WO2018103328A1 - 一种无人机及其太阳能供电电路与方法 - Google Patents

一种无人机及其太阳能供电电路与方法 Download PDF

Info

Publication number
WO2018103328A1
WO2018103328A1 PCT/CN2017/092049 CN2017092049W WO2018103328A1 WO 2018103328 A1 WO2018103328 A1 WO 2018103328A1 CN 2017092049 W CN2017092049 W CN 2017092049W WO 2018103328 A1 WO2018103328 A1 WO 2018103328A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
power
voltage
power source
load
Prior art date
Application number
PCT/CN2017/092049
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
倪飞
Original Assignee
深圳光启空间技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启空间技术有限公司 filed Critical 深圳光启空间技术有限公司
Publication of WO2018103328A1 publication Critical patent/WO2018103328A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to the field of power supply of a drone, and particularly to a drone and a solar power supply circuit and method thereof
  • the solar power supply circuit of the drone is as shown in FIG. 1 , which includes a photovoltaic control module, a battery, and a single pole double throw switch; wherein, the voltage output positive end of the photovoltaic control module and the single pole double throw
  • the first fixed end connection of the Shaoguan, the voltage output negative end of the photovoltaic control module is connected to the negative pole of the battery and the first end of the load, and the positive pole of the battery is connected with the second fixed end of the single pole double throwing, single pole double throw
  • the moving end of the switch is connected to the second end of the load; the power supply of the load is switched by a single-pole double-throw switch, and the power supply is a photovoltaic control module or a battery. Since the power supply of the single-pole, double-throw switch-switching load will be short-lived and the power supply will not be available, the drone system will not work stably.
  • the present invention provides a drone and a solar power supply circuit and method thereof, which aim to solve the problem that the unmanned aerial vehicle system existing in the prior art cannot work stably.
  • the present invention is implemented in this way, a solar power supply circuit
  • the first photovoltaic power source includes the photovoltaic control module and an original photovoltaic power source, the photovoltaic control module accesses an original photovoltaic power source, and performs maximum power tracking on the original photovoltaic power source;
  • the power input positive terminal and the power input negative terminal of the photovoltaic control module are connected to the original photovoltaic power source, and the positive output end of the power supply output of the photovoltaic control module is connected to the positive electrode of the battery component and the electrical input end of the load,
  • the negative end of the power output of the photovoltaic control module is connected to the negative pole of the battery component and the loop end of the load;
  • the battery component supplies power to the load.
  • the present invention also provides a drone that includes a load and the solar power supply circuit described above.
  • the first photovoltaic power source includes a photovoltaic control module and an original photovoltaic power source; and the first photovoltaic power source The power is greater than the load demand power consumption, the first photovoltaic power output by the photovoltaic control module supplies power to the load and/or charges the battery component; when the first photovoltaic power source is less than or equal to the load demand power consumption and is not zero, the photovoltaic control The first photovoltaic power output of the module and the battery component simultaneously supply power to the load; when the power of the first photovoltaic power supply is zero, the battery component supplies power to the load; therefore, when the power of the first photovoltaic power source is greater than the load demand, the power consumption is converted to Less than the power demand of the load, there is no hard power supply switching, which improves the stability of the UAV system.
  • FIG. 1 is a block diagram of a prior art solar power supply circuit
  • FIG. 2 is a block diagram of a solar power supply circuit according to an embodiment of the present invention.
  • 3 is another block structure diagram of a solar power supply circuit according to an embodiment of the present invention
  • 4 is a block diagram of another module of a solar power supply circuit according to an embodiment of the present invention
  • FIG. 5 is another block structure diagram of a solar power supply circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic circuit structural diagram of a solar power supply circuit according to an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a solar power supply method according to an embodiment of the present invention.
  • FIG. 2 shows a module structure of a solar power supply circuit according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • a solar power supply circuit 10 includes a battery component 01 and a photovoltaic control module 02.
  • the first photovoltaic power source includes a photovoltaic control module 02 and an original photovoltaic power source.
  • the photovoltaic control module 02 is connected to the original photovoltaic power source, and performs the original photovoltaic power supply. Maximum power tracking.
  • the positive electrode is VAA+, the negative electrode is VAA-
  • the positive terminal of the power supply output of the photovoltaic control module 02 is connected with the positive electrode of the battery assembly 01 and the electric input terminal of the load 05, and the negative terminal of the power supply output of the photovoltaic control module 02 and the negative electrode of the battery assembly 01 Connected to the loop end of load 05.
  • the photovoltaic current output by the photovoltaic control module flows into the load and/or the battery component, and the first photovoltaic power source output by the photovoltaic control module 02 Powering the load 05 and/or charging the battery component 01; when the power of the first photovoltaic power source is less than or equal to the load demand power consumption and not zero, the photovoltaic current output by the photovoltaic control module and the battery current output by the battery component are the same
  • the ⁇ flows into the load
  • the first photovoltaic power source outputted by the photovoltaic control module 02 and the battery component simultaneously supply power to the load 05; when the power of the first photovoltaic power source is zero, the battery component supplies power to the load 05.
  • the solar power supply circuit 10 of the drone further includes a power management module 03 and a voltage conversion module 04.
  • the power management module The first detecting end of 03 is connected to the electric input end of the load 05, the negative end of the power output of the photovoltaic control module 02 is connected to the second input end of the voltage conversion module 04, the output end of the voltage conversion module 04 and the negative electrode of the battery assembly 01, The second detecting end of the power management module 03 is connected to the loop end of the load 05, and the first control end of the power management module 0 3 is connected to the first input end of the voltage converting module 04.
  • the first photovoltaic power output by the photovoltaic control module 02 supplies power to the load 05 and/or the battery component 01 may be specifically: when the power management module 03 After determining that the voltage of the first photovoltaic power source is greater than the battery voltage and the battery voltage is less than the battery voltage threshold, the power management module 03 drives the voltage conversion module 04 to convert the first photovoltaic power source into the second photovoltaic power source to supply the load 05, and the same pair The battery pack 01 is charged. The power management module 03 drives the voltage conversion module 04 to convert the first photovoltaic power source into the second photovoltaic power source to supply the load 05, and simultaneously charge the battery component 01.
  • the power management module 03 is based on the first photovoltaic
  • the power driving voltage conversion module 04 is turned on and off according to the first switching duty ratio.
  • the voltage conversion module 04 generates a second photovoltaic power source according to the first photovoltaic power source to supply the load 05, and simultaneously charges the battery component 01.
  • the battery voltage threshold is a voltage value at which the battery reaches an overcharge.
  • the voltage conversion module 04 generates the second photovoltaic power source according to the first photovoltaic power source. Specifically: when the battery voltage is between the second battery voltage threshold and the battery voltage threshold, the voltage conversion module 04 generates a constant current according to the first photovoltaic power source. Photovoltaic current; When the battery voltage is less than the second battery voltage threshold, the voltage conversion module 04 generates a constant voltage second photovoltaic power source according to the first photovoltaic power source.
  • the second battery voltage threshold is less than the battery voltage threshold, and is a voltage threshold for the battery to be switched from constant voltage charging to constant current charging. The battery is subjected to constant voltage charging when the battery voltage is less than the second battery voltage threshold, and the battery is subjected to constant current charging when the battery voltage is between the second battery voltage threshold and the battery voltage threshold.
  • the first photovoltaic power source outputted by the photovoltaic control module 02 and the battery component simultaneously supply power to the load 05, which may be specifically:
  • the module 03 determines that the voltage of the first photovoltaic power source is less than the battery voltage and is not zero.
  • the power management module 03 drives the voltage conversion module 04 to convert the first photovoltaic power source into the third photovoltaic power source, and supplies power to the load 05 simultaneously with the battery component. .
  • the power management module 03 determines that the voltage of the first photovoltaic power source is less than the battery voltage and is not zero, the power management module 03 drives the voltage conversion module 04 to convert the first photovoltaic power source.
  • the power supply to the load 05 is as follows: The power management module 0 3 is based on the first photovoltaic power supply voltage conversion module 04, and the voltage conversion module 04 generates the third photovoltaic energy according to the first photovoltaic power source.
  • the power supply and the battery pack simultaneously supply power to the load 05.
  • the first photovoltaic power output by the photovoltaic control module 02 supplies power to the load 05, and/or the battery component 01 may be specifically: when the power management module If it is determined that the voltage of the first photovoltaic power source is greater than the battery voltage and the battery voltage is greater than or equal to the battery voltage threshold, the power management module 03 drives the voltage conversion module 04 to convert the first photovoltaic power source into the fourth photovoltaic power source to supply the load 05. The power management module 03 drives the voltage conversion module 04 to convert the first photovoltaic power source into the fourth photovoltaic power source to supply the load 05.
  • the power management module 03 according to the first photovoltaic power source driving voltage conversion module 04 follows the second pass.
  • the duty cycle is turned on and off, and the voltage conversion module 04 generates a fourth photovoltaic power source according to the first photovoltaic power source to supply the load 05.
  • the voltage of the fourth photovoltaic power source is equal to the battery voltage.
  • the battery component supplies power to the load 05.
  • the power management module 03 determines that the voltage of the first photovoltaic power source is zero, the power management module 03 controls the voltage conversion module 04. The output switching voltage is stopped, and the battery voltage supplies power to the load 05.
  • the data transmitting end of the photovoltaic control module 02 is connected to the data receiving end of the power management module 03, and the control signal receiving end of the photovoltaic control module 02 is connected to the control signal transmitting end of the power management module 03; the photovoltaic control module 02 further Sending the first photovoltaic power signal to the power management module 03, the power management module 03 generates a photovoltaic voltage control signal according to the voltage of the first photovoltaic power source and the first photovoltaic voltage threshold, and the photovoltaic control module 02 adjusts the first photovoltaic power source according to the photovoltaic voltage control signal. .
  • the photovoltaic control module 02 adjusts the first photovoltaic power source according to the photovoltaic voltage control signal, specifically: when the voltage of the first photovoltaic power source is greater than the first photovoltaic voltage threshold ⁇ , the photovoltaic control module 02 reduces the first photovoltaic power source according to the photovoltaic voltage control signal. Voltage; when the voltage of the first photovoltaic power source is less than the first photovoltaic voltage threshold ⁇ , the photovoltaic control module 02 increases the voltage of the first photovoltaic power source according to the photovoltaic voltage control signal.
  • the solar power supply circuit 10 further includes a shut-off module 06.
  • the first input end of the switch module 06 is connected to the second control end of the power management module 03, and the power output of the photovoltaic control module 02 is negative.
  • the terminal is connected to the second input end of the switch module 06, and the output end of the switch module 06 is connected to the second input end of the voltage conversion module 04.
  • the switch module 06 is used to control whether the converted voltage output by the voltage conversion module 04 is output.
  • the power management module 03 controls the opening or closing of the shut-off module 06 according to an instruction input by the user.
  • the command control of the received user input may be controlled by an instruction input by a user received by a button, or may be an instruction input by a user received through a communication link.
  • the solar power supply circuit 10 further includes a current detecting element 07; wherein, the first end of the current detecting element 07 is connected to the negative electrode of the battery assembly 01 and the second detecting end of the power management module 03, and the current is detected.
  • the second end of the component 07 is connected to the output of the voltage conversion module 04, the loop end of the load 05, and the third detection end of the power management module 03; when the power management module 03 determines that the voltage of the first photovoltaic power source is greater than the battery voltage and the battery voltage After being between the second battery voltage threshold and the battery voltage threshold, the power management module 03 detects the detection voltage across the current detecting element 07, and calculates the charging current of the battery component 01 according to the detection voltage and the characteristic parameter of the current detecting element 07; The module 03 drives the voltage conversion module 04 to voltage-convert the voltage of the first photovoltaic power source according to the voltage of the first photovoltaic power source and the charging current.
  • the power management module 03 drives the voltage conversion module 04 to perform voltage conversion on the voltage of the first photovoltaic power source according to the voltage of the first photovoltaic power source and the charging current.
  • the power management module 03 drives the voltage according to the voltage of the first photovoltaic power source and the charging current.
  • the conversion module 04 performs on-off according to the third switching duty ratio to perform voltage conversion on the voltage of the first photovoltaic power source.
  • FIG. 6 shows an example circuit structure of a solar power supply circuit 10 of a drone according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • the bypass module 06 is the first field effect transistor M1.
  • the gate, the drain and the source of the first field effect transistor M1 are respectively a first input terminal, a second input terminal and an output terminal of the switch module 06.
  • the current detecting element 07 is a resistor R1.
  • the voltage conversion module 04 is a second field effect transistor M2.
  • the gate, the drain and the source of the second field effect transistor M2 are respectively a first input terminal, an output terminal and a second input terminal of the voltage conversion module 04.
  • the battery assembly 01 includes one or more batteries.
  • the power management module 03 drives the first FET M1 according to the voltage of the first photovoltaic power source.
  • the first switching duty cycle is turned on and off, and the first field effect transistor M1 generates a second photovoltaic power source according to the first photovoltaic power source to supply the load 05, and simultaneously charges the battery component 01.
  • the power management module 03 activates the first field effect transistor M1 according to the first photovoltaic power source, and the first field effect transistor M1 generates the first The three photovoltaic power supplies and the battery components simultaneously supply power to the load 05.
  • the power management module 03 drives the first field effect transistor M1 according to the first photovoltaic power source according to the second The air ratio is turned on and off, and the first field effect transistor M1 generates a fourth photovoltaic power source according to the first photovoltaic power source to supply the load 05.
  • the power management module determines that the voltage of the first photovoltaic power source is zero, the first FET M1 stops outputting the voltage, and the battery voltage supplies power to the load 05.
  • the power management module 03 detects the detection voltage across the resistor R1, and according to the detection voltage and the resistance R1 The resistance value is used to calculate the charging current of the battery module; the power management module 03 drives the first field effect transistor M1 to perform on/off according to the third switching duty ratio according to the voltage and charging current of the first photovoltaic power source, so that the first field effect can be realized.
  • the tube M1 generates a constant current photovoltaic current according to the first photovoltaic power source to perform constant current charging of the battery assembly 01 and simultaneously supply the load 05.
  • the power management module 03 controls the turning on or off of the second FET M2 according to the received command input by the user.
  • the embodiment of the present invention further provides a drone that includes a load and the solar power supply circuit 10 described above.
  • the load can be a rotor motor and avionics.
  • the first photovoltaic power source includes a photovoltaic control module and an original photovoltaic power source by using a solar power supply circuit including a battery component and a photovoltaic control module among the drones, wherein The power of the first photovoltaic power source is greater than the power demand of the load, the first photovoltaic power output by the photovoltaic control module supplies power to the load and/or charges the battery component; when the first photovoltaic power source is less than or equal to the power demand of the load, and is not Zero, the first photovoltaic power output of the photovoltaic control module and the battery component simultaneously supply power to the load; when the power of the first photovoltaic power supply is zero, the battery voltage supplies power to the load Therefore, when the power of the first photovoltaic power source is greater than the power consumption of the load and the power consumption is less than the power demand of the load, there is no hard power supply switching, which improves the stability of the unmanned system.
  • FIG. 7 shows an implementation flow of the solar power supply method, which is described in detail as follows:
  • step 101 the power management module acquires the voltage of the first photovoltaic power source and the battery voltage.
  • step 102 the power management module determines whether the voltage of the first photovoltaic power source is greater than the battery voltage and the battery voltage is less than the battery voltage threshold.
  • step 103a if yes, the power management module drives the voltage conversion module to convert the first photovoltaic power source to the second photovoltaic power source to supply power to the load and simultaneously charge the battery component.
  • step 103b if not, the power management module determines whether the voltage of the first photovoltaic power source is less than or equal to the battery voltage and is not zero.
  • step 104a if yes, the power management module drives the voltage conversion module to convert the first photovoltaic power source into a third photovoltaic power source, and supplies power to the load simultaneously with the battery component.
  • step 104b if not, the power management module determines whether the voltage of the first photovoltaic power source is greater than the battery voltage and the battery voltage is greater than or equal to the battery voltage threshold.
  • step 105a if yes, the power management module drives the voltage conversion module to convert the first photovoltaic power source to the fourth photovoltaic power source to supply power to the load.
  • step 105b if not, the power management module determines whether the voltage of the first photovoltaic power source is zero.
  • step 106 if yes, the power management module controls the voltage conversion module to stop outputting the conversion voltage, and the battery voltage supplies power to the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种无人机及其太阳能供电电路与方法,所述电路包括电池组件(01)和光伏控制模块(02),第一光伏电源包括光伏控制模块(02)和原始光伏电源,当第一光伏电源的功率大于负载(05)需求功耗时,第一光伏电源对负载(05)进行供电和/或对电池组件(01)进行充电,当第一光伏电源的功率小于或等于负载(05)需求功耗且不为零时,第一光伏电源与电池组件(01)同时对负载(05)进行供电,当第一光伏电源的功率为零时,电池组件(01)对负载(05)进行供电。当第一光伏电源的功率大于负载(05)需求功耗转变为小于负载(05)需求功耗时,不存在硬性的供电电源切换,提高了无人机系统的稳定性。

Description

发明名称:一种无人机及其太阳能供电电路与方法
技术领域
[0001] 本发明属于无人机供电领域, 尤其涉及一种无人机及其太阳能供电电路与方法 背景技术
[0002] 在现有技术中, 无人机的太阳能供电电路如图 1所示, 其包括光伏控制模块、 电池以及单刀双掷幵关; 其中, 光伏控制模块的电压输出正极端与单刀双掷幵 关的第一不动端连接, 光伏控制模块的电压输出负极端与电池的负极和负载的 第一端连接, 电池的正极与单刀双掷幵关的第二不动端连接, 单刀双掷幵关的 动端与负载的第二端连接; 通过单刀双掷幵关切换负载的供电电源, 供电电源 为光伏控制模块或电池。 由于单刀双掷幵关切换负载的供电电源吋会出现短暂 的负载得不到供电的情况, 从而导致了无人机系统无法稳定工作。
技术问题
[0003] 因此, 现有技术存在因硬性进行供电电源切换而导致无人机系统无法稳定工作 的问题。
问题的解决方案
技术解决方案
[0004] 本发明提供了一种无人机及其太阳能供电电路与方法, 旨在解决现有技术所存 在的无人机系统无法稳定工作的问题。
[0005] 本发明是这样实现的, 一种太阳能供电电路,
[0006] 其包括电池组件和光伏控制模块, 第一光伏电源包括所述光伏控制模块和原始 光伏电源, 所述光伏控制模块接入原始光伏电源, 并对所述原始光伏电源进行 最大功率跟踪; 所述光伏控制模块的电源输入正极端和电源输入负极端接入所 述原始光伏电源, 所述光伏控制模块的电源输出正极端与所述电池组件的正极 和负载的电输入端连接, 所述光伏控制模块的电源输出负极端与所述电池组件 的负极和负载的回路端连接; [0007] 当所述第一光伏电源的功率大于所述负载需求功耗吋, 所述光伏控制模块输出 的光伏电流流入所述负载和 /或所述电池组件, 所述光伏控制模块输出的所述第 一光伏电源对所述负载进行供电和 /或对所述电池组件进行充电;
[0008] 当所述第一光伏电源的功率小于或等于所述负载需求功耗且不为零吋, 所述光 伏控制模块输出的光伏电流和所述电池组件输出的电池电流同吋流入所述负载 , 所述光伏控制模块输出的所述第一光伏电源与所述电池组件同吋对所述负载 进行供电;
[0009] 当所述第一光伏电源的功率为零吋, 所述电池组件对所述负载进行供电。
[0010] 本发明还提供一种无人机, 其包括负载和上述的太阳能供电电路。
发明的有益效果
有益效果
[0011] 本发明提供的技术方案带来的有益效果是: 从上述本发明可知, 由于包括电池 组件和光伏控制模块, 第一光伏电源包括光伏控制模块和原始光伏电源; 当第 一光伏电源的功率大于负载需求功耗吋, 光伏控制模块输出的第一光伏电源对 负载进行供电和 /或对电池组件进行充电; 当第一光伏电源小于或等于负载需求 功耗且不为零吋, 光伏控制模块输出的第一光伏电源与电池组件同吋对负载进 行供电; 当第一光伏电源的功率为零吋, 电池组件对负载进行供电; 故当第一 光伏电源的功率大于负载需求功耗转变为小于负载需求功耗吋, 不存在硬性的 供电电源切换, 提高了无人机系统的稳定性。
对附图的简要说明
附图说明
[0012] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要 使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一 些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其他的附图。
[0013] 图 1为现有技术太阳能供电电路的一种模块结构图;
[0014] 图 2为本发明实施例提供的太阳能供电电路的一种模块结构图;
[0015] 图 3为本发明实施例提供的太阳能供电电路的另一种模块结构图; [0016] 图 4为本发明实施例提供的太阳能供电电路的另一种模块结构图;
[0017] 图 5为本发明实施例提供的太阳能供电电路的另一种模块结构图;
[0018] 图 6为本发明实施例提供的太阳能供电电路的一种示例电路结构图;
[0019] 图 7是本发明实施例提供的一种太阳能供电方法的一示意流程图。
本发明的实施方式
[0020] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0021] 图 2示出了本发明实施例提供的太阳能供电电路的模块结构, 为了便于说明, 仅示出了与本发明实施例相关的部分, 详述如下:
[0022] 一种太阳能供电电路 10其包括电池组件 01和光伏控制模块 02, 第一光伏电源包 括光伏控制模块 02和原始光伏电源, 光伏控制模块 02接入原始光伏电源, 并对 原始光伏电源进行最大功率跟踪。
[0023] 其中, 光伏控制模块 02的电源输入正极端和电源输入负极端接入原始光伏电源
(正极为 VAA+, 负极为 VAA-) , 光伏控制模块 02的电源输出正极端与电池组 件 01的正极和负载 05的电输入端连接, 光伏控制模块 02的电源输出负极端与电 池组件 01的负极和负载 05的回路端连接。
[0024] 在上述太阳能供电电路 10中, 当第一光伏电源的功率大于负载需求功耗吋, 光 伏控制模块输出的光伏电流流入负载和 /或电池组件, 光伏控制模块 02输出的第 一光伏电源对负载 05进行供电和 /或对电池组件 01进行充电; 当第一光伏电源的 功率小于或等于负载需求功耗且不为零吋, 光伏控制模块输出的光伏电流和电 池组件输出的电池电流同吋流入负载, 光伏控制模块 02输出的第一光伏电源与 电池组件同吋对负载 05进行供电; 当第一光伏电源的功率为零吋, 电池组件对 负载 05进行供电。
[0025] 如图 3所示, 无人机的太阳能供电电路 10还包括电源管理模块 03和电压转换模 块 04。
[0026] 其中, 光伏控制模块 02的电源输出正极端与电池组件 01的正极、 电源管理模块 03的第一检测端和负载 05的电输入端连接, 光伏控制模块 02的电源输出负极端 与电压转换模块 04的第二输入端连接, 电压转换模块 04的输出端与电池组件 01 的负极、 电源管理模块 03的第二检测端和负载 05的回路端连接, 电源管理模块 0 3的第一控制端与电压转换模块 04的第一输入端连接。
[0027] 当第一光伏电源的功率大于负载需求功耗吋, 光伏控制模块 02输出的第一光伏 电源对负载 05进行供电和 /或对电池组件 01进行充电可以具体为: 当电源管理模 块 03判断第一光伏电源的电压大于电池电压且电池电压小于电池电压阈值吋, 电源管理模块 03驱动电压转换模块 04将第一光伏电源转换为第二光伏电源以对 负载 05进行供电, 并同吋对电池组件 01进行充电。 其中, 电源管理模块 03驱动 电压转换模块 04将第一光伏电源转换为第二光伏电源以对负载 05进行供电, 并 同吋对电池组件 01进行充电进一步具体为: 电源管理模块 03根据第一光伏电源 驱动电压转换模块 04按照第一幵关占空比实现通断, 电压转换模块 04根据第一 光伏电源生成第二光伏电源以对负载 05进行供电, 并同吋对电池组件 01进行充 电。
[0028] 其中, 电池电压阈值为电池达到过充吋的电压值。
[0029] 电压转换模块 04根据第一光伏电源生成第二光伏电源具体为: 当电池电压在第 二电池电压阈值和电池电压阈值之间吋, 电压转换模块 04根据第一光伏电源生 成恒流的光伏电流; 当电池电压小于第二电池电压阈值吋, 电压转换模块 04根 据第一光伏电源生成恒压的第二光伏电源。 其中, 第二电池电压阈值小于电池 电压阈值, 为电池由恒压充电转为恒流充电的电压阈值。 实现了当电池电压小 于第二电池电压阈值吋对电池进行恒压充电, 当电池电压在第二电池电压阈值 和电池电压阈值之间吋对电池进行恒流充电。
[0030] 当第一光伏电源的功率小于或等于负载需求功耗且不为零吋, 光伏控制模块 02 输出的第一光伏电源与电池组件同吋对负载 05进行供电可以具体为: 当电源管 理模块 03判断第一光伏电源的电压小于电池电压且不为零吋, 电源管理模块 03 驱动电压转换模块 04将第一光伏电源转换为第三光伏电源, 并与电池组件同吋 对负载 05进行供电。 其中, 当电源管理模块 03判断第一光伏电源的电压小于电 池电压且不为零吋, 电源管理模块 03驱动电压转换模块 04将第一光伏电源转换 为第三光伏电源, 并与电池组件同吋对负载 05进行供电具体为: 电源管理模块 0 3根据第一光伏电源幵启电压转换模块 04, 电压转换模块 04根据第一光伏电源生 成第三光伏电源与电池组件同吋对负载 05进行供电。
[0031] 当第一光伏电源的功率大于负载需求功耗吋, 光伏控制模块 02输出的第一光伏 电源对负载 05进行供电, 和 /或对电池组件 01进行充电可以具体为: 当电源管理 模块 03判断第一光伏电源的电压大于电池电压且电池电压大于或等于电池电压 阈值吋, 电源管理模块 03驱动电压转换模块 04将第一光伏电源转换为第四光伏 电源以对负载 05进行供电。 其中, 电源管理模块 03驱动电压转换模块 04将第一 光伏电源转换为第四光伏电源以对负载 05进行供电具体为: 电源管理模块 03根 据第一光伏电源驱动电压转换模块 04按照第二幵关占空比实现通断, 电压转换 模块 04根据第一光伏电源生成第四光伏电源以对负载 05进行供电。 其中, 第四 光伏电源的电压等于电池电压。 当第一光伏电源的电压大于电池电压且电池电 压大于或等于电池电压阈值吋, 实现了对负载 05供电的同吋避免了电池组件 01 的过充。
[0032] 当第一光伏电源的功率为零吋, 电池组件对负载 05进行供电可以具体为: 当电 源管理模块 03判断第一光伏电源的电压为零吋, 电源管理模块 03控制电压转换 模块 04停止输出转换电压, 电池电压对负载 05进行供电。
[0033] 此外, 光伏控制模块 02的数据发送端与电源管理模块 03的数据接收端连接, 光 伏控制模块 02的控制信号接收端与电源管理模块 03的控制信号发送端连接; 光 伏控制模块 02还将第一光伏电源信号发送至电源管理模块 03, 电源管理模块 03 根据第一光伏电源的电压和第一光伏电压阈值生成光伏电压控制信号, 光伏控 制模块 02根据光伏电压控制信号调节第一光伏电源。 其中, 光伏控制模块 02根 据光伏电压控制信号调节第一光伏电源具体为: 当第一光伏电源的电压大于第 一光伏电压阈值吋, 光伏控制模块 02根据光伏电压控制信号减小第一光伏电源 的电压; 当第一光伏电源的电压小于第一光伏电压阈值吋, 光伏控制模块 02根 据光伏电压控制信号增大第一光伏电源的电压。
[0034] 如图 4所示, 太阳能供电电路 10还包括幵关模块 06。 其中, 幵关模块 06的第一 输入端与电源管理模块 03的第二控制端连接, 光伏控制模块 02的电源输出负极 端与幵关模块 06的第二输入端连接, 幵关模块 06的输出端与电压转换模块 04的 第二输入端连接; 幵关模块 06用于控制电压转换模块 04所输出的转换电压是否 输出至光伏控制模块 02; 电源管理模块 03根据用户输入的指令控制幵关模块 06 的幵启或关闭。 其中, 接收到的用户输入的指令控制可以为通过按键接收到的 用户输入的指令控制, 也可以为通过通信链路接收到的用户输入的指令。
[0035] 如图 5所示, 太阳能供电电路 10还包括检流元件 07; 其中, 检流元件 07的第一 端与电池组件 01的负极和电源管理模块 03的第二检测端连接, 检流元件 07的第 二端与电压转换模块 04的输出端、 负载 05的回路端以及电源管理模块 03的第三 检测端连接; 当电源管理模块 03判断第一光伏电源的电压大于电池电压且电池 电压处于第二电池电压阈值与电池电压阈值之间吋, 电源管理模块 03检测检流 元件 07两端的检测电压, 并根据检测电压和检流元件 07的特征参数计算电池组 件 01的充电电流; 电源管理模块 03根据第一光伏电源的电压和充电电流驱动电 压转换模块 04对第一光伏电源的电压进行电压转换。 其中, 电源管理模块 03根 据第一光伏电源的电压和充电电流驱动电压转换模块 04对第一光伏电源的电压 进行电压转换具体为: 电源管理模块 03根据第一光伏电源的电压和充电电流驱 动电压转换模块 04按照第三幵关占空比实现通断, 以对第一光伏电源的电压进 行电压转换。
[0036] 图 6示出了本发明实施例提供的无人机的太阳能供电电路 10的一种示例电路结 构, 为了便于说明, 仅示出了与本发明实施例相关的部分, 详述如下:
[0037] 幵关模块 06为第一场效应管 Ml。 第一场效应管 Ml的栅极、 漏极以及源极分别 为为幵关模块 06的第一输入端、 第二输入端以及输出端。
[0038] 检流元件 07为电阻 Rl。
[0039] 电压转换模块 04为第二场效应管 M2。 第二场效应管 M2的栅极、 漏极以及源极 分别为为电压转换模块 04的第一输入端、 输出端以及第二输入端。
[0040] 电池组件 01包括一个或多个电芯。
[0041] 以下结合工作原理对图 6所示的太阳能供电电路 10作进一步说明:
[0042] 当电源管理模块判断第一光伏电源的电压大于电池电压且电池电压小于电池电 压阈值吋, 电源管理模块 03根据第一光伏电源的电压驱动第一场效应管 Ml按照 第一幵关占空比实现通断, 第一场效应管 Ml根据第一光伏电源生成第二光伏电 源以对负载 05进行供电, 并同吋对电池组件 01进行充电。
[0043] 当电源管理模块判断第一光伏电源的电压小于电池电压吋, 电源管理模块 03根 据第一光伏电源幵启第一场效应管 Ml, 第一场效应管 Ml根据第一光伏电源生成 第三光伏电源与电池组件同吋对负载 05进行供电。
[0044] 当电源管理模块判断第一光伏电源的电压大于电池电压且电池电压大于或等于 电池电压阈值吋, 电源管理模块 03根据第一光伏电源驱动第一场效应管 Ml按照 第二幵关占空比实现通断, 第一场效应管 Ml根据第一光伏电源生成第四光伏电 源以对负载 05进行供电。
[0045] 当电源管理模块判断第一光伏电源的电压为零吋, 第一场效应管 Ml停止输出 电压, 电池电压对负载 05进行供电。
[0046] 当第一光伏电源的电压大于电池电压且电池电压处于第二电池电压阈值与电池 电压阈值之间吋, 电源管理模块 03检测电阻 R1两端的检测电压, 并根据检测电 压和电阻 R1的阻值计算电池模组的充电电流; 电源管理模块 03根据第一光伏电 源的电压和充电电流驱动第一场效应管 Ml按照第三幵关占空比实现通断, 故可 以实现第一场效应管 Ml根据第一光伏电源生成恒流的光伏电流以对电池组件 01 进行恒流充电并同吋对负载 05进行供电。
[0047] 电源管理模块 03根据接收到的用户输入的指令控制第二场效应管 M2的幵启或 关闭。
[0048] 基于上述太阳能供电电路 10提高了无人机系统的稳定性, 因此本发明实施例还 提供一种无人机, 其包括负载和上述的太阳能供电电路 10。 其中, 负载可以为 旋翼电机和航电设备。
[0049] 综上所述, 在本发明实施例中, 通过在无人机当中采用包括电池组件和光伏控 制模块的太阳能供电电路, 第一光伏电源包括光伏控制模块和原始光伏电源, 其中, 当第一光伏电源的功率大于负载需求功耗吋, 光伏控制模块输出的第一 光伏电源对负载进行供电和 /或对电池组件进行充电; 当第一光伏电源小于或等 于负载需求功耗且不为零吋, 光伏控制模块输出的第一光伏电源与电池组件同 吋对负载进行供电; 当第一光伏电源的功率为零吋, 电池电压对负载进行供电 ; 故当第一光伏电源的功率大于负载需求功耗转变为小于负载需求功耗吋, 不 存在硬性的供电电源切换, 提高了无人机系统的稳定性。
[0050] 基于上述太阳能供电电路 10, 本发明实施例还提供一种太阳能供电方法, 图 7 示出了该太阳能供电方法的实现流程, 详述如下:
[0051] 在步骤 101中, 电源管理模块获取第一光伏电源的电压和电池电压。
[0052] 在步骤 102中, 电源管理模块判断第一光伏电源的电压是否大于电池电压且电 池电压是否小于电池电压阈值。
[0053] 在步骤 103a中, 若是, 则电源管理模块驱动电压转换模块将第一光伏电源转换 为第二光伏电源以对负载进行供电, 并同吋对电池组件进行充电。
[0054] 在步骤 103b中, 若否, 则电源管理模块判断第一光伏电源的电压是否小于或等 于电池电压且不为零。
[0055] 在步骤 104a中, 若是, 则电源管理模块驱动电压转换模块将第一光伏电源转换 为第三光伏电源, 并与电池组件同吋对负载进行供电。
[0056] 在步骤 104b中, 若否, 则电源管理模块判断第一光伏电源的电压是否大于电池 电压且电池电压是否大于或等于电池电压阈值。
[0057] 在步骤 105a中, 若是, 则电源管理模块驱动电压转换模块将第一光伏电源转换 为第四光伏电源以对负载进行供电。
[0058] 在步骤 105b中, 若否, 则电源管理模块判断第一光伏电源的电压是否为零。
[0059] 在步骤 106中, 若是, 则电源管理模块控制电压转换模块停止输出转换电压, 电池电压对负载进行供电。
[0060] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种太阳能供电电路, 其包括电池组件和光伏控制模块, 第一光伏电 源包括所述光伏控制模块和原始光伏电源, 所述光伏控制模块接入所 述原始光伏电源, 并对所述原始光伏电源进行最大功率跟踪; 其特征 在于, 所述光伏控制模块的电源输入正极端和电源输入负极端接入所 述原始光伏电源, 所述光伏控制模块的电源输出正极端与所述电池组 件的正极和负载的电输入端连接, 所述光伏控制模块的电源输出负极 端与所述电池组件的负极和负载的回路端连接; 当所述第一光伏电源的功率大于所述负载需求功耗吋, 所述光伏控制 模块输出的光伏电流流入所述负载和 /或所述电池组件, 所述光伏控 制模块输出的所述第一光伏电源对所述负载进行供电和 /或对所述电 池组件进行充电;
当所述第一光伏电源的功率小于或等于所述负载需求功耗且不为零吋
, 所述光伏控制模块输出的光伏电流和所述电池组件输出的电池电流 同吋流入所述负载, 所述光伏控制模块输出的所述第一光伏电源与所 述电池组件同吋对所述负载进行供电; 当所述第一光伏电源的功率为零吋, 所述电池组件对所述负载进行供 电。
[权利要求 2] 如权利要求 1所述的太阳能供电电路, 其特征在于, 所述太阳能供电 电路还包括电源管理模块和电压转换模块;
所述光伏控制模块的电源输出正极端与所述电池组件的正极、 所述电 源管理模块的第一检测端和负载的电输入端连接, 所述光伏控制模块 的电源输出负极端与所述电压转换模块的第二输入端连接, 所述电压 转换模块的输出端与所述电池组件的负极、 所述电源管理模块的第二 检测端和负载的回路端连接, 所述电源管理模块的第一控制端与所述 电压转换模块的第一输入端连接;
当所述第一光伏电源的功率大于所述负载需求功耗吋, 所述光伏控制 模块输出的所述第一光伏电源对所述负载进行供电和 /或对所述电池 组件进行充电具体为:
当所述电源管理模块判断所述第一光伏电源的电压大于所述电池电压 且所述电池电压小于电池电压阈值吋, 所述电源管理模块驱动所述电 压转换模块将所述第一光伏电源转换为第二光伏电源以对所述负载进 行供电, 并同吋对所述电池组件进行充电;
所述当所述第一光伏电源的功率小于或等于所述负载需求功耗且不为 零吋, 所述光伏控制模块输出的所述第一光伏电源与所述电池组件同 吋对所述负载进行供电具体为:
当所述电源管理模块判断所述第一光伏电源的电压小于所述电池电压 且不为零吋, 所述电源管理模块驱动所述电压转换模块将所述第一光 伏电源转换为第三光伏电源, 并与所述电池组件同吋对所述负载进行 供电;
所述当所述第一光伏电源的功率大于所述负载需求功耗吋, 所述光伏 控制模块输出的所述第一光伏电源对所述负载进行供电和 /或对所述 电池组件进行充电具体为:
当所述电源管理模块判断所述第一光伏电源的电压大于所述电池电压 且所述电池电压大于或等于电池电压阈值吋, 所述电源管理模块驱动 所述电压转换模块将所述第一光伏电源转换为第四光伏电源以对所述 负载进行供电;
所述当所述第一光伏电源的功率为零吋, 所述电池组件对所述负载进 行供电具体为:
当所述电源管理模块判断所述第一光伏电源的电压为零吋, 所述电源 管理模块控制所述电压转换模块停止输出转换电压, 所述电池组件对 所述负载进行供电。
[权利要求 3] 如权利要求 1所述的太阳能供电电路, 其特征在于, 所述太阳能供电 电路还包括幵关模块;
所述幵关模块的第一输入端与所述电源管理模块的第二控制端连接, 所述光伏控制模块的电源输出负极端与所述幵关模块的第二输入端连 接, 所述幵关模块的输出端与所述电压转换模块的第二输入端连接; 所述幵关模块用于控制所述电压转换模块所输出的转换电压是否输出 至所述光伏控制模块; 所述电源管理模块根据用户输入的指令控制所 述幵关模块的幵启或关闭。
[权利要求 4] 如权利要求 3所述的太阳能供电电路, 其特征在于, 所述幵关模块为 第一场效应管;
所述第一场效应管的栅极、 漏极以及源极分别为所述幵关模块的第一 输入端、 第二输入端以及输出端。
[权利要求 5] 如权利要求 1所述的太阳能供电电路, 其特征在于, 所述太阳能供电 电路还包括检流元件;
所述检流元件的第一端与所述电池组件的负极和所述电源管理模块的 第二检测端连接, 所述检流元件的第二端与所述电压转换模块的输出 端、 所述负载的回路端以及所述电源管理模块的第三检测端连接; 当所述电源管理模块判断所述第一光伏电源的电压大于所述电池电压 且所述电池电压处于第二电池电压阈值与电池电压阈值之间吋, 所述 电源管理模块检测所述检流元件两端的检测电压, 并根据所述检测电 压和所述检流元件的特征参数计算所述电池组件的充电电流; 所述电 源管理模块根据所述第一光伏电源的电压和所述充电电流驱动所述电 压转换模块对所述第一光伏电源的电压进行电压转换。
[权利要求 6] 如权利要求 5所述的太阳能供电电路, 其特征在于, 所述检流元件为 电阻。
[权利要求 7] 如权利要求 1所述的太阳能供电电路, 其特征在于, 所述光伏控制模 块的数据发送端与所述电源管理模块的数据接收端连接, 所述光伏控 制模块的控制信号接收端与所述电源管理模块的控制信号发送端连接 所述光伏控制模块还将第一光伏电源信号发送至所述电源管理模块, 所述电源管理模块根据所述第一光伏电源的电压和第一光伏电压阈值 生成光伏电压控制信号, 所述光伏控制模块根据光伏电压控制信号调 节所述第一光伏电源。
[权利要求 8] 如权利要求 1所述的太阳能供电电路, 其特征在于, 所述电压转换模 块为第二场效应管;
所述第二场效应管的栅极、 源极以及漏极分别为所述电压转换模块的 第一输入端、 第二输入端以及输出端。
[权利要求 9] 如权利要求 1所述的太阳能供电电路, 其特征在于, 所述电池组件包 括一个或多个电芯。
[权利要求 10] —种太阳能供电方法, 其特征在于, 所述太阳能供电方法包括: 电源管理模块获取第一光伏电源的电压和电池电压;
所述电源管理模块判断所述第一光伏电源的电压是否大于所述电池电 压且所述电池电压是否小于电池电压阈值;
若是, 则所述电源管理模块驱动电压转换模块将所述第一光伏电源转 换为第二光伏电源以对负载进行供电, 并同吋对电池组件进行充电; 若否, 则所述电源管理模块判断所述第一光伏电源的电压是否小于或 等于所述电池电压且不为零;
若是, 则所述电源管理模块驱动所述电压转换模块将所述第一光伏电 源转换为第三光伏电源, 并与所述电池电压同吋对所述负载进行供电 若否, 则所述电源管理模块判断所述第一光伏电源的电压是否大于所 述电池电压且所述电池电压是否大于或等于电池电压阈值; 若是, 则所述电源管理模块驱动所述电压转换模块将所述第一光伏电 源转换为第四光伏电源以对所述负载进行供电; 若否, 则所述电源管理模块判断所述第一光伏电源的电压是否为零; 若是, 则所述电源管理模块控制所述电压转换模块停止输出转换电压 , 所述电池电压对所述负载进行供电。
[权利要求 11] 一种无人机, 包括负载, 其特征在于, 所述无人机还包括如权利要求
1至 9任一项所述的太阳能供电电路。
PCT/CN2017/092049 2016-12-09 2017-07-06 一种无人机及其太阳能供电电路与方法 WO2018103328A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611128293.7 2016-12-09
CN201611128293.7A CN108616147A (zh) 2016-12-09 2016-12-09 一种无人机及其太阳能供电电路与方法

Publications (1)

Publication Number Publication Date
WO2018103328A1 true WO2018103328A1 (zh) 2018-06-14

Family

ID=62490705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092049 WO2018103328A1 (zh) 2016-12-09 2017-07-06 一种无人机及其太阳能供电电路与方法

Country Status (2)

Country Link
CN (1) CN108616147A (zh)
WO (1) WO2018103328A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111817666B (zh) * 2020-08-11 2024-05-14 丰郅(上海)新能源科技有限公司 应用于光伏组件智能管理的电路及其启动方法
CN114030620B (zh) * 2021-11-15 2023-08-08 长沙航空职业技术学院 一种太阳能无人机电源管理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505565A (zh) * 2009-03-11 2009-08-12 华中科技大学 独立式光伏LED照明专用控制器SoC芯片
CN102035238A (zh) * 2010-12-28 2011-04-27 广东易事特电源股份有限公司 一种太阳能充电控制电路
US20110193515A1 (en) * 2010-02-05 2011-08-11 National Chiao Tung University Solar power management system
CN102638195A (zh) * 2012-03-31 2012-08-15 东北大学 一种太阳能发电系统控制装置及方法
CN105905305A (zh) * 2016-04-22 2016-08-31 中国计量大学 一种太阳能无人机能源管理系统
CN206432732U (zh) * 2016-12-09 2017-08-22 深圳光启空间技术有限公司 一种无人机及其太阳能供电电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599721B (zh) * 2009-07-09 2012-05-23 哈尔滨工业大学深圳研究生院 太阳能发电系统及其控制方法
CN101826741B (zh) * 2010-03-11 2012-07-04 哈尔滨工业大学深圳研究生院 太阳能电池充电系统及控制方法
CN102856969B (zh) * 2012-09-25 2015-08-05 宁波南方新能源科技有限公司 一种太阳能光伏发电系统
CN103441566B (zh) * 2013-09-12 2016-07-06 重庆大学 一种市电、光伏电池和储能电池协同供电系统及方法
CN104092278B (zh) * 2014-07-11 2017-05-17 安徽启光能源科技研究院有限公司 应用于光伏储能系统的能量管理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505565A (zh) * 2009-03-11 2009-08-12 华中科技大学 独立式光伏LED照明专用控制器SoC芯片
US20110193515A1 (en) * 2010-02-05 2011-08-11 National Chiao Tung University Solar power management system
CN102035238A (zh) * 2010-12-28 2011-04-27 广东易事特电源股份有限公司 一种太阳能充电控制电路
CN102638195A (zh) * 2012-03-31 2012-08-15 东北大学 一种太阳能发电系统控制装置及方法
CN105905305A (zh) * 2016-04-22 2016-08-31 中国计量大学 一种太阳能无人机能源管理系统
CN206432732U (zh) * 2016-12-09 2017-08-22 深圳光启空间技术有限公司 一种无人机及其太阳能供电电路

Also Published As

Publication number Publication date
CN108616147A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2023040630A1 (zh) 充放电电路和电子设备
EP2858210B1 (en) Device for activating multi-bms
WO2019179126A1 (zh) 电池管理装置及无人机
US10637269B2 (en) Service battery charging management device and method for power supply of recreational vehicle
JP2005278395A5 (zh)
CN102522798B (zh) 一种电池组模块之间的主动均衡电路
KR102200551B1 (ko) 배터리 팩
CN101800343A (zh) 电子设备、二次电池及控制二次电池的充电和放电的方法
US20210066930A1 (en) Power System
TWM451737U (zh) 避免電池浮充之控制系統及供電系統
WO2021036946A1 (zh) 一种电池充电控制电路及电子设备
WO2018103328A1 (zh) 一种无人机及其太阳能供电电路与方法
CN101976823B (zh) 电池欠压保护电路
EP4346076A1 (en) Voltage conversion apparatus, base station power supply system, and control method
CN204465030U (zh) 移动电源及其充放电系统
WO2021258366A1 (zh) 控制电路、电池管理系统及电化学装置
WO2021258367A1 (zh) 控制电路、电池管理系统及电化学装置
US9276431B2 (en) Power management for electric vehicles
TW201422463A (zh) 電動車輛的電能管理裝置和方法
KR102244124B1 (ko) 스위칭 디바이스를 제어하기 위한 시스템
CN206432732U (zh) 一种无人机及其太阳能供电电路
JP2011045183A (ja) 充放電装置
CN211880114U (zh) 一种锂电池供电的节能电路及省电的智能穿戴设备
WO2020124559A1 (zh) 充电补偿电路及电子装置
CN109586393B (zh) 双电池充电装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17877939

Country of ref document: EP

Kind code of ref document: A1