WO2023184067A1 - 供电电路、电池管理系统、电池包和电子装置 - Google Patents
供电电路、电池管理系统、电池包和电子装置 Download PDFInfo
- Publication number
- WO2023184067A1 WO2023184067A1 PCT/CN2022/083284 CN2022083284W WO2023184067A1 WO 2023184067 A1 WO2023184067 A1 WO 2023184067A1 CN 2022083284 W CN2022083284 W CN 2022083284W WO 2023184067 A1 WO2023184067 A1 WO 2023184067A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- voltage
- switch
- resistor
- controller
- Prior art date
Links
- 230000004044 response Effects 0.000 claims abstract description 20
- 230000009467 reduction Effects 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 12
- 230000005669 field effect Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
Definitions
- Embodiments of the present application relate to the field of electrical technology, and in particular, to a power supply circuit, a battery management system, a battery pack and an electronic device.
- the battery management system can efficiently manage the battery module through components such as the controller.
- the battery management system also includes a power supply circuit that supplies power to the controller and other components.
- the power supply circuit obtains voltage from the battery module and processes the voltage. Get the supply voltage of components such as controllers.
- the existing power supply circuit uses a relatively high-cost direct current to direct current (DC-DC) step-down chip.
- DC-DC step-down chip reduces the voltage of the battery module to control the voltage.
- the DC-DC step-down chip cannot meet the demand for low power consumption.
- embodiments of the present application provide a power supply circuit, a battery management system, a battery pack and an electronic device, so as to at least improve the above problems.
- a power supply circuit includes: a controller, a first voltage reduction module, a second voltage reduction module and a third voltage reduction module.
- the first step-down module is electrically connected to the controller, and is configured to be electrically connected to the positive electrode of the external battery module, step down the voltage output by the external battery module, and output the voltage to the second step-down module.
- the second buck module is electrically connected to the first buck module and the controller respectively, and is configured to step down the voltage input to the second buck module to power the controller;
- Three buck modules are electrically connected to the controller and the second buck module respectively, and are configured to electrically connect the positive electrode of the external battery module and step down the voltage output by the external battery module. , and output the voltage to the second buck module.
- the first voltage reducing module in response to the controller outputting a first control signal, the first voltage reducing module is turned off and the third voltage reducing module is turned on; or in response to the controller outputting a second control signal, the first voltage reducing module is turned on.
- the module is turned on, and the third buck module is turned off.
- the power supply circuit further includes a control module, and the control module is electrically connected to the controller and the third voltage reduction module respectively.
- the control module receives the first control signal to turn on the third voltage reducing module, or the control module receives the second control signal to turn on the third voltage reducing module.
- the first voltage-reducing module includes a triode and a first switch.
- the base of the triode is electrically connected to the controller, the emitter of the triode is grounded, the collector of the triode is electrically connected to the control terminal of the first switch, and the first terminal of the first switch is connected to the ground.
- the external battery module is electrically connected.
- the first step-down module is turned off in response to the controller outputting the first control signal, and further includes: in response to the base of the transistor receiving the first control signal, the transistor is turned off so that the transistor is turned off.
- the first switch is turned off.
- the first buck module is turned on, further comprising: in response to the base of the triode receiving the second control signal, the triode is turned on, to The first switch is turned on.
- the first voltage reducing module further includes a first resistor, a second resistor, a third resistor and a fourth resistor.
- the first resistor is connected between the base of the triode and the controller.
- One end of the second resistor is connected between the first resistor and the base of the triode, and the other end of the second resistor is connected to the emitter of the triode.
- the third resistor is connected between the control terminal of the first switch and the collector of the triode.
- the fourth resistor is connected between the control terminal and the first terminal of the first switch.
- the power supply circuit further includes a DC-DC chip, and the DC-DC chip is connected between the second end of the first switch and the output end of the first buck module. between.
- control module includes a second switch.
- the control end of the second switch is electrically connected to the controller, the first end of the second switch is grounded, and the second end of the second switch is electrically connected to the third buck module.
- control module further includes a fifth resistor and a sixth resistor.
- the fifth resistor is connected between the controller and the control terminal of the second switch, and the sixth resistor is connected between the control terminal and the first terminal of the second switch.
- control module further includes a seventh resistor.
- the seventh resistor is connected between the second end of the second switch and the third buck module.
- the third voltage reduction module includes a third switch.
- the control end of the third switch is electrically connected to the second switch.
- the first end of the third switch is electrically connected to the second buck module, and the second end of the third switch is electrically connected to the positive electrode of the external battery module.
- the second switch In response to the control terminal of the second switch receiving the first signal, the second switch is turned off to turn on the third switch.
- the second switch In response to the control terminal of the second switch receiving the second signal, the second switch is turned on to turn off the third switch.
- the third voltage reducing module further includes an eighth resistor and a ninth resistor.
- the eighth resistor is connected between the input terminal of the third voltage-reducing module and the first terminal of the third switch.
- One end of the ninth resistor is connected between the seventh resistor and the input end of the third voltage-reducing module.
- the other end of the ninth resistor is connected to the control end of the third switch.
- the third voltage-reducing module further includes a Zener diode.
- the cathode of the Zener diode is connected to the control terminal of the third switch, and the anode of the Zener diode is grounded.
- a battery management system includes a controller, other functional modules and the power supply circuit according to the first aspect.
- a battery pack includes a battery module and a battery management system according to the second aspect.
- an electronic device includes the battery pack according to the third aspect.
- the first buck module in response to the controller outputting the first control signal, the first buck module is turned off and the third buck module is turned on, realizing that the third buck module and the second buck module are sequentially connected.
- the output voltage of the battery module is stepped down.
- the first step-down module in response to the controller outputting the second control signal, the first step-down module is turned on and the third step-down module is turned off, thereby realizing the connection between the first step-down module and the second step-down module. voltage module to step down the output voltage of the battery module in turn.
- the first voltage-reducing module and the second voltage-reducing module of this application enable the battery pack to maintain a higher working efficiency when it is in the wake-up state or during normal operation.
- the three buck modules and the second buck module can improve the power consumption of the battery pack in the non-wake state or sleep mode, so that the power consumption of the battery pack in the non-wake state or sleep mode is lower, and the first buck module, the third buck module
- the second buck module and the third buck module are universal devices, which reduces costs.
- Figure 1A is a schematic diagram of an example battery pack.
- FIG. 1B is a schematic diagram of the battery management system of FIG. 1A.
- Figure 2 is a schematic diagram of a power supply circuit according to an embodiment of the present application.
- FIG. 3 is a schematic diagram of a power supply circuit according to another embodiment of the present application.
- FIG. 4A is a schematic diagram of a power supply circuit according to another embodiment of the present application.
- FIG. 4B is a schematic diagram of a first buck module of an example of the embodiment of FIG. 4A.
- FIG. 4C is a schematic diagram of a third buck module of an example of the embodiment of FIG. 4A.
- lithium-ion batteries such as lithium iron phosphate batteries, lithium manganate batteries, ternary polymer lithium batteries, lead-acid batteries, sodium-ion batteries, etc. can be used as energy storage batteries.
- Energy storage batteries have been widely used in various scenarios, and can be used as power batteries in electrical equipment involving unmanned aerial vehicles, power tools, electric bicycles, electric motorcycles, energy storage systems, etc.
- the Battery Management System can monitor the battery packs in different application scenarios, manage the charging and discharging of the battery packs, and improve the efficiency of the battery. The efficiency and service life of the bag.
- the battery management system can perform control management such as battery status monitoring, battery status analysis, battery safety protection, energy control management, and battery information management.
- the battery management system can be connected to the battery module and installed in the battery pack to manage the charging and discharging of the battery module.
- the battery module includes multiple battery cells, and the battery cells can be connected in series. , parallel or mixed connection.
- FIG. 1A is a schematic diagram of an example battery pack.
- the battery pack 100 of FIG. 1A includes a battery module 110 and a battery management system 120.
- the battery management system 120 includes a power supply circuit 130, a wake-up circuit 140, a controller 150 and other functional circuits 160.
- the power supply circuit 130 is electrically connected to the controller 150 and other functional circuits 160 and is used to power the controller 150 and other functional circuits 160 .
- the voltage required by the controller 150 is less than the voltage provided by the battery module 110.
- the power supply circuit 130 performs a voltage reduction process on the voltage output by the B+ side of the battery module 110, and based on the voltage after the voltage reduction process, The controller 150 provides power.
- the wake-up circuit 140 is electrically connected to the controller 150 and is used to send a control signal to the controller 150 to cause the battery management system 120 to enter a wake-up state or a non-wake-up state.
- FIG. 1B is a schematic diagram of the battery management system of FIG. 1A.
- the power supply circuit 130 includes a low dropout regulator (LDO) chip 131.
- the LDO chip 131 is electrically connected between the B+ side of the battery module 110 and the controller 150 for The voltage output from the B+ side is reduced, and the reduced supply voltage is input to the controller 150 and other functional circuits 160 .
- the LDO chip 131 can be replaced by a DC-DC integrated chip.
- other functional circuits 160 include but are not limited to communication circuits, peripheral circuits (eg, digital input and output circuits), etc., and the other functional circuits 160 and the controller 150 are respectively different modules in the battery management system.
- the controller can be implemented as a microprocessing unit (Microcontroller Unit, MCU) for receiving the control signal of the wake-up circuit 140 to make the battery management system 120 enter the wake-up state or the non-wake-up state.
- MCU microprocessing unit
- the wake-up state indicates that the battery management system 120 is in a working state
- the non-wake-up state indicates the low power consumption state of the battery management system 120.
- the non-wake-up state includes but is not limited to the sleep state, standby state, shutdown state, etc. Specifically, when the battery management system 120 is in a low power consumption state, the functions of some circuits in the battery management system 120 may not be used.
- the power supply of some circuits is turned off, reducing the number of battery cells.
- the power consumption of the module reduces the power consumption of the battery pack.
- the supply voltage of the power supply circuit 130 continues to be output to the controller, so that when the controller starts to power on, or when the controller In the event of an abnormal reset, the power supply circuit 130 provides a stable power supply voltage to the controller, ensuring the reliability of the battery management system 120 .
- the voltage output by the B+ side may be the total voltage of the battery module, and the total voltage may be within a wide voltage range.
- the B+ side output of the battery module The voltage is between 30V-60V.
- the LDO chip 131 steps down the voltage to lower voltages U1 and U2, for example, 3.3V and 5V respectively.
- U1 and U2 supply power to the controller 150 and other functional circuits 160 respectively.
- the LDO chip 131 directly steps down the higher voltage (for example, 30-60V) to the lower voltages U1 and U2, which requires the LDO chip 131 to have a specific circuit configuration. This LDO is used when the battery pack is awake or working normally. Chip 131, making the work efficiency lower.
- the DC-DC integrated chip has higher working efficiency than the LDO chip 131. Generally, the working efficiency of the battery pack can reach 70% when the battery pack is working normally. However, when the battery pack is in the non-awakened state or dormant state, the DC-DC chip The power consumption is large and it is difficult to meet the application conditions where the power consumption of the battery management system is maintained at the microampere level during the sleep state.
- FIG. 2 is a schematic diagram of a power supply circuit according to an embodiment of the present application.
- the power supply circuit 230 of FIG. 2 is electrically connected between the B+ side of the battery module 110 and the controller 150 for powering the controller 150 .
- the power supply circuit 230 receives the output voltage U0 of the battery module 110, and after step-down processing, provides the output voltages U1 and U2 to the controller 150 and other functional circuits 160 respectively.
- U0 can be over a wide voltage range, for example, between 30V-60V, and U1 and U2 are roughly 3.3V and 5V respectively.
- the power supply circuit 230 includes a first voltage reduction module 231 and a second voltage reduction module 232 .
- the first voltage reduction module 231 or the second voltage reduction module 232 can be implemented as a linear voltage reduction circuit.
- the linear voltage reduction circuit is based on discrete devices such as switching tubes such as field effect transistors or transistors, resistors and capacitors. It can also be implemented It is a low-power buck module or chip including a linear buck circuit.
- the first buck module 231 may include a direct current buck (DC-DC) chip
- the second buck module 232 may include an LDO chip.
- the first voltage reducing module 231 is used to reduce the output voltage U0 of the battery module to U2. As an example, U2 is less than 20V.
- the output end of the first buck module 231 is connected to other functional circuits 160, and U2 is input to other functional circuits 160.
- the output end of the first buck module 231 is also connected to the input end of the second buck module 232.
- the output end of the second buck module 232 is connected to the controller 150.
- the second buck module 232 further steps down U2 to U1. , input to the controller 150, thus providing reliable DC voltages to the controller 150 and other functional circuits 160 respectively.
- the working efficiency of the first voltage reducing module 231 is relatively high, which is beneficial to improving the working efficiency of the power supply circuit 230.
- the first voltage reducing module 231 reduces the output voltage U0 of the battery module to U2, which is consistent with the LDO chip of Figure 1B. 131, the cost of the first buck module 231 in this embodiment is lower, which is conducive to selecting a more versatile chip model.
- FIG. 3 is a schematic diagram of a power supply circuit according to another embodiment of the present application.
- the power supply circuit 230 also includes a third voltage reduction module 233 and a control module 235 .
- the first voltage reduction module 231 is connected to the controller 150 and is used to receive a control signal sent by the controller 150.
- the control signal causes the first voltage reduction module 231 to operate or prohibit operation.
- the controller 150 sends a first signal (an example of a second control signal) when the battery management system 120 is in a wake-up state, and accordingly causes the first voltage reduction module 231 to work.
- the controller 150 sends a second signal (an example of the first control signal) when the battery management system 120 is in a non-awakened state, and accordingly disables the first voltage-reducing module 231 from working, that is, causes the first voltage-reducing module 231 to stop operating other devices.
- Functional circuit 160 supplies power.
- the input end of the third voltage reducing module 233 is connected to the B+ side of the battery module 110 for receiving the voltage output from the B+ side.
- the output terminal of the third voltage reducing module 233 may be connected to the input terminal of the second voltage reducing module 232 .
- the control module 235 is electrically connected to the third voltage reducing module 233 and the controller 150 .
- the controller 150 sends a third signal to the control module 235 to disable the third voltage reduction module 233 from working; when the battery management system 120 is in the non-awakening state, the controller 150 In the wake-up state, the fourth signal is sent to the control module 235, correspondingly causing the third voltage reduction module 233 to work.
- the controller 150 causes the first voltage reduction module 231 and the third voltage reduction module 233 to operate alternately.
- the third voltage reduction module 233 reduces the output voltage U0 of the battery module, and the second voltage reduction module 232 is used to further reduce the voltage and output U1 to power the controller 150 .
- the third buck module 233 can be implemented as a low-power buck device. When the battery management system is in a non-awakened state, the third buck module 233 starts working and turns off the power supply of the battery module to other functional circuits 160, reducing the power consumption of the battery module. The power consumption of the battery pack.
- the power supply circuit 230 also includes diodes D1 and D2.
- the cathode of the diode D1 is connected to the input terminal of the second buck module 232
- the anode of the diode D1 is connected to the output terminal of the third buck module 233 .
- the anode of the diode D2 is connected to the output terminal of the first buck module 231
- the cathode of the diode D2 is connected to the cathode of the diode D1 and the input terminal of the second buck module 232 .
- the controller 150 uses the first signal to start the first voltage reduction module 231.
- the output voltage U2 of the first buck module 231 is input to other functional circuits 160 .
- the output voltage U2 of the first buck module 231 is also input into the diode D2.
- the anode voltage of the diode D2 is higher than the cathode voltage, and the diode D2 is turned on.
- the output voltage U3 of the cathode of the diode D2 is input to the second voltage reduction module 232 for further voltage reduction.
- the output terminal of the first buck module 231 outputs 5V (example of U2), and the voltage drop generated across the two ends of the diode D2 is approximately 0.7V. Therefore, the diode D2 converts 4.3V (5V-0.7V) (example of U3) It is input to the second voltage reduction module 232 and further reduces the voltage to 3.3V (example of U1).
- the third buck module 233 is prohibited from working, and D1 prevents current from flowing in the reverse direction to the third buck module 233 .
- the third voltage reduction module 233 starts working to make the anode voltage of the diode D1 higher than the cathode voltage, so that the diode D1 is turned on. At this time, the voltage at the anode of diode D1 is approximately U4. After the voltage drop across the diode D1, U5 is output to the second buck module 232. The second buck module 232 further steps down U5 to U1, and inputs U1 to the control Device 150. For example, the third voltage reducing module 233 steps down the output voltage U0 of the battery module to 13.5V (for example, U4), and outputs it to the anode of the diode D1.
- the voltage across the diode D1 drops to approximately 0.7V. Therefore, the diode The cathode of D1 outputs 12.8V (example of U5) to the second buck module 232. Then, the second buck module 232 steps down 12.8V to 3.3V.
- the first buck module 231 is prohibited from working, the cathode voltage of the diode D2 is higher than the anode voltage, the diode D2 is not conducting, and the power supply to other functional circuits 160 is stopped.
- FIG. 4A is a schematic diagram of a power supply circuit according to another embodiment of the present application.
- the control module 235 includes switching devices, which include but are not limited to switching tubes such as field effect transistors, relays, optical coupling devices, etc.
- the switching device is a field effect transistor Q1 (an example of the second switch).
- the gate of the field effect transistor Q1 is connected to the controller 150 , the source is connected to ground, and the drain is connected to the third buck module 233 .
- the field effect transistor Q1 shown in FIG. 4A is an NMOS transistor, and the third signal is a high-level signal used to turn on Q1. As Q1 is turned on, the third buck module 233 is prohibited from working. The fourth signal is a low-level signal, used to turn off Q1. As Q1 is turned off, the third voltage reduction module 233 starts working. The drain of Q1 is connected to the third voltage reducing module 233 through a current limiting resistor R0 (an example of a seventh resistor).
- R0 an example of a seventh resistor
- the field effect transistor Q1 can also be a PMOS transistor.
- the third signal is a low level signal, used to turn on Q1; the fourth signal is a high level signal to turn Q1 off.
- a resistor R2 (an example of a sixth resistor) may be configured between the source and gate of the field effect transistor Q1 to provide a stable gate-source voltage for the field effect transistor Q1, thereby enabling the third signal such as Or the control signal of the fourth signal is more stable.
- a resistor R1 (an example of a fifth resistor) can be configured between the gate of the field effect transistor Q1 and the controller 150. R1 and R2 are connected in series to further provide a stable gate-source voltage for the field effect transistor Q1. R1 The setting can also increase the input impedance of the control signal output from the controller 150 and reduce the impact of the surge current on the stability of the control signal.
- the power supply circuit 230 also includes a filter composed of a resistor R3 and a capacitor C1.
- R3 is connected to the B+ side of the battery module 110, and the other end is connected to the first buck module 231 and the third buck module 233.
- One end of capacitor C1 is connected to ground, and the other end of capacitor C1 can be connected to either end of resistor R3.
- the filter can stabilize the output voltage from the B+ side of the battery module 110, filter out the AC component in the input voltage, and reduce the inflow of surge current.
- the output voltage on the B+ side of the battery module 110 is filtered by the filter to obtain the voltage Vin, which is input to the first voltage reduction module 231 and the third voltage reduction module 233 .
- the power supply circuit 230 also includes an anti-reverse diode D3.
- the other end of the resistor R3 is electrically connected to the first buck module 231 and the third buck module 233 through the anti-reverse diode D3. That is, the other end of the resistor R3 is connected to the anti-reverse diode D3.
- the anode of the diode D3 is electrically connected, and the cathode of the anti-reverse connection diode D3 is electrically connected to the input terminal of the first buck module 231 and the input terminal of the third buck module 233, preventing the current in the power supply circuit 230 from flowing in the reverse direction. B+ side of core module 110.
- the first buck module 231 includes switch transistors Q2 (an example of a first switch) and Q3, a filter module 2311 and a DC-DC chip 2312.
- the switch transistor Q2 can be a transistor
- the switch transistor Q3 can be a PMOS transistor.
- the base of the transistor Q2 is connected to the control terminal of the controller 150 for receiving the first signal or the second signal.
- the emitter of transistor Q2 is connected to ground, and the collector of transistor Q2 is connected to the gate of PMOS transistor Q3 for sending control signals to PMOS transistor Q3.
- the source of PMOS transistor Q3 is connected to voltage Vin, and the drain of PMOS transistor Q3 Connect to filter module 2311.
- the first signal input by the controller 150 to the base of the transistor Q2 is a high level, and the collector of the transistor Q2 outputs a low level to the gate of the PMOS transistor Q3.
- the source and drain of the PMOS transistor Q3 are turned on, so that the voltage Vin of the voltage U0 can be input into the filter module 2311 to filter out the AC component.
- the filtered voltage is input to the DC-DC chip 2312 to perform voltage reduction processing, for example, from U0 to U2.
- the second signal input by the controller 150 to the base of the transistor Q2 is a low level, and the collector of the transistor Q2 outputs a high level to the gate of the PMOS tube Q3, causing the PMOS tube to The source and drain of Q3 are turned off, thereby prohibiting the voltage Vin of voltage U0 from being input into the filter module 2311 and the DC-DC chip 2312, that is, the first buck module 231 is prohibited from working.
- the resistor R21 (an example of the first resistor) may be electrically connected between the base of the transistor Q2 and the controller 150
- the resistor R22 (an example of the second resistor) may be electrically connected between the base and the emitter of the transistor Q2 , used to make the DC voltage of the first signal or the second signal more stable.
- the resistor R31 (an example of the third resistor) may be electrically connected between the collector of the transistor Q2 and the gate of the PMOS transistor Q3, and the resistor R32 (an example of the fourth resistor) may be electrically connected between the gate of the PMOS tube Q3 and the gate of the PMOS transistor Q3. Between the sources, it is used to make the transistor Q2 provide a more stable control signal to the PMOS tube Q3.
- the third voltage reducing module 233 includes a switch transistor Q4 (an example of a third switch) and a resistor R42 (an example of an eighth resistor).
- the switch transistor Q4 may be an NMOS transistor.
- the gate of the NMOS transistor Q4 may be connected to the control module 235 for receiving the fifth signal or the sixth signal.
- Q1 When the control module 235 receives the third signal, Q1 is turned on, the resistor R42 is connected between the source of the NMOS transistor Q4 and Vin, and the drain of the NMOS transistor Q4 is connected to the diode D1.
- the control module 235 receives the third signal as a high level, the NMOS transistor Q1 in the control module 235 is turned on according to the third signal, and the gate of the NMOS transistor Q4 Upon receiving a low level (for example, the gate voltage of Q4 is lower than the source voltage), the source and drain of the NMOS transistor Q4 are turned off, thereby disabling the operation of the third buck module 233 .
- the control module 235 When the battery management system 120 is in a non-awakened state, the control module 235 receives the fourth signal which is low level, the NMOS transistor Q1 in the control module 235 turns off according to the fourth signal, and outputs a high voltage to the gate of the NMOS transistor Q4 level (for example, the gate voltage of Q4 is higher than the source voltage), causing the source and drain of the NMOS transistor Q4 to be conductive, and the voltage drop of the third voltage reduction module 233 is realized through the voltage drop across the resistor R42 , that is, step down from the voltage level U0 of Vin to U4.
- the third buck module 233 may also include a diode D4 (an example of a Zener diode) and a resistor R41 (an example of a ninth resistor), wherein the cathode of the diode D4 is connected to the gate of the NMOS tube Q4 and the control module 235, The anode of the diode D4 is grounded, and R41 is connected between the gate and the source of the NMOS tube Q4 to make the DC voltage of the control signal of the control module 235 more stable.
- a diode D4 an example of a Zener diode
- R41 an example of a ninth resistor
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
本申请实施例提供了一种供电电路、电池管理系统、电池包和电子装置。所述供电电路,包括控制器、第一降压模块、第二降压模块和第三降压模块。第一降压模块电连接所述控制器,被配置为与外部电芯模组的正极电连接。第二降压模块分别与所述第一降压模块和所述控制器电连接。第三降压模块分别与所述控制器和所述第二降压模块电连接,被配置为电连接所述外部电芯模组的正极。响应于控制器输出第一控制信号,所述第一降压模块断开,所述第三降压模块导通,或者,响应于控制器输出第二控制信号,所述第一降压模块导通,所述第三降压模块断开。
Description
本申请实施例涉及电气技术领域,尤其涉及一种供电电路、电池管理系统、电池包和电子装置。
电池管理系统通过控制器等部件,能够对电芯模组进行了高效管理,电池管理系统还包括对控制器等部件进行供电的供电电路,供电电路从电芯模组获取电压,经过电压处理,得到控制器等部件的供电电压。
现有的供电电路采用成本较高的直流到直流(DC-DC)降压芯片,电芯模组正常放电时,DC-DC降压芯片将电芯模组的电压进行降压处理,以为控制器以及电池管理系统的其他模块供电,但在电池管理系统处于休眠状态时,DC-DC降压芯片无法满足低功耗的需求。
发明内容
有鉴于此,本申请实施例提供一种供电电路、电池管理系统、电池包和电子装置,以至少能够改善上述问题。
根据本申请实施例的第一方面,提供了一种供电电路。所述供电电路,包括:控制器、第一降压模块、第二降压模块以及第三降压模块。第一降压模块电连接所述控制器,被配置为与外部电芯模组的正极电连接并对所述外部电芯模组输出的电压进行降压,并输出电压至第二降压模块;所述第二降压模块分别与所述第一降压模块和所述控制器电连接,被配置为对输入到第二降压模块的电压进行降压,以为所述控制器供电;第三降压模块分别与所述控制器和所述第二降压模块电连接,被配置为电连接所述外部电芯模组的正极并对所述外部电芯模组输出的电压进行降压,并输出电压至所述第二降压模块。其中,响应于控制器输出第一控制信号,所述第一降压模块断开,所述第三降压模块导通;或者,响应于控制器输出第二控制信号,所述第一降压模块导通,所述第三降压模块断开。
在本申请实施例的另一实现方式中,供电电路还包括控制模块,所述控制模块分别与所述控制器和所述第三降压模块电连接。所述控制模块接收所述第一控制信号,使所述第三降压模块导通,或者,所述控制模块接收所述第二控制信号,使所述第三降压模块导通。
在本申请实施例的另一实现方式中,所述第一降压模块包括三极管和第一开关。所 述三极管的基极与所述控制器电连接,所述三极管的发射极接地,所述三极管的集电极与所述第一开关的控制端电连接,所述第一开关的第一端与所述外部电芯模组电连接。所述响应于控制器输出第一控制信号,所述第一降压模块断开,还包括:响应于所述三极管的基极接收所述第一控制信号,所述三极管断开,以使所述第一开关断开。或者,所述响应于控制器输出第二控制信号,所述第一降压模块导通,还包括:响应于所述三极管的基极接收所述第二控制信号,所述三极管导通,以使所述第一开关导通。
在本申请实施例的另一实现方式中,所述第一降压模块还包括第一电阻、第二电阻、第三电阻和第四电阻。所述第一电阻连接在所述三极管的基极与所述控制器之间。所述第二电阻的一端连接在所述第一电阻与所述三极管的基极之间,所述第二电阻的另一端连接到所述三极管的发射极。所述第三电阻连接在所述第一开关的控制端与所述三极管的集电极之间。所述第四电阻连接在所述第一开关的控制端与第一端之间。
在本申请实施例的另一实现方式中,供电电路还包括DC-DC芯片,所述DC-DC芯片连接在所述第一开关的第二端与所述第一降压模块的输出端之间。
在本申请实施例的另一实现方式中,所述控制模块包括第二开关。所述第二开关的控制端与所述控制器电连接,所述第二开关的第一端接地,所述第二开关的第二端与所述第三降压模块电连接。
在本申请实施例的另一实现方式中,所述控制模块还包括第五电阻和第六电阻。所述第五电阻连接在所述控制器与所述第二开关的控制端之间,所述第六电阻连接在所述第二开关的控制端与第一端之间。
在本申请实施例的另一实现方式中,所述控制模块还包括第七电阻。所述第七电阻连接在所述第二开关的第二端与所述第三降压模块之间。
在本申请实施例的另一实现方式中,所述第三降压模块包括第三开关。所述第三开关的控制端与所述第二开关电连接。所述第三开关的第一端与所述第二降压模块电连接,所述第三开关的第二端与所述外部电芯模组的正极电连接。响应于所述第二开关的控制端接收所述第一信号,所述第二开关断开,以使所述第三开关导通。或者,响应于所述第二开关的控制端接收所述第二信号,所述第二开关导通,以使所述第三开关断开。
在本申请实施例的另一实现方式中,所述第三降压模块还包括第八电阻和第九电阻。所述第八电阻连接所述第三降压模块的输入端与所述第三开关的第一端之间。所述第九电阻的一端连接在所述第七电阻与所述第三降压模块的输入端之间。所述第九电阻的另一端连接到所述第三开关的控制端。
在本申请实施例的另一实现方式中,所述第三降压模块还包括稳压二极管。所述稳压二极管的阴极连接到所述第三开关的控制端,所述稳压二极管的阳极接地。
根据本申请实施例的第二方面,提供了一种电池管理系统。电池管理系统包括控制器、其他功能模块以及根据第一方面所述的供电电路。
根据本申请实施例的第三方面,提供了一种电池包。电池包包括电芯模组和根据第二方面所述的电池管理系统。
根据本申请实施例的第四方面,提供了一种电子装置。所述电子装置包括根据第三方面所述的电池包。
在本申请实施例的方案中,响应于控制器输出第一控制信号,第一降压模块断开,第三降压模块导通,实现了第三降压模块和第二降压模块依次对电芯模组的输出电压进行降压,此外,响应于控制器输出第二控制信号,第一降压模块导通,第三降压模块断开,实现了第一降压模块与第二降压模块,依次对电芯模组的输出电压进行降压。相比于采用单个降压芯片进行降压的方案,本申请的第一降压模块和第二降压模块使电池包在唤醒状态或正常工作时,保持较高的工作效率,本申请的第三降压模块和第二降压模块能够改善电池包在非唤醒状态或休眠模式下功耗,使得电池包在非唤醒状态或休眠模式下的功耗较低,并且第一降压模块、第二降压模块以及第三降压模块为通用器件,降低成本。
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比值绘制的。附图中:
图1A为一个示例的电池包的示意图。
图1B为图1A的电池管理系统的示意图。
图2为根据本申请的一个实施例的供电电路的示意图。
图3为根据本申请的另一实施例的供电电路的示意图。
图4A为根据本申请的另一实施例的供电电路的示意图。
图4B为图4A实施例的一个示例的第一降压模块的示意图。
图4C为图4A实施例的一个示例的第三降压模块的示意图。
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
随着电池技术的发展,诸如磷酸铁锂电池、锰酸锂电池、三元聚合物锂电池等锂离子电池、铅酸电池、钠离子电池等可以用作储能电池。储能电池在各种场景中得到了比较广泛的应用,并且在涉及无人飞行器、电动工具、电动自行车、电动摩托车、储能系统等用电设备中可以作为动力电池。
储能电池可以以电池包的形式为用电设备提供电能,电池管理系统(Battery Management System,BMS)能够在不同的应用场景中对电池包进行监测,管理电池包的充电和放电,提高了电池包的工作效率和使用寿命。具体而言,电池管理系统可以执行诸如电池状态监测、电池状态分析、电池安全保护、能量控制管理和电池信息管理等控制管理。电池管理系统可以与电芯模组连接,设置于电池包中,以管理电芯模组的充电和放电,其中,电芯模组包括多个电芯,电芯与电芯之间可以实现串联、并联或混联。
图1A为一个示例的电池包的示意图。图1A的电池包100包括电芯模组110和电池管理系统120。电池管理系统120包括供电电路130、唤醒电路140、控制器150和其他功能电路160。供电电路130与控制器150和其他功能电路160电连接,用于对控制器150和其他功能电路160进行供电。控制器150所需的电压小于电芯模组110提供的电压,一般而言,供电电路130对电芯模组110的B+侧输出的电压进行降压处理,并基于降压处理后的电压对控制器150进行供电。唤醒电路140与控制器150电连接,用于向控制器150发送控制信号,使电池管理系统120进入唤醒状态或非唤醒状态。图1B为图1A的电池管理系统的示意图。在一种具体实现方式中,供电电路130包括低压差稳压器(Low Dropout Regulator,LDO)芯片131,LDO芯片131电连接在电芯模组110的B+侧与控制器150之间,用于将B+侧输出的电压进行降压处理,将降压处理后的供电电压输入到控制器150和其他功能电路160。在另一种具体实现方式中,LDO芯片131可用DC-DC集成芯片替代。
在一些示例中,其他功能电路160包括但不限于通信电路、外设电路(例如,数字输入输出电路)等,其他功能电路160和控制器150分别为电池管理系统中的不同模块。
具体地,控制器可以实现为微处理单元(Microcontroller Unit,MCU),用于接收唤醒电路140的控制信号,使电池管理系统120进入唤醒状态或非唤醒状态。唤醒状态指示电池管理系统120处于工作状态,非唤醒状态指示电池管理系统120的低功耗状态,非唤醒状态包括但不限于休眠状态、待机状态、关机状态等。具体而言,电池管理系统120在低功耗状态下,电池管理系统120中可以有部分电路的功能未被使用,相应地,在非唤醒状态下,部分电路的供电被关断,减少电芯模组电量的消耗,降低电池包的功耗。在其中一种具体实施方式中,电池管理系统120在处于唤醒状态及非唤醒状态时,供电电路130的供电电压持续输出到控制器,使得在控制器启动上电的情况下、或者在控制器异常复位的情况下,供电电路130为控制器提供稳定的供电电压,保证了电池管理系统120的可靠性。
具体地,在电池管理系统120处于唤醒状态时,B+侧输出的电压可以是电芯模组的总电压,该总电压可以在一个较宽的电压范围内,例如,电芯模组B+侧输出的电压在30V-60V之间。经LDO芯片131降压到较低的电压U1和U2,例如,分别为3.3V和5V,U1和U2分别对控制器150和其他功能电路160进行供电。
LDO芯片131将较高的电压(例如30-60V)直接降压到较低的电压U1和U2,需要LDO芯片131具有特定的电路配置,在电池包为唤醒状态或正常工作时,采用此LDO 芯片131,使得工作效率较低。
DC-DC集成芯片相比LDO芯片131具有较高的工作效率,一般可以使得电池包在正常工作时,工作效率达到70%,但电池包在非唤醒状态或休眠状态时,DC-DC芯片的功耗较大,难以满足休眠状态时,电池管理系统的功耗保持在微安级别的应用工况。
图2为根据本申请的一个实施例的供电电路的示意图。图2的供电电路230电连接到电芯模组110的B+侧与控制器150之间,用于对控制器150供电。供电电路230接收电芯模组110的输出电压U0,经过降压处理之后,分别向控制器150和其他功能电路160提供输出电压U1和U2。作为一个示例,U0可以在一个较宽的电压范围内,例如,在30V-60V之间,U1和U2分别大致为3.3V和5V。
具体地,供电电路230包括第一降压模块231和第二降压模块232。具体地,第一降压模块231或第二降压模块232可以实现为线性降压电路,线性降压电路基于诸如场效应管或三极管的开关管、电阻和电容等分立器件组成,也可以实现为包括线性降压电路的低功耗降压模块或芯片。例如,第一降压模块231可以包括直流降压(DC-DC)芯片,第二降压模块232可以包括LDO芯片。
第一降压模块231用于将电芯模组的输出输出电压U0降压到U2,作为一个示例,U2小于20V。第一降压模块231的输出端连接到其他功能电路160,将U2输入到其他功能电路160。第一降压模块231的输出端还连接到第二降压模块232的输入端,第二降压模块232的输出端连接到控制器150,第二降压模块232将U2进一步降压到U1,输入到控制器150,这样,分别为控制器150和其他功能电路160提供了可靠的直流电压。第一降压模块231的工作效率较高,有利于提高供电电路230的工作效率,此外,第一降压模块231将电芯模组的输出电压U0降压到U2,与图1B的LDO芯片131相比,本实施例的第一降压模块231的成本更低,有利于选择更加通用的芯片型号。
图3为根据本申请的另一实施例的供电电路的示意图。在图3的实施例中,供电电路230还包括第三降压模块233和控制模块235。
第一降压模块231与控制器150连接,用于接收控制器150发送的控制信号,控制信号使第一降压模块231工作或禁止工作。在一种具体实现方式中,控制器150在电池管理系统120处于唤醒状态下发送第一信号(第二控制信号的示例),相应地使第一降压模块231工作。控制器150在电池管理系统120处于非唤醒状态下发送第二信号(第一控制信号的示例),相应地使第一降压模块231禁止工作,即,使第一降压模块231停止对其他功能电路160供电。
第三降压模块233的输入端连接到电芯模组110的B+侧,用于接收B+侧输出的电压。第三降压模块233的输出端可以连接到第二降压模块232的输入端。控制模块235与第三降压模块233和控制器150电连接。在一种具体实现方式中,控制器150在电池管理系统120处于唤醒状态下,向控制模块235发送第三信号,使第三降压模块233禁止工作;控制器150在电池管理系统120处于非唤醒状态下,向控制模块235发送第四信号,相应地使第三降压模块233工作。控制器150通过这样的控制,使第一降压模块 231与第三降压模块233交替地工作。第三降压模块233将电芯模组的输出输出电压U0降压,第二降压模块232用于进一步降压,并输出U1为控制器150供电。第三降压模块233可以实现为低功耗降压器件,在电池管理系统处于非唤醒状态下,第三降压模块233启动工作,关断了电芯模组向其他功能电路160供电,降低了电池包的功耗。
此外,供电电路230还包括二极管D1和D2。二极管D1的阴极连接到第二降压模块232的输入端,二极管D1的阳极连接到第三降压模块233的输出端。二极管D2的阳极连接到第一降压模块231的输出端,二极管D2的阴极连接到二极管D1的阴极和第二降压模块232的输入端。
在电池管理系统120处于唤醒状态下,控制器150通过第一信号,使第一降压模块231启动工作。这时,第一降压模块231的输出电压U2输入到其他功能电路160。第一降压模块231的输出电压U2还输入到二极管D2中,二极管D2的阳极电压高于阴极电压,二极管D2导通。然后,二极管D2的阴极的输出电压U3输入到第二降压模块232,进行进一步降压。例如,第一降压模块231的输出端输出5V(U2的例子),二极管D2的两端产生电压降大致为0.7V,于是,二极管D2将4.3V(5V-0.7V)(U3的例子)输入到第二降压模块232,进一步降压到3.3V(U1的例子)。另外,在唤醒状态下,第三降压模块233禁止工作,D1防止电流反向流入到第三降压模块233。
在电池管理系统120从唤醒状态进入到非唤醒状态时,第三降压模块233启动工作,使二极管D1的阳极电压高于阴极电压,从而二极管D1导通。这时,二极管D1阳极处的电压大致为U4,经过二极管D1两端的电压降,输出U5到第二降压模块232,第二降压模块232进一步将U5降压到U1,将U1输入到控制器150。例如,第三降压模块233将电芯模组的输出电压U0降压到13.5V(U4的例子),并输出到二极管D1的阳极,二极管D1两端的电压降为大致0.7V,于是,二极管D1的阴极输出12.8V(U5的例子)到第二降压模块232。然后,第二降压模块232将12.8V降压到3.3V。另外,在电池管理系统120处于非唤醒状态下,第一降压模块231禁止工作,二极管D2的阴极电压高于阳极电压,二极管D2未导通,停止对其他功能电路160的供电。
图4A为根据本申请的另一实施例的供电电路的示意图。在图4A的供电电路230中,控制模块235包括开关器件,开关器件包括但不限于诸如场效应管的开关管、继电器、光耦合器件等。作为一个示例,开关器件为场效应管Q1(第二开关的示例),场效应管Q1的栅极连接到控制器150,源极接地,漏极连接到第三降压模块233。
作为一个示例,图4A示出的场效应管Q1为NMOS管,第三信号为高电平信号,用于使Q1导通,随着Q1的导通,第三降压模块233禁止工作。第四信号为低电平信号,用于使Q1关断,随着Q1的关断,第三降压模块233启动工作。Q1的漏极通过限流电阻R0(第七电阻的示例)连接到第三降压模块233。
可替代地,与图4的示例不同,场效应管Q1也可以为PMOS管,在这种情况下,第三信号为低电平信号,用于使Q1导通;第四信号为高电平信号,用于使Q1关断。
另外,场效应管Q1的源极与栅极之间可以配置有电阻R2(第六电阻的示例),用 于为场效应管Q1提供稳定的栅极源极间电压,进而使诸如第三信号或第四信号的控制信号更加稳定。另外,场效应管Q1的栅极与控制器150之间可以配置有电阻R1(第五电阻的示例),R1与R2串联,进一步为场效应管Q1提供稳定的栅极源极间电压,R1的设置还可以提高从控制器150输出的控制信号的输入阻抗,减少浪涌电流对控制信号的稳定性的影响。
供电电路230还包括由电阻R3与电容C1组成的滤波器,R3的一端连接到电芯模组110的B+侧,另一端连接到第一降压模块231和第三降压模块233。电容C1的一端接地,电容C1的另一端可以连接到电阻R3的任一端。滤波器能够稳定从电芯模组110的B+侧的输出电压,滤除掉输入电压中的交流成分,并且减少了浪涌电流的流入。电芯模组110的B+侧的输出电压经由滤波器的滤波得到电压Vin,输入到第一降压模块231和第三降压模块233。
供电电路230还包括防反接二极管D3,电阻R3的另一端通过防反接二极管D3电连接到第一降压模块231和第三降压模块233,即,电阻R3的另一端与防反接二极管D3的阳极电连接,防反接二极管D3的阴极电连接到第一降压模块231的输入端和第三降压模块233的输入端,防止了供电电路230中的电流反向流入到电芯模组110的B+侧。
进一步地,如图4B所示,第一降压模块231包括开关管Q2(第一开关的示例)和Q3、滤波模块2311以及DC-DC芯片2312。例如,开关管Q2可以为三极管,开关管Q3可以为PMOS管,三极管Q2的基极连接到控制器150的控制端,用于接收第一信号或第二信号。三级管Q2的发射极接地,三极管Q2的集电极连接到PMOS管Q3的栅极,用于向PMOS管Q3发送控制信号,PMOS管Q3的源极连接到电压Vin,PMOS管Q3的漏极连接到滤波模块2311。
具体而言,在电池管理系统120处于唤醒状态时,控制器150向三极管Q2的基极输入的第一信号为高电平,三极管Q2的集电极向PMOS管Q3的栅极输出低电平,使PMOS管Q3的源极和漏极导通,从而使电压大小U0的电压Vin能够输入到滤波模块2311中,滤除交流成分。经由滤波的电压输入到DC-DC芯片2312执行降压处理,例如,从U0降压到U2。
在电池管理系统120处于非唤醒状态时,控制器150向三极管Q2的基极输入的第二信号为低电平,三极管Q2的集电极向PMOS管Q3的栅极输出高电平,使PMOS管Q3的源极和漏极关断,从而使电压大小U0的电压Vin禁止输入到滤波模块2311和DC-DC芯片2312中,即,使第一降压模块231禁止工作。
此外,电阻R21(第一电阻的示例)可以电连接在三极管Q2的基极与控制器150之间,电阻R22(第二电阻的示例)可以电连接在三极管Q2的基极与发射极之间,用于使第一信号或第二信号的直流电压更加稳定。
此外,电阻R31(第三电阻的示例)可以电连接在三极管Q2的集电极与PMOS管Q3的栅极之间,电阻R32(第四电阻的示例)可以电连接在PMOS管Q3的栅极与源极之间,用于使三极管Q2向PMOS管Q3提供更稳定的控制信号。
进一步地,如图4C所示,第三降压模块233包括开关管Q4(第三开关的示例)和电阻R42(第八电阻的示例),开关管Q4可以为NMOS管。具体而言,NMOS管Q4的栅极可以连接控制模块235,用于接收第五信号或第六信号。控制模块235在接收到第三信号时,Q1导通,电阻R42连接在NMOS管Q4的源极与Vin之间,NMOS管Q4的漏极连接到二极管D1。
参考图4A的示例,在电池管理系统120处于唤醒状态时,控制模块235接收到第三信号为高电平,控制模块235中的NMOS管Q1根据第三信号导通,NMOS管Q4的栅极接收到低电平(例如,Q4的栅极电压低于源极电压),使NMOS管Q4的源极与漏极之间关断,从而,第三降压模块233禁止工作。
在电池管理系统120处于非唤醒状态时,控制模块235接收到第四信号为低电平,控制模块235中的NMOS管Q1根据第四信号关断,并且向NMOS管Q4的栅极输出高电平(例如,Q4的栅极电压高于源极电压),使NMOS管Q4的源极与漏极之间导通,通过电阻R42两端的电压降实现了第三降压模块233的降压处理,即,从Vin的电压大小U0降压到U4。
此外,第三降压模块233还可以包括二极管D4(稳压二极管的示例)和电阻R41(第九电阻的示例),其中,二极管D4的阴极连接到NMOS管Q4的栅极和控制模块235,二极管D4的阳极接地,R41连接在NMOS管Q4的栅极与源极之间,用于使控制模块235控制信号的直流电压更加稳定。
至此,已经对本主题的特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作可以按照不同的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序,以实现期望的结果。在某些实施方式中,多任务处理和并行处理可以是有利的。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (14)
- 一种供电电路,包括:控制器;第一降压模块,电连接所述控制器,被配置为与外部电芯模组的正极电连接并对所述外部电芯模组输出的电压进行降压,并输出电压至第二降压模块;所述第二降压模块,分别与所述第一降压模块和所述控制器电连接,被配置为对输入到第二降压模块的电压进行降压,以为所述控制器供电;第三降压模块,分别与所述控制器和所述第二降压模块电连接,被配置为电连接所述外部电芯模组的正极并对所述外部电芯模组输出的电压进行降压,并输出电压至所述第二降压模块;其中,响应于控制器输出第一控制信号,所述第一降压模块断开,所述第三降压模块导通;或者,响应于控制器输出第二控制信号,所述第一降压模块导通,所述第三降压模块断开。
- 根据权利要求1所述的供电电路,还包括:控制模块,所述控制模块分别与所述控制器和所述第三降压模块电连接;其中,所述控制模块接收所述第一控制信号,使所述第三降压模块导通;或者,所述控制模块接收所述第二控制信号,使所述第三降压模块导通。
- 根据权利要求1所述的供电电路,所述第一降压模块包括:三极管和第一开关;所述三极管的基极与所述控制器电连接,所述三极管的发射极接地,所述三极管的集电极与所述第一开关的控制端电连接,所述第一开关的第一端与所述外部电芯模组电连接;其中,所述响应于控制器输出第一控制信号,所述第一降压模块断开,还包括:响应于所述三极管的基极接收所述第一控制信号,所述三极管断开,以使所述第一开关断开;或者,所述响应于控制器输出第二控制信号,所述第一降压模块导通,还包括:响应于所述三极管的基极接收所述第二控制信号,所述三极管导通,以使所述第一开关导通。
- 根据权利要求3所述的供电电路,所述第一降压模块还包括:第一电阻、第二电阻、第三电阻和第四电阻,所述第一电阻连接在所述三极管的基极与所述控制器之间,所述第二电阻的一端连接在所述第一电阻与所述三极管的基极之间,所述第二电阻的另一端连接到所述三极管的发射极,所述第三电阻连接在所述第一开关的控制端与所述三极管的集电极之间,所述第四电阻连接在所述第一开关的控制端与第一端之间。
- 根据权利要求3所述的供电电路,还包括:DC-DC芯片,所述DC-DC芯片连接在所述第一开关的第二端与所述第一降压模块的输出端之间。
- 根据权利要求2至4中任一项所述的供电电路,所述控制模块包括:第二开关;所述第二开关的控制端与所述控制器电连接,所述第二开关的第一端接地,所述第二开关的第二端与所述第三降压模块电连接。
- 根据权利要求6所述的供电电路,所述控制模块还包括:第五电阻和第六电阻,所述第五电阻连接在所述控制器与所述第二开关的控制端之间,所述第六电阻连接在所述第二开关的控制端与第一端之间。
- 根据权利要求6所述的供电电路,所述控制模块还包括:第七电阻,所述第七电阻连接在所述第二开关的第二端与所述第三降压模块之间。
- 根据权利要求6所述的供电电路,所述第三降压模块包括第三开关,所述第三开关的控制端与所述第二开关电连接,所述第三开关的第一端与所述第二降压模块电连接,所述第三开关的第二端与所述外部电芯模组的正极电连接;其中,响应于所述第二开关的控制端接收所述第一信号,所述第二开关断开,以使所述第三开关导通;或者,响应于所述第二开关的控制端接收所述第二信号,所述第二开关导通,以使所述第三开关断开。
- 根据权利要求9所述的供电电路,所述第三降压模块还包括:第八电阻和第九电阻,所述第八电阻连接所述第三降压模块的输入端与所述第三开关的第一端之间,所述第九电阻的一端连接在所述第七电阻与所述第三降压模块的输入端之间,所述第九电阻的另一端连接到所述第三开关的控制端。
- 根据权利要求9所述的供电电路,所述第三降压模块还包括:稳压二极管,所述稳压二极管的阴极连接到所述第三开关的控制端,所述稳压二极管的阳极接地。
- 一种电池管理系统,包括如权利要求1-11中任一项所述的供电电路。
- 一种电池包,包括电芯模组和如权利要求12所述的电池管理系统。
- 一种电子装置,包括如权利要求13所述的电池包。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/083284 WO2023184067A1 (zh) | 2022-03-28 | 2022-03-28 | 供电电路、电池管理系统、电池包和电子装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/083284 WO2023184067A1 (zh) | 2022-03-28 | 2022-03-28 | 供电电路、电池管理系统、电池包和电子装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023184067A1 true WO2023184067A1 (zh) | 2023-10-05 |
Family
ID=88198571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/083284 WO2023184067A1 (zh) | 2022-03-28 | 2022-03-28 | 供电电路、电池管理系统、电池包和电子装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023184067A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010136458A (ja) * | 2007-11-09 | 2010-06-17 | Ntt Data Intellilink Corp | 電源供給システム |
CN102035238A (zh) * | 2010-12-28 | 2011-04-27 | 广东易事特电源股份有限公司 | 一种太阳能充电控制电路 |
CN108206550A (zh) * | 2016-12-16 | 2018-06-26 | 东莞市德尔能新能源股份有限公司 | 高压锂电池bms供电电路 |
CN109038784A (zh) * | 2018-08-01 | 2018-12-18 | 深圳硕日新能源科技有限公司 | 一种太阳能控制器的低功耗休眠装置、系统及方法 |
CN209169323U (zh) * | 2019-01-15 | 2019-07-26 | 深圳市智锂能源科技有限公司 | 一种动力电池组智能bms管理系统 |
CN213243599U (zh) * | 2020-09-30 | 2021-05-18 | 合肥安轩能源有限公司 | Bms低功耗休眠供电控制及唤醒电路 |
-
2022
- 2022-03-28 WO PCT/CN2022/083284 patent/WO2023184067A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010136458A (ja) * | 2007-11-09 | 2010-06-17 | Ntt Data Intellilink Corp | 電源供給システム |
CN102035238A (zh) * | 2010-12-28 | 2011-04-27 | 广东易事特电源股份有限公司 | 一种太阳能充电控制电路 |
CN108206550A (zh) * | 2016-12-16 | 2018-06-26 | 东莞市德尔能新能源股份有限公司 | 高压锂电池bms供电电路 |
CN109038784A (zh) * | 2018-08-01 | 2018-12-18 | 深圳硕日新能源科技有限公司 | 一种太阳能控制器的低功耗休眠装置、系统及方法 |
CN209169323U (zh) * | 2019-01-15 | 2019-07-26 | 深圳市智锂能源科技有限公司 | 一种动力电池组智能bms管理系统 |
CN213243599U (zh) * | 2020-09-30 | 2021-05-18 | 合肥安轩能源有限公司 | Bms低功耗休眠供电控制及唤醒电路 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106786967B (zh) | 一种电池管理装置及具有所述管理装置的电池充电系统 | |
CN113708467B (zh) | 一种上电电路、电池备份单元及存储服务器系统 | |
CN220934879U (zh) | 充电电路及充电器 | |
CN212304824U (zh) | 一种新型bms控正极充电激活电路 | |
CN110034595B (zh) | 一种备份电源管理装置及车载设备 | |
WO2023184067A1 (zh) | 供电电路、电池管理系统、电池包和电子装置 | |
WO2023130267A1 (zh) | 唤醒检测电路、电池管理系统和电池包 | |
CN214068770U (zh) | 电池自动激活电路 | |
CN212210543U (zh) | 一种防锁死bms电源系统 | |
CN218040820U (zh) | 供电电路、电池管理系统、电池包和电子装置 | |
CN209748236U (zh) | 一种分立式电源充电电路 | |
CN114142567A (zh) | 电池管理电路及电池装置 | |
JP2022041966A (ja) | バッテリ保護回路およびこれを含むバッテリ装置 | |
CN212258491U (zh) | 一种新型bms上电唤醒零电流关机电路 | |
CN221467420U (zh) | 一种充放电分口的电池包电路及电池包 | |
CN219627398U (zh) | 电池复充控制电路、电池包及储能电源 | |
CN216872869U (zh) | 一种备用电池的充放电控制电路以及车载单元 | |
CN220553838U (zh) | 一种基于bms的电池包省电电路 | |
CN220066900U (zh) | 一种电池升压电路 | |
CN217956942U (zh) | 一种低功耗记忆启动电路 | |
CN219627383U (zh) | 一种升压型电源装置 | |
CN218335382U (zh) | 一种开关电路、bms系统及电子设备 | |
CN221202201U (zh) | 一种用于防止电池设备过放的保护电路 | |
CN214154063U (zh) | 充电保护电路 | |
CN111262301B (zh) | 一种锂电池充电管理模块 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22933926 Country of ref document: EP Kind code of ref document: A1 |