WO2023010464A1 - 智能连接装置、启动电源设备以及电瓶夹设备 - Google Patents

智能连接装置、启动电源设备以及电瓶夹设备 Download PDF

Info

Publication number
WO2023010464A1
WO2023010464A1 PCT/CN2021/111027 CN2021111027W WO2023010464A1 WO 2023010464 A1 WO2023010464 A1 WO 2023010464A1 CN 2021111027 W CN2021111027 W CN 2021111027W WO 2023010464 A1 WO2023010464 A1 WO 2023010464A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
load
connection
terminal
detection
Prior art date
Application number
PCT/CN2021/111027
Other languages
English (en)
French (fr)
Inventor
雷云
张智锋
程铭
Original Assignee
深圳市华思旭科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华思旭科技有限公司 filed Critical 深圳市华思旭科技有限公司
Priority to CN202180101209.5A priority Critical patent/CN117882259A/zh
Priority to PCT/CN2021/111027 priority patent/WO2023010464A1/zh
Publication of WO2023010464A1 publication Critical patent/WO2023010464A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators

Definitions

  • the present application relates to the field of electronic technology, in particular to an intelligent connection device, a starting power supply device and a battery clip device.
  • the battery clip When starting the car with the help of the emergency starter power supply, it is necessary to use the battery clip to connect the emergency starter power supply to the car battery. After the battery clip is clamped on the car battery, if the positive and negative poles of the starting power supply and the positive and negative poles of the car battery are reversed, the starting power supply cannot charge the car battery.
  • the starting power supply when the positive and negative poles of the starting power supply and the positive and negative poles of the car battery are normally connected, if the starting power supply and the car battery are connected all the time, the starting power supply will automatically output electric energy to charge the car battery until the starting power supply loses power or starts The power supply is electrically disconnected from the car battery, resulting in the starter power supply not having enough charge to start the car again or being able to use it for fewer starts.
  • the present application provides an intelligent connection device, a starting power supply device, and a battery clamp device for the defects of the above-mentioned detection circuit structure, which can output a single analog signal to indicate the state of the external load, thereby effectively reducing the acquisition of the analog signal by the controller.
  • Demand and simplify the structure of the control circuit thereby reducing the failure rate of the control system, greatly improving the safety and reliability of the product, and at the same time reducing the material cost of the product.
  • the first aspect of the present application provides an intelligent connection device, which includes a power connection terminal, a load connection terminal, a switch module, a load detection module, and a controller.
  • the power connection end is used for electrical connection with the power module.
  • the load connection end is used for electrical connection with an external load.
  • the switch module is electrically connected between the power connection end and the load connection end.
  • the load detection module is electrically connected to the load connection end, the load detection module includes a detection signal output terminal, and the load detection module is used to detect the state of the external load, and output the detection signal according to the detection result. output the corresponding detection signal.
  • the detection signal is used to control the switch module.
  • a second aspect of the present application provides a starting power supply device, which includes a casing, an energy storage component, and the smart connection device described in the first aspect above.
  • the energy storage component and at least part of the structure of the smart connection device are arranged in the housing, and the power connection end of the smart connection device is electrically connected to the energy storage component.
  • a third aspect of the present application provides a battery clamp device, which includes a housing, a power input interface, a connector, and the smart connection device described in the first aspect above.
  • the power input interface is provided on the casing, and the power input interface is used for electrical connection with an external power supply device, wherein the external power supply device includes an energy storage component.
  • At least part of the structure of the intelligent connection device is provided in the housing, the power connection end of the intelligent connection device is electrically connected to the power input interface, and is connected to the energy storage of the external power supply device through the power input interface.
  • the components are electrically connected.
  • One end of the connector is electrically connected to the load connection end of the intelligent connection device, and the other end of the connector is used for electrical connection with an external load.
  • the intelligent connection device detects the state of the external load through the load detection module, and outputs a single analog signal to indicate the state of the external load, and then the controller performs data analysis and makes corresponding actions based on the single analog signal
  • the control operation can effectively reduce the controller's acquisition requirements for analog signals, solve the complexity of peripheral control circuits, and make circuit control easier, thereby reducing the failure rate of the control system and greatly improving
  • the safety and reliability of the product are improved, and the material cost of the product is also reduced.
  • FIG. 1 is a schematic diagram of functional modules of a smart connection device provided in a first embodiment of the present application.
  • FIG. 2 is a schematic diagram of a circuit structure of a current output loop of the smart connection device shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of functional modules of a smart connection device provided in a second embodiment of the present application.
  • FIG. 4 is a schematic diagram of a circuit structure of a load detection module provided in the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of a circuit structure of a load detection module provided in a second embodiment of the present application.
  • FIG. 6 is an equivalent circuit diagram of the circuit structure among the voltage input end, the first reference point, the second reference point, and the first voltage dividing node shown in FIG. 5 .
  • FIG. 7 is a schematic diagram of functional modules of a smart connection device provided in a third embodiment of the present application.
  • FIG. 8 is a schematic diagram of the circuit structure of the regulated power supply module shown in FIG. 7 .
  • FIG. 9 is a schematic diagram of functional modules of a starting power supply device provided in the first embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of the starting power supply device shown in FIG. 9 .
  • Fig. 11 is a schematic diagram of functional modules of a starting power supply device provided in the second embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of the starting power supply device shown in FIG. 11 .
  • Fig. 13 is a schematic diagram of functional modules of a battery clamp device provided in an embodiment of the present application.
  • FIG. 14 is a schematic structural view of the battery clamp device shown in FIG. 13 .
  • Smart Link Device 100 101, 102, 103, 104
  • the first detection terminal 301 The first detection terminal 301
  • the second detection pin 1 The second detection pin 1
  • the third voltage divider resistor R15 The third voltage divider resistor R15
  • the first switch unit Q11 The first switch unit Q11
  • the third switch unit Q9 The third switch unit Q9
  • the first voltage divider node P1 The first voltage divider node P1
  • the second voltage divider node P2 The second voltage divider node P2
  • the first wire clamp 401 The first wire clamp 401
  • the current practice is usually to set a The load positive and negative connection state detection circuit is used to perform corresponding detection and output a corresponding detection signal; in order to avoid charging the load and consuming the power of the power supply device too quickly, the current practice is usually to set up a load voltage state detection circuit to detect Whether the car battery is used to start the car.
  • the starting power device discharges the car battery to provide the car with an instantaneous high current to start the car.
  • the current practice is to set up corresponding detection circuits for corresponding detection, and output corresponding analog detection signals to the controller for Relevant data analysis to make corresponding control operations.
  • this method of setting up different detection circuits for different detection requirements will lead to complex structures and high manufacturing costs on the one hand, and on the other hand, due to the large demand for acquisition of analog signals, and the peripheral control circuits Relatively complicated, resulting in an increase in the failure rate of the control system, which greatly increases the after-sales cost of the product.
  • this application provides an intelligent connection device, which simultaneously detects the access state of the external load and the electrical parameters of the external load through the load detection module, and outputs a single analog signal to simultaneously indicate the access state of the external load and The electrical parameters of the external load, and then the controller performs data analysis and corresponding control operations based on the single analog signal, which can effectively reduce the controller's acquisition requirements for analog signals and solve the complexity of peripheral control circuits , making the circuit control simpler, thereby reducing the failure rate of the control system, greatly improving the safety and reliability of the product, and reducing the material cost of the product at the same time.
  • the intelligent connection device can be applied to starting power supply equipment, such as emergency starting power supply, and can also be applied to battery clamp equipment.
  • FIG. 1 is a schematic diagram of functional modules of a smart connection device 100 provided in a first embodiment of the present application.
  • the smart connection device 100 includes a power connection end 21, a load connection end 22 and a switch module 23, wherein the power connection end 21 is used to electrically connect with a power module (not shown), and the load connection
  • the terminal 22 is used for electrical connection with an external load (not shown in the figure), and the switch module 23 is electrically connected between the power connection terminal 21 and the load connection terminal 22 .
  • the power connection terminal 21, the load connection terminal 22 and the switch module 23 constitute the current output loop 20 of the power supply module to the external load, and the switch module 23 It is used to turn on or off the current output loop 20 . In this way, the power module can discharge the external load through the smart connection device 100 .
  • the power supply connection terminal 21 includes a power supply positive connection terminal BAT+ and a power supply negative connection terminal BAT ⁇ .
  • the power supply positive connection terminal BAT+ and the power supply negative connection terminal BAT- are used for one-to-one electrical connection with the positive pole and the negative pole of the power module.
  • the power supply module is connected to the smart connection device 100 through the power connection terminal 21 , so as to provide working voltage for the smart connection device 100 , and provide power for the external load through the switch module 23 .
  • the power module may be a built-in energy storage component of the emergency start power supply.
  • the power module can be an external power device, such as an external emergency start power supply or an energy storage component included in other energy storage power devices.
  • the load connection terminal 22 includes a load positive connection terminal CAR+ and a load negative connection terminal CAR-, wherein the load positive connection terminal CAR+ and the load negative connection terminal CAR- are used to connect with the positive pole and the negative pole of the external load.
  • the load negative connection terminal CAR- is also electrically connected to the ground terminal PGND, and is electrically connected to the ground terminal GND through the current detection element J1. It can be understood that the ground terminal PGND and the ground terminal GND are reference grounds of different power supply networks.
  • the external load can be a car battery or a car engine.
  • the car battery includes but not limited to lead-acid battery, lithium battery, super capacitor and the like.
  • the power module is an energy storage component contained in an external emergency start power supply
  • the external load is a car battery or a car engine
  • the external emergency start power supply can pass through the The current output loop 20 composed of the power connection terminal 21, the switch module 23 and the load connection terminal 22 discharges and outputs the external load, that is, provides emergency starting power for the vehicle battery or vehicle engine.
  • the external emergency starting power supply charges the car battery or car engine, so that the car can also be started when the car battery or car engine is insufficient in power.
  • the smart connection device 100 further includes a controller 40 electrically connected to the switch module 23 , and the controller 40 is used for on-off control of the switch module 23 .
  • the controller 40 is configured to output a drive signal RELAY_EN2 to the switch module 23 to turn on the switch module 23, that is, the switch module 23 receives the output from the controller 40
  • the driving signal RELAY_EN2 enters the conduction state, thereby conducting the electrical connection between the power supply connection terminal 21 and the load connection terminal 22, so that the power supply module can be electrically connected to the external load, and the external The load discharges the output.
  • the switch module 23 is in the disconnected state when the drive signal RELAY_EN2 output by the controller 40 is not received, so as to disconnect the electrical connection between the power connection terminal 21 and the load connection terminal 22, so that the The power module cannot discharge and output the external load.
  • the smart connection device 100 further includes a load detection module 30 electrically connected to the load connection end 22, and the load detection module 30 is used to detect the external load through the load connection end 22 state, and output the corresponding detection signal VOUT_SN according to the detection result.
  • the detection signal VOUT_SN is used to control the switch module 23 .
  • the status of the external load includes at least the access status of the external load and electrical parameters of the external load.
  • the electrical parameter of the external load includes at least one of voltage, current, power, resistance or temperature of the external load.
  • the load detection module 30 includes a first detection terminal 301, a second detection terminal 302 and a detection signal output terminal 303, wherein the first detection terminal 301 of the load detection module 30 is connected to the load
  • the connection end CAR+ is electrically connected
  • the second detection end 302 of the load detection module 30 is electrically connected to the load negative connection end CAR-.
  • the load detection module 30 detects the connection state of the external load and the electrical parameters of the external load through the first detection terminal 301 and the second detection terminal 302, and outputs the detection signal through the output terminal 303
  • the detection signal VOUT_SN It can be understood that, corresponding to different insertion states of the external load and different use states of the external load, the output value of the detection signal VOUT_SN is also different.
  • the controller 40 is also electrically connected to the detection signal output terminal 303 of the load detection module 30, and the controller 40 is configured to receive the detection signal VOUT_SN output by the detection signal output terminal 303, and The switch module 23 is controlled according to the detection signal VOUT_SN, so as to control the discharge output of the power module to the external load.
  • the controller 40 receives the detection signal VOUT_SN output from the detection signal output terminal 303 through the detection signal input port 41, and determines the access of the external load according to the received detection signal. state and the electrical parameters of the external load, so as to determine whether to output the drive signal RELAY_EN2 to turn on the switch module 23 .
  • the controller 40 can output the driving signal RELAY_EN2 through the driving signal output port 42 .
  • the detection signal VOUT_SN includes an analog signal
  • the controller 40 is used to determine the access state of the external load and the external load in the positive connection state according to the value of the analog signal VOUT_SN. Electrical parameters of the load.
  • the load detection module 30 detects that the load connection terminal 22 is unloaded, that is, the detection signal VOUT_SN outputted when the external load is not connected to the load connection terminal 22
  • a first voltage signal is included.
  • the first voltage signal is used to control the switch module 23 to disconnect the electrical connection between the power connection terminal 21 and the load connection terminal 22, thereby disconnecting the power supply module from the external load.
  • electrical connection can be transmitted to the controller 40, and the controller 40 is used to control the switch module 23 to disconnect the power connection terminal 21 from the load according to the first voltage signal.
  • the voltage value of the first voltage signal is a first preset value, so as to ensure that the controller 40 can accurately identify the connected state of the external load. It can be understood that, when the external load is not connected to the load connection terminal 22, disconnecting the switch module 23 can ensure the power safety of the circuit.
  • the detection signal VOUT_SN output by the load detection module 30 when detecting that the external load is reversely connected to the load connection terminal 22 includes a second voltage signal.
  • the second voltage signal is used to control the switch module 23 to disconnect the electrical connection between the power connection terminal 21 and the load connection terminal 22, thereby disconnecting the power supply module from the external load.
  • electrical connection can be transmitted to the controller 40, and the controller 40 is used to control the switch module 23 to disconnect the power connection terminal 21 from the load according to the second voltage signal.
  • the voltage value of the second voltage signal is a second preset value, and the first preset value is different from the second preset value. In this way, it can be ensured that the controller 40 can accurately identify the access state of the external load. It can be understood that disconnecting the switch module 23 when the external load is reversely connected to the load connection terminal 22 can ensure the power safety of the circuit.
  • the detection signal VOUT_SN output by the load detection module 30 when detecting that the external load is being connected to the load connection terminal 22 includes a third voltage signal.
  • the voltage value of the third voltage signal belongs to a third voltage value range, and the voltage value of the third voltage signal is in a preset proportional relationship with the load voltage value of the external load.
  • both the voltage value of the first voltage signal and the voltage value of the second voltage signal are outside the third voltage value range. In this way, it can be ensured that different access states of the external load can be accurately identified according to different voltage values of the detection signal.
  • the third voltage value range may be a certain voltage value range except the voltage value of the first voltage signal and the voltage value of the second voltage signal, and the third voltage value range may also be the voltage value of the first voltage signal and the voltage value of the second voltage signal. All values except the voltage value of the two-voltage signal. Assume a voltage value U1 of the first voltage signal and a voltage value U2 of the second voltage signal. Exemplarily, the third voltage value range is set in advance as (U0, U3), and neither U1 nor U2 belongs to (U0, U3); when the voltage value U X of the received detection signal belongs to (U0, U3), then It is determined that the detection signal includes the third voltage signal.
  • the electrical parameter of the external load includes a load voltage of the external load.
  • the voltage value of the third voltage signal is used to determine the load voltage of the external load, and if it is determined that the load voltage of the external load satisfies a preset condition, the third voltage signal is also used to control the switch module 23 conducts the electrical connection between the power connection end 21 and the load connection end 22, so that the power module can be electrically connected with the external load and discharge the external load.
  • the third voltage signal may be transmitted to the controller 40, and the controller 40 is further configured to determine the external load voltage of the load.
  • the controller 40 is further configured to determine whether the load voltage of the external load satisfies a preset condition, and if it is determined that the load voltage of the external load satisfies the preset condition, the controller 40 outputs the drive signal RELAY_EN2 to the switch module 23 to control the switch module 23 to conduct the electrical connection between the power connection terminal 21 and the load connection terminal 22 .
  • the controller 40 is configured to The voltage value of the voltage signal determines whether the drop of the voltage value of the car battery exceeds a preset amplitude threshold within a preset time, that is, determines whether a voltage drop occurs in the voltage of the car battery.
  • the controller 40 is further configured to determine that the voltage value of the car battery drops by more than the preset amplitude threshold within a preset time, that is, when the voltage of the car battery drops.
  • the load voltage of the car battery satisfies the preset condition, and the drive signal RELAY_EN2 is output to turn on the switch module 23, so that the starting power supply device provides power for the car battery. That is to say, the preset condition includes that the load voltage value of the external load drops within a preset time and exceeds a preset threshold value.
  • the controller 40 turns on the switch module 23 only when the car battery is used to start the car. In this way, the power of the starting power supply can be saved and the car can be started.
  • the controller 40 is configured to determine whether the voltage value of the automobile battery is less than a first preset voltage threshold according to the received voltage value of the third voltage signal, and when determining the When the voltage value of the car battery is less than the first preset voltage threshold, determine whether the voltage value of the car battery drops within the preset time according to the voltage value of the third voltage signal received within the preset time Exceeding the preset amplitude threshold, and when it is determined that the voltage value of the car battery drops by more than the preset amplitude threshold within a preset time, determine that the load voltage of the car battery satisfies the preset condition, and output
  • the driving signal RELAY_EN2 is used to turn on the switch module 23 so that the power supply module provides power for the car battery. That is to say, the preset condition is that the load voltage value of the external load is less than the first preset voltage threshold, and the load voltage value of the external load drops within a preset time by a magnitude exceeding a preset magnitude threshold .
  • the controller 40 turns on the switch module 23 only when the smart connection device 100 is directly connected to a car battery that is deficient in power and the car battery is used to start the car, which can save the power of starting the power supply equipment, It can also ensure that the car can be started, and at the same time prevent the car battery from reversely charging the starting power supply device.
  • the present application provides the smart connection device 100, which simultaneously detects the access status of the external load and the electrical parameters of the external load through the load detection module 30, and outputs a single analog signal to simultaneously indicate the access status of the external load and the electrical parameters of the external load. Electrical parameters, and then the controller 40 performs data analysis and corresponding control operations according to the single analog signal, which can effectively reduce the acquisition requirements of the controller 40 for the analog signal, and solve the complexity of the peripheral control circuit.
  • the circuit control becomes simpler, thereby reducing the failure rate of the control system, greatly improving the safety and reliability of the product, and at the same time reducing the material cost of the product.
  • FIG. 3 is a schematic diagram of functional modules of a smart connection device 101 provided in the second embodiment of the present application.
  • the smart connection device 101 corresponds to the smart connection device 100 shown in FIG. 1 .
  • the load detection module 30 of the smart connection device 101 includes a load positive and negative connection detection circuit 31 and a load electrical parameter detection circuit 32 .
  • the load positive and negative connection detection circuit 31 is electrically connected to the load connection terminal 22, and the load positive and negative connection detection circuit 31 is used to detect the connection state of the external load, and output the voltage through its voltage output terminal 304. Corresponding access status signal.
  • the load electrical parameter detection circuit 32 is electrically connected to the voltage output terminal 304 of the load positive and negative connection detection circuit 31 and the load connection terminal 22 respectively, and the load electrical parameter detection circuit 32 is used to receive the load positive and negative connection
  • the connection status signal output by the connection detection circuit 31 and the electrical parameters of the external load are detected, and at least the corresponding detection signal is output according to the connection status signal output by the load positive and negative connection detection circuit 31 and the electrical parameters VOUT_SN.
  • the smart connection device 101 detects the connection state of the external load through the load positive and negative connection detection circuit 31, and detects the electrical parameters of the external load through the load electrical parameter detection circuit 32, and connects the load
  • the voltage output terminal of the positive and negative connection detection circuit 31 is electrically connected to the load electrical parameter detection circuit 32, so that the load electrical parameter detection circuit 32 can be used to compare the analog signal detected by the load positive and negative connection detection circuit 31 with the
  • the analog signals detected by the load electrical parameter detection circuit 32 are combined into a single analog signal and then transmitted to the controller 40, so that the controller 40 only needs to perform data analysis on the single analog signal and perform a data analysis on the switch
  • the module 23 performs corresponding control operations, thereby effectively reducing the acquisition requirements of the controller 40 for analog signals, solving the complexity of the peripheral control circuit, making the circuit control easier, and reducing the failure of the control system
  • the efficiency has greatly improved the safety and reliability of the product, and saved the manpower and material cost of the after-sales service of the product, and also reduced the material cost of
  • FIG. 4 is a schematic diagram of the circuit structure of the load detection module 30 provided in the first embodiment of the present application.
  • the load positive and negative connection detection circuit 31 includes a sensor device U3 and a switch circuit 311, and the sensor device U3 includes a first detection pin 2, a second detection pin 1, a voltage input pin 4, and output pin 3.
  • the first detection pin 2 is electrically connected to the first detection terminal 301 through a diode D9
  • the anode of the diode D9 is electrically connected to the first detection pin 2
  • the cathode of the diode D9 It is electrically connected with the first detection terminal 301 .
  • the second detection pin 1 is electrically connected to the second detection terminal 302 through a resistor R20.
  • the load positive and negative connection detection circuit 31 further includes a voltage input terminal 305, and the voltage input terminal 305 is electrically connected to a voltage source.
  • the voltage source can be the power module, that is, the voltage input terminal 305 is electrically connected to the positive connection terminal BAT+ of the power supply, so that the input voltage received by the voltage input terminal 305 It can be provided by the power module.
  • the voltage source can also be a stabilized power supply module 84 (as shown in FIG. 7 ), so that the input voltage received by the voltage input terminal 305 can be controlled by the stabilized
  • the stable voltage VCC output by the piezoelectric power supply module 84 is provided by a voltage of, for example, 5V.
  • the voltage input pin 4 is electrically connected to the voltage input terminal 305 through a resistor R19.
  • the sensor device U3 detects the connection state of the external load through the first detection pin 2 and the second detection pin 1 . In the first embodiment, if it is detected that the load connection terminal 22 is empty or the external load is connected to the load connection terminal 22, the sensor device U3 disconnects the voltage input lead of the sensor device U3. The electrical connection between the pin 4 and the output pin 3 makes the output pin 3 in a non-output state.
  • the sensor device U3 conducts the electrical connection between the voltage input pin 4 and the output pin 3 of the sensor device U3, so that the output The pin 3 outputs the voltage signal provided by the voltage source, that is, the voltage of the voltage source is output from the output pin 3 of the sensor device U3 after being stepped down by the resistor R19.
  • the sensor device U3 is a photoelectric isolation device, and the photoelectric isolation device includes a light emitting diode D0 and a phototransistor Q0 .
  • the LED D0 is electrically connected between the first detection pin 2 and the second detection pin 1 .
  • the anode A of the light emitting diode D0 is electrically connected to the second detection pin 1
  • the cathode K of the light emitting diode D0 is electrically connected to the first detection pin 2 .
  • the phototransistor Q0 is electrically connected between the voltage input pin 4 and the output pin 3 .
  • the base of the phototransistor Q0 is coupled to the light emitting diode D0
  • the collector C is electrically connected to the voltage input pin 4
  • the emitter E is electrically connected to the output pin 3 .
  • the switch circuit 311 is electrically connected between the voltage output terminal 304 and the output pin 3 of the sensor device U3. When the switch circuit 311 does not receive the voltage signal output from the output pin 3 of the sensor device U3, it is in an off state, so that the voltage output terminal 304 is in a non-output state. The switch circuit 311 is in a conduction state when receiving the voltage signal output from the output pin 3 of the sensor device U3, so that the voltage output terminal 304 outputs a second preset voltage threshold.
  • the switch circuit 311 includes a triode Q5 and a Zener diode ZD1, wherein the base B of the triode Q5 is connected to the ground through the Zener diode ZD1, and the base B of the triode Q5 is also connected to the voltage regulator through a resistor R16.
  • the collector C of the transistor Q5 is electrically connected.
  • the collector C of the triode Q5 is also electrically connected to the output pin 3 of the sensor U3 through a diode D8, that is, the collector C of the triode Q5 constitutes the input end of the switch circuit 311 to receive the sensor The voltage signal output by the output pin 3 of the component U3.
  • the anode of the diode D8 is electrically connected to the output pin 3 of the sensor device U3, and the cathode is electrically connected to the collector C of the triode Q5.
  • the switch circuit 311 is electrically connected to the voltage output terminal 304 of the load positive and negative connection detection circuit 31 through the emitter E of the triode Q5.
  • the transistor Q5 is an NPN transistor.
  • the electrical parameter of the external load is a load voltage of the external load.
  • the load electrical parameter detection circuit 32 includes a first voltage dividing resistor R17 and a second voltage dividing resistor R18 serially connected in series between the first detection terminal 301 and the ground terminal, wherein the first voltage dividing resistor R17 and the The connection point between the second voltage dividing resistors R18 includes a voltage detection point P, and the voltage detection point P is also respectively connected to the voltage output terminal 304 of the positive and negative load connection detection circuit 31 (that is, the voltage output terminal 304 of the transistor Q5
  • the emitter E is electrically connected to the detection signal output end 303 of the load detection module 30 .
  • a third voltage dividing resistor R15 may also be provided between the voltage detection point P and the voltage output terminal 304 .
  • the voltage detection point P is also electrically connected to the ground terminal through a resistor R40 and a capacitor C8, wherein the resistor R40 and the capacitor C8 form an RC filter circuit to filter out the voltage detection point P and output to the detection signal
  • the noise signal included in the signal of the output terminal 303 enables the detection signal output terminal 303 to receive and output a stable detection signal VOUT_SN.
  • the load electrical parameter detection circuit 32 also includes two diodes D7 and D10 connected in series between the ground terminal and the voltage source, the connection point between the two diodes D7 and D10 is electrically connected to the voltage detection point P, The circuit where the two diodes D7 and D10 are located constitutes a clamping circuit to protect the detection signal input port 41 of the controller 40 .
  • the load connection terminal 22 During operation, if the load connection terminal 22 is unloaded, no current flows through the light emitting diode D0, the light emitting diode D0 does not emit light, and the photosensitive transistor Q0 is cut off, thereby disconnecting the voltage of the sensing device U3
  • the transistor Q5 is cut off because its base B does not receive the voltage signal output by the sensor U3, so that the voltage output terminal 304 is in a non-output state. That is, the load positive and negative connection detection circuit 31 does not output any signal when it detects that the load connection terminal 22 is empty.
  • the detection signal VOUT_SN output by the detection signal output terminal 303 is a fixed low-level signal, wherein the fixed low-level signal is the above-mentioned voltage value of the first preset value first voltage signal.
  • the external load is reversely connected to the load connection terminal 22, that is, the positive pole of the external load is electrically connected to the load negative connection terminal CAR-, and the negative pole of the external load is electrically connected to the load positive connection terminal. CAR+, then there is current flowing in the light-emitting diode D0, so that the light-emitting diode D0 emits light, and the base of the phototransistor Q0 generates a current after being illuminated, so that the phototransistor Q0 is turned on, thereby turning on the
  • the electrical connection between the voltage input pin 4 and the output pin 3 of the sensing device U3, at this time, the output pin 3 outputs the voltage signal provided by the voltage source.
  • the base B of the transistor Q5 receives the voltage signal output from the output pin 3 of the sensing device U3 through the resistor R16 to make the transistor Q5 saturated and turned on. At the same time, the voltage value of the base B of the triode Q5 is clamped at a fixed voltage value U1 under the voltage stabilization effect of the Zener diode ZD1 .
  • the voltage value of the access state signal is equal to the second preset voltage threshold U2.
  • the first detection terminal 301 is electrically connected to the negative pole of the external load, which is equivalent to the electrical connection between the first voltage dividing resistor R17 and the second voltage dividing resistor R18. Between the two ground terminals, therefore, the voltage of the external load does not generate a divided voltage at the voltage detection point P.
  • the application does not limit the resistance values of the third voltage dividing resistor R15 and the second voltage dividing resistor R18 and the voltage value of the fixed voltage value U1.
  • the models and electrical parameters of the triode Q5 and Zener diode ZD1 remain unchanged. Therefore, when the external load is reversely connected to the load connection terminal 22 At this time, the voltage of the base B of the triode Q5 can be clamped at the fixed voltage value U1 under the voltage stabilization effect of the Zener diode ZD1, and the voltage of the emitter E of the triode Q5 can also be clamped by clamped at the second preset voltage threshold U2. It can be understood that, after the smart connection device 101 leaves the factory, the resistance values of the third voltage dividing resistor R15 and the second voltage dividing resistor R18 are also fixed.
  • the voltage value of the voltage UP of the voltage detection point P can be maintained as a preset fixed value, and the voltage value of the detection signal VOUT_SN output by the detection signal output terminal 303 can also be maintained as A preset fixed value, wherein the detection signal VOUT_SN output by the detection signal output terminal 303 at this time is the second voltage signal mentioned above, and the preset fixed value is the second voltage signal mentioned above. default value.
  • the external load is connected to the load connection terminal 22, that is, the positive pole of the external load is electrically connected to the load positive connection terminal CAR+, and the negative pole of the external load is electrically connected to the load negative connection terminal CAR- , then no current flows through the light-emitting diode D0, the light-emitting diode D0 does not emit light, and the phototransistor Q0 is cut off, thereby disconnecting the voltage between the input pin 4 and the output pin 3 of the sensing device U3. Electrically connected, at this time, the sensor U3 is in a state of no output. The transistor Q5 is cut off because its base B does not receive the voltage signal output by the sensor U3, so that the voltage output terminal 304 is in a non-output state. That is, the load positive and negative connection detection circuit 31 does not output any signal when it detects that the external load is being connected to the load connection terminal 22 .
  • the first detection terminal 301 is electrically connected to the positive pole of the external load and receives an input voltage, that is, the load voltage of the external load, and the first branch
  • the application does not limit the resistance values of the first voltage dividing resistor R17 and the second voltage dividing resistor R18. Wherein, under normal conditions, the load voltage of the external load is generally above 6-7V.
  • the voltage value of the voltage U P of the voltage detection point P can maintain a preset proportional relationship with the voltage value of the load voltage U CAR+ of the external load, that is, the voltage U of the voltage detection point P
  • the voltage value of P can linearly follow the change of the voltage value of the load voltage U CAR+ of the external load, so that the voltage value of the detection signal VOUT_SN output by the detection signal output terminal 303 is consistent with the load voltage of the external load
  • the voltage value of U CAR+ maintains a preset proportional relationship, wherein the detection signal VOUT_SN output by the detection signal output terminal 303 at this time is the third voltage signal mentioned above.
  • the preset proportional relationship between the voltage value of the third voltage signal and the voltage value of the load voltage U CAR+ of the external load is determined by the first voltage dividing resistor R17 and the second voltage dividing resistor R17.
  • the resistance value of the resistor R18 is determined.
  • the resistance values of the resistance components can be preset according to requirements.
  • the first voltage signal and the second voltage signal have different voltage values respectively, and the voltage value of the first voltage signal and the voltage value of the second voltage signal are all within the The voltage value of the third voltage signal is outside the third voltage value range to which it belongs.
  • the controller 40 can determine the connection state of the external load according to the voltage value of the detection signal VOUT_SN and the load voltage of the external load.
  • the smart connection device 101 detects the connection state of the external load by the load positive and negative connection detection circuit 31 including the photoelectric isolation device and the switch circuit 311 and outputs the corresponding analog signal, and by including the damping
  • the load electrical parameter detection circuit 32 of the voltage divider detects the load voltage of the external load and outputs a corresponding analog signal, and then the load electrical parameter detection circuit 32 combines the two analog signals into a single analog signal Then pass it to the controller 40, so that the controller 40 only needs to perform data analysis and perform corresponding control operations on the single analog signal, thereby effectively reducing the acquisition requirements of the controller 40 for the analog signal, solving the problem of It eliminates the complexity of the peripheral control circuit, makes the circuit control easier, reduces the failure rate of the control system, greatly improves the safety and reliability of the product, and saves the manpower and material cost of the after-sales service of the product. At the same time, the material cost of the product is also reduced.
  • Fig. 5 is a schematic diagram of the circuit structure of the load detection module 30' provided in the second embodiment of the present application.
  • the load detection module 30' includes a load positive and negative connection detection circuit 31' and a load electrical parameter detection circuit 32'.
  • the load positive and negative connection detection circuit 31' includes a voltage input terminal 305' and a voltage output terminal 304', wherein the voltage input terminal 305' is electrically connected to a voltage source, such as the output terminal of the power management circuit 33, To receive the stable voltage VCC output by the power management circuit 33 , for example, a voltage of 5V.
  • the voltage source can also be the regulated power supply module 84 (as shown in FIG. 7 ), so that the stable voltage received by the voltage input terminal 305 ′ can be provided by the regulated power supply module 84 to provide.
  • the load positive and negative connection detection circuit 31' includes a combination switch circuit, and the combination switch circuit includes a first switch unit Q11, a second switch unit Q10, a third switch unit Q9, a fourth The switch unit Q7 , the first voltage dividing module 312 , and the second voltage dividing module 313 .
  • the first voltage dividing module 312 includes at least two resistors R35 and R38 sequentially connected in series between the voltage input terminal 305' and the ground terminal GND, and the first voltage dividing module 312 includes The connection point between the at least two resistors R35 and R38 includes a first voltage dividing node P1.
  • the first switch unit Q11, the second switch unit Q10, and the third switch unit Q9 all include at least a first connection terminal E, a second connection terminal C, and a control terminal B, wherein the control provided to each switch unit The voltage value of the control terminal B can control each switch unit to be turned on or off.
  • the second switch unit Q10 and the first switch unit Q11 are electrically connected in series between the voltage input terminal 305' and the ground terminal GND, for example, the first The first connection end E of the second switch unit Q10 is electrically connected to the voltage input end 305 ′, and the second connection end C of the second switch unit Q10 is electrically connected to the second connection end C of the first switch unit Q11 , the first connection terminal E of the first switch unit Q11 is electrically connected to the ground terminal GND.
  • the first voltage dividing node P1 is electrically connected to the control terminal B of the first switch unit Q11 and the first detection terminal 301 respectively.
  • a diode D16 connected in parallel with the resistor R38 is reversely connected between the first voltage dividing node P1 and the ground terminal GND, and a diode D16 connected in parallel with the resistor R38 is further connected between the second switch unit Q10 and the first switch unit Q11.
  • a resistor R32 is connected in series.
  • the second voltage dividing module 313 includes at least two resistors R29 and R36 sequentially connected in series between the voltage input terminal 305' and the ground terminal GND.
  • the second voltage dividing module 313 includes the The connection point between at least two resistors R29 and R36 includes a second voltage dividing node P2.
  • the third switch unit Q9 is electrically connected in parallel with the resistor R29 between the voltage input terminal 305' and the second voltage dividing node P2, for example, the first connection terminal E of the third switch unit Q9 And one end of the resistor R29 is both electrically connected to the voltage input end 305', and the second connection end C of the third switch unit Q9 and the other end of the resistor R29 are both electrically connected to the second divided voltage Node P2.
  • the control terminal B of the second switch unit Q10 is electrically connected to the control terminal B of the third switch unit Q9, and is electrically connected to the second switch unit Q10 together with the control terminal B of the third switch unit Q9 and the electrical connection point F between the first switch unit Q11.
  • a resistor R31 connected in series with the third switch unit Q9 may also be provided between the voltage input terminal 305' and the second voltage dividing node P2, that is, the third switch unit Q9 and the The resistor R31 is connected in parallel with the resistor R29 after being connected in series.
  • the second connection terminal C of the third switch unit Q9 is electrically connected to the second voltage dividing node P2 through the resistor R31.
  • the fourth switch unit Q7 at least includes a first connection terminal S, a second connection terminal D, and a control terminal G, where the voltage value of the control terminal G provided to the fourth switch unit Q7 can be controlled to control the The fourth switch unit Q7 is turned on or off.
  • the fourth switch unit Q7 is electrically connected between the voltage input terminal 305' and the voltage output terminal 304', for example, the first connection of the fourth switch unit Q7
  • the terminal S is electrically connected to the voltage input terminal 305'
  • the second connection terminal D of the fourth switch unit Q7 is electrically connected to the voltage output terminal 304'.
  • the control terminal G of the fourth switch unit Q7 is electrically connected to the second voltage dividing node P2.
  • a diode D14 is reversely connected between the voltage output terminal 304' and the ground terminal GND.
  • a diode D12 and a resistor R28 connected in series with the fourth switch unit Q7 may also be provided between the voltage input terminal 305' and the voltage output terminal 304'.
  • the electrical parameter of the external load is a load voltage of the external load.
  • the load electrical parameter detection circuit 32' includes a third voltage divider module 321, and the third voltage divider module 321 includes at least two resistors R30 sequentially connected in series between the first detection terminal 301 and the ground terminal GND and R37, the connection point between the at least two resistors R30 and R37 included in the third voltage dividing module 321 includes a third voltage dividing node P3.
  • the third voltage dividing node P3 is also electrically connected to the voltage output terminal 304' of the load detection circuit 31' and the detection signal output terminal 303 of the load detection module 30', respectively.
  • the third voltage dividing node P3 is also electrically connected to the ground terminal GND through the resistor R34 and the capacitor C10, and the resistor R34 and the capacitor C10 form an RC filter circuit to The noise signal included in the signal output from the third voltage dividing node P3 to the detection signal output terminal 303 is filtered, so that the detection signal output terminal 303 can receive and output a stable detection signal VOUT_SN.
  • the detection signal output terminal 303 is also electrically connected to the voltage source VCC through a diode D13, wherein the anode of the diode D13 is electrically connected to the detection signal output terminal 303, and the diode D13
  • the circuit constitutes the protection circuit of the detection signal input port 41 of the controller 40 .
  • the first switch unit Q11 adopts a high-level conduction transistor, such as an NMOS transistor or an NPN triode, and the second switch unit Q10, the third switch unit Q9,
  • the fourth switch unit Q7 adopts low-level conduction transistors, such as PMOS transistors or PNP transistors.
  • the first switch unit Q11 uses an NPN transistor
  • the second switch unit Q10 and the third switch unit Q9 both use a PNP transistor
  • the fourth switch unit Q7 Using PMOS tube.
  • the first connection end E corresponds to the emitter of the triode
  • the second connection C corresponds to the collector of the triode
  • the first switch unit Q11 is connected to the ground through its emitter E
  • the terminal GND is electrically connected, and is electrically connected to the collector C of the second switch unit Q10 through its collector C and the resistor R32.
  • the emitter E of the second switch unit Q10, the emitter E of the third switch unit Q9, and the source S of the fourth switch unit Q7 are all electrically connected to the voltage input terminal 305'.
  • the first voltage dividing module 312 proportionally divides the stable voltage VCC received by the voltage input terminal 305 ′, and at the first voltage dividing node P1
  • the first voltage U P1 generated on the first switch unit Q11 is turned on.
  • the present application does not limit the resistance values of the resistor R35 and the resistor R38, as long as the first voltage U P1 on the first voltage dividing node P1 can satisfy
  • the conditions for turning on the first switch unit Q11 are sufficient, for example, the resistance values of the resistor R35 and the resistor R38 can both be set to 10K ⁇ .
  • the control terminal B of the second switch unit Q10 and the control terminal B of the third switch unit Q9 are electrically connected to the ground terminal GND through a resistor R32 and the first switch unit Q11 that is turned on, so that the The second switch unit Q10 and the third switch unit Q9 are turned on at the same time.
  • the resistor R31 is connected in parallel with the resistor R29 and then connected in series with the resistor R36, resulting in an equivalent voltage between the voltage input terminal 305' and the second voltage dividing node P2
  • the resistance becomes smaller, thereby increasing the voltage of the second voltage dividing node P2, so that the voltage difference between the second voltage dividing node P2 and the voltage input terminal 305', that is, the gate-source voltage of the fourth switching unit Q7
  • the absolute value of VGS is smaller than the absolute value of the turn-on voltage VTP of the fourth switch unit Q7, so that the fourth switch unit Q7 is turned off.
  • the present application does not limit the resistance values of the resistor R31, the resistor R29, and the resistor R36, as long as the load connection terminal 22 is empty, the second voltage dividing node P2 and the The voltage difference at the voltage input terminal 305' can meet the condition for turning off the fourth switch unit Q7, and when the load connection terminal 22 is reversely connected to the load connection terminal 22, the second voltage dividing node P2 and It is enough that the voltage difference of the voltage input terminal 305' can meet the condition of turning on the fourth switch unit Q7 (described below), for example, the resistance value of the resistor R31 can be set to 1K ⁇ , and the resistor R29 The resistance value of the resistor R36 can be set to 100K ⁇ , and the resistance value of the resistor R36 can be set to 10K ⁇ .
  • the fourth switch unit Q7 Since the fourth switch unit Q7 is turned off, the stable voltage VCC received by the voltage input terminal 305' cannot be transmitted to the voltage output terminal 304' through the fourth switch unit Q7, so that the voltage output terminal 304' is in a no-output state. That is, the load positive and negative connection detection circuit 31' does not output any signal when it detects that the load connection terminal 22 is empty.
  • the base B of the first switch unit Q11 and the voltage U P1 of the first voltage dividing node P1 are both clamped at 0.7V, that is, The base B of the first switch unit Q11 and the voltage U P1 of the first voltage dividing node P1 maintain a preset voltage value.
  • the voltage U P1 of the first voltage dividing node P1 is transmitted to the first detection terminal 301 through the resistor R33, that is, the voltage U P1 of the first voltage dividing node P1 is transmitted by the resistor R33, the The first detection terminal 301, the third voltage division module 321, and the ground terminal GND are transmitted in the current loop, so that the resistor R33 and the at least two components included in the third voltage division module 321
  • the application does not limit the resistance values of the resistors R33, R30 and R37. It can be understood that, after the smart connection device 101 leaves the factory, the resistance values of the resistors R33, R30 and R37 are fixed, therefore, the voltage value of the voltage U P3 of the third voltage dividing node P3 is between the When the load connection end 22 is empty, it can be kept at a preset fixed value. Correspondingly, the voltage value of the detection signal VOUT_SN output by the detection signal output terminal 303 can also be kept at a preset fixed value, wherein the detection signal VOUT_SN output by the detection signal output terminal 303 at this time is the above For the first voltage signal mentioned above, the preset fixed value is the first preset value mentioned above.
  • the at least two resistors R35 and R38 contained in the first voltage dividing module 312 perform proportional voltage division on the stable voltage VCC received by the voltage input terminal 305', on the first voltage dividing node P1
  • the first voltage U P1 turns on the first switch unit Q11.
  • the load positive and negative connection detection circuit 31 ′ does not output any signal when detecting that the external load is being connected to the load connection terminal 22 .
  • the voltage of the external load is generally above 6-7V, which is higher than the voltage U P1 of the first voltage dividing node
  • the voltage of the first detection terminal 301 is higher than the voltage of the first voltage dividing node U P1 , so that the voltage U P1 of the first voltage dividing node cannot be transmitted to the third voltage dividing node P3 through the first detection terminal 301 .
  • the first detection terminal 301 is electrically connected to the positive pole of the external load and receives an input voltage, that is, the load voltage of the external load, the The at least two resistors R30 and R37 included in the third voltage dividing module 321 divide the load voltage U CAR+ of the external load received by the first detection terminal 301 proportionally, so that the third voltage dividing node
  • the voltage value of the voltage U P3 of the third voltage dividing node P3 can be compared with the The voltage value of the load voltage U CAR+ maintains a preset proportional relationship, that is, the voltage value of the voltage U P3 of the third voltage dividing node P3 can linearly follow the change of the voltage value of the load voltage U CAR+ , so that the The voltage value of the detection signal VOUT_SN output by the detection signal output terminal 303 maintains a preset proportional relationship with the voltage value of the load voltage U CAR+ of the external load, wherein the detection signal output by the detection signal output terminal 303 at this time
  • the signal VOUT_SN is the third voltage signal mentioned above. It can be understood that the preset proportional relationship between the voltage value of the third voltage signal and the load voltage value of the external load is determined by the at least two resistors R30 and R37 contained in the third voltage dividing module. The resistance value is determined
  • the external load is reversely connected to the load connection terminal 22, that is, the positive pole of the external load is electrically connected to the load negative connection terminal CAR-, and the negative pole of the external load is electrically connected to the load positive connection terminal.
  • CAR+ for the convenience of description, the connection node between the emitter E of the first switch unit Q11 and the ground terminal GND is set as the first reference point A1, and the first detection terminal 301 is set as the second reference point Point A2.
  • FIG. 6 for an equivalent circuit diagram among the voltage input terminal 305 ′, the first reference point A1 , the second reference point A2 , and the first voltage dividing node P1 . As shown in FIG.
  • the second detection terminal 302 is electrically connected to the load negative connection terminal CAR- of the load connection terminal 22, and the load negative connection terminal CAR- is electrically connected to the ground terminal GND through the current detection element J1.
  • the equivalent resistance between the first voltage-dividing nodes P1 decreases.
  • the voltage of the first voltage-dividing node P1 will decrease, that is, U P1 ⁇ 0.7V, in this way, when the load connection terminal 22 is switched from the no-load state to the reverse connection with the external load, the state of the first switch unit Q11 is switched from the on state to the off state, and at the same time, the The second switch unit Q10 and the third switch unit Q9 are in a cut-off state because their respective control terminals B do not receive a driving voltage signal.
  • the at least two resistors R29 and R36 included in the second voltage dividing module 313 divide the stable voltage VCC received by the voltage input terminal 305' proportionally, so that the second voltage dividing node P2
  • the voltage difference with the voltage input terminal 305' that is, the absolute value of the gate-source voltage VGS of the fourth switch unit Q7 is greater than the absolute value of the turn-on voltage VTP of the fourth switch unit Q7, so that the fourth The switch unit Q7 is turned on.
  • the stable voltage VCC received by the voltage input terminal 305' is transmitted to the voltage output terminal 304' through the turned-on fourth switch unit Q7, that is, the stable voltage VCC received by the voltage input terminal 305'
  • the voltage VCC is transmitted in the current loop formed by the turned-on fourth switch unit Q7, the diode D12, the resistor R28, the voltage output terminal 304', the third voltage dividing node P3, the resistor R37, and the ground terminal GND.
  • the voltage value of the access state signal is equal to the voltage value of the voltage U P3 of the third voltage dividing node P3.
  • the application does not limit the resistance value of the resistor R28.
  • the resistance value of the resistor R28 is fixed, therefore, the voltage value of the voltage U P3 of the third voltage dividing node P3 is reversed when the external load When reaching the load connection end 22, it can be kept at a preset fixed value.
  • the voltage value of the detection signal VOUT_SN output by the detection signal output terminal 303 can also be kept at a preset fixed value, wherein the detection signal VOUT_SN output by the detection signal output terminal 303 at this time is the above
  • the preset fixed value is the second preset value mentioned above. It can be understood that, in other implementation manners, the resistor R28 may not be provided between the voltage input terminal 305' and the voltage output terminal 304'.
  • the resistance values of the resistance components can be preset according to requirements, and
  • the voltage value of the stable voltage VCC provided by the voltage source connected to the voltage input terminal 305' makes the first voltage signal and the second voltage signal have different voltage values respectively, and makes the first voltage signal Both the voltage value of and the voltage value of the second voltage signal are outside the third voltage value range to which the voltage value of the third voltage signal belongs.
  • the controller 40 can determine the connection state of the external load and the external load according to the voltage value of the detection signal VOUT_SN. load voltage of the load.
  • the smart connection device 101 provided in the above-mentioned second embodiment detects the connection state of the external load by the load positive and negative connection detection circuit 31' including the combination switch circuit and outputs the corresponding analog signal, and by including the damping voltage divider
  • the load electrical parameter detection circuit 32' detects the voltage of the external load and outputs a corresponding analog signal, and then the load electrical parameter detection circuit 32' combines the two analog signals into a single analog signal before transmission Perform data analysis and corresponding control operations for the controller 40, thereby effectively reducing the controller’s demand for analog signal acquisition, solving the complexity of peripheral control circuits, making circuit control easier, and reducing control
  • the failure rate of the system has greatly improved the safety and reliability of the product, and saved the manpower and material cost of the after-sales service of the product, and at the same time reduced the material cost of the product.
  • the combined switch circuit realizes the connection polarity detection function to the external load by using simple transistors (such as diodes, triodes, field effect transistors) and passive devices (such as resistors, capacitors), so that the transistor conduction and The feature of fast disconnection speed can quickly detect the access state of the external load, which can significantly improve the detection speed and effectiveness of related protection functions, and further improve the safety and reliability of the power output control system.
  • simple transistors such as diodes, triodes, field effect transistors
  • passive devices such as resistors, capacitors
  • the controller 40 can be a programmable control device, such as a microcontroller (Micro-controller Unit, MCU), a programmable logic array (Field-Programmable Gate Array, FPGA), or a digital signal processor (Digital Signal Processor, DSP) and so on.
  • the controller 40 as the logic operation and control center of the smart connection device 101, is mainly responsible for data collection and conversion, logic operation, data communication, execution drive output, control and other functions. It can be understood that the controller 40 may include a plurality of input and output ports, and the controller 40 may communicate and exchange information with other functional modules or external devices through the plurality of input and output ports, so that the described Functions such as connection, drive and control of the smart connection device 101 .
  • FIG. 7 is a schematic diagram of functional modules of a smart connection device 102 provided in the third embodiment of the present application.
  • the smart connection device 102 may further include a communication interface module 81 electrically connected to the controller 40, and the controller 40 may 81 communicates with the external device (external power supply device, external load) to obtain the current battery voltage, maximum current output capability, battery temperature, working status, software version information, etc. of the power module of the external power supply device, and according to The obtained relevant information judges whether the electrical parameters of the power module of the external power supply meet the conditions for discharging and outputting to the external load, so as to determine whether to output the drive signal RELAY_EN2 to turn on the switch module 23 .
  • the external device external power supply device, external load
  • the controller 40 can also send its own software version information, the normal and abnormal working status of the smart connection device 102, the voltage and output current signal of the external load, etc. to the external power supply equipment for adaptation and related protection. That is to say, the controller 40 of the smart connection device 102 can exchange information with external devices through the communication interface module 81 and perform corresponding control.
  • the controller 40 stops outputting the The drive signal RELAY_EN2 is used to disconnect the switch module 23 to cut off the current output loop 20, and at the same time output a corresponding status indicator to ensure the safety of the system and external equipment.
  • the smart connection device 102 further includes a power input state detection module 82, the power input state detection module 82 is electrically connected to the power connection terminal 21 and the controller 40 respectively, and the power input state detection The module 82 is used to detect the connection state of the power module, and output a corresponding detection signal to the controller 40 .
  • the power input state detection module 82 may be a voltage detection circuit.
  • the smart connection device 102 further includes a status indication module 83 electrically connected to the controller 40, and the status indication module 83 is used to control the external load according to the control signal output by the controller 40.
  • the connection status, the voltage of the external load, the working mode of the smart connection device 102, etc. will give corresponding status prompts.
  • the state indication module 83 may include a load state indication module, and the controller 40 may determine the access state of the external load and the load state of the external load according to the received detection signal VOUT_SN. electrical parameters of the external load, and output a control signal to control the load status indication module to give corresponding prompts to the access status of the external load and the electrical parameters of the external load.
  • the status indicating module 83 may also include a working mode indicating module, and the controller 40 may output a control signal according to the working mode of the smart connected device 102 to control the working mode indicating The module gives a corresponding prompt for the working mode of the smart connection device 102 .
  • the status indication module 83 may include a display unit and/or an alarm unit.
  • the display unit may include at least one light emitting diode or at least one liquid crystal display device, and the display unit gives corresponding prompts by emitting light or displaying information.
  • the alarm unit may include at least one buzzer or horn, and the alarm unit gives a corresponding prompt by emitting an alarm sound.
  • the status prompt of the status indication module 83 it can help the user know whether the external load is correctly connected to the load connection terminal at any time, so that when the external load is not correctly connected to the load connection terminal , notify the user to stop the connection in time, and adjust the connection terminal of the external load, such as adjusting the clamping method of the battery clamp device, to ensure the safe application of the product.
  • it can also help the user to know the voltage status of the external load at any time, start the power The status of the device itself, etc.
  • the smart connection device 102 further includes a stabilized power supply module 84 electrically connected to the power connection terminal 21 and/or the load connection terminal 22 .
  • the regulated power supply module 84 is used to receive the input voltage provided by the power supply module through the power supply connection terminal 21, such as the positive power supply connection terminal BAT+, and/or, through The load connection terminal 22, such as the load positive connection terminal CAR+, receives the input voltage provided by the external load, and performs voltage conversion on the input voltage to output a stable voltage VCC, such as a DC voltage of 5V, for the intelligent
  • a stable voltage VCC such as a DC voltage of 5V
  • the regulated power supply module 84 can obtain the input voltage and work normally, and output the regulated voltage VCC, To supply power to each functional module inside the smart connection device 102, so that each functional module is powered on and works normally.
  • the regulated power supply module 84 may adopt a DC-DC converter or a linear voltage regulator, such as a low dropout linear regulator (low dropout regulator, LDO).
  • the smart connection device 102 further includes a button control module 85 electrically connected to the controller 40, and the button control module 85 can receive a user's pressing operation to generate a button instruction to
  • the controller 40 is forced to output the driving signal RELAY_EN2, so as to realize the discharge output of the power module to the external load.
  • the working modes of the controller 40 may include an automatic output mode and a forced output mode.
  • the controller 40 enters the automatic output mode by default after being powered on. When the controller 40 is in the automatic output mode, the controller 40 outputs the drive signal only when it is determined that the external load is connected to the load connection terminal 22 and the voltage of the external load satisfies a preset condition RELAY_EN2.
  • the controller 40 enters the forced output mode when receiving the key command, and immediately outputs the drive signal RELAY_EN2 in response to the key command. In one embodiment, after the controller 40 responds to the key command and outputs the drive signal RELAY_EN2, it resumes the automatic output mode.
  • the smart connection device 102 further includes a temperature detection module 86 electrically connected to the controller 40, and the temperature detection module 86 is used to detect the switch module 23 and/or the built-in power supply module, etc. working temperature, and feed back the detected temperature value to the controller 40.
  • the controller 40 also analyzes whether the operating temperature of the switch module 23 and/or the built-in power supply module exceeds a preset threshold according to the received temperature value, and analyzes whether the switch module 23 and/or the built-in When the operating temperature of the power supply module etc. exceeds the preset threshold, the output of the drive signal RELAY_EN2 is suspended, thereby disconnecting the switch module 23 to cut off the current output loop 20 to ensure the safety of the system operation.
  • the smart connection device 102 further includes a current detection module 87 electrically connected between the power connection end 21 and the load connection end 22, and the current detection module 87 is also electrically connected to the controller 40. connect.
  • the current detection module 87 is used to collect the current in the current output loop 20 in real time when the switch module 23 is in the on state, that is, the discharge current output by the power module to the external load, and detect The current sampling signal is fed back to the controller 40.
  • the current detection module 87 is electrically connected between the power supply negative connection terminal BAT- and the load negative connection terminal CAR-.
  • the current detection module 87 may also be electrically connected between the power supply positive connection terminal BAT+ and the load positive connection terminal BAT+.
  • the controller 40 also analyzes whether the discharge output of the power module is normal according to the received current sampling signal, and when it is analyzed that the discharge output of the power module is abnormal, suspends the output of the driving signal RELAY_EN2, thereby disconnecting all
  • the switch module 23 is used to cut off the current output loop 20 to ensure the safety of the system operation.
  • the smart connection device 102 also includes an overcurrent and short circuit protection module 88, the overcurrent and short circuit protection module 88 is electrically connected to the current detection module 87 and the controller 40 respectively, and the overcurrent and the short-circuit protection module 88 is used to monitor whether the current sampling signal output by the current detection module 87 exceeds a preset current threshold, and output an interrupt trigger signal to the controller 40 when the current sampling signal is detected, The controller 40 immediately suspends the output of the driving signal, so that the switching module 23 can be quickly disconnected to cut off the current output loop 20 to ensure the safety of the system operation.
  • the output terminal of the overcurrent and short circuit protection module 88 may also be directly connected to the switch module 23, so that the switch module 23 is directly disconnected when the current sampling signal is monitored.
  • the aforementioned schematic diagrams 1, 3, and 7 are only used in this application to detect the access state of the external load and the electrical parameters of the external load, and the power module discharges the external load.
  • the examples of the output function of the smart connection device 100, 101, 102 do not constitute a limitation to the smart connection device, and the smart connection device may include more or less components than those shown in the illustration, or combine certain components , or a different component.
  • the present application also provides a starting power supply device 200 .
  • the starting power supply device 200 includes a starting power supply housing 201 , an energy storage component 202 , and an intelligent connection device 103 .
  • the smart connection device 103 may adopt the structure of the smart connection device 100-102 provided in any one of the above-mentioned implementation manners.
  • At least part of the structure of the energy storage component 202 and the smart connection device 103 such as the power connection terminal 21, the load connection terminal 22, the switch module 23, the load detection module 30, the controller 40, the communication interface module 81, the power input status
  • the detection module 82, the regulated power supply module 84, the temperature detection module 86, the current detection module 87, the overcurrent and short circuit protection module 88, etc. can be arranged in the housing 201, at least part of the structure of the intelligent connection device 103, for example, the status indication module 83 , the button control module 85 and the like can be arranged on the housing 201 .
  • the starting power supply device 200 further includes a charging interface 204 provided on the casing 201, and the charging interface 204 is used to connect with an external power source, such as a commercial power, to receive the external power supply
  • the energy storage component 202 is charged by the power supply.
  • the types of the charging interface 204 include but are not limited to DC interface, USB interface, Micro USB interface, Mini USB interface, Type-A interface, and Type-C interface.
  • the power connection end 21 of the smart connection device 103 is electrically connected to the energy storage component 202 of the starting power supply device 200 .
  • the starting power supply device 200 further includes a connection port 203 provided on the housing 201 , and the connection port 203 is connected to the load of the smart connection device 103
  • the connection end 22 is electrically connected, and the connection port 203 is used to electrically connect with the external load by accessing an external connection piece 400, that is, one end of the connection piece 400 is detachably connected to the connection port 203, and the other end is connected to the connection port 203.
  • the external load is detachably connected.
  • the appearance structure of the starting power device 200 may adopt the structure of the starting power device 200 shown in FIG. 10 or other structures, and the appearance structure of the starting power device 200 is not specifically limited in this application.
  • the connector 400 is a wire clamp, including a first wire clamp 401, a second wire clamp 402, a cable 403, and a connection terminal 404, and the cable 403 is used to connect the first wire clamp 401 and the second clamp 402 are respectively connected to the connecting terminal 404 .
  • the connection terminal 404 is detachably electrically connected to the connection port 203 .
  • the first clamp 401 is used to clamp the positive pole of the external load
  • the second clamp 402 is used to clamp the negative pole of the external load
  • the positive pole and the negative pole of the external load pass through the first
  • the wire clip 401 and the second wire clip 402 , the connection terminal 404 , the connection port 203 are electrically connected to the load positive connection end CAR+ and the load negative connection end CAR- of the load connection end 22 in one-to-one correspondence.
  • the starting power supply device 200 ′ further includes a connecting piece 205 , and one end of the connecting piece 205 is connected to the load connecting end 22 of the smart connecting device 103 electrical connection, and the other end is used for electrical connection with the external load. That is to say, one end of the connector 205 is built into the starting power supply device 200'.
  • the connecting member 205 is a wire clip. Wherein, except that the connecting member 205 does not include the connecting terminal 404 , other structures are similar to those of the connecting member 400 , which will not be repeated here.
  • the starting power supply equipment 200 and 200' provided by this application can use the above-mentioned intelligent connection device 103 to use the load detection module 30 or 30' to simultaneously detect the access status of the external load and the electrical parameters of the external load, and output a single
  • the analog signal is used to simultaneously indicate the access state of the external load and the electrical parameters of the external load, so that the controller 40 only needs to perform data analysis and perform corresponding control operations according to the single analog signal, which can effectively reduce the number of controllers 40.
  • the present application also provides a battery clamp device 900 .
  • the battery clip device 900 includes a housing 901 , a power input interface 902 , a connecting piece 903 and an intelligent connection device 104 .
  • the smart connection device 104 may adopt the structure of the smart connection device 100-102 provided in any one of the above-mentioned implementation manners.
  • the power input interface 902 is provided on the housing 901, and the power input interface 902 is used to electrically connect with an external power supply 500, such as an emergency start power supply, wherein the external power supply 500 includes an energy storage component (Fig. not shown).
  • the power input interface 902 is a connection terminal
  • the external power supply device 500 also includes a connection port 501 adapted to the power input interface 902 of the battery clamp device 900.
  • the battery clamp device 900 The electrical connection with the external power supply device 500 is realized through the detachable electrical connection between the power input interface 902 and the connection port 501 .
  • At least part of the structure of the intelligent connection device 104 such as the power connection terminal 21, the load connection terminal 22, the switch module 23, the load detection module 30, the controller 40, the communication interface module 81, the power input state detection module 82, the stabilized power supply Module 84, temperature detection module 86, current detection module 87, overcurrent and short circuit protection module 88, etc., can be arranged in the housing 901, at least part of the structure of the intelligent connection device 104, such as the status indication module 83, button The control module 85 and the like may be arranged on the housing 901 .
  • the power connection end 21 of the smart connection device 104 is electrically connected to the power input interface 902 , and is electrically connected to the energy storage component of the external power supply device 500 through the power input interface 902 .
  • One end of the connector 903 is electrically connected to the load connection end 22 of the smart connection device 104 , and the other end is used to electrically connect to an external load.
  • the connector 903 is a wire clip.
  • the connecting member 903 does not include the connecting terminal 404 , other structures are similar to those of the connecting member 400 , which will not be repeated here.
  • the appearance structure of the battery clamp device 900 may adopt the structure of the battery clamp device 900 shown in FIG. 14 or other structures, and the appearance structure of the battery clamp device 900 is not specifically limited in this application.
  • the battery clip device 900 provided in this application can use the above-mentioned intelligent connection device 104 to simultaneously detect the access state of the external load and the electrical parameters of the external load by using the load detection module 30 or 30', and output a single analog signal To simultaneously indicate the access status of the external load and the electrical parameters of the external load, so that the controller 40 only needs to perform data analysis and make corresponding control operations according to the single analog signal, which can effectively reduce the number of analog signals that the controller 40
  • the signal acquisition requirement solves the complexity of the peripheral control circuit and makes the circuit control simpler, thereby reducing the failure rate of the control system, greatly improving the safety and reliability of the product, and reducing the product cost. Material costs.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种智能连接装置、启动电源设备以及电瓶夹设备。该智能连接装置包括开关模块、负载检测模块和控制器。开关模块电连接于电源连接端与负载连接端之间。负载检测模块用于检测外部负载的状态,并根据检测结果在其检测信号输出端输出相应的检测信号。所述检测信号用于对所述开关模块进行控制。该智能连接装置通过负载检测模块来检测负载的状态,并输出单个模拟量信号来指示负载的状态,可有效地减少对模拟量信号的采集需求,简化外围控制电路、降低控制系统的故障率、提升产品的安全及可靠性。

Description

智能连接装置、启动电源设备以及电瓶夹设备 技术领域
本申请涉及电子技术领域,特别涉及一种智能连接装置、启动电源设备以及电瓶夹设备。
背景技术
借助应急启动电源对汽车进行启动打火时,需要使用电瓶夹将应急启动电源与汽车电池进行连接。当电瓶夹夹上汽车电池后,在启动电源的正负极与汽车电池的正负极接反的情况下,启动电源无法给汽车电池充电。另外,在启动电源的正负极与汽车电池的正负极正常连接的情况下,若启动电源与汽车电池一直接通,启动电源会自动输出电能给汽车电池充电,直到启动电源亏电或启动电源与汽车电池断开电连接,导致启动电源没有足够的电量再次启动汽车或者能够用于汽车启动的次数减少。
发明内容
本申请针对上述检测电路结构的缺陷提供一种智能连接装置、启动电源设备以及电瓶夹设备,能够输出单个模拟量信号来指示外部负载的状态,从而可有效地减少控制器针对模拟量信号的采集需求、简化控制电路的结构,进而降低控制系统的故障率,极大程度上提升了产品的安全及可靠性,同时还降低了产品的材料成本。
本申请第一方面提供一种智能连接装置,所述智能连接装置包括电源连接端、负载连接端、开关模块、负载检测模块、以及控制器。所述电源连接端用于与电源模块电连接。所述负载连接端用于与外部负载电连接。所述开关模块电连接于所述电源连接端与所述负载连接端之间。所述负载检测模块与所述负载连接端电连接,所述负载检测模块包括检测信号输出端,所述负载检测模块用于检测所述外部负载的状态,并根据检测结果在所述检测信号输出端输出相应的检测信号。所述检测信号用于对所述开关模块进行控制。
本申请的第二方面提供一种启动电源设备,所述启动电源设备包括壳体、储能组件、以及上述第一方面所述的智能连接装置。所述储能组件以及所述智能连接装置的至少部分结构设置于所述壳体内,所述智能连接装置的电源连接端与所述储能组件电连接。
本申请的第三方面提供一种电瓶夹设备,所述电瓶夹设备包括壳体、电源输入接口、连接件、以及上述第一方面所述的智能连接装置。所述电源输入接口设于所述壳体上,所述电源输入接口用于与外部电源设备电连接,其中,所述外部电源设备包括储能组件。所述智能连接装置的至少部分结构设于所述壳体内,所述智能连接装置的电源连接端与所述电源输入接口电连接,并通过所述电源输入接口与所述外部电源设备的储能组件电连接。所述连接件的一端与所述智能连接装置的负载连接端电连接,所述连接件的另一端用于与外部负载电连接。
本申请提供的所述智能连接装置通过负载检测模块来检测外部负载的状态,并输出单个模拟量信号来指示外部负载的状态,再由控制器根据该单个模拟量信号进行数据分析以及作出相应的控制操作,可有效地减少所述控制器针对模拟量信号的采集需求,解决了外围控制电路的繁杂性,使电路控制变得更简单,从而可降低控制系统的故障率,极大程度上提升了产品的安全及可靠性,同时还降低了产品的材料成本。
附图说明
为了更清楚地说明本申请实施方式的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的第一实施方式提供的一种智能连接装置的功能模块示意图。
图2为图1所示的智能连接装置的电流输出回路的电路结构示意图。
图3为本申请的第二实施方式提供的一种智能连接装置的功能模块示意图。
图4为本申请第一实施方式提供的负载检测模块的电路结构示意图。
图5为本申请第二实施方式提供的负载检测模块的电路结构示意图。
图6为图5所示的电压输入端、第一参考点、第二参考点、以及第一分压节点之间的电路结构的等效电路图。
图7为本申请的第三实施方式提供的一种智能连接装置的功能模块示意图。
图8为图7所示的稳压电源模块的电路结构示意图。
图9为本申请的第一实施方式提供的一种启动电源设备的功能模块示意图。
图10为图9所示的启动电源设备的一种结构示意图。
图11为本申请的第二实施方式提供的一种启动电源设备的功能模块示意图。
图12为图11所示的启动电源设备的一种结构示意图。
图13为本申请的实施方式提供的一种电瓶夹设备的功能模块示意图。
图14为图13所示的电瓶夹设备的一种结构示意图。
主要元件符号说明
智能连接装置                  100、101、102、103、104
电流输出回路                  20
电源连接端                    21
电源正连接端                  BAT+
电源负连接端                  BAT-
负载连接端                    22
负载正连接端                  CAR+
负载负连接端                  CAR-
开关模块                      23
接地端                        GND、PGND
电流检测元件                  J1
负载检测模块                  30
第一检测端                    301
第二检测端                    302
检测信号输出端                303
电压输出端                    304
电压输入端                    305
检测信号                      VOUT_SN
负载正反接检测电路            31
传感器件                      U3
第一检测引脚                  2
第二检测引脚                  1
电压输入引脚                  4
输出引脚                      3
发光二极管                    D0
正极                          A
负极                          K
光敏三极管                    Q0
开关电路                      311
三极管                        Q5
稳压二极管                    ZD1
负载电参数检测电路            32
第一分压电阻                  R17
第二分压电阻                  R18
第三分压电阻                  R15
电压检测点                    P
二极管                        D7、D8、D9、D10
电阻                          R16、R19、R20、R40
电容                          C8
负载检测模块                  30’
电压输出端                    304’
电压输入端                    305’
负载正反接检测电路            31’
第一分压模块                  312
第二分压模块                  313
负载电参数检测电路            32’
第三分压模块                  321
第一开关单元                  Q11
第二开关单元                  Q10
第三开关单元                  Q9
第四开关单元                  Q7
电阻                          R28、R29、R30、R31、R32、R34、R35、R36、R37、R38
二极管                        D12、D13、D14、D16
电容                          C10
第一分压节点                  P1
第二分压节点                  P2
第三分压节点                  P3
电连接点                      F
第一参考点                    A1
第二参考点                    A2
电源管理电路                  33
控制器                        40
驱动信号                      RELAY_EN2
检测信号输入端口              41
驱动信号输出端口              42
控制端、基极                  B
第二连接端、集电极            C
第一连接端、发射极            E
通信接口模块                  81
电源输入状态检测模块          82
状态指示模块                  83
稳压电源模块                  84
按键控制模块                  85
温度检测模块                  86
电流检测模块                  87
过流和短路保护模块            88
启动电源设备                  200、200’
壳体                          201、201’
储能组件                      202
连接端口                      203
充电接口                      204
电瓶夹设备                    900
壳体                          901
电源输入接口                  902
连接件                        400、205、903
第一线夹                      401
第二线夹                      402
线缆                          403
连接端子                      404
外部电源设备                  500
连接端口                      501
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述。其中,附图仅用于示例性说明,表示的仅是示意图,不能理解为对本申请的限制。显然,所描述的实施方式仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与本领域技术人员通常理解的含义相同。本申请在说明书中所使用的术语只是为了描述具体实施方式的目的,不是旨在限制本申请。
在借助启动电源设备,例如应急启动电源对汽车进行应急启动打火的应用中,对于启动电源设备来说,为了实现对负载,例如汽车电池正反接状态的检测,目前的做法通常是设置一路负载正反接状态检测电路来进行相应的检测,并输出一个相应的检测信号;为了避免给负载充电而过快消耗启动电源设备的电量,目前的做法 通常是设置一路负载电压状态检测电路来检测汽车电池是否被用于启动汽车。当汽车电池正确接入到启动电源设备中且被用于启动汽车时,启动电源设备才对汽车电池进行放电输出,以给汽车提供瞬时大电流来启动汽车。也就是说,针对汽车电池正反接状态的检测以及汽车电池电压状态的检测,目前的做法是分别设置相应的检测电路来进行相应的检测,并分别输出相应的模拟检测信号到控制器中进行相关的数据分析,以做出相应的控制操作。然而,这种针对不同的检测需求分别设置不同的检测电路的做法,一方面会导致产品的结构复杂且制造成本偏高,另一方面由于对模拟信号的采集需求较多,同时其外围控制电路相对繁杂,导致控制系统的故障率增加,从而使产品的售后成本大大增加。
为了解决上述问题,本申请提供一种智能连接装置,通过负载检测模块来同时检测外部负载的接入状态以及外部负载的电参数,并输出单个模拟量信号来同时指示外部负载的接入状态以及外部负载的电参数,再由控制器根据该单个模拟量信号进行数据分析以及作出相应的控制操作,可有效地减少所述控制器针对模拟量信号的采集需求,解决了外围控制电路的繁杂性,使电路控制变得更简单,从而可降低控制系统的故障率,在极大程度上提升了产品的安全及可靠性,同时还降低了产品的材料成本。其中,所述智能连接装置可应用于启动电源设备,例如应急启动电源中,也可以应用于电瓶夹设备中。
图1为本申请的第一实施方式提供的一种智能连接装置100的功能模块示意图。如图1所示,智能连接装置100包括电源连接端21、负载连接端22以及开关模块23,其中,所述电源连接端21用于与电源模块(图未示)电连接,所述负载连接端22用于与外部负载(图未示)电连接,所述开关模块23电连接于所述电源连接端21与所述负载连接端22之间。
请一并参阅图1和图2,所述电源连接端21、所述负载连接端22以及所述开关模块23构成所述电源模块对所述外部负载的电流输出回路20,所述开关模块23用于导通或断开所述电流输出回路20。如此,所述电源模块能够通过所述智能连接装置100对所述外部负载放电。
在本实施方式中,所述电源连接端21包括电源正连接端BAT+和电源负连接端BAT-。其中,所述电源正连接端BAT+和电源负连接端BAT-用于与所述电源模块的正极和负极一一对应电连接。所述电源模块通过所述电源连接端21接入所述智能连接装置100中,从而为所述智能连接装置100提供工作电压,以及通过所述开关模块23为所述外部负载提供电力。可以理解的是,当所述智能连接装置100应用于应急启动电源中时,所述电源模块可为所述应急启动电源的内置储能组件。当所述智能连接装置100应用于电瓶夹设备中时,所述电源模块可为外部电源设备,例如外部应急启动电源或其他储能电源设备包括的储能组件。
所述负载连接端22包括负载正连接端CAR+和负载负连接端CAR-,其中,所述负载正连接端CAR+和所述负载负连接端CAR-用于与所述外部负载的正极和负极一一对应电连接。所述负载负连接端CAR-还与接地端PGND电连接,以及通过电流检测元件J1与接地端GND电连接。可以理解的是,所述接地端PGND与所述接地端GND为不同的电源网络的参考地。
所述外部负载可为汽车电池或汽车引擎。可以理解的是,所述汽车电池包括但不限于铅酸电池、锂电池、超级电容等。例如,假设所述电源模块为外部应急启动电源包含的储能组件,而所述外部负载为汽车电池或汽车引擎,则当外部应急启动电源通过所述电源连接端21正确接入(也可以称为“正向接入”,以下统一简称为“正接”)所述智能连接装置100中,且所述外部负载正接所述负载连接端22中时,所述外部应急启动电源即可通过由所述电源连接端21、所述开关模块23、所述负载连接端22构成的所述电流输出回路20对所述外部负载进行放电输出,即,为所述汽车电池或汽车引擎提供应急启动电源。这里也可以理解为所述外部应急启动电源给所述汽车电池或汽车引擎充电,如此,汽车在所述汽车电池或汽车引擎在电量不足时也能被启动。
所述智能连接装置100还包括与所述开关模块23电连接的控制器40,所述控制器40用于对所述开关模块23进行通断控制。在本实施方式中,所述控制器40用于输出驱动信号RELAY_EN2至所述开关模块23,以导通所述开关模块23,即,所述开关模块23在接收到所述控制器40输出的驱动信号RELAY_EN2时进入导通状态,从而导通所述电源连接端21与所述负载连接端22之间的电连接,使所述电源模块能够与所述外部负载电连接,并对所述外部负载进行放电输出。所述开关模块23在未接收到所述控制器40输出的驱动信号RELAY_EN2时处于断开状态,从而断开所述电源连接端21与所述负载连接端22之间的电连接,使所述电源模块无法对所述外部负载进行放电输出。
在本实施方式中,所述智能连接装置100还包括与所述负载连接端22电连接的负载检测模块30,所述负载检测模块30用于通过所述负载连接端22来检测所述外部负载的状态,并根据检测结果输出相应的检测信号VOUT_SN。所述检测信号VOUT_SN用于对所述开关模块23进行控制。
其中,所述外部负载的状态至少包括所述外部负载的接入状态以及所述外部负载的电参数。所述外部负载的电参数包括所述外部负载的电压、电流、功率、电阻或温度中的至少一种。
在本实施方式中,所述负载检测模块30包括第一检测端301、第二检测端302以及检测信号输出端303,其中,所述负载检测模块30的第一检测端301与所述负载正连接端CAR+电连接,所述负载检测模块30的第二检测端302与所述负载负连接端CAR-电连接。所述负载检测模块30通过所述第一检测端301和所述第二检测端302检测所述外部负载的接入状态以及所述外部负载的电参数,并通过所述检测信号输出端303输出所述 检测信号VOUT_SN。可以理解的是,对应于外部负载的不同插入状态以及外部负载的不同使用状态,所述检测信号VOUT_SN的输出值也不同。
在本实施方式中,所述控制器40还与所述负载检测模块30的检测信号输出端303电连接,所述控制器40用于接收所述检测信号输出端303输出的检测信号VOUT_SN,并根据所述检测信号VOUT_SN对所述开关模块23进行控制,从而控制所述电源模块对所述外部负载的放电输出情况。例如图1所示,所述控制器40通过检测信号输入端口41来接收所述检测信号输出端303输出的检测信号VOUT_SN,并且根据接收到的所述检测信号来确定所述外部负载的接入状态以及所述外部负载的电参数,从而确定是否要输出所述驱动信号RELAY_EN2来导通所述开关模块23。其中,所述控制器40可通过驱动信号输出端口42来输出所述驱动信号RELAY_EN2。
在本实施方式中,所述检测信号VOUT_SN包括一模拟信号,所述控制器40用于根据所述模拟信号VOUT_SN的值能够确定所述外部负载的接入状态以及处于正接状态下的所述外部负载的电参数。
具体地,在本实施方式中,所述负载检测模块30在检测到所述负载连接端22空载,即所述外部负载未接入到所述负载连接端22时输出的所述检测信号VOUT_SN包括第一电压信号。所述第一电压信号用于控制所述开关模块23断开所述电源连接端21与所述负载连接端22之间的电连接,从而断开所述电源模块与所述外部负载之间的电连接。例如,所述第一电压信号可传输至所述控制器40,所述控制器40用于根据所述第一电压信号控制所述开关模块23断开所述电源连接端21与所述负载连接端22之间的电连接。其中,所述第一电压信号的电压值为第一预设值,如此,可确保所述控制器40能够准确识别出所述外部负载的接入状态。可以理解的是,在所述外部负载未接入到所述负载连接端22时将所述开关模块23断开,可以确保电路的用电安全。
所述负载检测模块30在检测到所述外部负载反接到所述负载连接端22时输出的所述检测信号VOUT_SN包括第二电压信号。所述第二电压信号用于控制所述开关模块23断开所述电源连接端21与所述负载连接端22之间的电连接,从而断开所述电源模块与所述外部负载之间的电连接。例如,所述第二电压信号可传输至所述控制器40,所述控制器40用于根据所述第二电压信号控制所述开关模块23断开所述电源连接端21与所述负载连接端22之间的电连接。其中,所述第二电压信号的电压值为第二预设值,且所述第一预设值与所述第二预设值不同。如此,可确保所述控制器40能够准确识别出所述外部负载的接入状态。可以理解的是,在所述外部负载反接到所述负载连接端22时将所述开关模块23断开,可以确保电路的用电安全。
所述负载检测模块30在检测到所述外部负载正接到所述负载连接端22时输出的所述检测信号VOUT_SN包括第三电压信号。其中,所述第三电压信号的电压值属于第三电压值范围,并且,所述第三电压信号的电压值与所述外部负载的负载电压值成预设比例关系。在本实施方式中,所述第一电压信号的电压值与所述第二电压信号的电压值均在所述第三电压值范围之外。如此,可确保根据所述检测信号的不同电压值能够准确识别出所述外部负载的不同接入状态。
其中,第三电压值范围可以是除开第一电压信号的电压值和第二电压信号的电压值外的某一电压值范围,第三电压值范围也可以是第一电压信号的电压值和第二电压信号的电压值外的所有值。假设第一电压信号的电压值U1和第二电压信号的电压值U2。示例性地,提前设定第三电压值范围为(U0,U3),且U1和U2均不属于(U0,U3);当接收到检测信号的电压值U X属于(U0,U3),则确定检测信号包括第三电压信号,示例性地,当接收到检测信号的电压值U X不属于U1和U2,则确定检测信号包括第三电压信号。在本实施方式中,所述外部负载的电参数包括所述外部负载的负载电压。所述第三电压信号的电压值用于确定所述外部负载的负载电压,并且,如果确定所述外部负载的负载电压满足预设条件,所述第三电压信号还用于控制所述开关模块23导通所述电源连接端21与所述负载连接端22之间的电连接,使所述电源模块能够与所述外部负载电连接并对所述外部负载进行放电输出。例如,所述第三电压信号可传输至所述控制器40,所述控制器40还用于在接收到所述第三电压信号时,根据所述第三电压信号的电压值确定所述外部负载的负载电压。所述控制器40还用于确定所述外部负载的负载电压是否满足预设条件,并且,如果确定所述外部负载的负载电压满足所述预设条件,所述控制器40输出所述驱动信号RELAY_EN2至所述开关模块23,以控制所述开关模块23导通所述电源连接端21与所述负载连接端22之间的电连接。
以所述外部负载为汽车电池、所述电源模块为启动电源设备的储能组件为例,在一种实施方式中,所述控制器40用于根据预设时间内接收到的所述第三电压信号的电压值确定所述汽车电池的电压值在预设时间内下降的幅度是否超过预设幅度阈值,即确定所述汽车电池的电压是否发生电压跌落。所述控制器40还用于在确定所述汽车电池的电压值在预设时间内下降的幅度超过所述预设幅度阈值时,即,所述汽车电池的电压发生电压跌落时,确定所述汽车电池的负载电压满足所述预设条件,并输出所述驱动信号RELAY_EN2来导通所述开关模块23,使所述启动电源设备为所述汽车电池提供电力。也就是说,所述预设条件包括所述外部负载的负载电压值在预设时间内下降的幅度超过预设幅度阈值。
可以理解的是,若所述汽车电池的电压值在预设时间内下降的幅度超过所述预设幅度阈值,即,所述汽车电池的电压发生电压跌落,说明所述汽车电池被用于启动汽车,此时,通过导通所述开关模块23即可利用所 述启动电源设备为所述汽车电池提供电力,以便启动汽车。可以理解的是,所述控制器40仅在所述汽车电池用于启动汽车时才导通所述开关模块23,如此,既可节约启动电源设备的电量,又可确保汽车能够被启动。
在另一种实施方式中,所述控制器40用于根据接收到的所述第三电压信号的电压值确定所述汽车电池的电压值是否小于第一预设电压阈值,并在确定所述汽车电池的电压值小于所述第一预设电压阈值时,根据预设时间内接收到的所述第三电压信号的电压值确定所述汽车电池的电压值在预设时间内下降的幅度是否超过预设幅度阈值,并在确定所述汽车电池的电压值在预设时间内下降的幅度超过所述预设幅度阈值时,确定所述汽车电池的负载电压满足所述预设条件,并输出所述驱动信号RELAY_EN2来导通所述开关模块23,使所述电源模块为所述汽车电池提供电力。也就是说,所述预设条件为所述外部负载的负载电压值小于所述第一预设电压阈值,且所述外部负载的负载电压值在预设时间内下降的幅度超过预设幅度阈值。
可以理解的是,若所述汽车电池的电压值小于所述第一预设电压阈值,说明所述汽车电池的电量不足,处于亏电状态。若所述汽车电池的电压值在预设时间内下降的幅度超过所述预设幅度阈值,说明所述汽车电池被用于启动汽车。如此,所述控制器40仅在所述智能连接装置100与亏电的汽车电池正接且所述汽车电池用于启动汽车时才导通所述开关模块23,既可节约启动电源设备的电量,又可确保汽车能够被启动,同时还能防止所述汽车电池给所述启动电源设备反向充电。
本申请提供所述智能连接装置100,通过负载检测模块30来同时检测外部负载的接入状态以及外部负载的电参数,并输出单个模拟量信号来同时指示外部负载的接入状态以及外部负载的电参数,再由控制器40根据该单个模拟量信号进行数据分析以及作出相应的控制操作,可有效地减少所述控制器40针对模拟量信号的采集需求,解决了外围控制电路的繁杂性,使电路控制变得更简单,从而可降低控制系统的故障率,极大程度上提升了产品的安全及可靠性,同时还降低了产品的材料成本。
图3为本申请的第二实施方式提供的一种智能连接装置101的功能模块示意图。应说明的是,所述智能连接装置101与图1所示的智能连接装置100对应。如图3所示,在所述第二实施方式中,所述智能连接装置101的负载检测模块30包括负载正反接检测电路31和负载电参数检测电路32。其中,所述负载正反接检测电路31与所述负载连接端22电连接,所述负载正反接检测电路31用于检测所述外部负载的接入状态,并通过其电压输出端304输出相应的接入状态信号。
所述负载电参数检测电路32分别与所述负载正反接检测电路31的电压输出端304以及所述负载连接端22电连接,所述负载电参数检测电路32用于接收所述负载正反接检测电路31输出的接入状态信号以及检测所述外部负载的电参数,并至少根据所述负载正反接检测电路31输出的接入状态信号以及所述电参数输出相应的所述检测信号VOUT_SN。
本申请第二实施方式提供的智能连接装置101通过负载正反接检测电路31来检测外部负载的接入状态,以及通过负载电参数检测电路32来检测所述外部负载的电参数,并将负载正反接检测电路31的电压输出端电连接至负载电参数检测电路32,从而可利用所述负载电参数检测电路32来将所述负载正反接检测电路31检测到的模拟量信号与所述负载电参数检测电路32检测到的模拟量信号合并成单个模拟量信号之后再传递给控制器40,使所述控制器40只需针对所述单个模拟量信号进行数据分析以及对所述开关模块23作出相应的控制操作,从而可有效地减少了所述控制器40针对模拟量信号的采集需求,解决了外围控制电路的繁杂性,使电路控制变得更简单,进而降低控制系统的故障率,在极大程度上提升了产品的安全及可靠性,以及节省了产品售后服务的人力和物力成本,同时还降低了产品的材料成本。
图4为本申请第一实施方式提供的负载检测模块30的电路结构示意图。如图4所示,所述负载正反接检测电路31包括传感器件U3和开关电路311,所述传感器件U3包括第一检测引脚2、第二检测引脚1、电压输入引脚4、以及输出引脚3。其中,所述第一检测引脚2通过二极管D9与所述第一检测端301电连接,并且,所述二极管D9的正极与所述第一检测引脚2电连接,所述二极管D9的负极与所述第一检测端301电连接。所述第二检测引脚1通过电阻R20与所述第二检测端302电连接。
在所述第一实施方式中,所述负载正反接检测电路31还包括电压输入端305,所述电压输入端305与一电压源电连接。在一种实施方式中,所述电压源可为所述电源模块,即,所述电压输入端305与所述电源正连接端BAT+电连接,如此,所述电压输入端305接收到的输入电压可由所述电源模块来提供。可选地,在另一种实施方式中,所述电压源也可为一稳压电源模块84(如图7所示),如此,所述电压输入端305接收到的输入电压可由所述稳压电源模块84输出的稳定电压VCC,例如5V的电压来提供。所述电压输入引脚4通过电阻R19与所述电压输入端305电连接。
所述传感器件U3通过所述第一检测引脚2以及所述第二检测引脚1来检测所述外部负载的接入状态。在所述第一实施方式中,如果检测到所述负载连接端22空载或所述外部负载正接到所述负载连接端22,所述传感器件U3断开所述传感器件U3的电压输入引脚4和输出引脚3之间的电连接,使所述输出引脚3处于无输出状态。如果检测到所述外部负载反接到所述负载连接端22,所述传感器件U3导通所述传感器件U3的电压输入引脚4和输出引脚3之间的电连接,使所述输出引脚3输出所述电压源提供的电压信号,即,所述电压源的电压经过所述电阻R19的降压之后,从所述传感器件U3的输出引脚3输出。
在所述第一实施方式中,所述传感器件U3为光电隔离器件,所述光电隔离器件包括发光二极管D0和光敏三极管Q0。其中,所述发光二极管D0电连接于所述第一检测引脚2以及所述第二检测引脚1之间。具体地,所述发光二极管D0的正极A与所述第二检测引脚1电连接,所述发光二极管D0的负极K与所述第一检测引脚2电连接。所述光敏三极管Q0电连接于所述电压输入引脚4和所述输出引脚3之间。具体地,所述光敏三极管Q0的基极与所述发光二极管D0耦合,集电极C与所述电压输入引脚4电连接,发射极E与所述输出引脚3电连接。
在所述第一实施方式中,所述开关电路311电连接于所述电压输出端304与所述传感器件U3的输出引脚3之间。所述开关电路311在未接收到所述传感器件U3的输出引脚3输出的电压信号时处于断开状态,使所述电压输出端304处于无输出状态。所述开关电路311在接收到所述传感器件U3的输出引脚3输出的电压信号时处于导通状态,使所述电压输出端304输出第二预设电压阈值。
具体地,所述开关电路311包括三极管Q5和稳压二极管ZD1,其中,所述三极管Q5的基极B通过所述稳压二极管ZD1接地,所述三极管Q5的基极B还通过电阻R16与所述三极管Q5的集电极C电连接。所述三极管Q5的集电极C还通过二极管D8与所述传感器件U3的输出引脚3电连接,即,所述三极管Q5的集电极C构成所述开关电路311的输入端来接收所述传感器件U3的输出引脚3输出的电压信号。其中,所述二极管D8的正极与所述传感器件U3的输出引脚3电连接,负极与所述三极管Q5的集电极C电连接。所述开关电路311通过所述三极管Q5的发射极E与所述负载正反接检测电路31的电压输出端304电连接。在所述第一实施方式中,所述三极管Q5采用NPN三极管。
在所述第一实施方式中,所述外部负载的电参数为所述外部负载的负载电压。所述负载电参数检测电路32包括依次串联于所述第一检测端301和接地端之间的第一分压电阻R17和第二分压电阻R18,其中,所述第一分压电阻R17和所述第二分压电阻R18之间的连接点包括电压检测点P,所述电压检测点P还分别与所述负载正反接检测电路31的电压输出端304(即,所述三极管Q5的发射极E)以及所述负载检测模块30的所述检测信号输出端303电连接。
其中,在所述第一实施方式中,所述电压检测点P与所述电压输出端304之间还可设置有第三分压电阻R15。所述电压检测点P还通过电阻R40以及电容C8电连接到接地端,其中,所述电阻R40与所述电容C8构成RC滤波电路,以滤除所述电压检测点P输出至所述检测信号输出端303的信号中所包含的噪声信号,使所述检测信号输出端303能够接收并输出稳定的检测信号VOUT_SN。所述负载电参数检测电路32还包括串联于接地端和电压源之间的两个二极管D7和D10,所述两个二极管D7和D10之间的连接点与所述电压检测点P电连接,所述两个二极管D7和D10所在的电路构成钳位电路来保护所述控制器40的检测信号输入端口41。
下面对图4所示的负载检测模块30的整个电路结构的工作原理进行介绍。
工作时,若所述负载连接端22空载,则所述发光二极管D0中没有电流流过,所述发光二极管D0不发光,所述光敏三极管Q0截止,从而断开所述传感器件U3的电压输入引脚4和输出引脚3之间的电连接,此时,所述传感器件U3处于无输出状态。所述三极管Q5由于其基极B未接收到所述传感器件U3输出的电压信号而截止,使所述电压输出端304处于无输出状态。即,所述负载正反接检测电路31在检测到所述负载连接端22空载时不输出任何信号。
由于所述负载连接端22空载,所述第一检测端301未接收到输入电压,所述电压检测点P通过所述第二分压电阻R18电连接到接地端而处于低电平状态,因此,所述检测信号输出端303输出的所述检测信号VOUT_SN为固定的低电平信号,其中,所述固定的低电平信号即为上文所述的电压值为第一预设值的第一电压信号。
若所述外部负载反接到所述负载连接端22,即,所述外部负载的正极电连接到所述负载负连接端CAR-,所述外部负载的负极电连接到所述负载正连接端CAR+,则所述发光二极管D0中有电流流过,使所述发光二极管D0发光,所述光敏三极管Q0的基极受到光照后产生电流,使所述光敏三极管Q0导通,从而导通所述传感器件U3的电压输入引脚4和输出引脚3之间的电连接,此时,所述输出引脚3输出所述电压源提供的电压信号。
所述三极管Q5的基极B通过所述电阻R16接收到所述传感器件U3的输出引脚3输出的电压信号而使所述三极管Q5饱和导通。同时,所述三极管Q5的基极B的电压值在所述稳压二极管ZD1的稳压作用下被钳位在固定电压值U1。由于所述三极管Q5饱和导通,其基极B与发射极E之间的电压差为U Q5_BE≈0.7V,因此,所述三极管Q5的发射极E的电压值也被钳位在第二预设电压阈值U2,其中,U2=U1-0.7,从而在所述电压输出端304输出所述第二预设电压阈值U2,即,所述负载正反接检测电路31输出所述第二预设电压阈值U2。此时,所述接入状态信号的电压值等于所述第二预设电压阈值U2。
由于所述外部负载反接到所述负载连接端22,所述第一检测端301与所述外部负载的负极电连接,相当于第一分压电阻R17和第二分压电阻R18电连接于两个接地端之间,因此,所述外部负载的电压在所述电压检测点P不产生分压。所述电压检测点P接收到所述负载正反接检测电路31的电压输出端304输出的所述第 二预设电压阈值U2,所述第三分压电阻R15和所述第二分压电阻R18对所述电压输出端304输出的所述第二预设电压阈值U2进行比例分压,使所述电压检测点P的电压为:U P=U2*R18/(R15+R18)=(U1-0.7)*R18/(R15+R18)。本申请对所述第三分压电阻R15和所述第二分压电阻R18的阻值、以及所述固定电压值U1的电压值不做限定。
可以理解的是,在所述智能连接装置101出厂之后,所述三极管Q5、稳压二极管ZD1的型号、电参数等固定不变,因此,在所述外部负载反接到所述负载连接端22时,所述三极管Q5的基极B的电压能够在所述稳压二极管ZD1的稳压作用下被钳位在所述固定电压值U1,而所述三极管Q5的发射极E的电压也能够被钳位在所述第二预设电压阈值U2。可以理解的是,在所述智能连接装置101出厂之后,所述第三分压电阻R15和所述第二分压电阻R18的阻值也固定不变,因此,在所述外部负载反接到所述负载连接端22时,所述电压检测点P的电压U P的电压值能够保持为预设固定值,所述检测信号输出端303输出的所述检测信号VOUT_SN的电压值也能够保持为预设固定值,其中,所述检测信号输出端303此时输出的所述检测信号VOUT_SN即为上文所述的第二电压信号,所述预设固定值即为上文所述的第二预设值。
若所述外部负载正接到所述负载连接端22,即,所述外部负载的正极电连接到所述负载正连接端CAR+,所述外部负载的负极电连接到所述负载负连接端CAR-,则所述发光二极管D0中没有电流流过,所述发光二极管D0不发光,所述光敏三极管Q0截止,从而断开所述传感器件U3的电压输入引脚4和输出引脚3之间的电连接,此时,所述传感器件U3处于无输出状态。所述三极管Q5由于其基极B未接收到所述传感器件U3输出的电压信号而截止,使所述电压输出端304处于无输出状态。即,所述负载正反接检测电路31在检测到所述外部负载正接到所述负载连接端22时不输出任何信号。
由于所述外部负载正接到所述负载连接端22,所述第一检测端301与所述外部负载的正极电连接而接收到输入电压,即所述外部负载的负载电压,所述第一分压电阻R17和所述第二分压电阻R18对所述外部负载的负载电压进行比例分压,使所述电压检测点P的电压为:U P=U CAR+*R18/(R17+R18)。本申请对所述第一分压电阻R17和所述第二分压电阻R18的阻值不做限定。其中,在正常情况下,所述外部负载的负载电压通常在6~7V以上。
可以理解的是,在所述智能连接装置101出厂之后,所述第一分压电阻R17和所述第二分压电阻R18的阻值固定不变,因此,在所述外部负载正接到所述负载连接端22时,所述电压检测点P的电压U P的电压值能够与所述外部负载的负载电压U CAR+的电压值保持预设比例关系,即,所述电压检测点P的电压U P的电压值能够线性跟随所述外部负载的负载电压U CAR+的电压值的变化而变化,使所述检测信号输出端303输出的所述检测信号VOUT_SN的电压值与所述外部负载的负载电压U CAR+的电压值保持预设比例关系,其中,所述检测信号输出端303此时输出的所述检测信号VOUT_SN即为上文所述的第三电压信号。可以理解的是,所述第三电压信号的电压值与所述外部负载的负载电压U CAR+的电压值所成的预设比例关系由所述第一分压电阻R17和所述第二分压电阻R18的阻值来决定。
在所述第一实施方式中,如上文的分析可知,在所述负载检测模块30中,可以根据需求来预先设置电阻元器件(例如电阻R15、R17、R18)的阻值,以及稳压二极管ZD1的型号,使所述第一电压信号与所述第二电压信号分别具有不同的电压值,并且使所述第一电压信号的电压值与所述第二电压信号的电压值均在所述第三电压信号的电压值所属的第三电压值范围之外。由于所述第一电压信号、第二电压信号、第三电压信号的电压值并不相同,且所述第一电压信号的电压值和所述第二电压信号的电压值均为预设值,因此,当所述负载检测模块30将所述检测信号VOUT_SN传输至所述控制器40时,所述控制器40即可根据所述检测信号VOUT_SN的电压值来确定所述外部负载的接入状态以及所述外部负载的负载电压。
上述第一实施方式提供的智能连接装置101通过由包括光电隔离器件和开关电路311的负载正反接检测电路31来检测外部负载的接入状态并输出相应的模拟量信号,以及通过由包括阻尼分压器件的负载电参数检测电路32来检测所述外部负载的负载电压并输出相应的模拟量信号,再由所述负载电参数检测电路32将两个模拟量信号组合成单个模拟量信号之后再传递给控制器40,使所述控制器40只需针对所述单个模拟量信号进行数据分析以及作出相应的控制操作,从而可有效地减少了控制器40针对模拟量信号的采集需求,解决了外围控制电路的繁杂性,使电路控制变得更简单,进而降低控制系统的故障率,在极大程度上提升了产品的安全及可靠性,以及节省了产品售后服务的人力和物力成本,同时还降低了产品的材料成本。
图5为本申请第二实施方式提供的负载检测模块30’的电路结构示意图。如图5所示,所述负载检测模块30’包括负载正反接检测电路31’和负载电参数检测电路32’。其中,所述负载正反接检测电路31’包括电压输入端305’和电压输出端304’,其中,所述电压输入端305’与一电压源,例如电源管理电路33的输出端电连接,以接收所述电源管理电路33输出的稳定电压VCC,例如5V的电压。在其他实施方式中,所述电压源也可为所述稳压电源模块84(如图7所示),如此,所述电压输入端305’接收到的稳定电压可由所述稳压电源模块84来提供。
在所述第二实施方式中,所述负载正反接检测电路31’包括组合开关电路,所述组合开关电路包括第一开关单元Q11、第二开关单元Q10、第三开关单元Q9、第四开关单元Q7、第一分压模块312、以及第二分压模 块313。
其中,所述第一分压模块312包括依次串联电连接于所述电压输入端305’与所述接地端GND之间的至少两个电阻R35和R38,所述第一分压模块312包含的所述至少两个电阻R35和R38之间的连接点中包括第一分压节点P1。
所述第一开关单元Q11、所述第二开关单元Q10、第三开关单元Q9均至少包括第一连接端E、第二连接端C、和控制端B,其中,通过控制提供给各个开关单元的控制端B的电压值即可控制各个开关单元导通或截止。
在所述第二实施方式中,所述第二开关单元Q10和所述第一开关单元Q11依次串联电连接于所述电压输入端305’与所述接地端GND之间,例如,所述第二开关单元Q10的第一连接端E与所述电压输入端305’电连接,所述第二开关单元Q10的第二连接端C与所述第一开关单元Q11的第二连接端C电连接,所述第一开关单元Q11的第一连接端E与所述接地端GND电连接。所述第一分压节点P1分别与所述第一开关单元Q11的控制端B以及所述第一检测端301电连接。其中,所述第一分压节点P1与所述接地端GND之间还反接有与所述电阻R38并联的二极管D16,所述第二开关单元Q10与所述第一开关单元Q11之间还串联有电阻R32。
所述第二分压模块313包括依次串联电连接于所述电压输入端305’与所述接地端GND之间的至少两个电阻R29和R36,所述第二分压模块313包含的所述至少两个电阻R29和R36之间的连接点中包括第二分压节点P2。
所述第三开关单元Q9与所述电阻R29并联电连接于所述电压输入端305’与所述第二分压节点P2之间,例如,所述第三开关单元Q9的第一连接端E以及所述电阻R29的一端均电连接于所述电压输入端305’,所述第三开关单元Q9的第二连接端C以及所述电阻R29的另一端均电连接于所述第二分压节点P2。所述第二开关单元Q10的控制端B与所述第三开关单元Q9的控制端B电连接,并与所述第三开关单元Q9的控制端B共同电连接至所述第二开关单元Q10和所述第一开关单元Q11之间的电连接点F。其中,在所述电压输入端305’与所述第二分压节点P2之间还可设置有与所述第三开关单元Q9串联的电阻R31,即,所述第三开关单元Q9与所述电阻R31串联后,再与所述电阻R29并联。例如,所述第三开关单元Q9的第二连接端C通过所述电阻R31电连接于所述第二分压节点P2。
所述第四开关单元Q7至少包括第一连接端S、第二连接端D、和控制端G,其中,通过控制提供给所述第四开关单元Q7的控制端G的电压值即可控制所述第四开关单元Q7导通或截止。
在所述第二实施方式中,所述第四开关单元Q7电连接于所述电压输入端305’与所述电压输出端304’之间,例如,所述第四开关单元Q7的第一连接端S与所述电压输入端305’电连接,所述第四开关单元Q7的第二连接端D与所述电压输出端304’电连接。所述第四开关单元Q7的控制端G与所述第二分压节点P2电连接。其中,所述电压输出端304’与所述接地端GND之间还反接有二极管D14。所述电压输入端305’与所述电压输出端304’之间还可设置有与所述第四开关单元Q7串联的二极管D12和电阻R28。
在所述第二实施方式中,所述外部负载的电参数为所述外部负载的负载电压。所述负载电参数检测电路32’包括第三分压模块321,所述第三分压模块321包括依次串联于所述第一检测端301和所述接地端GND之间的至少两个电阻R30和R37,所述第三分压模块321包含的所述至少两个电阻R30和R37之间的连接点中包括第三分压节点P3。所述第三分压节点P3还分别电连接于所述负载正反接检测电路31’的电压输出端304’以及所述负载检测模块30’的所述检测信号输出端303。
在所述第二实施方式中,所述第三分压节点P3还通过所述电阻R34和电容C10电连接到所述接地端GND,所述电阻R34与所述电容C10构成RC滤波电路,以滤除所述第三分压节点P3输出至所述检测信号输出端303的信号中包含的噪声信号,使所述检测信号输出端303能够接收并输出稳定的检测信号VOUT_SN。在所述第二实施方式中,所述检测信号输出端303还通过二极管D13电连接至电压源VCC,其中,所述二极管D13的正极与所述检测信号输出端303电连接,所述二极管D13所在的电路构成所述控制器40的检测信号输入端口41的保护电路。
其中,在所述第二实施方式中,所述第一开关单元Q11采用高电平导通的晶体管,例如NMOS管或NPN三极管,所述第二开关单元Q10、所述第三开关单元Q9、所述第四开关单元Q7均采用低电平导通的晶体管,例如PMOS管或PNP三极管。具体地,在所述第二实施方式中,所述第一开关单元Q11采用NPN三极管,所述第二开关单元Q10和所述第三开关单元Q9均采用PNP三极管,所述第四开关单元Q7采用PMOS管。如图5所示,所述第一连接端E对应为三极管的发射极,所述第二连接端C对应为三极管的集电极,所述第一开关单元Q11通过其发射极E与所述接地端GND电连接,以及通过其集电极C和所述电阻R32与所述第二开关单元Q10的集电极C电连接。所述第二开关单元Q10的发射极E、所述第三开关单元Q9的发射极E、以及所述第四开关单元Q7的源极S均与所述电压输入端305’电连接。
下面对图5所示的负载检测模块30’的整个电路结构的工作原理进行介绍。
工作时,若所述负载连接端22空载,则所述第一分压模块312对所述电压输入端305’接收到的稳定电压VCC进行比例分压,在所述第一分压节点P1上产生的第一电压U P1使所述第一开关单元Q11导通。其中, 本申请对所述电阻R35和所述电阻R38的阻值不做限定,只要在所述负载连接端22空载时,所述第一分压节点P1上的第一电压U P1能够满足使所述第一开关单元Q11导通的条件即可,例如,所述电阻R35和所述电阻R38的阻值可均设为10KΩ。
所述第二开关单元Q10的控制端B和所述第三开关单元Q9的控制端B通过电阻R32和导通的所述第一开关单元Q11电连接到所述接地端GND,从而使所述第二开关单元Q10和所述第三开关单元Q9同时导通。所述第三开关单元Q9导通后,所述电阻R31与所述电阻R29并联之后再与电阻R36串联,导致所述电压输入端305’与所述第二分压节点P2之间的等效电阻变小,从而提高所述第二分压节点P2的电压,使所述第二分压节点P2与所述电压输入端305’的压差,即所述第四开关单元Q7的栅源电压VGS的绝对值小于所述第四开关单元Q7的开启电压VTP的绝对值,从而使所述第四开关单元Q7截止。其中,本申请对所述电阻R31、所述电阻R29、以及所述电阻R36的阻值不做限定,只要在所述负载连接端22空载时,所述第二分压节点P2与所述电压输入端305’的压差能够满足使所述第四开关单元Q7截止的条件,且在所述负载连接端22反接到所述负载连接端22时,所述第二分压节点P2与所述电压输入端305’的压差能够满足使所述第四开关单元Q7导通(下文将会介绍)的条件即可,例如,所述电阻R31阻值可设为1KΩ,所述电阻R29的阻值可设为100KΩ,所述电阻R36阻值可设为10KΩ。
由于所述第四开关单元Q7截止,所述电压输入端305’接收到的稳定电压VCC无法通过所述第四开关单元Q7来传输至所述电压输出端304’,从而使所述电压输出端304’处于无输出状态。即,所述负载正反接检测电路31’在检测到所述负载连接端22空载时不输出任何信号。
同时,在所述第一开关单元Q11导通后,由于所述第一开关单元Q11的基极B与发射极E之间的电压差为U Q11_BE≈0.7V,且所述第一开关单元Q11通过其发射极E与所述接地端GND电连接,因此,所述第一开关单元Q11的基极B和所述第一分压节点P1的电压U P1均被钳位在0.7V,即,所述第一开关单元Q11的基极B和所述第一分压节点P1的电压U P1保持为预设的电压值。所述第一分压节点P1的电压U P1通过所述电阻R33传输至所述第一检测端301,即,所述第一分压节点P1的电压U P1在由所述电阻R33、所述第一检测端301、所述第三分压模块321、所述接地端GND构成的电流回路中传输,如此,所述电阻R33、以及所述第三分压模块321包含的所述至少两个电阻R30和R37对所述第一分压节点P1的电压U P1进行比例分压,使所述第三分压节点P3的电压U P3为:U P3=0.7*R37/(R33+R30+R37)。本申请对所述电阻R33、R30和R37的阻值不做限定。可以理解的是,在所述智能连接装置101出厂之后,所述电阻R33、R30和R37的阻值固定不变,因此,所述第三分压节点P3的电压U P3的电压值在所述负载连接端22空载时能够保持为预设固定值。相应地,所述检测信号输出端303输出的所述检测信号VOUT_SN的电压值也能够保持为预设固定值,其中,所述检测信号输出端303此时输出的所述检测信号VOUT_SN即为上文所述的第一电压信号,所述预设固定值即为上文所述的第一预设值。
若所述外部负载正接到所述负载连接端22,即,所述外部负载的正极电连接到所述负载正连接端CAR+,所述外部负载的负极电连接到所述负载负连接端CAR-,则所述第一分压模块312包含的所述至少两个电阻R35和R38对所述电压输入端305’接收到的稳定电压VCC进行比例分压,在所述第一分压节点P1上的第一电压U P1使所述第一开关单元Q11导通。如上文所述,在所述第一开关单元Q11导通时,所述第二开关单元Q10和所述第三开关单元Q9导通,所述第四开关单元Q7截止,所述电压输出端304’处于无输出状态,所述第一分压节点的电压U P1被钳位在0.7V。即,所述负载正反接检测电路31’在检测到所述外部负载正接到所述负载连接端22时不输出任何信号。
由于所述外部负载的电压通常在6~7V以上,高于所述第一分压节点的电压U P1,因此,所述第一检测端301的电压高于所述第一分压节点的电压U P1,使所述第一分压节点的电压U P1无法通过所述第一检测端301传输到所述第三分压节点P3。这时,由于所述外部负载正接到所述负载连接端22,所述第一检测端301与所述外部负载的正极电连接而接收到输入电压,即所述外部负载的负载电压,所述第三分压模块321包含的所述至少两个电阻R30和R37对所述第一检测端301接收到的所述外部负载的负载电压U CAR+进行比例分压,使所述第三分压节点P3的电压为:U P3=U CAR+*R37/(R30+R37)。由于所述电阻R30和R37的阻值固定不变,因此,在所述外部负载正接到所述负载连接端22时,所述第三分压节点P3的电压U P3的电压值能够与所述负载电压U CAR+的电压值保持预设比例关系,即,所述第三分压节点P3的电压U P3的电压值能够线性跟随所述负载电压U CAR+的电压值的变化而变化,使所述检测信号输出端303输出的所述检测信号VOUT_SN的电压值与所述外部负载的负载电压U CAR+的电压值保持预设比例关系,其中,所述检测信号输出端303此时输出的所述检测信号VOUT_SN即为上文所述的第三电压信号。可以理解的是,所述第三电压信号的电压值与所述外部负载的负载电压值所成的预设比例关系由所述第三分压模块包含的所述至少两个电阻R30和R37的阻值来决定。
若所述外部负载反接到所述负载连接端22,即,所述外部负载的正极电连接到所述负载负连接端CAR-,所述外部负载的负极电连接到所述负载正连接端CAR+,为了描述方便,将所述第一开关单元Q11的发射极E与所述接地端GND之间的连接节点设为第一参考点A1,将所述第一检测端301设为第二参考点A2。其中,所述电压输入端305’、所述第一参考点A1、所述第二参考点A2、以及所述第一分压节 点P1之间的等效电路图请参阅图6。如图6所示,在所述负载连接端22空载时,如上文所述,所述第一分压节点P1的电压U P1被钳位在0.7V。如上文所述,所述第二检测端302与所述负载连接端22的负载负连接端CAR-电连接,而所述负载负连接端CAR-通过电流检测元件J1与所述接地端GND电连接,由于所述电流检测元件J1的电阻很小,几乎可以忽略,相当于所述负载负连接端CAR-与所述接地端GND短接,如此,当所述外部负载反接到所述负载连接端22时,所述第一参考点A1与所述外部负载的正极电连接,所述第二参考点A2与所述外部负载的负极电连接,相当于所述外部负载电连接于所述第一参考点A1和所述第二参考点A2之间,所述电阻R38与所述外部负载的内阻串联之后,再与所述电阻R33并联,从而使所述第二参考点A2与所述第一分压节点P1之间的等效电阻减小,这时,以所述第二参考点A2作为零电位的参考点可知,所述第一分压节点P1的电压会降低,即U P1<0.7V,如此,当所述负载连接端22从空载状态切换到与所述外部负载反接时,所述第一开关单元Q11的状态从导通状态切换为截止状态,同时,所述第二开关单元Q10和所述第三开关单元Q9由于各自的控制端B未接收到驱动电压信号而处于截止状态。此时,所述第二分压模块313包含的所述至少两个电阻R29和R36对所述电压输入端305’接收到的稳定电压VCC进行比例分压,使所述第二分压节点P2与所述电压输入端305’的压差,即所述第四开关单元Q7的栅源电压VGS的绝对值大于所述第四开关单元Q7的开启电压VTP的绝对值,从而使所述第四开关单元Q7导通。
此时,所述电压输入端305’接收到的稳定电压VCC通过导通的所述第四开关单元Q7传输至所述电压输出端304’,即,所述电压输入端305’接收到的稳定电压VCC在由导通的所述第四开关单元Q7、二极管D12、电阻R28、电压输出端304’、第三分压节点P3、电阻R37、接地端GND构成的电流回路中传输,如此,所述第三分压节点P3接收到所述电压输入端305’输入的稳定电压,所述电阻R28、R37对所述电压输入端305’输入的稳定电压VCC进行比例分压,使所述第三分压节点P3的电压为:U P3=U VCC*R37/(R28+R37)。此时,所述接入状态信号的电压值与所述第三分压节点P3的电压U P3的电压值相等。本申请对所述电阻R28的阻值不做限定。可以理解的是,在所述智能连接装置101出厂之后,所述电阻R28的阻值固定不变,因此,所述第三分压节点P3的电压U P3的电压值在所述外部负载反接到所述负载连接端22时能够保持为预设固定值。相应地,所述检测信号输出端303输出的所述检测信号VOUT_SN的电压值也能够保持为预设固定值,其中,所述检测信号输出端303此时输出的所述检测信号VOUT_SN即为上文所述的第二电压信号,所述预设固定值即为上文所述的第二预设值。可以理解的是,在其他实施方式中,在所述电压输入端305’与所述电压输出端304’之间也可以不设置所述电阻R28。
在所述第二实施方式中,如上文的分析可知,在所述负载检测模块30’中,可以根据需求来预先设置电阻元器件(例如电阻R28、R30、R33、R37)的阻值,以及所述电压输入端305’所连接的电压源提供的稳定电压VCC的电压值,使所述第一电压信号与所述第二电压信号分别具有不同的电压值,并且使所述第一电压信号的电压值与所述第二电压信号的电压值均在所述第三电压信号的电压值所属的第三电压值范围之外。由于所述第一电压信号、第二电压信号、第三电压信号的电压值并不相同,且所述第一电压信号和所述第二电压信号的电压值为预设值,因此,当所述负载检测模块30将所述检测信号VOUT_SN传输至所述控制器40时,所述控制器40即可根据所述检测信号VOUT_SN的电压值来确定所述外部负载的接入状态以及所述外部负载的负载电压。
上述第二实施方式提供的智能连接装置101通过由包括组合开关电路的负载正反接检测电路31’来检测外部负载的接入状态并输出相应的模拟量信号,以及通过由包括阻尼分压器件的负载电参数检测电路32’来检测所述外部负载的电压并输出相应的模拟量信号,再由所述负载电参数检测电路32’将两个模拟量信号组合成单个模拟量信号之后再传递给控制器40进行数据分析以及作出相应的控制操作,从而可有效地减少了控制器针对模拟量信号的采集需求,解决了外围控制电路的繁杂性,使电路控制变得更简单,进而降低控制系统的故障率,极大程度上提升了产品的安全及可靠性、以及节省了产品售后服务的人力和物力成本,同时还降低了产品的材料成本。
另外,所述组合开关电路通过使用简单的晶体管(例如二极管、三极管、场效应管)和被动器件(例如电阻、电容)来实现对外部负载的连接极性检测功能,从而可以利用晶体管导通和断开速度快的特性迅速检测出外部负载的接入状态,进而能够显著地提升相关保护功能的检测速度和有效性,并进一步提升了电源输出控制系统的安全性和可靠性。
在本实施方式中,所述控制器40可采用可编程控制器件,比如微控制器(Micro-controller Unit,MCU)、可编程逻辑阵列(Field-Programmable Gate Array,FPGA)、或数字信号处理器(Digital Signal Processor,DSP)等。所述控制器40作为所述智能连接装置101的逻辑运算和控制中心,主要负责数据采集和转换、逻辑运算、数据通信、执行驱动输出、控制等功能。可以理解的是,所述控制器40可包括多个输入输出端口,所述控制器40可通过所述多个输入输出端口与其他功能模块或外部设备进行通信以及信息交互,从而可实现所述智能连接装置101的连接、驱动和控制等功能。
图7为本申请的第三实施方式提供的一种智能连接装置102的功能模块示意图。如图7所示,在所述第 三实施方式中,所述智能连接装置102还可包括与所述控制器40电连接的通信接口模块81,所述控制器40可通过所述通信接口模块81与所外部设备(外部电源设备、外部负载)进行通信连接,以获取所述外部电源设备的电源模块的当前电池电压、最大电流输出能力、电池温度、工作状态、软件版本信息等,并根据获取的相关信息判断外部电源设备的电源模块的电参数是否满足给所述外部负载进行放电输出的条件,从而决定是否输出所述驱动信号RELAY_EN2来导通所述开关模块23。可以理解的是,所述控制器40也可以将自身的软件版本信息、所述智能连接装置102的正常和异常的工作状态、外部负载的电压和输出电流信号等发送给外部电源设备进行适配和相关保护。也就是说,所述智能连接装置102的控制器40能够通过所述通信接口模块81来与外部设备进行信息交互,并执行相应的控制。
可以理解的是,当由通信接口模块81提供的通信超时中断或数据交互信息出现异常信号时,或外部电源设备提供的电压不在程序设定的阈值范围内时,所述控制器40停止输出所述驱动信号RELAY_EN2,从而断开所述开关模块23,以切断所述电流输出回路20,同时输出相应的状态指示,以确保系统和外部设备的安全。
可选地,所述智能连接装置102还包括电源输入状态检测模块82,所述电源输入状态检测模块82与所述电源连接端21以及所述控制器40分别电连接,所述电源输入状态检测模块82用于检测所述电源模块的接入状态,并输出相应的检测信号至所述控制器40。其中,所述电源输入状态检测模块82可为一电压检测电路。
可选地,所述智能连接装置102还包括与所述控制器40电连接的状态指示模块83,所述状态指示模块83用于根据所述控制器40输出的控制信号对所述外部负载的接入状态、所述外部负载的电压、所述智能连接装置102的工作模式等进行相应的状态提示。在一种实施方式中,所述状态指示模块83可包括负载状态指示模块,所述控制器40可根据接收到的所述检测信号VOUT_SN来确定所述外部负载的接入状态以及所述外部负载的电参数,并输出控制信号来控制所述负载状态指示模块对所述外部负载的接入状态以及所述外部负载的电参数进行相应的提示。在另一种实施方式中,所述状态指示模块83还可包括工作模式指示模块,所述控制器40可根据所述智能连接装置102的工作模式来输出控制信号,以控制所述工作模式指示模块对所述智能连接装置102的工作模式进行相应的提示。其中,所述状态指示模块83可包括显示单元和/或报警单元。所述显示单元可包括至少一个发光二极管或至少一个液晶显示器件,所述显示单元通过发光或显示信息来进行相应的提示。所述报警单元可包括至少一个蜂鸣器或喇叭,所述报警单元通过发出报警声音来进行相应的提示。可以理解的是,通过所述状态指示模块83的状态提示,可帮助用户随时了解外部负载是否正确接入到所述负载连接端,以便在所述外部负载未正确连接到所述负载连接端时,及时通知用户停止连接,并调整所述外部负载的连接端,例如调整电瓶夹设备的夹设方式,以保证产品的安全应用,另外,还可以帮助用户随时了解外部负载的电压状态、启动电源设备自身的状态等。
可选地,所述智能连接装置102还包括与所述电源连接端21和/或所述负载连接端22电连接的稳压电源模块84。其中,如图7和图8所示,所述稳压电源模块84用于通过所述电源连接端21,例如电源正连接端BAT+来接收所述电源模块提供的输入电压,和/或,通过所述负载连接端22,例如负载正连接端CAR+来接收所述外部负载提供的输入电压,并对所述输入电压进行电压转换以输出稳定电压VCC,例如5V的直流电压,以给所述智能连接装置102的各个功能模块提供稳定的供电电压。例如,当外部启动电源设备通过所述电源连接端21正接所述智能连接装置102中时,所述稳压电源模块84即可获得所述输入电压而正常工作,并输出所述稳定电压VCC,以给所述智能连接装置102内部的各个功能模块供电,使各个功能模块通电而正常工作。其中,所述稳压电源模块84可采用DC-DC转换器或线性稳压器,例如低压差线性稳压器(low dropout regulator,LDO)。
可选地,请再次参阅图7,所述智能连接装置102还包括与所述控制器40电连接的按键控制模块85,所述按键控制模块85能够接收用户的按压操作而产生按键指令,以强制所述控制器40输出所述驱动信号RELAY_EN2,从而实现所述电源模块对外部负载进行的放电输出。可以理解的是,所述控制器40的工作模式可包括自动输出模式和强制输出模式。在一种实施方式中,所述控制器40在通电后默认进入自动输出模式。当所述控制器40处于自动输出模式时,所述控制器40在确定所述外部负载正接至所述负载连接端22,且所述外部负载的电压满足预设条件时才输出所述驱动信号RELAY_EN2。所述控制器40在接收到所述按键指令时进入强制输出模式,并响应所述按键指令而立刻输出所述驱动信号RELAY_EN2。在一种实施方式中,所述控制器40在响应所述按键指令并输出所述驱动信号RELAY_EN2之后,恢复自动输出模式。
可选地,所述智能连接装置102还包括与所述控制器40电连接的温度检测模块86,所述温度检测模块86用于检测所述开关模块23和/或内置的所述电源模块等的工作温度,并将检测到的温度值反馈给所述控制器40。所述控制器40还根据接收到的温度值分析所述开关模块23和/或内置的所述电源模块等的工作温度是否超出预设阈值,以及在分析出所述开关模块23和/或内置的所述电源模块等的工作温度超出预设阈值时,暂停输出所述驱动信号RELAY_EN2,从而断开所述开关模块23,以切断所述电流输出回路20,确保系统运行的安全性。
可选地,所述智能连接装置102还包括电连接于所述电源连接端21与所述负载连接端22之间的电流检测模块87,所述电流检测模块87还与所述控制器40电连接。所述电流检测模块87用于在所述开关模块23处 于导通状态期间实时采集所述电流输出回路20中的电流,即所述电源模块给所述外部负载输出的放电电流,并将检测到的电流采样信号反馈给所述控制器40。在本实施方式中,所述电流检测模块87电连接于所述电源负连接端BAT-与所述负载负连接端CAR-之间。在其他实施方式中,所述电流检测模块87也可以电连接于所述电源正连接端BAT+与所述负载正连接端BAT+之间。所述控制器40还根据接收到的电流采样信号分析所述电源模块的放电输出是否正常,以及在分析出所述电源模块的放电输出异常时,暂停输出所述驱动信号RELAY_EN2,从而断开所述开关模块23,以切断所述电流输出回路20,确保系统运行的安全性。
可选地,所述智能连接装置102还包括过流和短路保护模块88,所述过流和短路保护模块88与所述电流检测模块87以及所述控制器40分别电连接,所述过流和短路保护模块88用于监测所述电流检测模块87输出的电流采样信号是否超出超过预设定的电流阈值,以及在监测到所述电流采样信号时输出中断触发信号给所述控制器40,使所述控制器40立即暂停输出所述驱动信号,从而可实现快速断开所述开关模块23,以切断所述电流输出回路20,确保系统运行的安全性。在其他实施方式中,所述过流和短路保护模块88的输出端也可以与所述开关模块23直接相连,从而在监测到所述电流采样信号时直接断开所述开关模块23。
本领域技术人员可以理解,前面所述的示意图1、图3、图7仅仅是本申请用于实现检测外部负载的接入状态和外部负载的电参数、以及所述电源模块对外部负载进行放电输出的功能的智能连接装置100、101、102的示例,并不构成对所述智能连接装置的限定,所述智能连接装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件。
请参阅图9-图10,本申请还提供一种启动电源设备200。如图9所示,所述启动电源设备200包括启动电源壳体201、储能组件202、以及智能连接装置103。其中,所述智能连接装置103可采用上述任意一实施方式提供的智能连接装置100-102的结构。所述储能组件202以及所述智能连接装置103的至少部分结构,例如电源连接端21、负载连接端22、开关模块23、负载检测模块30、控制器40、通信接口模块81、电源输入状态检测模块82、稳压电源模块84、温度检测模块86、电流检测模块87、过流和短路保护模块88等,可以设置于所述壳体201内,所述智能连接装置103的至少部分结构,例如状态指示模块83、按键控制模块85等,可以设置于所述壳体201上。
在本实施方式中,所述启动电源设备200还包括设于所述壳体201上的充电接口204,所述充电接口204用于与外部电源,例如市电电连接,以接收所述外部电源的供电而给所述储能组件202充电。其中,所述充电接口204的类型包括但不限于DC接口、USB接口、Micro USB口、Mini USB接口、Type-A接口、Type-C接口。
所述智能连接装置103的电源连接端21与所述启动电源设备200的储能组件202电连接。
在本实施方式中,如图9-图10所示,所述启动电源设备200还包括设于所述壳体201上的连接端口203,所述连接端口203与所述智能连接装置103的负载连接端22电连接,所述连接端口203用于通过接入外部连接件400来与所述外部负载电连接,即,所述连接件400一端与所述连接端口203可拆卸连接,另一端与所述外部负载可拆卸连接。其中,所述启动电源设备200的外观结构可采用图10所示的启动电源设备200的结构或其他结构,本申请中不对所述启动电源设备200的外观结构做具体限定。
在本实施方式中,所述连接件400为线夹,包括第一线夹401、第二线夹402、线缆403、以及连接端子404,所述线缆403用于将所述第一线夹401和第二线夹402分别连接至所述连接端子404。所述连接端子404与所述连接端口203可拆卸电连接。其中,所述第一线夹401用于夹持所述外部负载的正极,所述第二线夹402用于夹持所述外部负载的负极,所述外部负载的正极和负极通过所述第一线夹401和所述第二线夹402、所述连接端子404、所述连接端口203与所述负载连接端22的负载正连接端CAR+和负载负连接端CAR-一一对应电连接。
可选地,在另一种实施方式中,如图11-图12所示,启动电源设备200’还包括连接件205,所述连接件205一端与所述智能连接装置103的负载连接端22电连接,另一端用于与所述外部负载电连接。也就是说,所述连接件205的一端内置于所述启动电源设备200’中。在所述另一种实施方式中,所述连接件205为线夹。其中,所述连接件205除了不包含所述连接端子404之外,其他结构与所述连接件400的结构相似,在此不进行赘述。
本申请提供的所述启动电源设备200和200’通过使用上述的智能连接装置103,可利用负载检测模块30或30’来同时检测外部负载的接入状态以及外部负载的电参数,并输出单个模拟量信号来同时指示外部负载的接入状态以及外部负载的电参数,使控制器40只需根据该单个模拟量信号进行数据分析以及作出相应的控制操作,可有效地减少所述控制器40针对模拟量信号的采集需求,解决了外围控制电路的繁杂性,使电路控制变得更简单,从而可降低控制系统的故障率,极大程度上提升了产品的安全及可靠性,同时还降低了产品的材料成本。
请参阅图13-图14,本申请还提供一种电瓶夹设备900。所述电瓶夹设备900包括壳体901、电源输入接口902、连接件903以及智能连接装置104。其中,所述智能连接装置104可采用上述任意一实施方式提供的智能连接装置100-102的结构。所述电源输入接口902设于所述壳体901上,所述电源输入接口902用于与外 部电源设备500,例如应急启动电源电连接,其中,所述外部电源设备500包括储能组件(图未示)。在本实施方式中,所述电源输入接口902为连接端子,所述外部电源设备500还包括与所述电瓶夹设备900的电源输入接口902相适配的连接端口501,所述电瓶夹设备900通过所述电源输入接口902与所述连接端口501的可拆卸电连接来实现与所述外部电源设备500的电连接。
所述智能连接装置104的至少部分结构,例如电源连接端21、负载连接端22、开关模块23、负载检测模块30、控制器40、通信接口模块81、电源输入状态检测模块82、稳压电源模块84、温度检测模块86、电流检测模块87、过流和短路保护模块88等,可以设于所述壳体901内,所述智能连接装置104的至少部分结构,例如状态指示模块83、按键控制模块85等,可以设置于所述壳体901上。
所述智能连接装置104的电源连接端21与所述电源输入接口902电连接,并通过所述电源输入接口902与所述外部电源设备500的储能组件电连接。
所述连接件903一端与所述智能连接装置104的负载连接端22电连接,另一端用于与外部负载电连接。在本实施方式中,所述连接件903为线夹。其中,所述连接件903除了不包含所述连接端子404之外,其他结构与所述连接件400的结构相似,在此不进行赘述。
其中,所述电瓶夹设备900的外观结构可采用图14所示的电瓶夹设备900的结构或其他结构,本申请中不对所述电瓶夹设备900的外观结构做具体限定。
本申请提供的所述电瓶夹设备900通过使用上述的智能连接装置104,可利用负载检测模块30或30’来同时检测外部负载的接入状态以及外部负载的电参数,并输出单个模拟量信号来同时指示外部负载的接入状态以及外部负载的电参数,使控制器40只需根据该单个模拟量信号进行数据分析以及作出相应的控制操作,可有效地减少所述控制器40针对模拟量信号的采集需求,解决了外围控制电路的繁杂性,使电路控制变得更简单,从而可降低控制系统的故障率,极大程度上提升了产品的安全及可靠性,同时还降低了产品的材料成本。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (27)

  1. 一种智能连接装置,包括:
    电源连接端,用于与电源模块电连接;
    负载连接端,用于与外部负载电连接;
    开关模块,电连接于所述电源连接端与所述负载连接端之间;
    负载检测模块,与所述负载连接端电连接,所述负载检测模块包括检测信号输出端,所述负载检测模块用于检测所述外部负载的状态,并根据检测结果在所述检测信号输出端输出相应的检测信号,所述检测信号用于对所述开关模块进行控制。
  2. 如权利要求1所述的智能连接装置,其特征在于,所述外部负载的状态包括所述外部负载的接入状态以及所述外部负载的电参数。
  3. 如权利要求1所述的智能连接装置,其特征在于,还包括:控制器,用于接收所述检测信号输出端输出的检测信号,并根据所述检测信号对所述开关模块进行控制,从而控制所述电源模块对所述外部负载的放电输出情况。
  4. 如权利要求2所述的智能连接装置,其特征在于,所述检测信号包括一模拟信号,所述模拟信号的值能够确定所述外部负载的接入状态以及处于正接状态下的所述外部负载的电参数。
  5. 如权利要求2或4所述的智能连接装置,其特征在于,所述外部负载的电参数包括所述外部负载的电压、电流或功率中的至少一种。
  6. 如权利要求1或2所述的智能连接装置,其特征在于,所述负载检测模块在检测到所述负载连接端空载时输出的所述检测信号包括第一电压信号,其中,所述第一电压信号的电压值为第一预设值;以及
    所述第一电压信号用于控制所述开关模块断开所述电源连接端与所述负载连接端之间的电连接。
  7. 如权利要求6所述的智能连接装置,其特征在于,所述负载检测模块在检测到所述外部负载反接到所述负载连接端时输出的所述检测信号包括第二电压信号,其中,所述第二电压信号的电压值为第二预设值,且所述第一预设值与所述第二预设值不同;以及
    所述第二电压信号用于控制所述开关模块断开所述电源连接端与所述负载连接端之间的电连接。
  8. 如权利要求7所述的智能连接装置,其特征在于,所述负载检测模块在检测到所述外部负载正接到所述负载连接端时输出的所述检测信号包括第三电压信号,其中,所述第三电压信号的电压值与所述外部负载的负载电压值成预设比例关系;以及
    所述第三电压信号的电压值用于确定所述外部负载的负载电压,并且,如果确定所述外部负载的负载电压满足预设条件,所述第三电压信号还用于控制所述开关模块导通所述电源连接端与所述负载连接端之间的电连接。
  9. 如权利要求8所述的智能连接装置,其特征在于,所述预设条件包括所述外部负载的负载电压值在预设时间内下降的幅度超过预设幅度阈值;或者
    所述预设条件包括所述外部负载的负载电压值小于第一预设电压阈值,且所述外部负载的负载电压值在预设时间内下降的幅度超过预设幅度阈值。
  10. 如权利要求1或2所述的智能连接装置,其特征在于,所述负载检测模块包括:
    负载正反接检测电路,用于检测所述外部负载的接入状态,并根据所述外部负载的接入状态输出相应的接入状态信号;以及
    负载电参数检测电路,用于接收所述接入状态信号以及检测所述外部负载的电参数,并至少根据所述接入状态信号以及所述电参数输出相应的所述检测信号。
  11. 如权利要求10所述的智能连接装置,其特征在于,所述负载正反接检测电路与所述负载连接端电连接,所述负载电参数检测电路分别与所述负载正反接检测电路以及所述负载连接端电连接。
  12. 如权利要求10所述的智能连接装置,其特征在于,所述负载连接端包括负载正连接端和负载负连接端,所述负载正连接端和所述负载负连接端用于与所述外部负载的正极和负极一一对应电连接;
    所述负载检测模块还包括与所述负载正连接端电连接的第一检测端和与所述负载负连接端电连接的第二检测端;所述负载检测模块通过所述第一检测端和所述第二检测端检测所述外部负载的接入状态以及电参数。
  13. 如权利要求12所述的智能连接装置,其特征在于,所述负载正反接检测电路包括:
    电压输入端,与一电压源电连接;
    传感器件,包括第一检测引脚、第二检测引脚、电压输入引脚、以及输出引脚,其中,所述传感器件的第一检测引脚电连接于所述第一检测端,所述传感器件的第二检测引脚电连接于所述第二检测端,所述传感器件的电压输入引脚电连接于所述电压输入端;
    电压输出端;以及
    开关电路,电连接于所述电压输出端与所述传感器件的输出引脚之间。
  14. 如权利要求13所述的智能连接装置,其特征在于,所述传感器件通过所述第一检测引脚以及第二检测引脚来检测所述外部负载的接入状态;
    如果检测到所述负载连接端空载或所述外部负载正接到所述负载连接端,所述传感器件断开所述传感器件的所述电压输入引脚和所述输出引脚之间的电连接,使所述输出引脚处于无输出状态;所述开关电路在未接收到所述传感器件的输出引脚输出的电压信号时处于断开状态,使所述电压输出端处于无输出状态;
    如果检测到所述外部负载反接到所述负载连接端,所述传感器件导通所述传感器件的所述电压输入引脚和所述输出引脚之间的电连接,使所述输出引脚输出所述电压源提供的电压信号;所述开关电路在接收到所述传感器件的输出引脚输出的电压信号时处于导通状态,使所述电压输出端输出第二预设电压阈值。
  15. 如权利要求14所述的智能连接装置,其特征在于,所述传感器件包括光电隔离器件。
  16. 如权利要求14所述的智能连接装置,其特征在于,所述开关电路包括三极管和稳压二极管,所述三极管的基极通过所述稳压二极管接地,所述三极管的基极还通过电阻与所述三极管的集电极电连接;所述三极管的集电极与所述传感器件的输出引脚电连接;所述三极管的发射极与所述负载正反接检测电路的电压输出端电连接。
  17. 如权利要求16所述的智能连接装置,其特征在于,所述三极管在其基极未接收到所述传感器件输出的电压信号时截止,使所述电压输出端处于无输出状态;
    所述三极管还在其基极接收到所述传感器件输出的电压信号时饱和导通,所述三极管的基极的电压值在所述稳压二极管的稳压作用下被钳位在固定电压值,使所述三极管的发射极的电压值被钳位在所述第二预设电压阈值,从而在所述电压输出端输出所述第二预设电压阈值。
  18. 如权利要求14所述的智能连接装置,其特征在于,所述负载电参数检测电路包括依次串联于所述第一检测端和接地端之间的第一分压电阻和第二分压电阻,其中,所述第一分压电阻和所述第二分压电阻之间的连接点包括电压检测点,所述电压检测点还分别与所述负载正反接检测电路的电压输出端以及所述负载检测模块的所述检测信号输出端电连接。
  19. 如权利要求18所述的智能连接装置,其特征在于,所述检测信号包括第一电压信号、第二电压信号和第三电压信号;
    在所述负载连接端空载时,所述电压检测点电连接到接地端而处于低电平状态,使所述检测信号输出端输出所述第一电压信号;
    在所述外部负载反接到所述负载连接端时,所述电压检测点接收到所述电压输出端输出的所述第二预设电压阈值,使所述电压检测点的电压值能够保持为预设固定值,从而使所述检测信号输出端输出所述第二电压信号;
    在所述外部负载正接到所述负载连接端时,所述第一检测端与所述外部负载的正极电连接而接收到所述外部负载的负载电压,所述第一分压电阻和所述第二分压电阻对所述外部负载的负载电压进行比例分压,使所述电压检测点的电压值能够与所述负载电压的电压值保持预设比例关系,从而使所述检测信号输出端输出所述第三电压信号。
  20. 如权利要求12所述的智能连接装置,其特征在于,所述负载正反接检测电路包括:
    电压输入端,用于接收一电压源提供的稳定电压;
    电压输出端;
    第一开关单元、第二开关单元、第三开关单元、和第四开关单元;
    第一分压模块,包括串联电连接于所述电压输入端与接地端之间的至少两个电阻,所述第一分压模块包含的所述至少两个电阻之间的连接点中包括第一分压节点;其中,所述第二开关单元和所述第一开关单元依次串联电连接于所述电压输入端与所述接地端之间,所述第一分压节点分别电连接于所述第一开关单元的控制端和所述第一检测端;所述负载负连接端还与所述接地端电连接;以及
    第二分压模块,包括串联电连接于所述电压输入端与所述接地端之间的至少两个电阻,所述第二分压模块包含的所述至少两个电阻之间的连接点中包括第二分压节点;其中,所述第三开关单元电连接于所述电压输入端与所述第二分压节点之间;所述第二开关单元的控制端与所述第三开关单元的控制端电连接,并与所述第三开关单元的控制端共同电连接至所述第二开关单元和所述第一开关单元之间的电连接点;所述第四开关单元电连接于所述电压输入端与所述电压输出端之间,所述第四开关单元的控制端与所述第二分压节点电连接。
  21. 如权利要求20所述的智能连接装置,其特征在于,所述第一开关单元采用高电平导通的晶体管,所述第二开关单元、所述第三开关单元、所述第四开关单元均采用低电平导通的晶体管;所述第一开关单元通过其发射极与所述接地端电连接;
    在所述负载连接端空载时或所述外部负载正接到所述负载连接端时,所述第一分压模块对所述电压输入端接收到的稳定电压进行比例分压,使所述第一分压节点的电压保持为预设的电压值;所述第一分压节点上产生的电压使所述第一开关单元导通,从而使所述第二开关单元和所述第三开关单元同时导通、所述第四开关单元截止,进而使所述电压输出端处于无输出状态;
    在所述外部负载反接到所述负载连接端时,所述第一开关单元的状态从导通状态切换为截止状态,从而使所述第二开关单元和所述第三开关单元截止、所述第四开关单元导通,所述电压输入端接收到的所述稳定电压通过导通的所述第四开关单元传输至所述电压输出端。
  22. 如权利要求21所述的智能连接装置,其特征在于,所述负载电参数检测电路包括第三分压模块,所述第三分压模块包括串联于所述第一检测端和所述接地端之间的至少两个电阻,所述第三分压模块包含的电阻之间的连接点中包括第三分压节点;
    所述第三分压节点还分别电连接于所述负载正反接检测电路的电压输出端和所述负载检测模块的所述检测信号输出端。
  23. 如权利要求22所述的智能连接装置,其特征在于,所述检测信号包括第一电压信号、第二电压信号和第三电压信号;
    在所述负载连接端空载时,所述第一分压节点的电压传输至所述第一检测端,所述第三分压模块对所述第一分压节点的电压进行比例分压,使所述第三分压节点的电压值保持为预设固定值,从而使所述检测信号输出端输出所述第一电压信号;
    在所述外部负载正接到所述负载连接端时,所述第一检测端与所述外部负载的正极电连接而接收到所述外部负载的负载电压,所述第三分压模块对所述第一检测端接收到的所述外部负载的负载电压进行比例分压,使所述第三分压节点的电压值能够与所述负载电压的电压值保持预设比例关系,从而使所述检测信号输出端输出所述第三电压信号;
    在所述外部负载反接到所述负载连接端时,所述第三分压节点接收到所述电压输入端输入的稳定电压,使所述第三分压节点的电压值能够保持为预设固定值,从而使所述检测信号输出端输出所述第二电压信号。
  24. 如权利要求3所述的智能连接装置,其特征在于,所述智能连接装置还包括与所述控制器电连接的状态指示模块,所述状态指示模块用于根据所述控制器输出的控制信号对所述外部负载的接入状态、所述外部负载的电参数、和所述智能连接装置的工作模式中的至少一种进行相应的状态提示。
  25. 一种启动电源设备,包括:
    启动电源壳体;
    储能组件;以及
    如权利要求1-24任意一项所述的智能连接装置,所述储能组件以及所述智能连接装置的至少部分结构设置于所述壳体内,所述智能连接装置的电源连接端与所述储能组件电连接。
  26. 如权利要求25所述的启动电源设备,其特征在于,所述启动电源设备还包括设于所述壳体上的连接端口,所述连接端口与所述智能连接装置的负载连接端电连接,所述连接端口用于通过接入外部连接件与外部负载电连接;和/或
    所述启动电源设备还包括连接件,所述连接件的一端与所述智能连接装置的负载连接端电连接,所述连接件的另一端用于与所述外部负载电连接。
  27. 一种电瓶夹设备,包括:
    电瓶夹壳体;
    电源输入接口,设于所述壳体上,所述电源输入接口用于与外部电源设备电连接,其中,所述外部电源设备包括储能组件;
    如权利要求1-23任意一项所述的智能连接装置,所述智能连接装置的至少部分结构设于所述壳体内,所述智能连接装置的电源连接端与所述电源输入接口电连接,并通过所述电源输入接口与所述外部电源设备的储能组件电连接;以及
    连接件,所述连接件的一端与所述智能连接装置的负载连接端电连接,所述连接件的另一端用于与外部负载电连接。
PCT/CN2021/111027 2021-08-05 2021-08-05 智能连接装置、启动电源设备以及电瓶夹设备 WO2023010464A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180101209.5A CN117882259A (zh) 2021-08-05 2021-08-05 智能连接装置、启动电源设备以及电瓶夹设备
PCT/CN2021/111027 WO2023010464A1 (zh) 2021-08-05 2021-08-05 智能连接装置、启动电源设备以及电瓶夹设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111027 WO2023010464A1 (zh) 2021-08-05 2021-08-05 智能连接装置、启动电源设备以及电瓶夹设备

Publications (1)

Publication Number Publication Date
WO2023010464A1 true WO2023010464A1 (zh) 2023-02-09

Family

ID=85154160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111027 WO2023010464A1 (zh) 2021-08-05 2021-08-05 智能连接装置、启动电源设备以及电瓶夹设备

Country Status (2)

Country Link
CN (1) CN117882259A (zh)
WO (1) WO2023010464A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117270429A (zh) * 2023-09-01 2023-12-22 北京城建智控科技股份有限公司 一种集线路检测及动作反馈功能于一体的输出控制电路

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8004242B1 (en) * 2009-03-13 2011-08-23 PH Ingenuities, LLC System and method for managing distribution of vehicle power in a multiple battery system
CN106505690A (zh) * 2016-12-26 2017-03-15 苏州绿恺动力电子科技有限公司 一种汽车应急启动电源安全管理系统
CN108448344A (zh) * 2018-02-28 2018-08-24 深圳市恒浩伟业科技有限公司 用于连接汽车应急启动电源和汽车电瓶的智能搭火线
CN112366788A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366789A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366791A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366790A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366787A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN113474965A (zh) * 2020-11-19 2021-10-01 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8004242B1 (en) * 2009-03-13 2011-08-23 PH Ingenuities, LLC System and method for managing distribution of vehicle power in a multiple battery system
CN106505690A (zh) * 2016-12-26 2017-03-15 苏州绿恺动力电子科技有限公司 一种汽车应急启动电源安全管理系统
CN108448344A (zh) * 2018-02-28 2018-08-24 深圳市恒浩伟业科技有限公司 用于连接汽车应急启动电源和汽车电瓶的智能搭火线
CN112366788A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366789A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366791A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366790A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN112366787A (zh) * 2020-11-19 2021-02-12 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN113474965A (zh) * 2020-11-19 2021-10-01 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117270429A (zh) * 2023-09-01 2023-12-22 北京城建智控科技股份有限公司 一种集线路检测及动作反馈功能于一体的输出控制电路

Also Published As

Publication number Publication date
CN117882259A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
US9595847B2 (en) Uninterrupted lithium battery power supply system
CN112366791A (zh) 智能连接装置、启动电源以及电瓶夹
CN112366788A (zh) 智能连接装置、启动电源以及电瓶夹
CN112366787A (zh) 智能连接装置、启动电源以及电瓶夹
JP7237380B2 (ja) スマート接続装置、始動電源及びバッテリークランプ
CN112366789A (zh) 智能连接装置、启动电源以及电瓶夹
CN112366790A (zh) 智能连接装置、启动电源以及电瓶夹
EP4002639A1 (en) Smart connection device, start-up power supply, and battery clamp
CN102570558B (zh) 一种镍氢镍镉电池的智能充电器及其控制方法
US20230291200A1 (en) Smart connection device, jump starter and battery clamp
WO2023010464A1 (zh) 智能连接装置、启动电源设备以及电瓶夹设备
WO2022105159A1 (zh) 智能连接装置、启动电源以及电瓶夹
CN212162913U (zh) 交互式直流电源切换装置、不间断直流稳压电源及车辆
CN215528626U (zh) 智能连接装置、启动电源以及电瓶夹
CN215528625U (zh) 智能连接装置、启动电源以及电瓶夹
CN215528627U (zh) 智能连接装置、启动电源以及电瓶夹
CN215528628U (zh) 智能连接装置、启动电源以及电瓶夹
CN215681825U (zh) 智能连接装置、启动电源以及电瓶夹
WO2022105411A1 (zh) 智能连接装置、启动电源设备以及电瓶夹设备
CN217902302U (zh) 一种监控主机
WO2023184067A1 (zh) 供电电路、电池管理系统、电池包和电子装置
CN211617439U (zh) 汽车应急电源的保护电路
CN214751373U (zh) 一种具备故障报警功能的智能备份电源
CN106849217A (zh) 无人机电池管理系统及方法
CN210777124U (zh) 一种带有内部升压功能的遥控器芯片电路及遥控器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021952350

Country of ref document: EP

Effective date: 20240305