CN102035238A - 一种太阳能充电控制电路 - Google Patents
一种太阳能充电控制电路 Download PDFInfo
- Publication number
- CN102035238A CN102035238A CN2010106088893A CN201010608889A CN102035238A CN 102035238 A CN102035238 A CN 102035238A CN 2010106088893 A CN2010106088893 A CN 2010106088893A CN 201010608889 A CN201010608889 A CN 201010608889A CN 102035238 A CN102035238 A CN 102035238A
- Authority
- CN
- China
- Prior art keywords
- voltage
- resistance
- triode
- circuit
- stabilizing chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种太阳能充电控制电路,用于控制太阳能电池向蓄电池充电并向负载供电,包括电源转换电路、采样电路、微控制器、PWM功率驱动电路和输出保护及功率驱动电路、充电回路和负载回路;本发明根据铅酸蓄电池本身的特点和充放电特性以及太阳能电池的功率输出特性,克服了现有的太阳能充电控制器存在的缺陷,满足了大中型太阳能光伏电站的使用要求,容量大、效率高、低成本、使用寿命更长、电池管理更精确、系统更智能。
Description
技术领域
本发明涉及电力技术领域,特别是涉及一种太阳能充电控制电路。
背景技术
太阳能作为一种新的能源,是一种取之不尽、用之不竭的可再生能源,对环境不产生任何污染,成为各国政府开发无污染、可持续发展新型能源的首选。太阳能电池可以以较高的效率把太阳能直接转换为电能,不对环境产生任何污染,是一种绿色的发电方式。在光伏发电系统中,铅酸蓄电池和太阳能充电控制器均是太阳能光伏系统中重要的部件,蓄电池可以储存太阳能电池发出的不稳定、不连续的电能,保证光伏系统有稳定的输出。而充电控制器的优劣不但决定蓄电池的使用寿命,而且还直接影响光伏系统的电力输出性能。
目前,市场上有很多太阳能充电控制器,但存在如下问题:
1、一些使用简单控制电压的充电控制器,当蓄电池电压上升到过充电压时(此时蓄电池并未真正完全充满),控制器自动断开充电回路,然而由于蓄电池内阻的作用,断开充电回路后,蓄电池的电压会立即下降。而当充电回路接通及断开用电负载后,同样由于蓄电池内阻的原因,蓄电池的电压会立即上升。如此反复,充电控制器极易产生振荡,不但使控制器不能正常工作,而且还容易损坏蓄电池。同时在给蓄电池充电时,大电流会造成能量损失,而且在充电后期会产生大量气体,使蓄电池寿命缩短,但是以小电流充电就需要很长时间,无法做到快速充电,并且充电电流不同,对蓄电池容量的恢复也不同。
2、现有的简易型太阳能充电控制器在蓄电池充满后,为保护蓄电池,对太阳能电池板的正负极进行短路,这样会造成太阳能电池板阵列的节温过高,容易损坏太阳能电池板,降低太阳能电池板的使用寿命。
3、一些太阳能充电控制器,在充电回路中,采用串入二极管的方式防止反接和防止夜间蓄电池电流倒灌,在充电时,二极管的导通损耗很大,降低了控制器的效率。
4、现有的充电控制器普遍没有太阳能电池的最大功率电跟踪(MPPT)的功能,导致太阳能电池板的能量转换效率(发电功率)得不到有效的提高。
发明内容
本发明的目的在于克服现有的太阳能充电控制器存在的缺陷,针对大中型太阳能光伏电站的使用要求,开发出一种大容量、高效率、低成本、使用寿命更长、电池管理更精确、系统更智能的太阳能充电控制电路。
本发明的目的通过以下技术措施实现。
一种太阳能充电控制电路,用于控制太阳能电池向蓄电池充电并向负载供电,包括电源转换电路、采样电路、微控制器、PWM功率驱动电路和输出保护及功率驱动电路、充电回路和负载回路;
太阳能电池的正极、蓄电池的正极和负载的正极连在一起;太阳能电池的正极和负极之间接有具有防雷保护功能的瞬态电压抑制二极管TVS;蓄电池的负极通过两个并联保险盒FUSE1、FUSE2与逻辑公共地BGND连接;
充电回路包括MOSFET Q10、Q11、Q12、Q20、Q21和Q22,采用并联功率MOSFET阵列结构,Q10、Q11和Q12的源极共同接太阳能电池的负极,Q10、Q11和Q12的栅极共同接PWM功率驱动电路,Q10的漏极接Q20的漏极,Q11的漏极接Q21的漏极,Q22的漏极接Q22的漏极,Q20、Q21和Q22的源极接逻辑公共地BGND,Q20、Q21和Q22的栅极共同接PWM功率驱动电路;
负载回路包括MOSFET Q30、Q31和Q32,Q30、Q31和Q32的栅极共同接输出保护及功率驱动电路,Q30、Q31和Q32的漏极接负载的负极,Q30、Q31和Q32的源极接在一起;
微控制器通过所述输出保护及功率驱动电路控制Q30、Q31和Q32的导通与关断;充电电流采样电阻串联在Q20、Q21和Q22与逻辑公共地BGND之间;负载电流采样电阻串联在功率MOSFET Q30、Q31和Q32与逻辑公共地BGND之间;
电源转换电路产生两个电源电压+12VB和+5VB,+12VB输出连接PWM功率驱动电路和输出保护及功率驱动电路,+5VB输出连接微控制器;
采样电路采样太阳能电池电压信号、充电电流信号、蓄电池电压信号、负载电流信号、蓄电池温度信号,送到微控制器,产生PWM控制信号与负载开关信号;
微控制器通过PWM功率驱动电路控制充电回路功率MOSFET阵列的导通与关断,实现PWM充电模式;微控制器通过负载的输出保护及功率驱动电路控制负载回路的功率MOSFET阵列的导通与关断。
所述电源转换电路蓄电池正极经整流二极管D1与电压稳压芯片U1的输入端Vin连接,电压稳压芯片U1的输出端Vout与电压稳压芯片U2的输入端Vin连接;二极管D2的阴极与电压稳压芯片U1的输入端Vin连接,阳极与电压稳压芯片U1的输出端Vout连接;电容C1的正极与电压稳压芯片U1的输入端Vin连接,负极与系统逻辑地BGND连接;二极管D3的阴极与电压稳压芯片U1的输出端Vout连接,阳极与电压稳压芯片U1的调节端adj连接,电容C2的正极与二极管D3的阳极连接,负极与BGND连接;电阻R1与二极管D3并联,电阻R2与电容C2并联;
电压稳压芯片U2的输出端Vout为+12VB,与电压稳压芯片U3的输入端Vin连接,二极管D4的阴极与电压稳压芯片U2的输入端Vin连接,阳极与电压稳压芯片U2的输出端Vout连接;电容C3的正极与电压稳压芯片U2的输入端Vin连接,负极与系统逻辑地BGND连接;二极管D5的阴极与电压稳压芯片U2的输出端Vout连接,阳极与电压稳压芯片U2的调节端adj连接,电容C4的正极与二极管D5的阳极连接,负极与BGND连接;电阻R3与二极管D3并联,电阻R4与电容C2并联;电容C5的正极与电压稳压芯片U3的输入端Vin连接,负极与系统逻辑地BGND连接;电容C6的正极与电压稳压芯片U3的输出端Vout连接, 负极与系统逻辑地BGND连接,电容C7与电容C6并联;电压稳压芯片U3的输出端Vout为+5VB。
所述采样电路中,运算放大器U4A、U4B接成电压跟随器方式,太阳能电池的正极通过电阻R5、R6串联和运算放大器U4A的同相输入端连接,二极管D6阴极和运算放大器U4A的同相输入端连接,阳极和BGND连接,电阻R7、电容C8和二极管D6并联;运算放大器U4A的输出端经电阻R12、R13串联和BGND连接,电阻R12、R13的公共端和运算放大器U4C的同相输入端连接;太阳能电池的正极通过电阻R8、Radj、R9串联和运算放大器U4B的同相输入端连接,其中Radj是可调电阻,电阻R11一端和电阻R8、Radj的公共端连接,另一端和太阳能电池的负极SGND连接;二极管D7阴极和运算放大器U4B的同相输入端连接,阳极和BGND连接,电阻R10、电容C9和二极管D7并联;运算放大器U4B的输出端经电阻R14、R15串联和运算放大器U4C的输出端连接,电阻R14、R15的公共端和运算放大器U4C的反相输入端连接;运算放大器U4C的输出端信号PVvolt即为太阳能电池电压采用信号;上述电阻配置具有以下关系:R5=R8, R6=R9, R7=R10, R12=R14, R13=R15。
所述PWM驱动电路中,由微控制器产生的PWM信号,经过限流电阻R16和NPN型三极管Q10的基极连接,三极管Q10的发射极和BGND连接,三极管Q10的集电极经过电阻R17和PNP型三极管Q11的基极连接,同时三极管Q11的基极接上拉电阻R18和电源+12VB连接,三极管Q11的发射极和电源+12VB连接;三极管Q11的集电极经过二极管D8、电阻R19串联与NPN型三极管Q12的基极连接,三极管Q12的发射极和SGND连接,三极管Q12的集电极和NPN型三极管Q13的基极、PNP型三极管Q14的基极连接在一起,三极管Q13和Q14形成推挽电路结构,三极管Q14的集电极和SGND连接;三极管Q13的基极接上拉电阻R20和电源+12VS连接,三极管Q13的基电极和电源+12VS连接,三极管Q13的发射极和三极管Q14的发射极连接。
本发明的有益效果为:
1、 本发明采用共正极电路拓扑,电路结构更精简,驱动控制更简洁,系统整体功耗明显降低。
2、 采用最大功率点跟踪 (MPPT) 技术,智能调节太阳能电池工作点电压,使之始终运行于I-V特性曲线的最大功率点上,确保太阳能电池在不同环境条件下处于最大功率值输出状态,相对于一般太阳能充电控制器,能提高太阳能板能量转换效率(发电功率)达20-30%。
3、 采用先进的低功耗、高性能微控制器和自适应智能控制算法,实现“MPPT+SOC”双重智能优化充电控制。
4、 智能充电管理。当出现过放时,对蓄电池进行一次均充补偿维护。正常使用时,采用恒充(恒流/恒压)和浮充结合的充电方式,以充分延长蓄电池使用寿命;同时具有的高精度温度补偿功能,使充电控制更加精确。
5、 负载功率回路的开关器件采用低损耗、高效率、长寿命的并联功率MOSFE阵列,极大地降低了负载功率输出回路的功率损耗。
6、 功率回路采用了同步整流技术,降低了功率回路的电压降。
7、 由于系统电路采用优化的拓扑结构,充放电回路采用高效的并联功率MOSFET阵列结构,实现了大容量充放电功能。
附图说明
利用附图对本发明做进一步说明,但附图中的内容不构成对本发明的任何限制。
图1是本发明的太阳能充电控制电路的一个实施例的电路图。
图2是本发明的太阳能充电控制电路的一个实施例的电源转换电路的电路图。
图3是本发明的太阳能充电控制电路的一个实施例的采样电路的电路图。
图4是本发明的太阳能充电控制电路的一个实施例的PWM驱动电路的电路图。
具体实施方式
结合以下实施例对本发明作进一步说明。
本发明的太阳能充电控制电路如图1所示,用于控制太阳能电池向蓄电池充电并向负载供电,包括电源转换电路、采样电路、微控制器、PWM功率驱动电路和输出保护及功率驱动电路、充电回路和负载回路,以及保护电路、人机接口电路、LED及LCD显示模块等模块。
本充电控制器采用共正极电路拓扑,太阳能电池的正极、蓄电池的正极和负载的正极连在一起;太阳能电池的正极和负极之间接有具有防雷保护功能的瞬态电压抑制二极管TVS;蓄电池的负极通过两个并联保险盒FUSE1、FUSE2与逻辑公共地BGND连接;充电回路包括MOSFET Q10、Q11、Q12、Q20、Q21和Q22,采用并联功率MOSFET阵列结构,Q10、Q11和Q12的源极共同接太阳能电池的负极,Q10、Q11和Q12的栅极共同接PWM功率驱动电路,Q10的漏极接Q20的漏极,Q11的漏极接Q21的漏极,Q22的漏极接Q22的漏极,Q20、Q21和Q22的源极接逻辑公共地BGND,Q20、Q21和Q22的栅极共同接PWM功率驱动电路;负载回路包括MOSFET Q30、Q31和Q32,Q30、Q31和Q32的栅极共同接输出保护及功率驱动电路,Q30、Q31和Q32的漏极接负载的负极,Q30、Q31和Q32的源极接在一起。
Q10、Q11和Q12为充电主功率开关管,功率MOSFET Q20、Q21和Q22接成同步整流方式;负载回路采用并联功率MOSFET 结构,微控制器通过负载输出保护及功率驱动电路控制Q30、Q31和Q32的导通与关断,从而控制系统向负载安全供电;充电电流采样电阻串联在Q20、Q21和Q22与逻辑公共地BGND之间;负载电流采样电阻串联在功率MOSFET Q30、Q31和Q32与逻辑公共地BGND之间;电源转换电路产生两个电源电压+12VB和+5VB,+12VB输出连接PWM功率驱动电路和输出保护及功率驱动电路,+5VB输出连接微控制器,为微控制器、模拟电路和数字电路提供电源;采样电路采样太阳能电池电压信号、充电电流信号、蓄电池电压信号、负载电流信号、蓄电池温度信号,送到微控制器,产生PWM控制信号与负载开关信号;微控制器通过PWM功率驱动电路控制充电回路功率MOSFET阵列的导通与关断,实现PWM充电模式;微控制器通过负载的输出保护及功率驱动电路控制负载回路的功率MOSFET阵列的导通与关断,实现负载通断的手动控制及自动控制功能;微控制器连接按键接口电路,用户可以手动控制负载通路的开通与关断,并可以修改系统参数;微控制器连接LED和LCD显示模块,直观显示太阳能电池、蓄电池和负载的工作状态。
本发明的太阳能充电控制电路的一个实施例的电源转换电路如图2,采用多个电源稳压芯片多级降压结构,实现高电压的梯级降压稳压功能,对系统电路模块进行供电。电源稳压芯片U1、U2的型号是LM317, 电源稳压芯片U3的型号是AZ7805。蓄电池正极端(BAT+)经整流二极管D1与电压稳压芯片U1的输入端Vin连接,电压稳压芯片U1的输出端Vout与电压稳压芯片U2的输入端Vin连接。二极管D2的阴极与电压稳压芯片U1的输入端Vin连接,阳极与电压稳压芯片U1的输出端Vout连接;电容C1的正极与电压稳压芯片U1的输入端Vin连接,负极与系统逻辑地BGND连接;二极管D3的阴极与电压稳压芯片U1的输出端Vout连接,阳极与电压稳压芯片U1的调节端adj连接,电容C2的正极与二极管D3的阳极连接,负极与BGND连接。电阻R1与二极管D3并联,电阻R2与电容C2并联。
电压稳压芯片U2的输出端Vout为+12VB,与电压稳压芯片U3的输入端Vin连接,二极管D4的阴极与电压稳压芯片U2的输入端Vin连接,阳极与电压稳压芯片U2的输出端Vout连接;电容C3的正极与电压稳压芯片U2的输入端Vin连接,负极与系统逻辑地BGND连接;二极管D5的阴极与电压稳压芯片U2的输出端Vout连接,阳极与电压稳压芯片U2的调节端adj连接,电容C4的正极与二极管D5的阳极连接,负极与BGND连接;电阻R3与二极管D3并联,电阻R4与电容C2并联;电容C5的正极与电压稳压芯片U3的输入端Vin连接,负极与系统逻辑地BGND连接;电容C6的正极与电压稳压芯片U3的输出端Vout连接, 负极与系统逻辑地BGND连接,电容C7与电容C6并联;电压稳压芯片U3的输出端Vout为+5VB。
本发明的太阳能充电控制电路的一个实施例的采样电路如图3所示,采用差分放大电路,运算放大器U4A、U4B接成电压跟随器方式。太阳能电池的正极(PV+)通过电阻R5、R6串联和运算放大器U4A的同相输入端连接,二极管D6阴极和运算放大器U4A的同相输入端连接,阳极和BGND连接,电阻R7、电容C8和二极管D6并联;运算放大器U4A的输出端经电阻R12、R13串联和BGND连接,电阻R12、R13的公共端和运算放大器U4C的同相输入端连接。太阳能电池的正极(PV+)通过电阻R8、Radj、R9串联和运算放大器U4B的同相输入端连接,其中Radj是可调电阻,用于太阳能电池采样信号的调零,电阻R11一端和电阻R8、Radj的公共端连接,另一端和太阳能电池的负极SGND连接;二极管D7阴极和运算放大器U4B的同相输入端连接,阳极和BGND连接,电阻R10、电容C9和二极管D7并联;运算放大器U4B的输出端经电阻R14、R15串联和运算放大器U4C的输出端连接,电阻R14、R15的公共端和运算放大器U4C的反相输入端连接;运算放大器U4C的输出端信号PVvolt即为太阳能电池电压采用信号;上述电阻配置具有以下关系:R5=R8, R6=R9, R7=R10, R12=R14, R13=R15。
本发明的太阳能充电控制电路的一个实施例的PWM驱动电路如图4,由微控制器产生的PWM信号,经过限流电阻R16和NPN型三极管Q10的基极连接,三极管Q10的发射极和BGND连接,三极管Q10的集电极经过电阻R17和PNP型三极管Q11的基极连接,同时三极管Q11的基极接上拉电阻R18和电源+12VB连接,三极管Q11的发射极和电源+12VB连接;三极管Q11的集电极经过二极管D8、电阻R19串联与NPN型三极管Q12的基极连接,三极管Q12的发射极和SGND连接,三极管Q12的集电极和NPN型三极管Q13的基极、PNP型三极管Q14的基极连接在一起,三极管Q13和Q14形成推挽电路结构,三极管Q14的集电极和SGND连接;三极管Q13的基极接上拉电阻R20和电源+12VS连接,三极管Q13的基电极和电源+12VS连接,三极管Q13的发射极和三极管Q14的发射极连接,三极管Q13的发射极输出即为充电回路功率MOSFET阵列的PWM驱动信号。
最后应当说明的是,以上实施例仅用于说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
Claims (4)
1.一种太阳能充电控制电路,用于控制太阳能电池向蓄电池充电并向负载供电,其特征在于:包括电源转换电路、采样电路、微控制器、PWM功率驱动电路和输出保护及功率驱动电路、充电回路和负载回路;
太阳能电池的正极、蓄电池的正极和负载的正极连在一起;太阳能电池的正极和负极之间接有具有防雷保护功能的瞬态电压抑制二极管TVS;蓄电池的负极通过两个并联保险盒FUSE1、FUSE2与逻辑公共地BGND连接;
充电回路包括MOSFET Q10、Q11、Q12、Q20、Q21和Q22,采用并联功率MOSFET阵列结构,Q10、Q11和Q12的源极共同接太阳能电池的负极,Q10、Q11和Q12的栅极共同接PWM功率驱动电路,Q10的漏极接Q20的漏极,Q11的漏极接Q21的漏极,Q22的漏极接Q22的漏极,Q20、Q21和Q22的源极接逻辑公共地BGND,Q20、Q21和Q22的栅极共同接PWM功率驱动电路;
负载回路包括MOSFET Q30、Q31和Q32,Q30、Q31和Q32的栅极共同接输出保护及功率驱动电路,Q30、Q31和Q32的漏极接负载的负极,Q30、Q31和Q32的源极接在一起;
微控制器通过所述输出保护及功率驱动电路控制Q30、Q31和Q32的导通与关断;充电电流采样电阻串联在Q20、Q21和Q22与逻辑公共地BGND之间;负载电流采样电阻串联在功率MOSFET Q30、Q31和Q32与逻辑公共地BGND之间;
电源转换电路产生两个电源电压+12VB和+5VB,+12VB输出连接PWM功率驱动电路和输出保护及功率驱动电路,+5VB输出连接微控制器;
采样电路采样太阳能电池电压信号、充电电流信号、蓄电池电压信号、负载电流信号、蓄电池温度信号,送到微控制器,产生PWM控制信号与负载开关信号;
微控制器通过PWM功率驱动电路控制充电回路功率MOSFET阵列的导通与关断,实现PWM充电模式;微控制器通过负载的输出保护及功率驱动电路控制负载回路的功率MOSFET阵列的导通与关断。
2.根据权利要求1所述的太阳能充电控制电路,其特征在于:所述电源转换电路蓄电池正极经整流二极管D1与电压稳压芯片U1的输入端Vin连接,电压稳压芯片U1的输出端Vout与电压稳压芯片U2的输入端Vin连接;二极管D2的阴极与电压稳压芯片U1的输入端Vin连接,阳极与电压稳压芯片U1的输出端Vout连接;电容C1的正极与电压稳压芯片U1的输入端Vin连接,负极与系统逻辑地BGND连接;二极管D3的阴极与电压稳压芯片U1的输出端Vout连接,阳极与电压稳压芯片U1的调节端adj连接,电容C2的正极与二极管D3的阳极连接,负极与BGND连接;电阻R1与二极管D3并联,电阻R2与电容C2并联;
电压稳压芯片U2的输出端Vout为+12VB,与电压稳压芯片U3的输入端Vin连接,二极管D4的阴极与电压稳压芯片U2的输入端Vin连接,阳极与电压稳压芯片U2的输出端Vout连接;电容C3的正极与电压稳压芯片U2的输入端Vin连接,负极与系统逻辑地BGND连接;二极管D5的阴极与电压稳压芯片U2的输出端Vout连接,阳极与电压稳压芯片U2的调节端adj连接,电容C4的正极与二极管D5的阳极连接,负极与BGND连接;电阻R3与二极管D3并联,电阻R4与电容C2并联;电容C5的正极与电压稳压芯片U3的输入端Vin连接,负极与系统逻辑地BGND连接;电容C6的正极与电压稳压芯片U3的输出端Vout连接, 负极与系统逻辑地BGND连接,电容C7与电容C6并联;电压稳压芯片U3的输出端Vout为+5VB。
3.根据权利要求1所述的太阳能充电控制电路,其特征在于:所述采样电路中,运算放大器U4A、U4B接成电压跟随器方式,太阳能电池的正极通过电阻R5、R6串联和运算放大器U4A的同相输入端连接,二极管D6阴极和运算放大器U4A的同相输入端连接,阳极和BGND连接,电阻R7、电容C8和二极管D6并联;运算放大器U4A的输出端经电阻R12、R13串联和BGND连接,电阻R12、R13的公共端和运算放大器U4C的同相输入端连接;太阳能电池的正极通过电阻R8、Radj、R9串联和运算放大器U4B的同相输入端连接,其中Radj是可调电阻,电阻R11一端和电阻R8、Radj的公共端连接,另一端和太阳能电池的负极SGND连接;二极管D7阴极和运算放大器U4B的同相输入端连接,阳极和BGND连接,电阻R10、电容C9和二极管D7并联;运算放大器U4B的输出端经电阻R14、R15串联和运算放大器U4C的输出端连接,电阻R14、R15的公共端和运算放大器U4C的反相输入端连接;运算放大器U4C的输出端信号PVvolt即为太阳能电池电压采用信号;上述电阻配置具有以下关系:R5=R8, R6=R9, R7=R10, R12=R14, R13=R15。
4.根据权利要求1所述的太阳能充电控制电路,其特征在于:所述PWM驱动电路中,由微控制器产生的PWM信号,经过限流电阻R16和NPN型三极管Q10的基极连接,三极管Q10的发射极和BGND连接,三极管Q10的集电极经过电阻R17和PNP型三极管Q11的基极连接,同时三极管Q11的基极接上拉电阻R18和电源+12VB连接,三极管Q11的发射极和电源+12VB连接;三极管Q11的集电极经过二极管D8、电阻R19串联与NPN型三极管Q12的基极连接,三极管Q12的发射极和SGND连接,三极管Q12的集电极和NPN型三极管Q13的基极、PNP型三极管Q14的基极连接在一起,三极管Q13和Q14形成推挽电路结构,三极管Q14的集电极和SGND连接;三极管Q13的基极接上拉电阻R20和电源+12VS连接,三极管Q13的基电极和电源+12VS连接,三极管Q13的发射极和三极管Q14的发射极连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106088893A CN102035238B (zh) | 2010-12-28 | 2010-12-28 | 一种太阳能充电控制电路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106088893A CN102035238B (zh) | 2010-12-28 | 2010-12-28 | 一种太阳能充电控制电路 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102035238A true CN102035238A (zh) | 2011-04-27 |
CN102035238B CN102035238B (zh) | 2012-10-31 |
Family
ID=43887739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010106088893A Active CN102035238B (zh) | 2010-12-28 | 2010-12-28 | 一种太阳能充电控制电路 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102035238B (zh) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102255572A (zh) * | 2011-07-21 | 2011-11-23 | 优太太阳能科技(上海)有限公司 | 多子阵列可变阵太阳能节能控制系统 |
CN102832646A (zh) * | 2011-06-13 | 2012-12-19 | 周锡卫 | 一种具有实时单体蓄电池监测功能的智能调控蓄电系统与方法 |
CN102916475A (zh) * | 2012-10-23 | 2013-02-06 | 常州能动电子科技有限公司 | 太阳能光伏电源 |
CN103516035A (zh) * | 2013-10-24 | 2014-01-15 | 佛山市森炅电子科技有限公司 | 一种电源变压器及其控制方法 |
CN104009522A (zh) * | 2014-05-28 | 2014-08-27 | 宁波保税区绿光能源科技有限公司 | 一种低压小功率太阳能控制器 |
CN105262165A (zh) * | 2015-10-13 | 2016-01-20 | 深圳茂硕电子科技有限公司 | 一种太阳能充放电控制器 |
CN105356578A (zh) * | 2015-11-10 | 2016-02-24 | 嘉兴市瑞诚电子科技有限公司 | 一种光伏发电模块化控制器 |
CN105429586A (zh) * | 2015-12-09 | 2016-03-23 | 深圳硕日新能源科技有限公司 | 一种最大功率点追踪控制系统 |
CN105656425A (zh) * | 2016-03-08 | 2016-06-08 | 王冠林 | 基于太阳能优化器模块的阵列发电电路 |
CN106132026A (zh) * | 2016-08-16 | 2016-11-16 | 深圳英利新能源有限公司 | 新型太阳能路灯 |
CN106340914A (zh) * | 2015-07-10 | 2017-01-18 | 矢崎总业株式会社 | 馈电装置和电接线盒 |
CN106385066A (zh) * | 2016-09-23 | 2017-02-08 | 宇龙计算机通信科技(深圳)有限公司 | 电池的充放电电路及终端 |
CN106992591A (zh) * | 2017-06-01 | 2017-07-28 | 深圳源创智能照明有限公司 | 一种太阳能供电系统充放电检测与调节电路 |
CN107895945A (zh) * | 2017-12-28 | 2018-04-10 | 辽宁太阳能研究应用有限公司 | 一种电池板电位差补偿系统 |
CN108122908A (zh) * | 2016-11-30 | 2018-06-05 | 上海岭芯微电子有限公司 | 一种高耐压pnp型防反灌功率驱动器及其制造方法 |
WO2018103328A1 (zh) * | 2016-12-09 | 2018-06-14 | 深圳光启空间技术有限公司 | 一种无人机及其太阳能供电电路与方法 |
CN108879889A (zh) * | 2018-08-28 | 2018-11-23 | 广东工业大学 | 一种太阳能电池mppt充电控制装置及其充电系统 |
CN109494845A (zh) * | 2018-12-29 | 2019-03-19 | 东莞亿动智能科技有限公司 | 负载驱动控制系统 |
CN109587881A (zh) * | 2018-12-18 | 2019-04-05 | 深圳源创智能照明有限公司 | 一种多路mppt控制电路 |
CN110323819A (zh) * | 2019-06-18 | 2019-10-11 | 浙江浩腾电子科技股份有限公司 | 一种新型微光伏太阳能路灯 |
CN111049249A (zh) * | 2019-12-16 | 2020-04-21 | 南京雷石电子科技有限公司 | 一种太阳能充放电控制系统 |
CN111555427A (zh) * | 2020-06-05 | 2020-08-18 | 电子科技大学 | 一种双能量源输入的双源能量管理电路 |
CN113013974A (zh) * | 2021-03-12 | 2021-06-22 | 深圳市雷铭科技发展有限公司 | 离线按键太阳能发电系统 |
CN113066275A (zh) * | 2021-03-17 | 2021-07-02 | 深圳市雷铭科技发展有限公司 | 一种在线交互型太阳能发电控制装置 |
CN114977791A (zh) * | 2022-05-06 | 2022-08-30 | 湖北美格新能源科技有限公司 | 一种太阳能mppt降压装置 |
CN115547245A (zh) * | 2022-10-19 | 2022-12-30 | 深圳市万屏时代科技有限公司 | 一种led显示屏智能控制系统 |
WO2023184067A1 (zh) * | 2022-03-28 | 2023-10-05 | 东莞新能安科技有限公司 | 供电电路、电池管理系统、电池包和电子装置 |
CN117713198A (zh) * | 2023-12-08 | 2024-03-15 | 广州云酷智能设备有限公司 | 一种并网式逆变器控制核心模块及光伏换电柜 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI625020B (zh) * | 2017-07-26 | 2018-05-21 | 絜靜精微有限公司 | 混合型太陽能轉換系統 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05219663A (ja) * | 1992-01-31 | 1993-08-27 | Kyocera Corp | 太陽光発電システム |
CN2315703Y (zh) * | 1997-09-10 | 1999-04-21 | 牛振声 | 风力太阳能互补储备式供电器 |
CN2859900Y (zh) * | 2005-12-08 | 2007-01-17 | 新疆新能源股份有限公司 | 共负极连接的智能型太阳能充电控制器 |
CN201044372Y (zh) * | 2007-05-28 | 2008-04-02 | 骆国豪 | 太阳能充放电控制器 |
CN201904637U (zh) * | 2010-12-28 | 2011-07-20 | 广东易事特电源股份有限公司 | 一种太阳能充电控制电路 |
-
2010
- 2010-12-28 CN CN2010106088893A patent/CN102035238B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05219663A (ja) * | 1992-01-31 | 1993-08-27 | Kyocera Corp | 太陽光発電システム |
CN2315703Y (zh) * | 1997-09-10 | 1999-04-21 | 牛振声 | 风力太阳能互补储备式供电器 |
CN2859900Y (zh) * | 2005-12-08 | 2007-01-17 | 新疆新能源股份有限公司 | 共负极连接的智能型太阳能充电控制器 |
CN201044372Y (zh) * | 2007-05-28 | 2008-04-02 | 骆国豪 | 太阳能充放电控制器 |
CN201904637U (zh) * | 2010-12-28 | 2011-07-20 | 广东易事特电源股份有限公司 | 一种太阳能充电控制电路 |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102832646A (zh) * | 2011-06-13 | 2012-12-19 | 周锡卫 | 一种具有实时单体蓄电池监测功能的智能调控蓄电系统与方法 |
CN102832646B (zh) * | 2011-06-13 | 2015-09-23 | 周锡卫 | 一种具有实时单体蓄电池监测功能的智能调控蓄电系统 |
CN102255572A (zh) * | 2011-07-21 | 2011-11-23 | 优太太阳能科技(上海)有限公司 | 多子阵列可变阵太阳能节能控制系统 |
CN102255572B (zh) * | 2011-07-21 | 2013-10-30 | 优太太阳能科技(上海)有限公司 | 多子阵列可变阵太阳能节能控制系统 |
CN102916475A (zh) * | 2012-10-23 | 2013-02-06 | 常州能动电子科技有限公司 | 太阳能光伏电源 |
CN103516035A (zh) * | 2013-10-24 | 2014-01-15 | 佛山市森炅电子科技有限公司 | 一种电源变压器及其控制方法 |
CN104009522A (zh) * | 2014-05-28 | 2014-08-27 | 宁波保税区绿光能源科技有限公司 | 一种低压小功率太阳能控制器 |
CN106340914A (zh) * | 2015-07-10 | 2017-01-18 | 矢崎总业株式会社 | 馈电装置和电接线盒 |
CN105262165A (zh) * | 2015-10-13 | 2016-01-20 | 深圳茂硕电子科技有限公司 | 一种太阳能充放电控制器 |
CN105356578A (zh) * | 2015-11-10 | 2016-02-24 | 嘉兴市瑞诚电子科技有限公司 | 一种光伏发电模块化控制器 |
CN105429586A (zh) * | 2015-12-09 | 2016-03-23 | 深圳硕日新能源科技有限公司 | 一种最大功率点追踪控制系统 |
CN105429586B (zh) * | 2015-12-09 | 2017-09-12 | 深圳硕日新能源科技有限公司 | 一种最大功率点追踪控制系统 |
CN105656425A (zh) * | 2016-03-08 | 2016-06-08 | 王冠林 | 基于太阳能优化器模块的阵列发电电路 |
CN106132026A (zh) * | 2016-08-16 | 2016-11-16 | 深圳英利新能源有限公司 | 新型太阳能路灯 |
CN106132026B (zh) * | 2016-08-16 | 2018-01-26 | 深圳英利新能源有限公司 | 新型太阳能路灯 |
CN106385066A (zh) * | 2016-09-23 | 2017-02-08 | 宇龙计算机通信科技(深圳)有限公司 | 电池的充放电电路及终端 |
CN108122908A (zh) * | 2016-11-30 | 2018-06-05 | 上海岭芯微电子有限公司 | 一种高耐压pnp型防反灌功率驱动器及其制造方法 |
CN108616147A (zh) * | 2016-12-09 | 2018-10-02 | 深圳光启空间技术有限公司 | 一种无人机及其太阳能供电电路与方法 |
WO2018103328A1 (zh) * | 2016-12-09 | 2018-06-14 | 深圳光启空间技术有限公司 | 一种无人机及其太阳能供电电路与方法 |
CN108616147B (zh) * | 2016-12-09 | 2024-10-08 | 佛山顺德光启尖端装备有限公司 | 一种无人机及其太阳能供电电路与方法 |
CN106992591A (zh) * | 2017-06-01 | 2017-07-28 | 深圳源创智能照明有限公司 | 一种太阳能供电系统充放电检测与调节电路 |
WO2018218972A1 (zh) * | 2017-06-01 | 2018-12-06 | 深圳源创智能照明有限公司 | 一种太阳能供电系统及其充放电检测与调节电路 |
CN107895945A (zh) * | 2017-12-28 | 2018-04-10 | 辽宁太阳能研究应用有限公司 | 一种电池板电位差补偿系统 |
CN107895945B (zh) * | 2017-12-28 | 2024-01-30 | 辽宁太阳能研究应用有限公司 | 一种电池板电位差补偿系统 |
CN108879889A (zh) * | 2018-08-28 | 2018-11-23 | 广东工业大学 | 一种太阳能电池mppt充电控制装置及其充电系统 |
CN109587881A (zh) * | 2018-12-18 | 2019-04-05 | 深圳源创智能照明有限公司 | 一种多路mppt控制电路 |
CN109494845A (zh) * | 2018-12-29 | 2019-03-19 | 东莞亿动智能科技有限公司 | 负载驱动控制系统 |
CN110323819A (zh) * | 2019-06-18 | 2019-10-11 | 浙江浩腾电子科技股份有限公司 | 一种新型微光伏太阳能路灯 |
CN111049249B (zh) * | 2019-12-16 | 2021-05-14 | 南京雷石电子科技有限公司 | 一种太阳能充放电控制系统 |
CN111049249A (zh) * | 2019-12-16 | 2020-04-21 | 南京雷石电子科技有限公司 | 一种太阳能充放电控制系统 |
CN111555427B (zh) * | 2020-06-05 | 2023-05-26 | 电子科技大学 | 一种双能量源输入的双源能量管理电路 |
CN111555427A (zh) * | 2020-06-05 | 2020-08-18 | 电子科技大学 | 一种双能量源输入的双源能量管理电路 |
CN113013974A (zh) * | 2021-03-12 | 2021-06-22 | 深圳市雷铭科技发展有限公司 | 离线按键太阳能发电系统 |
CN113013974B (zh) * | 2021-03-12 | 2024-05-03 | 深圳市雷铭科技发展有限公司 | 离线按键太阳能发电系统 |
CN113066275A (zh) * | 2021-03-17 | 2021-07-02 | 深圳市雷铭科技发展有限公司 | 一种在线交互型太阳能发电控制装置 |
WO2023184067A1 (zh) * | 2022-03-28 | 2023-10-05 | 东莞新能安科技有限公司 | 供电电路、电池管理系统、电池包和电子装置 |
CN114977791A (zh) * | 2022-05-06 | 2022-08-30 | 湖北美格新能源科技有限公司 | 一种太阳能mppt降压装置 |
CN114977791B (zh) * | 2022-05-06 | 2024-02-09 | 湖北美格新能源科技有限公司 | 一种太阳能mppt降压装置 |
CN115547245A (zh) * | 2022-10-19 | 2022-12-30 | 深圳市万屏时代科技有限公司 | 一种led显示屏智能控制系统 |
CN117713198A (zh) * | 2023-12-08 | 2024-03-15 | 广州云酷智能设备有限公司 | 一种并网式逆变器控制核心模块及光伏换电柜 |
CN117713198B (zh) * | 2023-12-08 | 2024-05-24 | 广州云酷智能设备有限公司 | 一种并网式逆变器控制核心模块及光伏换电柜 |
Also Published As
Publication number | Publication date |
---|---|
CN102035238B (zh) | 2012-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102035238B (zh) | 一种太阳能充电控制电路 | |
CN201904637U (zh) | 一种太阳能充电控制电路 | |
CN2909664Y (zh) | 光伏电源高效快速均衡充电及放电控制装置 | |
CN203690977U (zh) | 太阳能充电控制系统 | |
CN104113128A (zh) | 一种太阳能风力电能的微型智能配电控制系统及方法 | |
CN103259059B (zh) | 一种液流电池初始充电方法及电路 | |
CN204206069U (zh) | 一种太阳能移动电源箱 | |
CN103219765B (zh) | 光伏充电控制器 | |
CN108233713B (zh) | 一种非隔离三端口直流开关变换器及其控制方法 | |
CN203632908U (zh) | 一种太阳能灯控制装置 | |
CN203632903U (zh) | 一种太阳能路灯控制器 | |
CN205141798U (zh) | 一种自动化光伏电源智能管理模块 | |
CN204156568U (zh) | 一种太阳能充电防倒灌控制器 | |
CN203690983U (zh) | 高效太阳能交通信号灯 | |
CN203071625U (zh) | 一种串联电池组的自放电一致性调整电路及电池包 | |
CN202750288U (zh) | 一种高效太阳能路灯控制器 | |
CN201674268U (zh) | 仓库通风设备与市电混合供电系统 | |
CN210577924U (zh) | 一种基于太阳能充电的充电电路及其系统 | |
CN209709738U (zh) | 一种基于多太阳能电池板和多充电电池的供电系统 | |
CN209767221U (zh) | 一种用超级电容储能的光伏系统 | |
CN203456932U (zh) | 一种多电源供电装置 | |
CN204179708U (zh) | 光伏建筑一体化的蓄电池充放电电路 | |
CN107401720A (zh) | 一种带有备用电源太阳能led路灯 | |
CN202587502U (zh) | 一种锂电池光伏led控制驱动系统 | |
CN205195385U (zh) | 风力发电控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |