述第二基材2000形成第一尺寸的八个所述导磁片2100,之后利用所述卷制设备将八个第一尺寸的所述导磁片2100卷制,并使八个所述导磁块210呈依次连续的环形排列,同时所述冲压设备以第二面积连接冲压所述第二基材八次,以使所述第二基材2000形成第二尺寸的八个所述导磁片2100,之后利用所述卷制设备将八个第二尺寸的导磁片2100卷制于八个第一尺寸的所述导磁片2100外,并一一对应,如此往复,以形成如图3所示的所述导磁组件200。
详细地说明,所述第二尺寸大于第一尺寸,其指的使得沿转子周向的尺寸,以使在每个导磁块210的多个所述导磁片2100,其沿转子径向且以周向尺寸渐大的方式被叠合形成所述导磁块210。由于所述第二尺寸大于第一尺寸,因此所述第二面积小于第一面积。
需要说明的是,所述卷制设备并以相同角速度卷制冲压后的所述第二基材2000,以使每个所述导磁块210的多个所述导磁片2100能够一一对应,防止位移偏差而影响所述导磁块210的成型效果。
如图3和图10所示,所述导磁片2100上具有凹陷部2110,进而在每个所述导磁块210的结构中,多个所述导磁片2100上的凹陷部2110形成第二凹槽211,所述第二凹槽211与所述第一凹槽121相对形成限位通道。
由于所述第二凹槽211与所述第一凹槽121组成了限位通道,因此根据所述轴向限位钉400的尺寸来确定所述第二凹槽211的尺寸。
指的注意的是,多层所述第一基材1000沿着所述转子轴向叠合而成,所述第二基材2000绕着所述转子轴向卷制而成。
根据本发明的一个实施例,所述步骤(f)进一步包括以下步骤:
缠绕纤维丝束于所述内环310外侧,并利用粘结剂固化以使纤维丝束形成所述外环320。
根据本发明的一个实施例,在步骤(e)和(f)之间进一步包括以下步骤:
去除所述轭件220以获得盘式电机转子。可利用线切割或打磨机等来切除所述轭件220,以形成如图1盘式电机转子结构,此时所述非导磁保持架100a、所述导磁块210、所述内环310和所述外环320沿转子轴向上的尺寸一致,并且盘式电机转子的轴向尺寸较薄,以适用安装于薄型的安装空间。
根据本发明的一个实施例,在步骤(f)进一步包括以下步骤:
对盘式电机转子进行整体打磨和充磁等。通过打磨以提升转子平整度。
综上所述,所述盘式电机转子的成型方法方便快捷,并有效防止转子因导磁块210晃动或脱落而报废,避免影响转子性能,进而延长使用寿命。所述非导磁保持架100a是由多层所述第一基材1000叠合热压成型,所述第一基材1000可采用复合材质,不仅使得所述非导磁保持架100a的成型更加方便快捷,还有效提升所述非导磁保持架100a的强度,进而提升所述非导磁保持架100a对所述导磁块210的支撑固定效果。所述导磁组件200利用所述第二基材2000,并在所述冲压设备及卷设备的作用下而冲压卷制成型,然后去除所述轭件220即可,使所述导磁组件200的成型更加方便快捷,并同时保证所述导磁块210结构的稳定性,在第二基材2000卷制的过程中,多个导磁片2100是连接轭部2200的,防止导磁片2100 在卷制过程中出现离散现象,并在卷制堆叠成导磁块210后,切除轭部2200即可,使得导磁块210的成型更加方便快捷,且有利于开展工业化批量生产。
如图1至图6所示,所述双气隙电机转子结构,包括一保持架100b、一导磁组件200、多个轴向限位钉400和一环组件300,所述保持架100b具有一径向限位件110,所述导磁组件200具有多个导磁块210,多个所述导磁块210呈环形排列,且固定于所述径向限位件110与所述环组件300之间,所述环组件300包括一内环310和一外环320,所述内环310为非具有纤维束规则排列结构的辅助环,所述外环320为具有纤维束规则排列结构的受力环,所述内环310上开设有固定孔311,所述外环320沿着转子周向束缚在内环310外侧,所述轴向限位钉400一端插入所述固定孔311,另一端插入所述保持架100b或/和所述导磁块210内。
所述径向限位件110和所述环组件300分别对应所述导磁块210径向的两端,以对所述导磁块210进行径向固定,进而防止所述导磁块210发生径向移动,通过所述轴向限位钉400与所述导磁块210限位,以防止所述导磁块210发生轴向移动,有效提升对磁钢的固定效果。并且所述环组件300包括沿转子径向且从内至外排列设置的内环310和外环320,外环320对内环310施加束缚力,以防止转子在高速离心旋转过程中,内环310发生应力变形,避免内环310对导磁块210的径向固定效果发生失效。相对于现有技术,避免胶水失效而影响对导磁块210的固定效果,另外无需对具有纤维束规则排列结构的外环320进行开孔,而影响外环320的强度,进而提升所述环组件300对导磁块210的固定效果,有效避免导磁块210发生晃动和脱落,提升转子性能和可靠运行。
所述外环320由碳纤维环缠绕而成,所述内环310由金属或玻璃纤维材料制成。可见所述内环310相对于所述外环320的强度较高,其上可开设所述固定孔311,以固定所述轴向限位钉400。
具体地,所述碳纤维利用粘结剂固化形成所述外环320,所述粘结剂可为胶水。其中碳纤维具有耐高温、抗摩擦和耐腐蚀等特点,因此有效提升外环320的强度,避免所述外环320损坏,进而延长所述外环320的使用寿命
在一个实施例中,所述轴向限位钉400一端插入所述固定孔311,另一端插入所述导磁块210内。即所述轴线限位钉400对所述导磁块210进行限位,以防止所述导磁块210发生轴向移动。
在另一个实施例中,所述轴向限位钉400一端插入所述固定孔311,另一端插入所述保持架100b内。所述轴向限位钉400起到固定所述内环310的作用。
在另一个实施例中,所述轴向限位钉400一端插入所述固定孔311,另一端插入所述保持架100b和所述导磁块210内。所述轴向限位钉400除了起到固定所述内环310的作用外,还对所述导磁块210进行限位,以防止所述导磁块210发生轴向移动。以下详细展开所述轴向限位钉400分别与所述保持架100b和所述导磁块210配合的结构:如图1至图6所示,所述保持架100b还具有多个周向限位件120,多个所述周向限位件120沿着转子周向排列且向外延伸地连接于所述径向限位件110,并使所述周向限位件120与所述导磁块210间隔设置。
具体地,每一所述导磁块210沿转子周向的两端分别保持有所述周向限位件120,并且所述导磁块210抵接于两个所述周向限位件120之间,以使所述周向限位件120对所述导磁块210进行周向固定,以防止所述导磁块210沿转子周向发生移动。
如图1至图6所示,所述转子磁钢的固定结构还包括多个轴向限位钉400,所述周向限位件120与所述导磁块210抵接并形成一限位通道,所述轴向限位钉400被保持于所述限位通道内,以防止所述导磁块210沿转子轴向移动。这样不仅结构简单新颖,还有效提升导磁块210的固定效果,避免出现晃动和脱落现象而影响转子性能。
作为优选地,所述轴向限位钉400与所述限位通道为过盈配合。以使两者紧密配合,防止所述轴向限位钉400与所述限位通道配合后而发生位移,进而影响所述轴向限位钉400的使用性能。
如图2和图3所示,所述周向限位件120开设有一第一凹槽121,所述导磁块210开设有一第二凹槽211,当所述导磁块210与所述周向限位件120抵接时,所述第一凹槽121与所述第二凹槽211相对并形成所述限位通道。
具体地,所述周向限位件120沿着所述转子周向的两侧,其分别开设有所述第一凹槽121,所述导磁块210沿着所述转子周向的两侧分别开设有第二凹槽211,以使所述导磁块210嵌入于两个所述周向限位件120后,所述导磁块210沿着所述转子周向的两侧分别形成所述限位通道,即每个所述导磁块210分别对应两个所述轴向限位钉400,且两个所述轴向限位钉400分设于所述导磁块210周向的两侧,进一步避免所述导磁块210发生轴向移动。
更具体地,所述轴向限位钉400部分嵌入于所述第一凹槽121内,部分嵌入于所述第二凹槽211内,进而防止所述导磁块210发生轴向移动。其中所述轴向限位钉400与所述限位通道的横截面形状适配,可呈圆形、方形或三角形等,再次不受限制。另外所述第一凹槽121与所述第二凹槽211相对组合的横截面形状与所述限位通道一致,以圆形为例,所述第一凹槽121与所述第二凹槽211的横截面形状均呈半圆形,两者组合形成了横截面呈圆形的限位 通道,其中所述第一凹槽121与所述第二凹槽211的横截面积可一致,当然所述第二凹槽211的横街面积可大于所述第一凹槽121横截面积,以增加了所述轴向限位钉400与所述导磁块210的接触面积,提升所述轴向限位钉400对所述导磁块210轴向移动的固定效果。
如图1至图5所示,所述内环310上开设有多个固定孔311,每一所述固定孔311分别与一所述限位通道相对,并使所述轴向限位钉400通过所述固定孔311被插入于所述限位通道。
其中所述内环310除了与所述径向限位件110,以对所述导磁块210进行径向固定外,还通过开设所述固定孔311,以使所述轴向限位钉400穿过,进而使所述轴向限位钉400插接固定于所述环组件300。另外所述内环310还与所述周向限位件120的外侧抵接,所述内环310可采用玻璃纤维等材质制成,其具有绝缘性号、耐热性强、抗腐蚀性好等特点,以延长所述内环310的使用寿命。
如图1所示,所述外环320套设于所述内环310外侧并固定所述轴向限位钉400。其中所述轴向限位钉400沿着转子径向抵接于所述径向限位件110和所述外环320之间。
具体地,参考图2,所述第一凹槽121的一端延伸至周向限位件120与所述径向限位件110连接的端面上,另一端延伸至周向限位件120与所述内环310套接的端面上,参考图3,所述第二凹槽211分别延伸至所述导磁块210径向的两端,这样在所述轴向限位钉400保持在所述第一凹槽121和所述第二凹槽211相对组成的限位通道后,并在所述外环320的作用下,以使所述轴线限位件400抵接固定于所述径向限位件110与所述外环320之间。
所述外环320除了固定所述轴向限位钉400外,还进一步防止所述内环310应力变形,避免所述内环310对所述导磁块210的径向固定效果失效。
所述导磁块210、所述周向限位件120、所述内环310和所述外环320沿转子轴向的尺寸保持一致,并且较薄,进而形成了如图1所示的转子磁钢的固定结构。
如图1所示,所述外环320沿着所述转子径向上的尺寸,其大于所述内环310沿所述转子径向上的尺寸,以提升所述外环320的整体强度,进而提升所述外环320分别对所述内环310和所述轴向限位钉400的固定效果。作为优选地,所述外环320沿所述转子径向上的尺寸,为所述内环310沿所述径向上尺寸的1.5倍或以上。
如图1、图8和图9所示,所述保持架100b包括多层第一基材1000,多层所述第一基材1000沿转子轴向且被叠合热压形成所述保持架100b。通过采用叠合的方式,不仅提升保持架100b的强度,还有利于工业化的批量生产。
参考图8,所述第一基材1000具有径向限位部1100和周向限位部1200,多层所述第一 基材1000的所述径向限位部1100叠合热压形成所述径向限位件110,多层所述第一基材1000的所述周向限位部1200叠合热压形成所述周向限位件120。所述第一基材1000可采用复合材质,并在热压下以使多层所述第一基材1000热熔叠合固定,其中所述第一基材1000可自带粘性,或者利用在相邻的两层所述第一基材1000之间涂刷粘结剂,以实现热熔叠合。
其中,所述径向限位部110呈圆形,以使叠合形成所述径向限位件110呈圆柱体,此时所述导磁块210抵接于所述径向限位件110的外侧壁上。多个所述周向限位部1200间隔且连接于所述径向限位部110的外周缘,并且所述周向限位部1200远离所述径向限位部1100的一侧(即外侧)呈弧形,以使叠合形成的周向限位件120的外侧呈弧形,以适配安装呈环形的所述内环310。另外相邻的两个所述周向限位件120之间形成用于嵌合导磁块210的嵌合部130,参考图2,所述嵌合部130与所述导磁块210的形状一致。
参考图9,所述周向限位件120具有沿轴向排列的上部限位区1201、中部凹陷区1202和下部限位区1203,位于所述中部凹陷区1202的周向限位部1200的宽度,其分别小于位于上部限位区1202和所述下部限位区1203的周向限位部1200的宽度,以使所述中部凹陷区1202形成第一凹槽121。
具体地,所述周向限位部1200的宽度指的是其在转子周向上的尺寸,由于采用上述结构,以使所述中部凹陷区1202的两侧分别向内侧凹陷,进而形成分设于所述周向限位件120周向两侧的所述第一凹槽121。可见通过减小位于所述中部凹陷区1202的周向限位部1200的宽度,以形成如图9所示的周向限位件120结构。
更具体地,位于上部限位区1202的周向限位部1200的宽度,其与位于所述下部限位区1203的周向限位部1200的宽度一致。另外所述上部限位区1202与所述下部限位区1203在转子轴向上的尺寸一致,以使所述第一凹槽121保持在所述周向限位件120沿转子轴向上的中间位置。
如图7所示,所述导磁块210包括多层不同尺寸的导磁片2100,多层所述导磁片2100沿转子径向且以尺寸渐大的方式被叠合形成所述导磁块210。多个所述导磁片2100呈弧形片状,所述导磁片2100也可采用复合材质,并利用粘性以使多层所述导磁片2100叠合形成所述导磁块210。通过采用叠合的方式,不仅提升导磁块210的强度和导磁性能,还有利于工业化的批量生产。
多个所述导磁片2100在其沿着转子轴向、径向上的尺寸一致,而沿着转子周向的尺寸渐大,以使叠合形成的所述导磁块210扇形,以适配呈扇形的所述嵌合部130。并且所述导磁块210径向的两端分别呈弧形,以适配组装呈曲面的所述径向限位部1100的外侧壁,以及呈 环形的所述内环310。
继续参考图7,所述导磁片2100沿转子周向的两侧分设有凹陷部2110,以使多个所述导磁片2100上的凹陷部2110形成第二凹槽211。
综上所述,所述径向限位件110与所述环组件300固定于所述导磁块210径向的两端,以对所述导磁块210进行径向固定;所述导磁块210固定于相邻的两个所述周向限位件120之间,以进行周向固定;并利用所述轴向限位钉400与所述导磁块210配合,以防止所述导磁块210发生轴向移动,这样不仅结构简单新颖,还有效提升导磁块210的固定效果,避免出现晃动和脱落现象而影响转子性能。另外,所述环组件300包括沿转子径向且从内至外排列设置的内环310和外环320,外环320对内环310施加束缚力,以防止转子在高速离心旋转过程中,内环310发生应力变形,避免内环310对导磁块210的径向固定效果发生失效。相对于现有技术,避免胶水失效而影响对导磁块210的固定效果,另外无需对具有纤维束规则排列结构的外环320进行开孔,避免影响外环320的强度,进而提升所述环组件300对导磁块210的固定效果,有效避免导磁块210发生晃动和脱落,提升转子性能和可靠运行。并且所述保持架100b是由多层第一基材1000热压叠合而成,以及所述导磁块210是由不同尺寸的导磁片2100,并以尺寸渐大的方式叠合而成,不仅成型方便快捷,提升导磁性能,还有利于工业化的批量生产,而且结构简单新颖,有效降低成本。
以上所述的实施例仅用于说明本发明的技术思想及特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,不能仅以本实施例来限定本发明的专利采用范围,即凡依本发明所揭示的精神所作的同等变化或修饰,仍落在本发明的专利范围内。

Claims (28)

  1. 一种盘式电机转子,其特征在于,包括:
    一非导磁保持架(100a),所述非导磁保持架(100a)具有一径向限位件(110)和多个周向限位件(120),多个所述周向限位件(120)间隔且向外延伸地连接于所述径向限位件(110);
    一导磁组件(200),所述导磁组件(200)具有多个导磁块(210),每一所述导磁块(210)被保持于相邻的两个所述周向限位件(120)之间,并且所述导磁块210)与所述周向限位件(120)抵接并形成一限位通道;
    一环组件(300),所述环组件(300)套设于所述导磁块(210)外侧,并使所述导磁块(210)抵接固定于所述径向限位件(110)和所述环组件(300)之间;
    多个轴向限位钉(400),每一所述轴向限位钉(400)被保持于一所述限位通道内。
  2. 如权利要求1所述的盘式电机转子,其特征在于,所述周向限位件(120)开设有一第一凹槽(121),所述导磁块导磁块(210)开设有一第二凹槽(211),当所述导磁块导磁块(210)与所述周向限位件(120)抵接时,所述第一凹槽(121)与所述第二凹槽(211)相对并形成所述限位通道。
  3. 如权利要求2所述的盘式电机转子,其特征在于,所述导磁块(210)整体呈梯形,所述导磁块(210)由多个不同尺寸的导磁片(2100)沿梯形高度方向堆叠而成,所述第二凹槽(211)开设于所述梯形侧边并贯穿每个导磁片(2100)。
  4. 如权利要求3所述的盘式电机转子,其特征在于,所述导磁片(2100)呈弧形结构,所述导磁块(210)梯形底部呈弧形凸起,所述导磁块(210)梯形顶部呈弧形凹槽。
  5. 如权利要求1所述的盘式电机转子,其特征在于,所述轴向限位钉(400)插接于所述环组件(300)。
  6. 如权利要求5所述的盘式电机转子,其特征在于,所述环组件(300)包括一内环(310),所述内环(310)上开设有多个导向孔(311),每一所述导向孔(311)分别与一所述限位通道相对,并使所述轴向限位钉(400)通过所述导向孔(311)被插入于所述限位通道。
  7. 如权利要求6所述的盘式电机转子,其特征在于,所述环组件(300)还包括一外环(320),所述外环(320)套设于所述内环(310)外侧并固定所述轴向限位钉(400)。
  8. 如权利要求7所述的盘式电机转子,其特征在于,所述轴线限位件(400)抵接固定于所述径向限位件(110)与所述外环(320)之间。
  9. 如权利要求8所述的盘式电机转子,其特征在于,所述外环(320)包括至少一纤维 丝束,所述纤维丝束缠绕于所述内环(310)外侧,并利用粘结剂固化形成所述外环(320)。
  10. 如权利要求1所述的盘式电机转子,其特征在于,所述非导磁保持架(100a)包括多层第一基材(1000),多层所述第一基材(1000)沿转子轴向且被叠合热压形成所述非导磁保持架(100a)。
  11. 一种盘式电机转子的成型方法,其特征在于,包括以下步骤:
    (a)提供一非导磁保持架(100a),其中所述非导磁保持架(100a)具有一径向限位件(110)和多个周向限位件(120),多个所述周向限位件(120)间隔且向外延伸地连接于所述径向限位件(110);
    (b)提供一导磁组件(200),其中所述导磁组件(200)具有多个导磁块(210)和一轭件(220),多个所述导磁块(210)呈环形且间隔地排列于所述轭件(220)上;
    (c)嵌合所述周向限位件(120)于相邻的两个所述导磁块(210)之间,并抵接于所述轭件(220)上,以使所述导磁块(210)与所述周向限位件(120)之间形成一限位通道;
    (d)套设一内环(310)于所述导磁块(210)外侧,并使所述内环(310)上的导向孔(311)与所述限位通道一一对应;
    (e)逐一将多个轴向限位钉(400)依次穿过所述导向孔(311)并插入于所述限位通道;
    (f)套设一外环(320)于所述内环(310)外侧,并固定所述轴向限位钉(400)。
  12. 如权利要求11所述的盘式电机转子的成型方法,其特征在于,所述步骤(a)进一步包括以下步骤:
    (a1)叠合热压多层第一基材(1000)以形成所述非导磁保持架(100a)。
  13. 如权利要求12所述的盘式电机转子的成型方法,其特征在于,所述第一基材(1000)具有径向限位部(1100)和周向限位部(1200),进而在所述步骤(a1)中,多层所述第一基材(1000)的所述径向限位部(1100)叠合热压形成所述径向限位件(110),多层所述第一基材(1000)的所述周向限位部(1200)叠合热压形成所述周向限位件(120)。
  14. 如权利要求13所述的盘式电机转子的成型方法,其特征在于,所述周向限位件(120)具有沿转子轴向排列的上部限位区(1201)、中部凹陷区(1202)和下部限位区(1203),位于所述中部凹陷区(1202)的周向限位部(1200)的宽度,其分别小于位于上部限位区(1202)和所述下部限位区(1203)的周向限位部(1200)的宽度,以使所述中部凹陷区(1202)形成第一凹槽(121)。
  15. 如权利要求14所述的盘式电机转子的成型方法,其特征在于,所述步骤(b)进一步包括以下步骤:
    (b1)藉由一冲压设备冲压所述第二基材(2000);
    (b2)藉由一卷制设备并以相同角速度卷制冲压后的所述第二基材(2000),以形成所述导磁组件(200)。
  16. 如权利要求15所述的盘式电机转子的成型方法,其特征在于,冲压后的所述第二基材(2000)具有多个导磁片(2100)和一轭部(2200),多个所述导磁块(210)间隔设置于所述轭部(2200)上,进而在所述步骤(b2)中,所述轭部(2200)卷制形成所述轭件(220),多个所述导磁片(2100)逐一卷制形成多个环形排列的所述导磁块(210)。
  17. 如权利要求16所述的盘式电机转子的成型方法,其特征在于,所述导磁片(2100)上具有凹陷部(2110),进而在每个所述导磁块(210)的结构中,多个所述导磁片(2100)上的凹陷部(2110)形成第二凹槽(211),所述第二凹槽(211)与所述第一凹槽(121)相对形成限位通道。
  18. 如权利要求17所述的盘式电机转子的成型方法,其特征在于,在每个所述导磁块(210)的结构中,多个所述导磁片(2100)沿转子径向且以宽度渐大的方式被叠合形成所述导磁块(210)。
  19. 如权利要求11所述的盘式电机转子的成型方法,其特征在于,所述步骤(f)进一步包括以下步骤:
    缠绕纤维丝束于所述内环(310)外侧,并利用粘结剂固化以使纤维丝束形成所述外环(320)。
  20. 如权利要求11所述的盘式电机转子的成型方法,其特征在于,在步骤(e)和(f)之间进一步包括以下步骤:
    去除所述轭件(220)。
  21. 一种双气隙电机转子结构,其特征在于,包括一保持架(100b)、一导磁组件(200)、多个轴向限位钉(400)和一环组件(300),所述保持架(100b)具有一径向限位件(110),所述导磁组件(200)具有多个导磁块(210),多个所述导磁块(210)呈环形排列,且固定于所述径向限位件(110)与所述环组件(300)之间,所述环组件(300)包括一内环(310)和一外环(320),所述内环(310)为非具有纤维束规则排列结构的辅助环,所述外环(320)为具有纤维束规则排列结构的受力环,所述内环(310)上开设有固定孔(311),所述外环(320)沿着转子周向束缚在内环(310)外侧,所述轴向限位钉(400)一端插入所述固定孔(311),另一端插入所述保持架(100b)或/和所述导磁块(210)内。
  22. 如权利要求21所述的双气隙电机转子结构,其特征在于,所述外环(320)由碳纤 维环缠绕而成,所述内环(310)由金属材料制成。
  23. 如权利要求21所述的双气隙电机转子结构,其特征在于,所述保持架(100b)还具有多个周向限位件(120),多个所述周向限位件(120)沿着转子周向排列且向外延伸地连接于所述径向限位件(110),并使所述周向限位件(120)与所述导磁块(210)间隔设置。
  24. 如权利要求23所述的双气隙电机转子结构,其特征在于,所述周向限位件(120)与所述导磁块(210)抵接并形成一限位通道,所述轴向限位钉(400)被保持于所述限位通道内,以防止所述导磁块(210)沿转子轴向移动。
  25. 如权利要求24所述的双气隙电机转子结构,其特征在于,所述周向限位件(120)开设有一第一凹槽(121),所述导磁块(210)开设有一第二凹槽(211),当所述导磁块(210)与所述周向限位件(120)抵接时,所述第一凹槽(121)与所述第二凹槽(211)相对并形成所述限位通道。
  26. 如权利要求25所述的双气隙电机转子结构,其特征在于,所述轴向限位钉(400)沿着转子径向抵接于所述径向限位件(110)和所述外环(320)之间。
  27. 如权利要求24所述的双气隙电机转子结构,其特征在于,所述轴向限位钉(400)与所述限位通道为过盈配合。
  28. 如权利要求21所述的双气隙电机转子结构,其特征在于,所述保持架(100b)包括多层第一基材(1000),多层所述第一基材(1000)沿转子轴向且被叠合热压形成所述保持架(100b),所述导磁块(210)包括多层不同尺寸的导磁片(2100),所述导磁片(2100)呈弧形,且多层所述导磁片(2100)沿转子径向且以尺寸渐大的方式被叠合热压形成所述导磁块(210)。
PCT/CN2021/118745 2021-08-05 2021-09-16 一种盘式电机转子、成型方法及双气隙电机转子结构 WO2023010653A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110894707.1 2021-08-05
CN202110894564.4 2021-08-05
CN202110894563.X 2021-08-05
CN202110894707.1A CN113572286A (zh) 2021-08-05 2021-08-05 一种盘式电机转子
CN202110894564.4A CN113612358B (zh) 2021-08-05 2021-08-05 一种盘式电机转子的成型方法
CN202110894563.XA CN113612326B (zh) 2021-08-05 2021-08-05 一种双气隙电机转子结构

Publications (1)

Publication Number Publication Date
WO2023010653A1 true WO2023010653A1 (zh) 2023-02-09

Family

ID=85154792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118745 WO2023010653A1 (zh) 2021-08-05 2021-09-16 一种盘式电机转子、成型方法及双气隙电机转子结构

Country Status (1)

Country Link
WO (1) WO2023010653A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978584A (zh) * 2008-12-03 2011-02-16 本田技研工业株式会社 轴向间隙型电机及其转子制造方法
CN104319913A (zh) * 2014-11-03 2015-01-28 华中科技大学 一种轴向磁通开关磁阻电机的定转子机构
CN109713819A (zh) * 2019-01-07 2019-05-03 南京航空航天大学 一种高强度Halbach永磁阵列转子结构
JP2020162191A (ja) * 2019-03-25 2020-10-01 株式会社日立産機システム アキシャルギャップ型回転電機
CN112018916A (zh) * 2020-08-24 2020-12-01 上海盘毂动力科技股份有限公司 盘式电机的转子结构
CN212676958U (zh) * 2020-08-25 2021-03-09 浙江盘毂动力科技有限公司 一种盘式电机转子磁钢保持架和盘式电机
CN113014012A (zh) * 2021-02-09 2021-06-22 苏蓉 一种转子组件及盘式电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978584A (zh) * 2008-12-03 2011-02-16 本田技研工业株式会社 轴向间隙型电机及其转子制造方法
CN104319913A (zh) * 2014-11-03 2015-01-28 华中科技大学 一种轴向磁通开关磁阻电机的定转子机构
CN109713819A (zh) * 2019-01-07 2019-05-03 南京航空航天大学 一种高强度Halbach永磁阵列转子结构
JP2020162191A (ja) * 2019-03-25 2020-10-01 株式会社日立産機システム アキシャルギャップ型回転電機
CN112018916A (zh) * 2020-08-24 2020-12-01 上海盘毂动力科技股份有限公司 盘式电机的转子结构
CN212676958U (zh) * 2020-08-25 2021-03-09 浙江盘毂动力科技有限公司 一种盘式电机转子磁钢保持架和盘式电机
CN113014012A (zh) * 2021-02-09 2021-06-22 苏蓉 一种转子组件及盘式电机

Similar Documents

Publication Publication Date Title
US11489385B2 (en) Rotor, rotary electric machine, and method for manufacturing rotor
JP6274475B2 (ja) 回転子、回転電機および回転子の製造方法
CN111525763B (zh) 具有绝缘转子的轴向磁通电动机
JP2008289329A (ja) モータのエンドプレート
JP6385588B2 (ja) 回転子および回転電機
CN113572286A (zh) 一种盘式电机转子
JP2019165624A (ja) 回転電気機械用回転子
JP2002369421A (ja) 半径方向巻線のステータ装置とその製造方法
EP2136453B1 (en) Rotating electrical machine
WO2013037305A1 (zh) 转子以及包括该转子的电机、电梯曳引机或伺服传动机构
JP2015053831A (ja) 回転電機のロータ
JP2018057155A (ja) 回転電機の回転子
JP2014072971A (ja) 表面磁石貼付型回転電機の回転子とその製造方法
WO2023010653A1 (zh) 一种盘式电机转子、成型方法及双气隙电机转子结构
JP2021029067A5 (zh)
CN113612358B (zh) 一种盘式电机转子的成型方法
CN106341015B (zh) 转子和具有其的自起动同步磁阻电机
US20090160281A1 (en) Permanent magnet motor with radially supported sleeve
JP2013143805A (ja) 回転電機のロータ、およびこれを備えた回転電機
CN102664471B (zh) 自平衡式电机转子
CN105221600B (zh) 低碳经济性电磁风扇离合器
JPH09289745A (ja) 回転機の磁極積層体
CN113612326B (zh) 一种双气隙电机转子结构
JP2005304245A (ja) アキシャルギャップ型回転電機
JP2013526822A (ja) 回転する電気的な機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE