WO2020124559A1 - 充电补偿电路及电子装置 - Google Patents

充电补偿电路及电子装置 Download PDF

Info

Publication number
WO2020124559A1
WO2020124559A1 PCT/CN2018/122692 CN2018122692W WO2020124559A1 WO 2020124559 A1 WO2020124559 A1 WO 2020124559A1 CN 2018122692 W CN2018122692 W CN 2018122692W WO 2020124559 A1 WO2020124559 A1 WO 2020124559A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
charging
battery
switch
compensation circuit
Prior art date
Application number
PCT/CN2018/122692
Other languages
English (en)
French (fr)
Inventor
郭继龙
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2018/122692 priority Critical patent/WO2020124559A1/zh
Priority to CN201880095888.8A priority patent/CN112889197B/zh
Publication of WO2020124559A1 publication Critical patent/WO2020124559A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of charging technology, in particular to a charging compensation circuit and an electronic device.
  • the batteries of existing consumer electronic products are developing toward multi-core, that is, two or more cells are connected in series and then packaged into a battery for use.
  • multi-core that is, two or more cells are connected in series and then packaged into a battery for use.
  • the embodiments of the present application disclose a charging compensation circuit and an electronic device to solve the above problems.
  • An embodiment of the present application discloses a charging compensation circuit, which is used for charging compensation of a first battery unit and a second battery unit connected in series of a battery pack; the charging compensation circuit includes:
  • the first switch unit in the open state by default is connected to the second battery unit, and when the first switch unit is in the closed state, the first switch unit and the second battery unit form a first charge A compensation circuit, the first charging compensation circuit is used for compensating and charging the second battery unit when the second battery unit is in a relatively unsaturated state;
  • the second switch unit which is in an open state by default, is connected to the first battery unit, and when the second switch unit is in a closed state, the second switch unit and the first battery unit form a second A charging compensation circuit, the second charging compensation circuit is used for compensating and charging the first battery unit when the first battery unit is in a relatively unsaturated state;
  • the control unit is electrically connected to the battery pack and used to obtain the charging current of the battery pack; the control unit is also electrically connected to the first switch unit and the second switch unit, respectively, and closes the first Acquiring the charging current of the second battery unit when switching the unit, and acquiring the charging current of the first battery unit when closing the second switching unit;
  • the control unit controls one of the first switch unit or the second switch unit to close to detect the first battery unit or the second One of the battery cells is charged in a relatively unsaturated state, and when it is detected that the first battery cell is in a charged relatively unsaturated state, the second switch unit is controlled to continue to be closed, and the second charging compensation circuit is used to The first battery unit in a relatively unsaturated state performs charge compensation; or when the second battery unit is in a relatively unsaturated state, the first switching unit is controlled to continue to close and pass the first charging compensation circuit Charge compensation is performed on the second battery unit in a relatively unsaturated state.
  • An embodiment of the present application discloses an electronic device, including a battery pack, and the battery pack includes a first battery cell and a second battery cell connected in series.
  • the electronic device further includes a charge compensation circuit as described above; the charge compensation circuit is electrically connected to the battery pack, and performs the first battery unit or the second battery unit during the charging of the battery pack Compensation charging.
  • the control unit controls one of the first switch unit or the second switch unit to close to detect Charging of one of the two battery cells is relatively unsaturated, and when it is detected that a certain battery cell is in a relatively unsaturated state of charging, the control unit may control the first switch unit or the second switch
  • the closing of the cell compensates and charges the battery cell in a relatively unsaturated state, so that the two battery cells connected in series are fully charged, so that the two battery cells connected in series are fully charged, which improves The charging consistency of the two battery cells connected in series improves the performance of the battery pack.
  • FIG. 1 is a schematic block diagram of a charging compensation circuit provided by an embodiment of the present application.
  • FIG. 2 is a circuit schematic diagram of a charging compensation circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic block diagram of a charging compensation circuit 100 in an embodiment of the present application.
  • the charging compensation circuit 100 is used to compensate the battery pack 900.
  • the battery pack 900 includes two battery cells 901 connected in series and protection units 902 electrically connected to the two battery cells 901 respectively.
  • the two battery cells 901 connected in series include a first battery cell 901a and a second battery cell 901b.
  • the protection unit 902 may be a protection circuit board for protecting the battery unit 901 to prevent the two battery units 901 from being overcharged or overdischarged.
  • the charging compensation circuit 100 performs charging compensation on the battery pack 900, so that the two battery cells 901 connected in series can be fully charged, thereby improving the output performance of the battery pack 900 electric energy. Wherein, after the two battery units 901 are connected in series, the output voltage of the battery pack 900 can be increased.
  • the number of battery cells 901 included in the battery pack 900 is also different. For example, if a higher voltage output from the battery pack 900 is required, a larger number of battery cells 901 may be connected in series; When the battery pack 900 needs to output a lower voltage, a smaller number of battery cells 901 may be connected in series. That is, in this embodiment, the battery pack 900 includes two battery cells 901 connected in series, while in other embodiments, the battery pack 900 may include a plurality of two battery cells 901 connected in series. Be limited.
  • each battery unit 901 may include one battery cell, or may be composed of a plurality of battery cells connected in parallel, so that the output current of each battery cell 901 can be increased.
  • the battery cell refers to a single electrochemical cell containing a positive electrode and a negative electrode. Generally, it is not directly used, but one battery cell or a plurality of battery cells and a protective plate are electrically connected and packaged to form a battery pack before use.
  • the battery cell is preferably a lithium-ion battery cell that is lightweight, energy-saving, and environmentally friendly.
  • each battery unit 901 has an imbalance in power. This imbalance will increase with the life cycle of the battery pack 900. The increase becomes larger and larger, which will seriously affect the service life of the battery pack 900. Therefore, in order to extend the service life of the battery pack 900, the lithium ion battery needs to be charged for compensation during the charging process, that is, by performing charge equalization control on each battery unit 901 of the battery pack 900, so that the power of each battery unit 901 is as much as possible the same.
  • the charging compensation circuit 100 includes a first switching unit 20, a second switching unit 30, and a control unit 40.
  • the first switch unit 20 is in an open state by default, and is connected to the second battery unit 901b.
  • the first switch unit 20 and the second The battery cell shape 901b forms a first charging compensation circuit, and the first charging compensation circuit is used for compensating and charging the second battery cell 901b when the second battery cell 901b is in a relatively unsaturated state.
  • the second switch unit 30 is in an open state by default, and is connected to the first battery unit 901a.
  • the second switch unit 30 and the second power unit A cell unit 901a forms a second charging compensation circuit, and the second charging compensation circuit is used for compensating and charging the first battery unit 901a when the first battery unit 901a is in a relatively unsaturated state.
  • the control unit 40 is electrically connected to the battery pack 900 and used to obtain the charging current of the battery pack 900.
  • the control unit 40 is also electrically connected to the first switch unit 20 and the second switch unit 30 respectively, and acquires the charging current of the second battery unit 901b when the first switch unit 20 is closed, and when closed
  • the second switch unit 30 acquires the charging current of the first battery unit 901a.
  • the control unit 40 controls one of the first switch unit 20 or the second switch unit 30 to close to detect the first battery unit 901a Or one of the second battery units 901b is charged in a relatively unsaturated state, and when it is detected that the first battery unit 901a is in a charged relatively unsaturated state, the second switch unit 30 is controlled to continue to close and pass
  • the second charge compensation circuit performs charge compensation on the first battery unit 901a in a relatively unsaturated state; or when the second battery unit 901b is in a relatively unsaturated state, controls the first switching unit 20 to continue It is closed, and the second battery unit 901b in a relatively unsaturated state is charged and compensated by the first charging compensation circuit.
  • the closing means that the first switch unit 20 or the second switch unit 30 is turned on.
  • both the first switch unit 20 and the second switch unit 30 are in the off state.
  • the control unit 40 closes the first switch unit 20 to obtain the charging current of the second battery unit 901b, the second switch unit 30 is in an open state; when the control unit 40 closes the second switch unit 30 to obtain During the charging current of the first battery unit 901a, the first switch unit 20 is in an off state.
  • the charging relatively unsaturated state means that neither battery unit 901 has reached the charging saturation state, and the battery unit 901 in which the amount of power is less is in the charging relatively unsaturated state.
  • the charging cut-off current that is, when the power of the battery unit 901 reaches the power threshold (for example, 95%)
  • the power threshold for example, 95%)
  • it may also be determined whether the battery unit 901 is in a charge-saturated state according to the charging voltage for example, when the charging voltage of the battery unit 901 reaches a charge-cutoff voltage, it is determined that the battery unit 901 is in a charge-saturated state.
  • the charging compensation means that the charging power source (not shown) charges the first battery unit 901a and the second battery unit 901b at the same time, but the charging current of the battery unit 901 in a relatively unsaturated state is greater than that in a relatively saturated state The charging current of the battery cell 901 in the state makes the relatively unsaturated battery cell 901 charge faster, and finally makes the two battery cells 901 fully charged at the same time.
  • the control unit 40 controls one of the first switch unit 20 or the second switch unit 30 to close to Detecting that one of the two battery cells 901 is in a relatively unsaturated state of charge, and when it is detected that a certain battery cell 901 is in a relatively unsaturated state of charge, the control unit 40 may control the first switch unit 20 Or the second switch unit 30 is closed to perform charge compensation on the battery unit 901 in a relatively unsaturated charging state, thereby making the two battery units 901 connected in series to reach a charge saturation state, so that two batteries connected in series The units 901 are all in a fully charged state, which improves the charging consistency of two battery cells 901 connected in series, thereby improving the performance of the battery pack 900.
  • the charging compensation circuit further includes an adjustment unit 10 connected to the first battery unit 901a and the second battery unit 901b, and one end of the adjustment unit 10 is electrically connected to the first A connection node between a battery unit 901a and the second battery unit 901b, and the other end is electrically connected to the first switch unit 20 and the second switch unit 30, respectively.
  • the first switching unit 20 is closed, the closed first switching unit 20, the regulating unit 10, and the second battery unit 901b form the first charging compensation circuit;
  • the second switching unit When 30 is closed the closed second switch unit 30, the adjustment unit 10, and the first battery unit 901a form the second charging compensation circuit.
  • the battery pack 900 includes a positive terminal P+ and a negative terminal P- (see FIG. 2), wherein the positive tab of the first battery unit 901a is electrically connected to the positive terminal P+ of the battery pack And the negative electrode tab is electrically connected to the positive electrode tab of the second battery unit 901b, and the negative electrode tab of the second battery unit 901b is electrically connected to the negative connection terminal P- of the battery pack 900.
  • the first charging compensation circuit is located between the compensation power supply VCC and the negative pole of the second battery unit 901b; the second charging compensation circuit is located between the positive pole of the first battery unit 901a and the ground terminal .
  • the compensation power supply is activated only when the compensation charging is performed, which refers to the system power supply, that is, the compensation power supply can be obtained by the charging power supply and converted by the voltage conversion circuit, or can be provided by the battery pack 900.
  • the control unit 40 controls one of the first switch unit 20 or the second switch unit 30 to be closed to detect a relatively unsaturated state of charge of one of the two battery units 901, including: the control unit 40 controls the first switch unit 20 to be closed to detect a relatively unsaturated state of charge of the second battery unit 901b, or the control unit 40 controls the second switch unit 30 to close to detect the first battery unit 901a
  • the charging is relatively unsaturated.
  • the control unit 40 controls the second switch unit 30 to remain in a closed state, so that the adjustment unit 10 is in a relatively unsaturated state
  • the first battery unit 901a performs charge compensation; when it is detected that the second battery unit 901b is in a relatively unsaturated state of charging, the control unit 40 controls the first switch unit 20 to remain in a closed state, so that the first The charge compensation circuit compensates and charges the second battery unit 901b in a relatively unsaturated state.
  • the control unit 40 determines whether the charging current of the negative terminal P- increases. When the charging current of the negative terminal P- increases, the control unit 40 determines that the second battery unit 901b is in a relatively unsaturated charging state. At this time, the control unit 40 controls the first switching unit 20 remains closed, so that the first charge compensation circuit compensates the second battery unit 901b. When the charging current of the negative terminal P- does not change, the control unit 40 determines that the second battery unit 901b is in a relatively saturated state of charging. At this time, the control unit 40 controls the first switching unit 20 disconnect.
  • the control unit 40 determines whether the charging current of the positive terminal P+ increases. When the charging current of the positive terminal P+ increases, the control unit 40 determines that the first battery unit 901a is in a relatively unsaturated charging state. At this time, the control unit 40 controls the second switching unit 30 The closed state is maintained, so that the second charging compensation circuit compensates the charging of the first battery unit 901a. When the charging current of the positive terminal P+ does not change, the control unit 40 determines that the first battery unit 901a is in a relatively saturated state of charging. At this time, the control unit 40 controls the second switching unit 30 to turn off open.
  • the second switch unit 30 may be controlled to be closed first, and whether the first battery unit 901a is in a relatively unsaturated charging state may be determined, and then the first switch unit 20 may be controlled to be closed, and whether the second battery unit 901b may be charged Relatively unsaturated.
  • the first switch unit 20 and the second switch unit 30 are both controlled to be turned off to complete charging.
  • the protection unit 902 is used to detect the charging current of the positive terminal P+ and the negative terminal P-, and are electrically connected to the two battery units 901, respectively, to Each battery unit 901 is protected.
  • the control unit 40 is also electrically connected to the protection unit 902, and obtains the charging current of the positive connection terminal P+ and the negative connection terminal P- through the protection unit 902.
  • the charging currents of the positive connection terminal P+ and the negative connection terminal P- are equal, that is, the charging power supply (not shown) Shown) is the charging current for charging the battery pack 900.
  • the protection unit 902 may include a circuit board and a protection chip mounted on the circuit board.
  • the protection chip is provided with a plurality of pins, two of which are electrically connected to the positive terminal P+ and the negative terminal P-, respectively, and the other two pins are also used for the first battery unit 901a, respectively Of the positive electrode tab and the negative electrode tab of the second battery cell 901b are electrically connected. Therefore, the protection chip can protect the battery unit 901, for example, it can prevent the battery unit 901 from being overcharged, discharged, or overheated.
  • the protection chip may also send the detected current to the control unit 40 through a communication bus (for example, an I2C bus).
  • control unit 40 may be a single chip microcomputer, a micro control unit (Micro Control Unit, MCU), or the like.
  • the control unit 40 may include multiple signal acquisition ports, communication ports, multiple control ports, etc. to control corresponding electronic devices or circuit structures according to different control requirements.
  • the first switch unit 20 includes a first electronic switch Q1, a first connection 1 of the first electronic switch Q1 is electrically connected to the adjustment unit 10, and a second connection 2 of the first electronic switch Q1 is connected to The compensation power supply VCC is electrically connected, and the control terminal 3 of the first electronic switch Q1 is electrically connected to the control unit 40.
  • the second switch unit 30 includes a second electronic switch Q2, a first connection terminal 1 of the second electronic switch Q2 is electrically connected to the adjustment unit 10, and a second connection terminal 2 of the second electronic switch Q2 is Electrically connected to ground, the control terminal 3 of the second electronic switch Q2 is electrically connected to the control unit 40.
  • the adjusting unit 10 includes a first resistor R1, a first connection terminal of the first resistor R1 is electrically connected to a connection node between the two battery cells 901, and a second connection terminal of the first resistor R1 They are electrically connected to the first switch unit 20 and the second switch unit 30, respectively.
  • the first switch unit 20 further includes a second resistor R2, and the control terminal of the first electronic switch Q1 is also electrically connected to the control unit 40 through the second resistor R2.
  • the second switch unit 30 further includes a third resistor R3, and the control end of the second electronic switch Q2 is also electrically connected to the control unit 40 through the third resistor R3.
  • the first electronic switch Q1 is a transistor, and the first connection terminal 1, the second connection terminal 2 and the control terminal 3 of the first electronic switch Q1 correspond to the collector, emitter and base of the transistor respectively pole.
  • the second electronic switch Q2 is also a transistor.
  • the first connection terminal 1, the second connection terminal 2 and the control terminal 3 of the second electronic switch Q2 correspond to the collector, emitter and base of the transistor, respectively.
  • the first electronic switch Q1 and the second electronic switch Q2 may also be MOS field effect transistors, IGBT transistors, and other electronic switches with a three-terminal control function.
  • the charging current Ip+ of the positive terminal P+ is equal to the first battery
  • the charging current I1 of the cell 901a is equal to the charging current I2 of the second battery cell 901b is equal to the charging current Ip- of the negative electrode connection terminal P-. That is, the charging current flowing through the positive terminal P+, the two battery cells 901, and the negative terminal P- is equal.
  • the control unit 40 obtains the charging current of the battery pack 900 through the protection unit 902, and compares the obtained current charging current with the preset current.
  • the control unit 40 controls one of the first electronic switch Q1 or the second electronic switch Q2 to close and accordingly detects the charging relative unsaturated state of one of the two battery units 901 .
  • the charging current of the rapidly charged battery cell 901 is higher than that of the uncharged battery cell
  • the charging current of 901 is small. Therefore, the battery pack 900 needs to be charged based on the charging current of the battery unit 901 that is fully charged, to avoid damage to another battery unit 901. Therefore, when the charging current of the battery pack 900 reaches the preset charging current, it is necessary to detect which battery unit 901 is in the charge-unsaturated state and perform charge compensation on it, so that both battery units 901 can be fully charged, wherein the preset The charging current is the charging current when the battery unit 901 is about to be fully charged.
  • the control unit 40 detects an increase in Ip+, it means that the first battery unit 901a is in a relatively unsaturated state of charging; if the control unit 40 detects that there is basically no change in Ip+, it means that the first battery unit 901a is in a relatively saturated state of charging.
  • the first electronic switch Q1 is closed, if the control unit 40 detects an increase in Ip-, it means that the second battery unit 901b is in a relatively unsaturated state of charging; if the control unit 40 detects that there is basically no change in Ip-, it means that the second The battery unit 901b is in a relatively saturated state of charging.
  • FIG. 3 is a block diagram of an electronic device 800 according to an embodiment of the present application.
  • the electronic device 800 includes a battery pack 900 and a charging compensation circuit 100.
  • the charge compensation circuit 100 is electrically connected to the battery pack 900, and performs charge compensation on the first battery unit 901a or the second battery unit 901b during the charging process of the battery pack 900.

Abstract

本申请公开充电补偿电路(100)包括第一开关单元(20)、第二开关单元(30)及控制单元(40)。第一开关单元(20)与第二电池单元(901b)相连接;第二开关单元(30)与第一电池单元(901a)相连接。当所述电池包(900)的充电电流达到预设充电电流时,控制单元(40)控制第二开关单元(30)闭合,并通过第二充电补偿电路对处于相对不饱和状态的第一电池单元(901a)进行充电补偿;或控制第一开关单元(20)闭合,并通过第一充电补偿电路对处于相对不饱和状态的所述第二电池单元(901b)进行补偿充电。本申请还提供一种电子装置(800)。本申请能够使得串联的第一电池单元(901a)和第二电池单元(901b)均达到充电饱和状态。

Description

充电补偿电路及电子装置 技术领域
本申请涉及充电技术领域,尤其涉及充电补偿电路及电子装置。
背景技术
为了提高输出电压,现有的消费类电子产品(如智能手机)的电池朝着多芯化发展,即将两个甚至多个电芯串联后再封装成电池以进行使用。然而,将多电芯串联使用后,由于电芯的个体差异,当为电池充电时会引起多个电芯不能同时充满电的情况,即,会有有的电芯已充满但部分电芯未能达到充满电的状态。
发明内容
本申请实施例公开一种充电补偿电路及电子装置以解决上述问题。
本申请实施例公开充电补偿电路,用于对电池包的串联的第一电池单元和第二电池单元进行充电补偿;所述充电补偿电路包括:
默认处于断开状态的第一开关单元,与所述第二电池单元相连接,当所述第一开关单元处于闭合状态时,所述第一开关单元与所述第二电池单元形成第一充电补偿电路,所述第一充电补偿电路用于在第二电池单元处于相对不饱和状态时给所述第二电池单元进行补偿充电;
默认处于断开状态的第二开关单元,与所述第一电池单元相连接,当所述第二开关单元处于闭合状态时,所述第二开关单元与所述第电一池单元形成第二充电补偿电路,所述第二充电补偿电路用于在所述第一电池单元处于相对不饱和状态时给所述第一电池单元进行补偿充电;
控制单元,与所述电池包电连接,用于获取所述电池包的充电电流;所述控制单元还分别与所述第一开关单元和所述第二开关单元电连接,并在闭合第一开关单元时获取所述第二电池单元的充电电流,以及在闭合所述第二开关单元时获取所述第一电池单元的充电电流;
当所述电池包的充电电流达到预设充电电流时,所述控制单元控制所述第 一开关单元或者所述第二开关单元其中之一闭合以检测所述第一电池单元或所述第二电池单元其中之一的充电相对不饱和状态,并当检测到所述第一电池单元处于充电相对不饱和状态时,控制所述第二开关单元继续闭合,并通过所述第二充电补偿电路对处于相对不饱和状态的所述第一电池单元进行充电补偿;或者当所述第二电池单元处于相对不饱和状态时,控制所述第一开关单元继续闭合,并通过所述第一充电补偿电路对处于相对不饱和状态的所述第二电池单元进行充电补偿。
本申请实施例公开一种电子装置,包括电池包,所述电池包包括串联的第一电池单元和第二电池单元。所述电子装置还包括如上所述的充电补偿电路;所述充电补偿电路与所述电池包电连接,并在所述电池包的充电过程中对所述第一电池单元或者第二电池单元进行补偿充电。
本申请的充电补偿电路及电子装置,当所述电池包的充电电流达到预设充电电流时,所述控制单元控制所述第一开关单元或者所述第二开关单元其中之一闭合以检测所述两个电池单元其中之一的充电相对不饱和状态,并当检测到某一个电池单元处于充电相对不饱和状态时,所述控制单元可以通过控制所述第一开关单元或者所述第二开关单元的闭合来对处于充电相对不饱和状态的电池单元进行补偿充电,进而使得所述两个串联的电池单元均达到充电饱和状态,从而使得两个串联的电池单元均处于满电状态,提高了两个串联的电池单元的充电一致性,从而提高了电池包的性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的充电补偿电路的原理框图。
图2为本申请一实施例提供的充电补偿电路的电路原理图。
图3为本申请一实施例提供的电子装置的方框示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
请参阅图1,其为本申请一实施例中的充电补偿电路100的原理框图。所述充电补偿电路100用于对电池包900进行充电补偿。在本实施方式中,所述电池包900包括两个串联的电池单元901以及分别与所述两个电池单元901电连接的保护单元902。其中,两个串联的电池单元901包括第一电池单元901a及第二电池单元901b。所述保护单元902可以为保护电路板,用于对电池单元901进行保护以防止两个电池单元901过充或者过放。所述充电补偿电路100对电池包900进行充电补偿,进而使得串联的两个电池单元901均可以充满电,从而提高电池包900电能的输出性能。其中,所述两个电池单元901串联后可以提高电池包900的输出电压。
可以理解,依据具体的设计不同,电池包900包括的电池单元901的数量也不相同,例如,若需要电池包900输出的电压较高时,则可以将较多数量的电池单元901串联;若需要电池包900输出较低的电压时,则将数量较少的电池单元901串联即可。亦即,在本实施方式中,所述电池包900包括两个串联的电池单元901,而在其他实施方式中,所述电池包900可以包括多个串联的两个电池单元901,在此不做限定。
进一步地,每个电池单元901可以包括一个电芯,也可以由多个电芯并联组成,进而可以提高每一电池单元901的输出电流。其中,电芯是指单个含有正、负极的电化学电芯,一般不直接使用,而将一个电芯或者多个电芯和保护板电连接并进行封装形成电池包后再使用。在本实施方式中,所述电芯优选的为重量轻、节能且环保的锂离子电芯。
需要说明的是,由于锂离子电芯的个体存在差异,加上其使用环境也不尽相同,造成了各电池单元901电量的不平衡,这种不平衡会随着电池包900的使用周期的增加变得越来越大,将严重影响电池包900的使用寿命。因此,为了延长电池包900的使用寿命,锂离子电芯在充电过程中需要进行充电补偿,即通过对电池包900的各个电池单元901进行充电均衡控制,以使各电池单元901的电量尽可能相同。
所述充电补偿电路100包括第一开关单元20、第二开关单元30以及控制单元40。所述第一开关单元20默认处于断开状态,并与所述第二电池单元901b相连接,当所述第一开关单元20处于闭合状态时,所述第一开关单元20与所述第二电池单元形901b成第一充电补偿电路,所述第一充电补偿电路用于在第二电池单元901b处于相对不饱和状态时给所述第二电池单元901b进行补偿充电。
所述第二开关单元30默认处于断开状态,并与所述第一电池单元901a相连接,当所述第二开关单元30处于闭合状态时,所述第二开关单元30与所述第电一池单元901a形成第二充电补偿电路,所述第二充电补偿电路用于在所述第一电池单元901a处于相对不饱和状态时给所述第一电池单元901a进行补偿充电。
所述控制单元40与所述电池包900电连接,用于获取所述电池包900的充电电流。所述控制单元40还分别与所述第一开关单元20和所述第二开关单元30电连接,并在闭合第一开关单元20时获取所述第二电池单元901b的充电电流,以及在闭合所述第二开关单元30时获取所述第一电池单元901a的充电电流。当所述电池包900的充电电流达到预设充电电流时,所述控制单元40控制所述第一开关单元20或者所述第二开关单元30其中之一闭合以检测所述第一电池单元901a或所述第二电池单元901b其中之一的充电相对不饱和 状态,并当检测到所述第一电池单元901a处于充电相对不饱和状态时,控制所述第二开关单元30继续闭合,并通过所述第二充电补偿电路对处于相对不饱和状态的所述第一电池单元901a进行充电补偿;或者当所述第二电池单元901b处于相对不饱和状态时,控制所述第一开关单元20继续闭合,并通过所述第一充电补偿电路对处于相对不饱和状态的所述第二电池单元901b进行充电补偿。其中,所述闭合是指所述第一开关单元20或第二开关单元30导通。
其中,当所述控制单元40获取所述电池包900的充电电流时,所述第一开关单元20和第二开关单元30均处于断开状态。当所述控制单元40闭合第一开关单元20获取所述第二电池单元901b的充电电流时,所述第二开关单元30处于断开状态;当所述控制单元40闭合第二开关单元30获取所述第一电池单元901a的充电电流时,所述第一开关单元20处于断开状态。
其中,充电相对不饱和状态是指两个电池单元901均没有达到充电饱和状态,且其中电量较少的电池单元901处于充电相对不饱和状态。。在本实施方中,当所述电池单元901的充电电流达到充电截止电流时,即当电池单元901的电量达到电量阈值(例如,95%)时,确定所述电池单元901处于充电饱和状态。在其他实施方式中,还可以根据充电电压确定电池单元901是否处于充电饱和状态,例如,当电池单元901的充电电压达到充电截止电压时,确定所述电池单元901处于充电饱和状态。
所述充电补偿是指充电电源(图未示)对所述第一电池单元901a和所述第二电池单元901b同时充电,只是处于相对不饱和状态的电池单元901的充电电流会大于处于相对饱和状态的电池单元901的充电电流,从而使得处于相对不饱和的电池单元901充电更快一些,最终使得两个电池单元901同时充满电。
本申请中的充电补偿电路100当所述电池包900的充电电流达到预设充电电流时,所述控制单元40控制所述第一开关单元20或者所述第二开关单元30其中之一闭合以检测所述两个电池单元901其中之一的充电相对不饱和状态,并当检测到某一个电池单元901处于充电相对不饱和状态时,所述控制单元40可以通过控制所述第一开关单元20或者所述第二开关单元30的闭合来对处于充电相对不饱和状态的电池单元901进行充电补偿,进而使得所述两个 串联的电池单元901均达到充电饱和状态,从而使得两个串联的电池单元901均处于满电状态,提高了两个串联的电池单元901的充电一致性,从而提高了电池包900的性能。
在一些实施方式中,所述充电补偿电路还包括分别与所述第一电池单元901a和所述第二电池单元901b相连接的调节单元10,所述调节单元10的一端电连接于所述第一电池单元901a和所述第二电池单元901b之间的连接节点,且另一端分别与所述第一开关单元20和所述第二开关单元30电连接。当所述第一开关单元20闭合时,闭合的所述第一开关单元20、所述调节单元10和所述第二电池单元901b形成所述第一充电补偿电路;当所述第二开关单元30闭合时,闭合的所述第二开关单元30、所述调节单元10和所述第一电池单元901a形成所述第二充电补偿电路。
具体地,所述电池包900包括正极连接端P+和负极连接端P-(参图2),其中,所述第一电池单元901a的正极极耳与所述电池包的正极连接端P+电连接,且负极极耳与所述第二电池单元901b的正极极耳电连接,且所述第二电池单元901b的负极极耳与所述电池包900的负极连接端P-电连接。所述第一充电补偿电路位于补偿电源VCC和所述第二电池单元901b的负极极耳之间;所述第二充电补偿电路位于所述第一电池单元901a的正极极耳和接地端之间。
其中,所述补偿电源只有在进行补偿充电时才启用,是指系统电源,即所述补偿电源可以由充电电源并经电压转换电路转换后得到,也可以由电池包900提供。
所述控制单元40控制所述第一开关单元20或者所述第二开关单元30其中之一闭合以检测所述两个电池单元901其中之一的充电相对不饱和状态,包括:所述控制单元40控制所述第一开关单元20闭合以检测所述第二电池单元901b的充电相对不饱和状态,或者所述控制单元40控制所述第二开关单元30闭合以检测所述第一电池单元901a的充电相对不饱和状态。
其中,当检测到所述第一电池单元901a处于充电不饱和状态时,所述控制单元40控制所述第二开关单元30维持处于闭合状态,而使得所述调节单元10对处于相对不饱和状态的第一电池单元901a进行充电补偿;当检测到第二 电池单元901b处于充电相对不饱和状态时,所述控制单元40控制所述第一开关单元20维持处于闭合状态,而使得所述第一充电补偿电路对处于相对不饱和状态的第二电池单元901b进行补偿充电。
当所述第一开关单元20闭合时,所述控制单元40判断所述负极连接端P-的充电电流是否增大。当所述负极连接端P-的充电电流增大时,所述控制单元40判定所述第二电池单元901b处于充电相对不饱和状态,此时,所述控制单元40控制所述第一开关单元20保持闭合状态,而使得所述第一充电补偿电路对所述第二电池单元901b进行充电补偿。当所述负极连接端P-的充电电流没有变化时,所述控制单元40判定所述第二电池单元901b处于充电相对饱和状态,此时,所述控制单元40控制所述第一开关单元20断开。
当所述第二开关单元30闭合时,所述控制单元40判断所述正极连接端P+的充电电流是否增大。当所述正极连接端P+的充电电流增大时,所述控制单元40判定所述第一电池单元901a处于充电相对不饱和状态,此时,所述控制单元40控制所述第二开关单元30保持闭合状态,而使得所述第二充电补偿电路对所述第一电池单元901a进行充电补偿。当所述正极连接端P+的充电电流没有变化时,所述控制单元40判定所述第一电池单元901a处于充电相对饱和状态,此时,所述控制单元40控制所述第二开关单元30断开。
可以理解的,也可以先控制第二开关单元30闭合,并判断第一电池单元901a是否处于充电相对不饱和状态,之后再控制第一开关单元20闭合,并判断第二电池单元901b是否处于充电相对不饱和状态。
如此,通过控制所述第一开关单元20和所述第二开关单元30处于闭合状态,可以检测出当前处于充电不饱和状态的电池单元901并对处于充电不饱和状态的电池单元901进行充电补偿。当检测到所述两个电池单元901的充电电流均达到充电截止电流时,控制所述第一开关单元20和所述第二开关单元30均断开以完成充电。
本申请中检测充电不饱和的电池单元901方法,只需控制第一开关单元20和第二开关单元30的闭合与断开状态,并根据电池包900的正极连接端P+和负极连接端P-的充电电流变化即可确定哪个电池单元901处于充电不饱和状态,进而对处于充电不饱和的电池单元901进行充电补偿即可,方便快捷。
在一些实施方式中,所述保护单元902用于检测所述正极连接端P+和所述负极连接端P-的充电电流,并分别与所述两个电池单元901电连接,以对所述两个电池单元901进行保护。所述控制单元40还与所述保护单元902电连接,并通过所述保护单元902获取所述正极连接端P+和所述负极连接端P-的充电电流。其中,当所述第一开关单元20和所述第二开关单元30均处于断开状态时,所述正极连接端P+和所述负极连接端P-的充电电流相等,即充电电源(图未示)为所述电池包900充电的充电电流。
在一实施方式中,所述保护单元902可以包括一电路板以及安装于所述电路板上的保护芯片。所述保护芯片设置有多个引脚,其中两个引脚分别与所述正极连接端P+和所述负极连接端P-电连接,且另外两个引脚还分别用于第一电池单元901a的正极极耳和第二电池单元901b的负极极耳电连接。因此,所述保护芯片可以对电池单元901进行保护,例如,可以防止电池单元901过充过放或者过温。此外,所述保护芯片还可以将检测到了电流通过通信总线(例如,I2C总线)发送至所述控制单元40。
其中,所述控制单元40可为单片机、微控制单元(Micro Control Unit,MCU)等。所述控制单元40可包括多个信号采集端口、通信端口、多个控制端口等,以根据不同的控制需求来对相应的电子器件或电路结构进行相应的控制。
请再参阅图2,其为本申请一实施方式中的充电补偿电路100的电路原理图。所述第一开关单元20包括第一电子开关Q1,所述第一电子开关Q1的第一连接端1与所述调节单元10电连接,所述第一电子开关Q1的第二连接端2与补偿电源VCC电连接,所述第一电子开关Q1的控制端3与所述控制单元40电连接。
所述第二开关单元30包括第二电子开关Q2,所述第二电子开关Q2的第一连接端1与所述调节单元10电连接,所述第二电子开关Q2的第二连接端2与电连接至地,所述第二电子开关Q2的控制端3与所述控制单元40电连接。
所述调节单元10包括第一电阻R1,所述第一电阻R1的第一连接端电连接于所述两个电池单元901之间的连接节点,且所述第一电阻R1的第二连接端分别电连接于所述第一开关单元20和所述第二开关单元30。
进一地,所述第一开关单元20还包括第二电阻R2,所述第一电子开关Q1的控制端还通过所述第二电阻R2电连接至所述控制单元40。
进一步地,所述第二开关单元30还包括第三电阻R3,所述第二电子开关Q2的控制端还通过所述第三电阻R3电连接至所述控制单元40。
在一些实施方式中,所述第一电子开关Q1为三极管,所述第一电子开关Q1的第一连接端1、第二连接端2及控制端3分别对应三极管的集电极、发射极和基极。所述第二电子开关Q2也为三极管,所述第二电子开关Q2的第一连接端1、第二连接2端及控制端3分别对应三极管的集电极、发射极和基极。
在其他实施方式中,所述第一电子开关Q1和所述第二电子开关Q2还可以是MOS场效应管、IGBT管以及其他具有三端控制功能的电子开关。
下面参考图2对所述充电补偿电路100的工作原理进行说明。
当电池处于正常充电过程中,此时,第一电子开关Q1和第二电子开关Q2均处于断开状态,且两个电池单元901串联,因此,正极连接端P+的充电电流Ip+等于第一电池单元901a的充电电流I1等于第二电池单元901b的充电电流I2等于负极连接端P-的充电电流Ip-。即,流过正极连接端P+、两个电池单元901以及负极连接端P-充电电流相等。随着充电的进行,充电电流会越来越小,所述控制单元40通过所述保护单元902获取所述电池包900的充电电流,并将获取的当前充电电流和预设电流做比较,当充电电流达到预设充电电流(例如,300mA)时,控制单元40控制第一电子开关Q1或者第二电子开关Q2其中之一闭合并相应检测两个电池单元901其中之一的充电相对不饱和状态。
需要说明的是,由于两个电池单元901串联,当一个电池单元901快充满电而另一个电池单元901还没有快充满电时,快充满电的电池单元901的充电电流比未充满的电池单元901的充电电流要小,因此,电池包900需要以快充满电的电池单元901的充电电流为准进行充电,而避免对另一个电池单元901的损坏。因此,当电池包900的充电电流达到预设充电电流时,需要检测哪个电池单元901处于充电不饱和状态而对其进行充电补偿,进而可以使得两个电池单元901均能充满电,其中预设充电电流为电池单元901即将充满电时的充 电电流。
当第二电子开关Q2闭合时,如果控制单元40检测到Ip+增大,则说明第一电池单元901a处于充电相对不饱和状态;若控制单元40检测到Ip+基本无变化,则表明第一电池单元901a处于充电相对饱和状态。当第一电子开关Q1闭合时,如果控制单元40检测到Ip-增大,则说明第二电池单元901b处于充电相对不饱和状态;若控制单元40检测到Ip-基本无变化,则表明第二电池单元901b处于充电相对饱和状态。
当检测出第一电池单元901a处于充电相对不饱和状态时,则控制第二电子开关Q2维持闭合状态,此时,第一电池单元901a的充电电流I1有一个电流之路I4流经第一电阻R1,即I1=I2+I4,从而提高了第一电池单元901a的充电电流,进而实现了对第一电池单元901a的充电补偿。
当检测出第二电池单元901b处于充电相对不饱和状态时,则控制第一电子开关Q1维持闭合状态,此时,第二电池单元901b的充电电流I2有一个电流之路I3流经所述第一电阻R1,即I2=I1+I3,从而提高了第二电池单元901b的充电电流,进而实现了对第二电池单元901b的充电补偿。如此,通过检测第一电池单元901a和第二电池单元901b中处于充电相对不饱和状态的电池单元901,并对处于充电相对不饱和状态的电池单元901进行充电补偿,可以使得串联的两个电池单元901最终都充满电。
请再参阅图3,图3为本申请一实施方式中的电子装置800的方框示意图。如图3所示,所述电子装置800包括电池包900以及充电补偿电路100。所述充电补偿电路100与所述电池包900电连接,并在所述电池包900的充电过程中对所述第一电池单元901a或者第二电池单元901b进行充电补偿。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施例及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (18)

  1. 一种充电补偿电路,用于对电池包的串联的第一电池单元和第二电池单元进行充电补偿;其特征在于,所述充电补偿电路包括:
    默认处于断开状态的第一开关单元,与所述第二电池单元相连接,当所述第一开关单元处于闭合状态时,所述第一开关单元与所述第二电池单元形成第一充电补偿电路,所述第一充电补偿电路用于在第二电池单元处于相对不饱和状态时给所述第二电池单元进行补偿充电;
    默认处于断开状态的第二开关单元,与所述第一电池单元相连接,当所述第二开关单元处于闭合状态时,所述第二开关单元与所述第电一池单元形成第二充电补偿电路,所述第二充电补偿电路用于在所述第一电池单元处于相对不饱和状态时给所述第一电池单元进行补偿充电;
    控制单元,与所述电池包电连接,用于获取所述电池包的充电电流;所述控制单元还分别与所述第一开关单元和所述第二开关单元电连接,并在闭合第一开关单元时获取所述第二电池单元的充电电流,以及在闭合所述第二开关单元时获取所述第一电池单元的充电电流;
    当所述电池包的充电电流达到预设充电电流时,所述控制单元控制所述第一开关单元或者所述第二开关单元其中之一闭合以检测所述第一电池单元或所述第二电池单元其中之一的充电相对不饱和状态,并当检测到所述第一电池单元处于充电相对不饱和状态时,控制所述第二开关单元继续闭合,并通过所述第二充电补偿电路对处于相对不饱和状态的所述第一电池单元进行充电补偿;或者当所述第二电池单元处于相对不饱和状态时,控制所述第一开关单元继续闭合,并通过所述第一充电补偿电路对处于相对不饱和状态的所述第二电池单元进行补偿充电。
  2. 如权利要求1所述的充电补偿电路,其特征在于,还包括分别与所述第一电池单元和所述第二电池单元相连接的调节单元,所述调节单元的一端电连接于所述第一电池单元和所述第二电池单元之间的连接节点,且另一端分别与所述第一开关单元和所述第二开关单元电连接;当所述第一开关单元闭合时,闭合的所述第一开关单元、所述调节单元和所述第二电池单元形成所述第一充电补偿电路;当所述第二开关单元闭合时,闭合的所述第二开关单元、所 述调节单元和所述第一电池单元形成所述第二充电补偿电路。
  3. 如权利要求1所述的充电补偿电路,其特征在于,所述充电相对不饱和状态是指两个所述电池单元均没有达到充电饱和状态,且其中电量较少的电池单元处于充电相对不饱和状态;当所述电池单元的充电电流达到充电截止电流时,确定所述电池单元处于充电饱和状态。
  4. 如权利要求1所述的充电补偿电路,其特征在于,所述电池包包括正极连接端和负极连接端,所述第一电池单元的正极极耳与所述电池包的正极连接端电连接,所述第一电池单元的负极极耳与所述第二电池单元的正极极耳电连接,且所述第二电池单元的负极极耳与所述电池包的负极连接端电连接;所述第一充电补偿电路位于补偿电源和所述第二电池单元的负极极耳之间;所述第二充电补偿电路位于所述第一电池单元的正极极耳和接地端之间。
  5. 如权利要求4所述的充电补偿电路,其特征在于,所述控制单元控制所述第一开关单元或者所述第二开关单元其中之一闭合以检测所述第一电池单元或所述第二电池单元其中之一的充电相对不饱和状态,包括:所述控制单元控制所述第一开关单元闭合以检测所述第二电池单元的充电相对不饱和状态,或者所述控制单元控制所述第二开关单元闭合以检测所述第一电池单元的充电相对不饱和状态。
  6. 如权利要求5所述的充电补偿电路,其特征在于,当所述第一开关单元闭合时,所述控制单元判断所述负极连接端的充电电流是否增大;当所述负极连接端的充电电流增大时,所述控制单元判定所述第二电池单元处于充电相对不饱和状态,并控制所述第一开关单元保持闭合状态,而使所述第一充电补偿电路对所述第二电池单元进行充电补偿。
  7. 如权利要求6所述的充电补偿电路,其特征在于,当所述负极连接端的充电电流没有变化时,所述控制单元判定所述第二电池单元处于充电相对饱和状态并控制所述第一开关单元断开。
  8. 如权利要求5所述的充电补偿电路,其特征在于,当所述第二开关单元闭合时,所述控制单元判断所述正极连接端的充电电流是否增大;当所述正极连接端的充电电流增大时,所述控制单元判定所述第一电池单元处于充电相对不饱和状态,此时,所述控制单元控制所述第二开关单元保持闭合状态,而 使得所述第二充电补偿电路对所述第一电池单元进行充电补偿。
  9. 如权利要求8所述的充电补偿电路,其特征在于,当所述正极连接端的充电电流没有变化时,所述控制单元判定所述第一电池单元处于充电相对饱和状态,所述控制单元控制所述第二开关单元断开。
  10. 如权利要求4所述的充电补偿电路,其特征在于,所述电池包还包括:
    保护单元,用于检测所述正极连接端和所述负极连接端的充电电流,并分别与所述第一电池单元和所述第二电池单元电连接以对所述第一电池单元和所述第二电池单元进行保护;所述控制单元还与所述保护单元电连接,并通过所述保护单元获取所述正极连接端和所述负极连接端的充电电流。
  11. 如权利要求1所述的充电补偿电路,其特征在于,所述第一开关单元包括第一电子开关,所述第一电子开关的第一连接端与所述调节单元电连接,所述第一电子开关的第二连接端与补偿电源电连接,所述第一电子开关的控制端与所述控制单元电连接。
  12. 如权利要求1所述的充电补偿电路,其特征在于,所述第二开关单元包括第二电子开关,所述第二电子开关的第一连接端与所述调节单元电连接,所述第二电子开关的第二连接端与电连接至接地端,所述第二电子开关的控制端与所述控制单元电连接。
  13. 如权利要求1所述的充电补偿电路,其特征在于,所述调节单元包括第一电阻,所述第一电阻的第一连接端电连接于所述两个电池单元之间的连接节点,且所述第一电阻的第二连接端分别电连接于所述第一开关单元和所述第二开关单元。
  14. 如权利要求11所述的充电补偿电路,其特征在于,所述第一开关单元还包括第二电阻,所述第一电子开关的控制端还通过所述第二电阻电连接至所述控制单元。
  15. 如权利要求12所述的充电补偿电路,其特征在于,所述第二开关单元还包括第三电阻,所述第二电子开关的控制端还通过所述第三电阻电连接至所述控制单元。
  16. 如权利要求11所述的充电补偿电路,其特征在于,所述第一电子开关为三极管,且所述第一电子开关的第一连接端、第二连接端及控制端分别对 应所述三极管的集电极、发射极和基极。
  17. 如权利要求12所述的充电补偿电路,其特征在于,所述第二电子开关为三极管,且所述第二电子开关的第一连接端、第二连接端及控制端分别对应三极管的集电极、发射极和基极。
  18. 一种电子装置,包括电池包,所述电池包包括串联的第一电池单元和第二电池单元;其特征在于,所述电子装置还包括如权利要求1至17任意一项所述的充电补偿电路;所述充电补偿电路与所述电池包电连接,并在所述电池包的充电过程中对所述第一电池单元或者所述第二电池单元进行充电补偿。
PCT/CN2018/122692 2018-12-21 2018-12-21 充电补偿电路及电子装置 WO2020124559A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/122692 WO2020124559A1 (zh) 2018-12-21 2018-12-21 充电补偿电路及电子装置
CN201880095888.8A CN112889197B (zh) 2018-12-21 2018-12-21 充电补偿电路及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122692 WO2020124559A1 (zh) 2018-12-21 2018-12-21 充电补偿电路及电子装置

Publications (1)

Publication Number Publication Date
WO2020124559A1 true WO2020124559A1 (zh) 2020-06-25

Family

ID=71100023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122692 WO2020124559A1 (zh) 2018-12-21 2018-12-21 充电补偿电路及电子装置

Country Status (2)

Country Link
CN (1) CN112889197B (zh)
WO (1) WO2020124559A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096993B (zh) * 2023-10-13 2024-04-19 荣耀终端有限公司 电池的充电控制方法及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2293059A (en) * 1994-09-09 1996-03-13 Ray O Vac Corp Equalization of charge on series connected cells or batteries
CN101645610A (zh) * 2009-09-03 2010-02-10 深圳市晖谱能源科技有限公司 一种电池均衡充电装置及方法
CN203135473U (zh) * 2012-12-20 2013-08-14 中国东方电气集团有限公司 一种非能耗型电池充电均衡装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2293059A (en) * 1994-09-09 1996-03-13 Ray O Vac Corp Equalization of charge on series connected cells or batteries
CN101645610A (zh) * 2009-09-03 2010-02-10 深圳市晖谱能源科技有限公司 一种电池均衡充电装置及方法
CN203135473U (zh) * 2012-12-20 2013-08-14 中国东方电气集团有限公司 一种非能耗型电池充电均衡装置

Also Published As

Publication number Publication date
CN112889197A (zh) 2021-06-01
CN112889197B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
KR102361334B1 (ko) 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템
WO2018133537A1 (zh) 一种电子设备及基于电子设备的充电控制方法
WO2019095684A1 (zh) 锂电池保护控制asic芯片系统
CN102522798B (zh) 一种电池组模块之间的主动均衡电路
WO2012097594A1 (zh) 一种直流电源的电池保护装置和方法
CN108512269A (zh) 一种电池并联平衡装置及充放电控制方法
WO2010034210A1 (zh) 一种电池均衡装置
WO2020056851A1 (zh) 锂电池充放电驱动保护系统
CN111009703A (zh) 一种电池的加热控制装置及其加热控制方法
CN107342600A (zh) 一种控制锂电池组间环流的储能电池管理系统
CN111431227B (zh) 串并联切换控制电路及电池装置
CN112311038B (zh) 一种充放电保护电路、终端设备及电池放电控制方法
US20210328442A1 (en) Battery and external component
WO2017219359A1 (zh) 多极耳电池
WO2020124559A1 (zh) 充电补偿电路及电子装置
TWI693772B (zh) 具有針對每一串聯二次電池芯進行充電管理功能的電池模組
CN104779669A (zh) 带充电保护电路的锂离子电池组
CN105391112A (zh) 一种通信用移动应急电源及其电压自适应方法
WO2023165300A1 (zh) 充电电路、装置及设备
CN110311450B (zh) 一种适用于16串电池包的主动均衡电路
CN209419247U (zh) 一种锂电池高温自动保护板
WO2020191931A1 (zh) 一种电池化成电路及电池化成装置
CN104143663A (zh) 具有自我保护功能和可扩展性的大电流锂离子电池组
CN216390559U (zh) 一种电池管理电路与储能系统
CN105743188A (zh) 铅酸电池组保护系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943447

Country of ref document: EP

Kind code of ref document: A1