WO2023010296A1 - 一种液压装置、制动系统及车辆 - Google Patents

一种液压装置、制动系统及车辆 Download PDF

Info

Publication number
WO2023010296A1
WO2023010296A1 PCT/CN2021/110401 CN2021110401W WO2023010296A1 WO 2023010296 A1 WO2023010296 A1 WO 2023010296A1 CN 2021110401 W CN2021110401 W CN 2021110401W WO 2023010296 A1 WO2023010296 A1 WO 2023010296A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
valve
boost
interface
brake
Prior art date
Application number
PCT/CN2021/110401
Other languages
English (en)
French (fr)
Inventor
杨维妙
张永生
卢宇灏
靳彪
吕尚炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21952205.9A priority Critical patent/EP4375149A1/en
Priority to PCT/CN2021/110401 priority patent/WO2023010296A1/zh
Priority to CN202180006482.XA priority patent/CN115943099A/zh
Priority to KR1020247007066A priority patent/KR20240041370A/ko
Publication of WO2023010296A1 publication Critical patent/WO2023010296A1/zh
Priority to US18/431,430 priority patent/US20240174207A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/147In combination with distributor valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/413Plausibility monitoring, cross check, redundancy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/13Failsafe arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/81Braking systems

Definitions

  • the present application relates to the field of vehicle braking, in particular to a braking system.
  • the braking system can provide functions such as automatic emergency braking (AEB), anti-lock braking (ABS), traction control (TCS) and stability control (ESC) during vehicle driving.
  • AEB automatic emergency braking
  • ABS anti-lock braking
  • TCS traction control
  • ESC stability control
  • the challenges faced by the braking system include: meeting the requirements for safety and reliability of the braking system while meeting miniaturization and low cost, and improving the redundancy of the system.
  • This application relates to a brake system that meets the redundant safety requirements of autonomous vehicles.
  • This application proposes a multiple redundant control electric Hydraulic brake system.
  • the braking system includes: a brake master cylinder (1), a first booster, a second booster device, at least one first interface. Wherein, at least one first interface is used for connecting with at least one brake wheel cylinder.
  • the first supercharger is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the brake master cylinder (1) includes a first master chamber (1i), the first master chamber (1i) is connected to a second control valve (13) through a second supercharger, and the second control valve (13) is connected to a second control valve (13) through at least one first
  • a control valve (31, 32, 33, 34) is connected to at least one first port.
  • the brake master cylinder may also include more brake master chambers.
  • the brake system further includes a fluid storage container (5), and at least one first port passes through at least one third control valve (41, 42,43,44) are connected with the liquid storage container (5).
  • the number of the third control valves may be 4, or may be more.
  • the number of the third control valves can also be greater than four.
  • the second supercharger includes a fourth control valve (11), and the first main chamber (1i) passes through the fourth control valve in sequence (11), the second control valve (13), at least one first control valve (31, 32, 33, 34) are connected to at least one first interface.
  • the second booster further includes a first booster pump (203), and the output terminal of the first booster pump (203) Connect the pipeline between the fourth control valve (11) and the second control valve (13), and pass through the second control valve (13), at least one first control valve (31, 32, 33, 34) and At least one first interface connection.
  • the interface can be a liquid inlet or a liquid outlet, or include both a liquid inlet and a liquid outlet, or have both the functions of a liquid inlet and a liquid outlet.
  • the input end of the first booster pump (203) is connected to the liquid storage container (5).
  • the second supercharger further includes a first one-way valve (203v), and the liquid storage container (5) is connected to the first one-way valve
  • the first end of the valve (203v) is connected, the second end of the first one-way valve (203v) is connected with the input end of the first booster pump (203), and the first one-way valve (203v) is configured to allow braking
  • the liquid flows from the liquid storage container (5) to the input end of the first booster pump (203) through the first one-way valve (203v).
  • booster pumps may also be included.
  • the number of booster pumps is larger, faster pressure building can be achieved.
  • booster pumps may be driven by the same motor, or may be driven by different motors.
  • the cost can be reduced and the system can be simpler. If more booster pumps are used, the redundancy of the system can be increased.
  • the second boost The device also includes a fifth control valve (211), and the liquid storage container (5) sequentially passes through the fifth control valve (211), the second control valve (13), at least one first control valve (31, 32, 33, 34) Connect with at least one first interface.
  • the second supercharger further includes a sixth control valve (213), the first end of the sixth control valve (213) is connected to The first main chamber (1i) is connected, and the second end of the sixth control valve (213) is connected to the pipeline between the first check valve (203v) and the first booster pump (203) and connected to the first booster pump (203) The input of the pump (203) is connected.
  • the sixth control valve can make the brake fluid in the brake main chamber enter the first booster pump, and can provide a certain pedal feeling when the driver depresses the pedal.
  • the brake master cylinder (1) further includes a second master chamber (1j), and the second master chamber (1j) passes through the first The seven control valves (12), the eighth control valve (14), and at least one first control valve (31, 32, 33, 34) are connected to at least one first interface.
  • the second booster also includes a second booster pump (204), a ninth control valve (212), a second check valve (204v), and a tenth control valve (214), wherein the liquid storage container (5) and The first end of the second one-way valve (204v) is connected, the second end of the second one-way valve (204v) is connected with the input end of the second booster pump (204), and the second one-way valve (204v) is configured In order to allow the brake fluid to flow from the fluid storage container (5) to the input end of the second booster pump (204) through the second one-way valve (204v).
  • the output end of the second booster pump (204) is sequentially connected to at least one first interface through the eighth control valve (14) and at least one first control valve (31, 32, 33, 34).
  • the liquid storage container (5) is connected to at least one first interface sequentially through the ninth control valve (212), the eighth control valve (14), and at least one first control valve (31, 32, 33, 34).
  • the first end of the tenth control valve (214) is connected to the second main chamber (1j), and the second end of the tenth control valve (214) is connected to the second one-way valve (204v) and the second booster pump (204 ) and connected to the input end of the second booster pump (204).
  • the second main chamber can be redundant with the first main chamber to improve the reliability of the braking system.
  • the second supercharger further includes a fifth control valve (211), and the first terminal of the fifth control valve (211) is connected to into the pipeline between the output end of the first booster pump (203) and the second control valve (13), and the second end of the fifth control valve (211) is connected to the input end of the first booster pump (203) and the line between the second end of the first one-way valve (203v).
  • the second supercharger further includes a sixth control valve (213), and the liquid storage container (5) is sequentially controlled by the sixth control valve.
  • the valve (213), the second control valve (13), and at least one first control valve (31, 32, 33, 34) are connected to at least one first interface.
  • the second supercharger further includes a fifth control valve (211) and a sixth control valve (213), wherein the accumulator
  • the liquid container (5) also passes through the sixth control valve (213), the fifth control valve (211), the second control valve (13), at least one first control valve (31, 32, 33, 34) and at least one The first interface is connected.
  • the liquid storage container (5) also passes through the sixth control valve (213) and the first booster pump (203) input connection.
  • the brake master cylinder (1) further includes a second master chamber (1j), and the second master chamber (1j) in turn
  • the seventh control valve (12), the eighth control valve (14), and at least one first control valve (31, 32, 33, 34) are connected to at least one first interface.
  • the second booster also includes a second booster pump (204) and a ninth control valve (212), wherein the liquid storage container (5) is connected to the second booster pump (204) through the sixth control valve (213) The input end is connected, and the liquid storage container (5) passes through the sixth control valve (213), the ninth control valve (212), the eighth control valve (14), at least one first control valve (31, 32, 33, 34) in sequence ) is connected to at least one first interface.
  • the second supercharger further includes a sixth control valve (213), the first end of the sixth control valve (213) The pipeline between the fourth control valve (11) and the first main chamber (1i) is connected, and the second end of the sixth control valve (213) is connected with the input end of the first booster pump (203).
  • the first booster includes a first booster chamber (202i), and the first booster chamber (202i) is connected to the first booster chamber (202i) respectively.
  • the first end of a boost control valve (21) is connected to the first end of the second boost control valve (22), and the second end of the first boost control valve (21) passes through at least one first control valve (31 , 32, 33, 34) are connected to at least one first interface.
  • the second end of the second boost control valve (22) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the first booster further includes a third boost control valve (23) and a fourth boost control valve (24 ), the first boost chamber (202i) is connected with the first end of the third boost control valve (23) and the first end of the fourth boost control valve (24) respectively, the third boost control valve (23)
  • the second end of the second end is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the second end of the fourth boost control valve (24) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the first booster further includes a second booster chamber (202j), a third booster control valve (23) and the fourth boost control valve (24), the second boost chamber (202j) is respectively connected to the first end of the third boost control valve (23) and the first end of the fourth boost control valve (24),
  • the second end of the third boost control valve (23) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the second end of the fourth boost control valve (24) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the first booster further includes a second booster chamber (202j) and a fifth booster control valve (25) , the first boost chamber (202i) is connected to the first end of the fifth boost control valve (25), and the second end of the fifth boost control valve (25) is respectively connected to the first boost control valve (21)
  • the first end is connected with the first end of the second boost control valve (22).
  • the second boost chamber (202j) is respectively connected with the first end of the first boost control valve (21) and the first end of the second boost control valve (22).
  • the second end of the first boost control valve (21) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the second end of the second boost control valve (22) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the brake system includes a first control unit (92) and a second control unit (93), the second control valve ( 13) It is configured to be jointly controlled by the first control unit (92) and the second control unit (93), and the first boost control valve (21) and the second boost control valve (22) are configured to be controlled by the first Controlled by the unit (92), the third boost control valve (23) and the fourth boost control valve (24) are configured to be controlled by the second control unit (93).
  • the braking system includes a first control unit (92) and a second control unit (93), the second control valve (13), the first boost control valve (21), the second boost control valve (22), the third boost control valve (23), and the fourth boost control valve (24) are configured to be controlled by the first The unit (92) and the second control unit (93) are jointly controlled.
  • the braking system includes a first control unit (92) and a second control unit (93), the first booster The control valve (21), the second boost control valve (22), the fifth boost control valve (25), and the second control valve (13) are configured to be controlled by the first control unit (92), at least one first The control valves (31, 32, 33, 34), at least one third control valve (41, 42, 43, 44) are configured to be jointly controlled by the first control unit (92) and the second control unit (93).
  • the first supercharger is configured to be controlled by the first control unit (92) and the second The control unit (93) is jointly controlled.
  • the braking system includes a first subsystem and a second subsystem:
  • the first subsystem includes: a brake master cylinder (1), a liquid storage container (5), a second supercharger, at least one first interface (8F, 8G), and a second interface (8E).
  • the brake master cylinder (1) is connected with the fluid storage container (5)
  • the brake master cylinder (1) is connected with at least one first interface (8F, 8G) through the second supercharger, and the fluid storage container (5) Connect with the second interface (8E).
  • the second subsystem includes: a first supercharger, at least one second control valve (13,14), at least one first control valve (31,32,33,34), at least one third control valve (41,42 , 43, 44), at least one fourth interface (8f, 8g), fifth interface (8e), at least one first interface.
  • At least one fourth port (8f, 8g) is connected to the first end of at least one first control valve (31, 32, 33, 34) through at least one second control valve (13, 14), and the fifth port ( 8e) connected to the first supercharger (2)
  • the first supercharger (2) is connected to the first end of at least one first control valve (31, 32, 33, 34)
  • at least one first control valve ( 31, 32, 33, 34) are connected to at least one first interface
  • the at least one first interface is used to connect to at least one brake wheel cylinder.
  • At least one first port is connected to the fifth port (8e) via at least one third control valve (41, 42, 43, 44).
  • At least one first interface (8F, 8G) is connected to at least one fourth interface (8f, 8g) in one-to-one correspondence, and the second interface (8E) is connected to the fifth interface (8e).
  • the hydraulic device includes: a brake master cylinder (1), a fluid storage container (5), a second supercharger , at least one first interface, a second interface (8E).
  • the brake master cylinder (1) includes a first main chamber (1i), and at least one first interface includes a first output interface (8F).
  • the first main cavity (1i) is connected to the first output interface (8F) through the second supercharger, the liquid storage container (5) is connected to the first main cavity (1i), and the liquid storage container (5) is connected to the second interface ( 8E) Connection.
  • the second supercharger includes a fourth control valve (11), and the first main chamber (1i) passes through the fourth control valve ( 11) Connect with the first output interface (8F).
  • the second booster further includes a first booster pump (203), and the output terminal of the first booster pump (203) Connect to the pipeline between the fourth control valve (11) and the first output port (8F).
  • the input end of the first booster pump (203) is connected to the liquid storage container (5).
  • the fifth possible implementation it further includes a first one-way valve (203v), and the connection between the liquid storage container (5) and the first one-way valve (203v) The first end is connected, the second end of the first one-way valve (203v) is connected with the input end of the first booster pump (203), and the first one-way valve (203v) is configured to allow the brake fluid to flow from the reservoir (5) Flow to the input end of the first booster pump (203) through the first one-way valve (203v).
  • the second supercharger further includes a fifth control valve (211), and the liquid storage container (5) passes through the fifth control valve ( 211) connected to the first output interface (8F).
  • the second supercharger further includes a sixth control valve (213), the first end of the sixth control valve (213) is connected to The first main chamber (1i) is connected, and the second end of the sixth control valve (213) is connected to the pipeline between the first check valve (203v) and the first booster pump (203) and connected to the first booster pump (203) The input of the pump (203) is connected.
  • the brake master cylinder (1) further includes a second master chamber (1j), and the second master chamber (1j) passes through the seventh
  • the control valve (12) is connected with the second output interface (8G).
  • the second booster also includes a second booster pump (204), a ninth control valve (212), a second check valve (204v), and a tenth control valve (214), wherein the liquid storage container (5) and The first end of the second one-way valve (204v) is connected, the second end of the second one-way valve (204v) is connected with the input end of the second booster pump (204), and the second one-way valve (204v) is configured In order to allow the brake fluid to flow from the fluid storage container (5) to the input end of the second booster pump (204) through the second one-way valve (204v).
  • the output end of the second booster pump (204) is connected to the pipeline between the seventh control valve (12) and the second output interface (8G).
  • the liquid storage container (5) is sequentially connected to the second output interface (8G) through the ninth control valve (212).
  • the first end of the tenth control valve (214) is connected to the second main chamber (1j), and the second end of the tenth control valve (214) is connected to the second one-way valve (204v) and the second booster pump (204 ) and connected to the input end of the second booster pump (204).
  • the second supercharger further includes a fifth control valve (211), and the first terminal of the fifth control valve (211) is connected to into the pipeline between the output end of the first booster pump (203) and the first output port (8F), and the second end of the fifth control valve (211) is connected to the input end of the first booster pump (203) and the line between the second end of the first one-way valve (203v).
  • the second supercharger further includes a sixth control valve (213), and the liquid storage container (5) passes through the sixth control valve ( 213) connected to the first output interface (8F).
  • the second supercharger further includes a fifth control valve (211) and a sixth control valve (213), wherein the accumulator
  • the liquid container (5) is also connected to the first output interface (8F) through the sixth control valve (213) and the fifth control valve (211) in sequence.
  • the liquid storage container (5) also passes through the sixth control valve (213) and the first booster pump (203) input connection.
  • the brake master cylinder (1) further includes a second master chamber (1j), and the second master chamber (1j) passes through The seventh control valve (12) is connected to the second output port (8G).
  • the second booster also includes a second booster pump (204) and a ninth control valve (212), wherein the liquid storage container (5) is connected to the second booster pump (204) through the sixth control valve (213) The input end is connected, and the liquid storage container (5) is connected to the second output interface (8G) through the sixth control valve (213) and the ninth control valve (212) in sequence.
  • the second supercharger according to the second aspect further includes a sixth control valve (213), the sixth control valve (213 ) is connected to the pipeline between the fourth control valve (11) and the first main chamber (1i), the second end of the sixth control valve (213) is connected to the input of the first booster pump (203) end connection.
  • the third aspect of the present application provides a hydraulic device.
  • the hydraulic device includes: a first supercharger, at least one first control valve (31, 32, 33, 34) , at least one second control valve (13,14), at least one third control valve (41,42,43,44), at least one fourth port (8f,8g), fifth port (8e), at least one first an interface.
  • At least one fourth port (8f, 8g) is connected to the first end of at least one first control valve (31, 32, 33, 34) through at least one second control valve (13, 14), and the fifth port ( 8e) connected to the first supercharger (2), the first supercharger (2) is connected to the first end of at least one first control valve (31, 32, 33, 34), at least one first control valve ( 31, 32, 33, 34) are connected to at least one first interface, and the at least one first interface is used to connect to at least one brake wheel cylinder.
  • At least one first port is connected to the fifth port (8e) via at least one third control valve (41, 42, 43, 44).
  • the first booster includes a first booster chamber (202i), and the first booster chamber (202i) is respectively connected to the first
  • the first end of the boost control valve (21) is connected to the first end of the second boost control valve (22), and the second end of the first boost control valve (21) passes through at least one first control valve (31, 32, 33, 34) are connected to at least one first interface.
  • the second end of the second boost control valve (22) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the first booster further includes a third boost control valve (23) and a fourth boost control valve (24),
  • the first boost chamber (202i) is respectively connected to the first end of the third boost control valve (23) and the first end of the fourth boost control valve (24), and the first end of the third boost control valve (23)
  • the two ends are connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the second end of the fourth boost control valve (24) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the first booster further includes a second boost chamber (202j), a third boost control valve (23) and a Four boost control valves (24), the second boost chamber (202j) is respectively connected to the first end of the third boost control valve (23) and the first end of the fourth boost control valve (24), the third The second end of the boost control valve (23) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the second end of the fourth boost control valve (24) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the first booster further includes a second boost chamber (202j) and a fifth boost control valve (25), the first A boost chamber (202i) is connected to the first end of the fifth boost control valve (25), and the second end of the fifth boost control valve (25) is respectively connected to the first end of the first boost control valve (21). end and the first end of the second boost control valve (22).
  • the second boost chamber (202j) is respectively connected with the first end of the first boost control valve (21) and the first end of the second boost control valve (22).
  • the second end of the first boost control valve (21) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the second end of the second boost control valve (22) is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • a first control unit (92) and a second control unit (93) are further included, and the second control valve (13) is configured To be jointly controlled by the first control unit (92) and the second control unit (93), the first boost control valve (21) and the second boost control valve (22) are configured to be controlled by the first control unit (92) For control, the third boost control valve (23) and the fourth boost control valve (24) are configured to be controlled by the second control unit (93).
  • the seventh possible implementation manner it further includes a first control unit (92) and a second control unit (93), the second control valve (13), the second A boost control valve (21), a second boost control valve (22), a third boost control valve (23), and a fourth boost control valve (24) are configured to be controlled by the first control unit (92) and The second control unit (93) is jointly controlled.
  • the eighth possible implementation manner it further includes a first control unit (92) and a second control unit (93), the first boost control valve (21) , the second boost control valve (22), the fifth boost control valve (25), the second control valve (13) are configured to be controlled by the first control unit (92), at least one first control valve (31, 32, 33, 34), at least one third control valve (41, 42, 43, 44) are configured to be jointly controlled by the first control unit (92) and the second control unit (93).
  • the first supercharger is configured to be controlled by the first control unit (92) and the second The two control units (93) are jointly controlled.
  • a fourth aspect of the present application provides a method for controlling a braking system.
  • the braking system includes: a brake master cylinder, a first supercharger, and a second supercharger , at least one first interface.
  • at least one first interface is used for connecting with at least one brake wheel cylinder.
  • the first supercharger is connected to at least one first interface through at least one first control valve (31, 32, 33, 34).
  • the brake master cylinder includes a first master chamber (1i), the first master chamber (1i) is connected to a second control valve (13) through a second supercharger, and the second control valve (13) is passed through at least one first control valve (31, 32, 33, 34) are connected to at least one first interface.
  • the method includes: acquiring a first braking requirement.
  • the second supercharger is controlled to work.
  • the first state includes at least one of the following: failure of the first supercharger, failure of the second control valve (13), failure of at least one first control valve (31, 32, 33, 34).
  • the brake system includes a first booster pump (203), a fourth control valve (11), wherein the first main chamber (1i) Connecting to at least one first interface via the fourth control valve (11), the second control valve (13), and at least one first control valve (31, 32, 33, 34) in sequence.
  • the output end of the first booster pump (203) is connected to the pipeline between the fourth control valve (11) and the second control valve (13), and passes through the second control valve (13), at least one first control valve in sequence Valves (31, 32, 33, 34) are connected to at least one first port.
  • the method includes: controlling the operation of the second supercharger includes: controlling the fourth control valve (11) to be in a disconnected state.
  • the brake system further includes a sixth control valve (213), the first end of the sixth control valve (213) is connected to the first The main chamber (1i) is connected, and the second end of the sixth control valve (213) is connected with the input end of the first booster pump (203).
  • the method includes: controlling the operation of the second supercharger includes: controlling the sixth control valve (213) to be in an on state.
  • the brake system includes a fluid storage container (5) and a fifth control valve (211), wherein the fluid storage container (5) Connected to the input end of the first booster pump (203), the liquid storage container (5) passes through the fifth control valve (211), the second control valve (13), at least one first control valve (31, 32, 33, 34) Connect with at least one first interface.
  • the method includes: acquiring a second braking requirement.
  • the fifth control valve (211) is controlled to be in an on state.
  • the method includes: controlling the opening degree or switching frequency of the fifth control valve (211) according to the second braking demand.
  • the brake system includes a first control unit (91), a second control unit (92), and the second supercharger is configured To be controlled by the first control unit (91), the second control valve (13) and the first booster are arranged to be controlled by the second control unit (92).
  • the method includes: the first state further includes: failure of the second control unit.
  • the fifth aspect of the present application provides a hydraulic device.
  • the hydraulic device includes: a second supercharger, at least one first port, a second port (8E), at least One third interface, at least one fourth interface.
  • at least one first interface includes a first output interface (8F).
  • At least one third interface is used for connecting with the brake master cylinder, and at least one fourth interface is used for connecting with the fourth interface.
  • the third interface is connected with the first output interface (8F) through the second supercharger.
  • the second supercharger includes a fourth control valve (11), and the third interface communicates with the first An output interface (8F) is connected.
  • the second booster further includes a first booster pump (203), and the output terminal of the first booster pump (203) Connect to the pipeline between the fourth control valve (11) and the first output port (8F).
  • the input end of the first booster pump (203) is connected to the fourth interface.
  • the fifth possible implementation manner it further includes a first one-way valve (203v), and the fourth port is connected to the first end of the first one-way valve (203v). connected, the second end of the first one-way valve (203v) is connected to the input end of the first booster pump (203), and the first one-way valve (203v) is configured to allow the brake fluid to flow from the fourth port through the first The one-way valve (203v) flows to the input of the first booster pump (203).
  • the second supercharger further includes a fifth control valve (211), and the fourth interface communicates with the fifth control valve (211)
  • the first output interface (8F) is connected.
  • the second supercharger further includes a sixth control valve (213), the first end of the sixth control valve (213) is connected to The third interface connection, the second end of the sixth control valve (213) is connected to the pipeline between the first one-way valve (203v) and the first booster pump (203) and connected to the first booster pump (203) input connection.
  • the brake master cylinder (1) further includes a second master chamber (1j), and the second master chamber (1j) passes through the seventh
  • the control valve (12) is connected with the second output interface (8G).
  • the second booster also includes a second booster pump (204), a ninth control valve (212), a second check valve (204v), and a tenth control valve (214), wherein the fourth interface is connected to the second check valve
  • the first end of the one-way valve (204v) is connected, the second end of the second one-way valve (204v) is connected with the input end of the second booster pump (204), and the second one-way valve (204v) is configured to allow The moving liquid flows from the fourth interface to the input end of the second booster pump (204) through the second one-way valve (204v).
  • the output end of the second booster pump (204) is connected to the pipeline between the seventh control valve (12) and the second output interface (8G).
  • the fourth interface is sequentially connected to the second output interface (8G) through the ninth control valve (212).
  • the first end of the tenth control valve (214) is connected to the second main chamber (1j), and the second end of the tenth control valve (214) is connected to the second one-way valve (204v) and the second booster pump (204 ) and connected to the input end of the second booster pump (204).
  • the second supercharger further includes a fifth control valve (211), and the first terminal of the fifth control valve (211) is connected to into the pipeline between the output end of the first booster pump (203) and the first output port (8F), and the second end of the fifth control valve (211) is connected to the input end of the first booster pump (203) and the line between the second end of the first one-way valve (203v).
  • the second supercharger further includes a sixth control valve (213), and the fourth interface communicates with the sixth control valve (213)
  • the first output interface (8F) is connected.
  • the second supercharger further includes a fifth control valve (211) and a sixth control valve (213), wherein the first The four ports are also connected to the first output port (8F) sequentially through the sixth control valve (213) and the fifth control valve (211).
  • the fourth port is also connected to the input end of the first booster pump (203) through the sixth control valve (213) .
  • the brake master cylinder (1) further includes a second master chamber (1j), and the second master chamber (1j) passes through The seventh control valve (12) is connected to the second output port (8G).
  • the second booster also includes a second booster pump (204) and a ninth control valve (212), wherein the fourth interface is connected to the input end of the second booster pump (204) through the sixth control valve (213) , the fourth port is connected to the second output port (8G) through the sixth control valve (213) and the ninth control valve (212) in sequence.
  • the second supercharger according to the fifth aspect further includes a sixth control valve (213), the sixth control valve (213 ) is connected to the pipeline between the fourth control valve (11) and the third interface, and the second end of the sixth control valve (213) is connected to the input end of the first booster pump (203).
  • the sixth aspect of the present application provides a readable storage medium.
  • the readable storage medium stores program instructions. When the program instructions are executed, any one of the methods in the fourth aspect is executed.
  • a seventh aspect of the present application provides a vehicle, the vehicle includes any one of the brake systems provided in the first aspect, or the vehicle includes any one of the hydraulic devices provided in the second aspect or the third aspect or the fifth aspect.
  • the braking system provided by the embodiment of the present application has multiple redundant designs, which can ensure that the braking system can meet the requirements of various braking functions of the vehicle when the controller or the key solenoid valve fails, and improve the safety of the braking system. Ensure the driver's pedal feel and bring the driver a more stable and comfortable driving experience
  • FIG. 1 is a schematic diagram of a vehicle system architecture provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the layout of a braking system in a vehicle provided by the embodiment of the present application;
  • Fig. 3-a is a schematic diagram of a braking system provided by the embodiment of the present application.
  • Fig. 3-b is a schematic diagram of a working state of a braking system provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 5 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Figure 6-a is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 6-b is a schematic diagram of a working state of another braking system provided by the embodiment of the present application.
  • Fig. 7 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 9 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 10 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 11 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 12 is a schematic diagram of another brake system architecture provided by the embodiment of the present application.
  • Fig. 13 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 14 is a schematic diagram of a working state of another braking system provided by the embodiment of the present application.
  • Fig. 15 is a schematic diagram of a working state of another braking system provided by the embodiment of the present application.
  • Fig. 16 is a schematic diagram of a working state of another braking system provided by the embodiment of the present application.
  • Fig. 17 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 18 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 19 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 20 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 21 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 22 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 23 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 24 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 25 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 26 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 27 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 28 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 29 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 30 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 31 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 32 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 33 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Integrated brake system integrated brake system, IBS: An electro-hydraulic brake-by-wire system composed of an electric linear pump, solenoid valve and valve body, etc., which can realize braking functions such as ABS/AEB/TCS/ESC of the vehicle.
  • Redundant brake unit An independent brake module that forms a backup for the main braking system. When the main braking system of the vehicle fails, the RBU module completes the braking of the vehicle and improves the safety of the vehicle.
  • Basic brake function Performs a basic braking function in response to a braking attempt.
  • ABS Antilock Brake System
  • the wheels tend to lock up when the vehicle brakes in an emergency or on icy and snowy roads. Wheel locks cause problems such as increased braking distance and loss of steering intention. According to the locking situation of the wheel, the ABS system appropriately reduces the braking force at the wheel tending to lock to realize the anti-lock function.
  • Electronic stability control system (electronic stability control system, ESC): the sensor collects vehicle information to judge the instability of the vehicle. When the vehicle tends to be unstable, the ESC system applies braking force to a single or part of the wheels to obtain the stability of the wheels. yaw moment, so as to achieve the purpose of stabilizing the vehicle.
  • Traction control system When driving on icy or snowy roads, or when a wheel sinks into muddy roads, the vehicle cannot run normally due to serious wheel slippage. According to the slipping condition of the wheels, the TCS system appropriately reduces the driving force or applies braking force to the slipping wheels to reduce the slipping of the wheels and ensure the normal driving of the vehicle.
  • Adaptive cruise control On the basis of the cruise control system at the set speed, a system that maintains a reasonable distance control function with the vehicle in front is added, and its sub-functions include constant speed cruise, following cruise, and curve Cruising, driving mode selection, intelligent cornering, intelligent speed limit, etc., mainly realize the cruise function by controlling the vehicle speed through the braking system and the driving system.
  • AEB Automatic emergency braking
  • Brake Prefill (AEB prefill, ABP): Better preparation for pressure build-up by reducing the distance between the brake disc and the pad.
  • Adaptive braking assist (adaptive braking assist, ABA): Adaptively adjust the braking force of the own vehicle by sensing the speed and distance of other vehicles, for example, when a collision may occur and the driver exerts insufficient pedal force on the brake pedal, it will actively improve The braking force of the braking system.
  • ALB Automatic warning braking
  • Vehicle longitudinal control vehicle longitudinal control: including the control of the vehicle's speed and acceleration in the longitudinal direction.
  • Driving assistance deceleration control help the vehicle to complete the transition from braking to a stationary state, and at the same time help the vehicle to complete a comfortable start from a stationary state.
  • Automatic parking control (automatic vehicle hold, AVH): The vehicle can automatically maintain the braking state when the vehicle is parked and waiting, and the driver does not need to step on the brake pedal for a long time.
  • Brake disc washing By increasing the pressure of the brake system to bring the brake pads into contact with the brake disc to remove dirt and water stains.
  • Hazzard lights When the vehicle performs emergency braking, it sends a warning to other vehicles in the environment by flashing the vehicle's signal light.
  • Hydraulic brake assist (hydraulic brake assist, HBA): During emergency braking, when the driver exerts insufficient pedal force on the brake pedal, the hydraulic system can quickly increase the braking force.
  • Hydraulic fading compensation (HFC): Identify and compensate for brake system performance degradation due to brake system overheating.
  • Rear wheel hydraulic boost (hydraulic rear-wheel boost, HRB): Increase the braking force of the rear wheels during emergency braking of the vehicle.
  • Hill-start assist system HAS: to prevent the vehicle from slipping when starting on a hill.
  • Hill Descent Control During the downhill process, the vehicle realizes a smooth downhill through the automatic control of the braking system, and the driver does not need to step on the brake pedal.
  • Additional functions including additional braking functions such as AEB, ABP, ABA, AWB, CDD, VLC, AVH, BDW, HAZ, HBA, HFC, HRB, HAS, HDC, etc. It can be used to support automatic driving system (autonomous driving system, ADS) or driving assistance system (Advanced Driving Assistance System, ADAS).
  • ADS autonomous driving system
  • ADAS Advanced Driving Assistance System
  • oil tank level sensor (reservoir level sensor, RLS), test valve (test simulation valve, TSV), pedal simulation valve (pedal simulation valve, PSV), pedal travel sensor (pedal travel sensor, PTS), master cylinder pressure sensor (master cylinder pressure sensor, MCPS), brake circuit pressure sensor (brake circuit pressure sensor, BCPS), motor position sensor (motor position sensor, MPS), electronic control unit ( electronic control unit (ECU), dual apply plunger (DAP), etc.
  • Vehicles are undergoing electrification, networking, and intelligent transformation.
  • various systems including the braking system are also facing changes and upgrades.
  • the structural changes and functional upgrades of the braking system are closely related to the innovation of the vehicle architecture. Specifically, various systems of the vehicle are described below in conjunction with FIG. 1 .
  • FIG. 1 is a schematic diagram of a vehicle 100 provided by an embodiment of the present application.
  • Vehicle 100 may include various subsystems such as infotainment system 110 , perception system 120 , decision control system 130 , drive system 140 , and computing platform 150 .
  • vehicle 100 may include more or fewer subsystems, and each subsystem may include multiple components.
  • each subsystem and component of the vehicle 100 may be interconnected in a wired or wireless manner.
  • the braking system 135 is one of the most critical systems, which is directly related to the overall performance of the vehicle and the safety of life and property of the occupants.
  • the braking system 135 may be used to control the speed of the vehicle 100 .
  • the braking system 135 may slow the wheels 144 through friction.
  • the braking system 135 may also have a regenerative braking function. Additionally, the braking system 135 may also control the speed of the vehicle 100 in other ways.
  • the motor can convert part of the mechanical energy of the car into electrical energy and store it in the battery, and at the same time generate part of the braking force to realize the deceleration or braking of the car.
  • the electric motor converts the energy stored in the battery into kinetic energy for the car to drive again.
  • regenerative braking cannot meet the needs of all braking conditions. For this reason, the hydraulic braking system still has high application value in new energy vehicles.
  • the vehicle 100 provided by the embodiment of the present application can be configured in a fully or partially automatic driving mode.
  • the vehicle 100 can obtain its surrounding environment information through the perception system 120, and obtain an automatic driving strategy based on the analysis of the surrounding environment information to realize fully automatic driving, or present the analysis results to the user to realize partially automatic driving.
  • the vehicle 100 can adjust the speed of its own vehicle based on its perception of its surrounding environment.
  • the surrounding environment may include traffic participants such as other vehicles and/or pedestrians, and may also include roads, infrastructure or other objects.
  • the vehicle 100 can autonomously recognize the surrounding environment, and determine the vehicle speed of the own vehicle according to information of objects in the environment (such as speed, acceleration, distance from the own vehicle, etc.).
  • the computing platform 150 may control various functions of the vehicle 100 based on input received from various subsystems (eg, the drive system 140 , the perception system 120 , and the decision control system 130 ). Especially for the brake system 135 , the computing platform 150 can bring more possibilities for the function development of the brake system 135 . For example, computing platform 150 may control braking system 135 based on input from decision-making control system 130 to avoid collisions with obstacles detected by perception system 120 .
  • the computing platform 150 will be described below with reference to FIG. 1 .
  • Computing platform 150 may include at least one processor 151 that may execute instructions 153 stored in a non-transitory computer-readable medium such as memory 152 .
  • computing platform 150 may also be a plurality of computing devices that control individual components or subsystems of vehicle 100 in a distributed manner.
  • the processor 151 therein may be any conventional processor, such as a central processing unit (central process unit, CPU).
  • the processor 151 may also include, for example, an image processor (graphic process unit, GPU), a field programmable gate array (field programmable gate array, FPGA), a system on chip (system on chip, SOC), an application specific integrated chip ( application specific integrated circuit, ASIC) or their combination.
  • FIG. 1 functionally illustrates a processor, memory, and other elements, those of ordinary skill in the art will understand that the processor, computer, or memory may actually include multiple components that may or may not be stored in the same physical housing. processor, computer, or memory.
  • memory may be a hard drive or other storage medium located in a different housing than the computer.
  • references to a processor or computer are to be understood to include references to collections of processors or computers or memories that may or may not operate in parallel.
  • some components such as steering and braking components, may each have their own processor that performs only the functions associated with the component-specific calculate.
  • the processor may be located remotely from the vehicle and be in wireless communication with the vehicle.
  • some of the processes described herein are executed on a processor disposed within the vehicle while others are executed by a remote processor, including taking the necessary steps to perform a single maneuver.
  • memory 152 may contain instructions 153, eg, program logic. Instructions 153 are executable by processor 151 to perform various functions of vehicle 100 . Memory 152 may also contain additional instructions, including sending data to, receiving data from, interacting with, and/or controlling one or more of infotainment system 110 , perception system 120 , decision control system 130 , drive system 140 instructions. In some embodiments, in addition to instructions 153, memory 152 may store data such as road maps, route information, the vehicle's position, direction, speed, and other such vehicle data, among other information. This information may be used by vehicle 100 and computing platform 150 during operation of vehicle 100 in autonomous, semi-autonomous, and/or manual modes.
  • Fig. 1 should not be interpreted as limiting the embodiment of the present application.
  • one or more of these components described above may be installed separately from or associated with the vehicle 100 .
  • memory 152 may exist partially or completely separate from vehicle 100 .
  • the components described above may be communicatively coupled together in a wired and/or wireless manner.
  • the above-mentioned components are just an example. In practical applications, the components in the above-mentioned modules may be added or deleted or re-divided according to actual needs.
  • the above-mentioned vehicle 100 may be a passenger car, a commercial vehicle, a motorcycle, a special vehicle (such as a fire engine, an ambulance, a mining vehicle, a road construction vehicle, etc.), a rail vehicle, a ship, an aircraft, etc., and the embodiment of the present application does not Make a special limit.
  • a special vehicle such as a fire engine, an ambulance, a mining vehicle, a road construction vehicle, etc.
  • a rail vehicle a ship, an aircraft, etc.
  • the description of this application also provides a schematic diagram of the layout of the braking system in the vehicle.
  • the arrangement of the braking system 135 in the vehicle may be as shown in FIG. 2 .
  • the braking system 135 may include components such as a brake pedal, a brake master cylinder, a supercharger, a brake pipeline, and a brake wheel cylinder.
  • the brake master cylinder or booster provides brake pressure to the brake wheel cylinder, and further drives the brake actuator to brake the vehicle.
  • FIG. 2 is only used as a possible arrangement of the braking system provided by the embodiment of the present application, and should not be construed as a limitation to the embodiment of the present application.
  • the braking system provided by the embodiment of the present application can ensure that the vehicle can still realize the vehicle braking function through the redundant controller in the event of failure of the main braking system controller or the key solenoid valve. And in some embodiments, it can also meet the brake function requirements of the vehicle such as ABS/AEB/TCS/ESC, and greatly improve the safety and reliability of the vehicle.
  • control valves in the brake system do not represent the type of the control valves, but only the functions they have.
  • the "isolation valve”, “boosting valve”, “pressure reducing valve”, “solenoid valve jointly driven by dual controllers” and “solenoid valve independently driven by single controller” that may appear in the embodiment of this application etc. are not limitations on the type of control valve involved.
  • the control valve used to control the connection or disconnection of the liquid inlet line can be called “inlet valve” or “booster valve”; the controller used to control the connection or disconnection of the liquid return line can be called “outlet valve”.
  • control valve or "relief valve”
  • the control valve used to isolate the two-stage brake subsystem may be referred to as an "isolation valve”.
  • the above-mentioned control valve may be a valve commonly used in an existing braking system, for example, a solenoid valve and the like. It should be understood that the application does not limit the types of control valves.
  • one-way valves (31v, 32v, 33v, 34v, 51v, 61v, 202v) may also be included.
  • the one-way valve can be an independent unit, and can also be realized by selecting a control valve integrated with the one-way valve, which is not limited in this application.
  • the brake pipelines appearing in the specification of this application may only be “liquid outlet pipelines” or “liquid inlet pipelines”, or the brake pipelines may also be “liquid outlet pipelines” and “Inlet pipeline”.
  • the brake pipeline in the brake system is used to deliver the brake fluid in the brake wheel cylinders to the fluid storage device.
  • the brake The line may be referred to as a "fluid line”.
  • the brake line is used to provide brake fluid for the wheels of the car to provide braking force for the wheels of the car.
  • the brake line can be called "Inlet pipeline”.
  • connection forms can be adopted between the braking system provided in the embodiment of the present application and the brake wheel cylinder, for example, an X-shaped arrangement, an H-shaped arrangement, an I-shaped arrangement, etc. can be adopted.
  • the X-type arrangement can connect one brake circuit to the brake wheel cylinder of the left front wheel (front left, FL) and the brake wheel cylinder of the right rear wheel (rear right, RR), and the other brake circuit to connect the brake wheel cylinder of the right front wheel ( front right (FR) brake wheel cylinder and left rear wheel (rear left, RL) brake wheel cylinder.
  • the H-type arrangement can connect the brake wheel cylinder FL of the left front wheel and the brake wheel cylinder of the left rear wheel RL for one brake circuit, and the other brake circuit connects the brake wheel cylinder of the right front wheel FR and the right rear wheel RR brake wheel cylinder.
  • the layout of the work type can be that one brake circuit connects the brake wheel cylinder of the left front wheel FL and the brake wheel cylinder of the right front wheel FR, and the other brake circuit connects the brake wheel cylinder of the left rear wheel RL and the right rear wheel RR brake wheel cylinder. It should be understood that although some embodiments provided by the present application take an X-type braking circuit as an example, the embodiments of the present application do not limit the type of the braking circuit.
  • the description of the present application does not show the generation process of the motor control signal, and the connection relationship between the control unit and the supercharger driving device only represents the control relationship.
  • the first control unit 91 is also referred to as ECU1 in some embodiments
  • the second control unit 92 is also referred to as ECU2 in some embodiments
  • the third control unit 93 also referred to as ECU3 in some embodiments.
  • control unit can be a controller or can be integrated in the controller, and the controller at least includes various solenoid valve drives, motor drives and various signal processing And control output interface.
  • the controller receives measurement or detection signals from various sensors, such as environmental conditions, driver input, braking system status, etc., and controls the braking characteristics of the braking system through calculation and judgment.
  • the normally open valve in the description of this application can be understood as a control valve that is in a conduction state under the initial condition of no power on or action. Switch from the open state to the closed state; the normally closed valve that appears in this application manual can be understood as a control valve that is closed under the initial condition of not being powered on or inactive, and the normally closed valve is switched to the closed state when it is powered on or in action. conduction state.
  • Fig. 3-a is a schematic diagram of a braking system provided in Embodiment 1 of the present application. The following describes the system composition, connection relationship, integration mode, interface setting, control relationship, etc. of the braking system provided by Embodiment 1 with reference to FIG. 3 .
  • the braking system provided by Embodiment 1 of the present application includes: a brake master cylinder 1, a supercharger 2, a first control valve (11, 12), a second control valve (21, 22, 23, 24), third control valves (31, 32, 33, 34), fourth control valves (41, 42, 43, 44), first control unit 91, second control unit 92.
  • the first control valves (11, 12) appearing in the description of this application can also be called master cylinder isolation valves; the second control valves (21, 22, 23, 24), also referred to It may be called boost control valve; the third control valve (31, 32, 33, 34) may also be called boost valve or wheel cylinder boost valve; the fourth control valve (41, 42, 43, 44) It may also be called a pressure reducing valve, a wheel cylinder pressure reducing valve or a pressure relief valve; in some embodiments provided by the present application, the fifth control valve (51) may also be called a test simulation valve (TSV) ; The sixth control valve (61) may also be called a pedal simulation valve (pedal simulation valve, PSV). It should be understood that the description of the function of the control valve should not be interpreted as a limitation on the type of control valve.
  • the brake master cylinder 1 includes two hydraulic chambers capable of outputting pressure to the outside, which are respectively denoted as a first main chamber 1i and a second main chamber 1j.
  • the first master chamber 1i and the second master chamber 1j are respectively connected to the wheel cylinder brake lines through the first master cylinder isolation valve 11 and the second master cylinder isolation valve 12 .
  • the brake system may further include a master cylinder pressure sensor (master cylinder pressure sensor, MCPS).
  • master cylinder pressure sensor MCPS is connected to the second master chamber 1j of the brake master cylinder.
  • the brake system may further include a master cylinder push rod 1k.
  • One end of the master cylinder push rod 1k is connected with the master cylinder piston, and the other end of the master cylinder push rod 1k is used for connecting with the brake pedal 7 .
  • the master cylinder push rod 1k can push the piston of the brake master cylinder 1 to increase the oil pressure in the brake master cylinder 1 .
  • the braking system may further include a pedal travel sensor PTS.
  • the pedal travel sensor PTS can be used for the detected travel signal of the brake pedal 7 .
  • the brake system may further include a brake pedal 7 .
  • the brake pedal 7 is connected with the master cylinder push rod of the brake system.
  • the target braking force can be obtained according to the pedal travel signal collected by the pedal travel sensor PTS.
  • the braking system provides corresponding braking pressure to the brake wheel cylinder by controlling the relevant control valve.
  • the connection relationship between the brake master cylinder and the brake wheel cylinder can be described as follows: the first master chamber 1i of the brake master cylinder 1 is connected to the first master cylinder isolation valve 11 respectively.
  • the first wheel cylinder boost valve 31 is connected with the second wheel cylinder boost valve 32, the first wheel cylinder boost valve 31 is connected with the first wheel cylinder 3a, and the second boost valve 32 is connected with the second wheel cylinder 3b;
  • the second master chamber 1j of the active master cylinder 1 is respectively connected to the third wheel cylinder boost valve 33 and the fourth wheel cylinder boost valve 34 through the second master cylinder isolation valve 12, and the third wheel cylinder boost valve 33 is connected to the third wheel cylinder boost valve 34.
  • the wheel cylinder 3c is connected, and the fourth wheel cylinder boost valve 34 is connected to the fourth wheel cylinder 3d.
  • the master cylinder isolation valve 11 and the master cylinder isolation valve 12 are normally open valves.
  • the supercharger 2 includes a supercharging drive motor 201 .
  • the booster driving motor 201 may be a three-phase motor, a six-phase motor, a twelve-phase motor, and the like.
  • it may be a three-phase permanent magnet synchronous motor.
  • the booster drive motor 201 may further include a motor position sensor (motor position sensor, MPS).
  • the motor position sensor MPS is used to obtain the motor position signal to realize the motor control or improve the motor control precision.
  • the boost drive motor 201 is configured to be controlled by the second control unit 92 .
  • the booster 2 includes a dual apply plunger 202 (dual apply plunger, DAP), wherein the dual apply plunger 202 includes a first boost chamber 202i and a second boost chamber 202j.
  • the first pressurization chamber 202i is connected to the first pressurization branch 2i
  • the second pressurization chamber 202j is connected to the second pressurization branch 2j.
  • the two-way boosting cylinder 202 can make the boosting process continuous and stable, and bring good boosting characteristics to the braking system.
  • the connection relationship between the two-way booster cylinder and the brake wheel cylinder of the supercharger 2 can be described as follows: the first booster chamber 202i passes through the first booster branch 2i
  • the first boost control valve 21 is respectively connected with the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32, the first wheel cylinder boost valve 31 is connected with the first wheel cylinder 3a, and the second wheel cylinder boost valve
  • the valve 32 is connected with the second wheel cylinder 3b; at the same time, the first boost chamber 202i is respectively connected with the third wheel cylinder boost valve 33 and the fourth wheel cylinder booster valve 22 through the second boost control valve 22 on the first boost 2i branch.
  • the second boost chamber 202j is respectively connected to the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 through the third boost control valve 23 on the second boost branch 2i.
  • the cylinder boost valve 31 is connected to the first wheel cylinder 3a, and the second boost valve 32 is connected to the second wheel cylinder 3b; meanwhile, the second boost chamber 202j is controlled by the fourth boost on the second boost branch 2j.
  • the valve 24 is respectively connected with the third wheel cylinder boost valve 33 and the fourth wheel cylinder boost valve 34, the third wheel cylinder boost valve 33 is connected with the third wheel cylinder 3c, the fourth wheel cylinder boost valve 34 is connected with the fourth wheel cylinder Wheel cylinder 3d connection.
  • the braking system further includes a one-way valve 202v, the first end of the one-way valve 202v is connected to the interface 8e, and the second end of the one-way valve 202v is connected to the first booster
  • the cavity 202i is connected, and the one-way valve 202v is configured to allow the brake fluid to flow from the interface 8e to the first pressurized cavity 202i through the one-way valve 202v under certain conditions.
  • the first boost control valve 21, the second boost control valve 22, the third boost control valve 23 and the fourth boost control valve 24 are Normally closed valve.
  • the brake system may further include a brake circuit pressure sensor (brake circuit pressure sensor, BCPS).
  • BCPS brake circuit pressure sensor
  • the connection point between the brake circuit pressure sensor BCPS and the brake circuit is located in the pipe between the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 on the way.
  • the access position of the brake circuit pressure sensor BCPS in the brake circuit is not limited to the access position shown in Figure 3, and its access position can also be set at the third wheel cylinder pressurized On the pipeline between the valve 33 and the fourth wheel cylinder boost valve 34, the application does not limit its specific access position.
  • the first end of the first wheel cylinder boost valve 31 is connected to the first end of the second wheel cylinder boost valve 32, and The second end of the boost valve 31 is used to connect with the first wheel cylinder 3a, the second end of the second wheel cylinder boost valve 32 is used to connect with the second wheel cylinder 3b; the second end of the third wheel cylinder boost valve 33 One end is connected with the first end of the fourth wheel cylinder boost valve 34; the second end of the third wheel cylinder boost valve 33 is used to connect with the third wheel cylinder 3c; the second end of the fourth wheel cylinder boost valve 34 The end is used to connect with the fourth wheel cylinder 3d.
  • the brake circuit pressure sensor BCPS When the brake circuit pressure sensor BCPS is set on the pipeline between the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32, or it is set on the third wheel cylinder boost valve 33 and the fourth wheel cylinder boost valve When the pipeline between the wheel cylinder supercharging valves 34 is connected, the brake pressure sensor BCPS can obtain the oil pressure of the pipeline.
  • the brake system may further include a fluid storage container 5 .
  • the brake system may further include a reservoir level sensor (reservoir level sensor, RLS).
  • RLS reservoir level sensor
  • the oil level sensor RLS can be arranged in the liquid storage container 5 for detecting the liquid level of the hydraulic oil in the liquid storage container.
  • the first main chamber 1i of the brake master cylinder 1 is connected to the liquid storage container 5 through the first liquid storage pipeline 5i, and the second main chamber 2j of the brake master cylinder 1 is connected to the liquid storage container 5 through the test valve 51.
  • the liquid storage container 5 is connected, and the pipeline connecting the second main chamber 2j and the liquid storage container 5 is the second liquid storage pipeline 5j; the first booster chamber 202i of the supercharger 2 and the liquid storage device 5 pass through the third liquid storage
  • the first pressurizing chamber 202i of the supercharger 2 is connected to the liquid storage container 5 through the one-way valve 202v.
  • the one-way valve 202v is configured to allow the brake fluid to flow from the third liquid storage line under certain conditions.
  • the 202k flows to the first pressurized chamber 202i through the one-way valve 202v; the first end of the decompression valve (41, 42, 43, 44) is connected to the liquid storage container 5 through the third liquid storage pipeline, and the decompression valve (41, 42,43,44) are used to connect with brake wheel cylinders (41,42,43,44) respectively.
  • the brake system may further include a pedal feeling simulator 6 and a pedal simulation valve 61 .
  • the pedal feeling simulator 6 is connected to the second master chamber of the brake master cylinder 1 through a pedal simulation valve 61 .
  • the pedal simulation valve 61 is also connected with the second master chamber of the brake master cylinder 1 through a check valve. Between the pedal feel simulator 6 and the second main chamber, the pedal simulation valve 61 is connected in parallel with the one-way valve, and the one-way valve 61v is configured to allow the brake fluid to flow from the pedal feel simulator 6 through the one-way valve 61v to master cylinder 1.
  • the pedal feeling simulation valve 61 is integrated with the one-way valve and can be directly selected.
  • check valves (31v, 32v, 33v, 34v) can be connected in parallel at both ends of the wheel cylinder boost valves (31, 32, 33, 34), and each of them is connected in parallel
  • the one-way valves (31v, 32v, 33v, 34v) at both ends of the wheel cylinder booster valves (31, 32, 33, 34) are configured to allow the brake fluid to flow from the brake wheel cylinder through the one-way valve and to the brake circuit;
  • the one-way valves (31v, 32v, 33v, 34v) connected in parallel at both ends of the wheel cylinder boost valves (31, 32, 33, 34) can be replaced by the wheel cylinder boost valves (31, 32, 33 ,34) integrated into one.
  • the wheel cylinder booster valves (31, 32, 33, 34) integrated with the function of the check valve can be directly selected, so that the composition of the braking system is simpler.
  • a one-way valve 51v may be connected in parallel at both ends of the test valve 51, and the one-way valve 51v connected in parallel at both ends of the test valve 51 is configured to allow the brake fluid to flow from the fluid storage container 5 through the The one-way valve 51v flows to the master cylinder 1 .
  • the one-way valve 51v connected in parallel to both ends of the test valve 51 can be integrated with the test valve 51 and can be directly selected.
  • a one-way valve 61v may also be connected in parallel at both ends of the pedal simulation valve 61, and the one-way valve 61v connected in parallel at both ends of the pedal simulation valve 61 is configured to allow the brake fluid to flow through the pedal simulator. It flows to the brake master cylinder 1 through the check valve 61v.
  • the supercharger 2 is connected to the liquid storage container 5 through a one-way valve 202v, and the one-way valve 202v is configured to allow the brake fluid to pass through the liquid storage container 5 under certain conditions.
  • the one-way valve 202v flows to the supercharger 2 .
  • liquid replenishment can be carried out through the one-way valve: for example, the brake fluid in the fluid storage container 5 can enter the brake master cylinder 1 through the one-way valve 51v; or, the brake fluid can enter through the 202v Supercharger 2.
  • the interface described in the embodiments of the present application may be a liquid inlet, may also be a liquid outlet, and may also include a liquid inlet and a liquid outlet.
  • the brake system may further include a filter.
  • the filter can filter the impurities in the hydraulic circuit.
  • the filter can be installed in the brake system separately, or the filter of impurities can be realized by selecting a control valve with a filter, a liquid storage container with a filter, etc.
  • Embodiment 1 of the present application includes two subsystems:
  • the first subsystem includes: the first control unit 91, the brake master cylinder 1, the fluid storage container 5, the pedal feeling simulator 6, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the test valve 51.
  • Pedal simulation valve 61 pedal stroke sensor PTS, master cylinder pressure sensor MCPS, oil pot liquid level sensor RLS, master cylinder push rod 1k.
  • the first subsystem further includes interfaces (8E, 8F, 8G).
  • the first subsystem further includes a fifth one-way valve 51v and a sixth one-way valve 61v.
  • the first subsystem can also be integrated with a filter, or realize the impurity filtering function by selecting a control valve with a filter and a liquid storage container 5 with a filter.
  • the first subsystem may include the master cylinder pushrod 1k but not the brake pedal 7 .
  • the first subsystem can be matched with different types of brake pedals 7 to adapt to more models and provide more possibilities for personalized matching.
  • the second subsystem includes: a second control unit 92, a booster drive motor 201, a two-way booster cylinder 202, a booster check valve 202v, a first booster control valve 21, and a second booster control valve 22 , the third boost control valve 23, the fourth boost control valve 24, the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32, the third wheel cylinder boost valve 33, the fourth wheel cylinder boost valve Valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44, brake circuit pressure sensor BCPS.
  • the second subsystem also includes a first one-way valve 31v, a second one-way valve 32v, a third one-way valve 33v, and a fourth one-way valve 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • the second subsystem includes a first interface, a second interface (8f, 8g), and a third interface (8e).
  • the first interface is used to connect with the brake wheel cylinders (3a, 3b, 3c, 3d) of the wheels respectively
  • the second interface (8f, 8g) is used to connect with the brake master cylinder 1
  • the third interface (8e) Used to connect with the liquid storage container 5.
  • the second subsystem is connected to the interface 8E, interface 8F, and interface 8G of the first subsystem through the interface 8e, interface 8f, and interface 8g respectively, and the first subsystem and the second subsystem
  • the two subsystems form the braking system.
  • the second subsystem does not include brake wheel cylinders (3a, 3b, 3c, 3d), but there is at least one wheel cylinder interface, such as the first interface in Embodiment 1; at least one first interface is used It is connected with at least one brake wheel cylinder (3a, 3b, 3c, 3d) and can provide brake pressure for the wheel cylinder.
  • the connection relationship between the brake master cylinder 1 and the brake wheel cylinders (3a, 3b, 3c, 3d) can be described as follows: the first master chamber 1i of the brake master cylinder 1 passes through the first
  • the master cylinder isolation valve 11 is connected to the interface 8F, and is respectively connected to the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 through the interface 8f; the first wheel cylinder boost valve 31 is connected to the interface 4a, and through the interface 8f
  • the interface 4a is connected to the first wheel cylinder 3a;
  • the second pressure boost valve 32 is connected to the interface 4b, and is connected to the second wheel cylinder 3b through the interface 4b;
  • the second master chamber 1j of the brake master cylinder 1 is isolated by the second master cylinder
  • the valve 12 is connected to the port 8G, and is connected to the third wheel cylinder boost valve 33 and the fourth wheel cylinder boost valve 34 respectively through the port 8g;
  • the third wheel cylinder boost valve 33 is connected to the port 4c, and is connected
  • the first pressurization chamber 202i of the supercharger 2 is connected to the port 8e through the one-way valve 202v, and is connected to the liquid storage container 5 through the port 8E and the third liquid storage pipeline 5k.
  • the valve 202v is configured to allow the brake fluid to flow from the supercharger reservoir pipeline 202k to the first boost chamber 202i through the one-way valve 202v under certain conditions.
  • connection line between the second boost chamber 202j of the two-way boost cylinder 202 and the liquid storage container 5 in Fig. does not mean that the pipeline is used for fluid replenishment.
  • this description is also applicable to other embodiments provided in the specification of this application.
  • the first ends of the wheel cylinder pressure reducing valves (41, 42, 43, 44) are connected to the interface 8e, and connected to the fluid storage container 5 through the interface 8E and the third fluid storage pipeline 5k;
  • the second ends of the wheel cylinder decompression valves (41, 42, 43, 44) are respectively connected with the first interfaces, and the first interfaces are used for respectively connecting with the brake wheel cylinders (41, 42, 43, 44).
  • Embodiment 1 The system composition, connection relationship, integration mode, and interface setting of the braking system provided by the first embodiment are introduced above. Next, the control relationship of the braking system provided by Embodiment 1 will be described.
  • the objects controlled by the first control unit 91 and the second control unit 92 are as follows:
  • the objects controlled by the first control unit 91 include: the first master cylinder isolation valve 11 , the second master cylinder isolation valve 12 , the test valve 51 , and the pedal simulation valve 61 .
  • the first control unit 91 also receives signals from the master cylinder pressure sensor MCPS and the pedal stroke sensor PTS.
  • the objects controlled by the second control unit 92 include: the boost drive motor 201 , the first boost control valve 21 , the second boost control valve 22 , the third boost control valve 23 , and the fourth boost control valve 24 , first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder Pressure reducing valve 42 , third wheel cylinder pressure reducing valve 43 , fourth wheel cylinder pressure reducing valve 44 .
  • the second control unit 92 also receives signals from the brake circuit pressure sensor BCPS and the motor position sensor MPS.
  • the first control unit 91 and the second control unit 92 may be integrated in the same controller, or may be independent of each other.
  • the controller of the braking system includes a first control unit 91 and a second control unit 92, and the controller also includes at least various solenoid valve drives, motor drives, and various signal processing and control output interface.
  • the controller receives measurement or detection signals from various sensors, such as environmental conditions, driver input, braking system status, etc., and controls the braking characteristics of the braking system through calculation and judgment.
  • the brake system includes a first controller and a second controller, the first controller includes a first control unit 91, the second controller includes a second control unit 92, and the first controller and the second controller at least include various solenoid valve drives and various signal processing and control output interfaces.
  • the second controller also includes signal processing related to motor driving and a control output interface.
  • the controller can also receive measurement or detection signals from various sensors, such as environmental conditions, driver input, braking system status, etc., and control the braking characteristics of the braking system through calculation and judgment.
  • Embodiment 1 The system composition, connection relationship, integration mode, interface setting, control relationship, etc. of the braking system provided by Embodiment 1 have been introduced above with reference to FIG. 3-a.
  • the working mode of the braking system provided by Embodiment 1 will be described below with reference to FIG. 3-b.
  • the first control unit 91 of the first subsystem controls the first master cylinder isolation valve 11 and the second master cylinder isolation valve 12 to be powered on and off, and the first The control unit 91 controls the pedal simulation valve 61 to be energized and opened, the brake pedal 7 pushes the oil in the brake master cylinder 1 to flow into the pedal feeling simulator 6 through the pedal simulation valve 61, and the first control unit 91 collects the brake pedal travel sensor PTS
  • the signal of the master cylinder pressure sensor MCPS and the signal of the oil level sensor RLS of the liquid storage container 5, and the signal is transmitted to the second control unit through the communication line.
  • the second control unit 92 determines the driver's braking intention according to the signal of the pedal travel sensor PTS and the signal of the master cylinder pressure sensor MCPS transmitted by the first control unit 91.
  • the second control unit 92 controls the boost drive motor 201 to push the piston in the two-way boost cylinder 202 to move to the right
  • the second The second control unit 92 controls the opening of the first boost control valve 21 , the second boost control valve 22 , the third boost control valve 23 and the fourth boost control valve 24 .
  • Part of the oil in the first boost chamber 202i passes through the first boost control valve 21 and the second boost control valve 22, and flows into the brake wheel cylinders through the wheel cylinder boost valves (31, 32, 33, 34) respectively. (3a, 3b, 3c, 3d), to achieve wheel braking; another part of oil flows into the second boost chamber 202j of the two-way boost cylinder 202 through the third boost control valve 23 and the fourth boost control valve 24 .
  • the second control unit 92 judges the position of the piston in the two-way booster cylinder 202 through the signal of the motor position sensor MPS. If the position of the piston reaches the far right of the two-way booster cylinder 202, and the brake wheel cylinder still needs to be boosted at this time, the second control unit 92 controls the first booster control valve 21 and the second booster control valve 22 to Closed state, and control the supercharging drive motor 201 to reverse, the piston in the two-way supercharging cylinder moves to the left, the brake fluid in the second supercharging chamber 202j passes through the third supercharging control valve 23, the fourth supercharging control valve Valves, wheel cylinder boost valves (31, 32, 33, 34) flow into the brake wheel cylinders to realize wheel boost.
  • the two-way booster cylinder 202 can make the boosting process continuous and stable, and bring good boosting characteristics to the braking system.
  • Embodiment 1 When the braking pressure of a certain wheel cylinder is too high, the conventional decompression process of the braking system provided by Embodiment 1 can be described as follows: For example, when the pressure of the brake wheel cylinder 3a is too high, turn off the wheel cylinder pressurization corresponding to the wheel cylinder 3a The valve 31 opens the corresponding wheel cylinder decompression valve 41, and the brake fluid in the wheel cylinder flows into the liquid storage container 5 through the wheel cylinder decompression valve 41 to realize decompression.
  • the braking system provided by Embodiment 1 can perform mechanical backup.
  • the brake fluid can flow from the brake master cylinder 1 to the brake wheel cylinders (4a, 4b, 4c, 4d) through the first master cylinder isolation valve 11 and the second master cylinder isolation valve 12 respectively. , to achieve braking.
  • the brake systems provided in the embodiments of the present application can all realize the above-mentioned mechanical backup function.
  • the brake system provided in Embodiment 1 adopts a split design, which can significantly improve NVH (noise, vibration, harshness, NVH) characteristics, improve driving experience, and facilitate vehicle layout.
  • NVH noise, vibration, harshness, NVH
  • FIG. 4 is a schematic diagram of another braking system provided by Embodiment 2 of the present application. As shown in Figure 4, the braking system provided by Embodiment 2 is similar to the braking system provided by Embodiment 1. The differences of the braking system provided by Embodiment 2 will be described below, and the rest can refer to Embodiment 1. The description of the braking system in , will not be repeated here.
  • the braking system provided by Embodiment 2 includes a first subsystem and a second subsystem:
  • the first subsystem includes: a first control unit 91, a brake master cylinder 1, a first fluid storage container 5a, a pedal feeling simulator 6, a first master cylinder isolation valve 11, a second master cylinder isolation valve 12, Test valve 51, pedal simulation valve 61, pedal stroke sensor PTS, master cylinder pressure sensor MCPS, oil pot level sensor RLS, master cylinder push rod 1k.
  • the first subsystem further includes interfaces (8F, 8G).
  • the first subsystem further includes a fifth one-way valve 51v and a sixth one-way valve 61v.
  • the first subsystem can also be integrated with a filter, or realize the impurity filtering function by selecting a control valve with a filter and a liquid storage container 5 with a filter.
  • the second subsystem includes: a second control unit 92, a second liquid storage container 5b, a boost drive motor 201, a two-way boost cylinder 202, a first boost control valve 21, a second boost control valve 22, The third boost control valve 23, the fourth boost control valve 24, the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32, the third wheel cylinder boost valve 33, the fourth wheel cylinder boost valve 34.
  • the second subsystem also includes a first one-way valve 31v, a second one-way valve 32v, a third one-way valve 33v, and a fourth one-way valve 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • the second subsystem includes a first interface and a second interface (8f, 8g).
  • the first interfaces are respectively used for connecting with the brake wheel cylinders (3a, 3b, 3c, 3d) of the wheels, and the second interfaces (8f, 8g) are used for connecting with the brake master cylinder 1 .
  • the second subsystem is connected to the interface 8F and the interface 8G of the first subsystem respectively through the interface 8f and the interface 8g, and the first subsystem and the second subsystem form a braking system.
  • the braking system provided in Embodiment 2 further includes a second fluid storage container 5b.
  • the first boost chamber 202i of the supercharger 2 is connected to the second liquid storage container 5b through a one-way valve 202v, and the one-way valve 202v is configured to allow the brake fluid to flow from the supercharger
  • the liquid storage pipeline 202k flows through the one-way valve 202v to the first pressurized chamber 202i; the second pressurized chamber 202j of the supercharger 2 and the second liquid storage container 5b.
  • the first ends of the wheel cylinder decompression valves (41, 42, 43, 44) are connected to the second liquid storage container 5b, and are connected to the second liquid storage container through the interface 8E and the third liquid storage pipeline 5k.
  • the container 5b is connected; the second ends of the wheel cylinder decompression valves (41, 42, 43, 44) are respectively connected to the first ports, and the first ports are used to respectively connect with the brake wheel cylinders (41, 42, 43, 44) .
  • first liquid storage container 5a and the second liquid storage container 5b may be connected through pipelines, or may be independent of each other.
  • the braking system provided in Embodiment 2 can increase the degree of redundancy by adding the second liquid storage container 5b in the second subsystem;
  • the interface between subsystems simplifies the connection relationship and improves reliability.
  • FIG. 5 is a schematic diagram of another braking system provided by Embodiment 3 of the present application. As shown in Figure 5, there are many similarities between the braking system provided by Embodiment 3 and the braking system provided by Embodiment 1. The differences of the braking system provided by Embodiment 3 will be described below, and the rest can be referred to in the implementation The description of the braking system in Example 1 will not be repeated here.
  • the braking system provided by the third embodiment includes a first subsystem and a second subsystem:
  • the first subsystem includes: the first control unit 91, the brake master cylinder 1, the fluid storage container 5, the pedal feeling simulator 6, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the test valve 51.
  • Pedal simulation valve 61 pedal stroke sensor PTS, master cylinder pressure sensor MCPS, oil pot liquid level sensor RLS, master cylinder push rod 1k.
  • the first subsystem further includes interfaces (8E, 8F, 8G).
  • the first subsystem further includes a fifth one-way valve 51v and a sixth one-way valve 61v.
  • the first subsystem can also be integrated with a filter, or realize the impurity filtering function by selecting a control valve with a filter and a liquid storage container 5 with a filter.
  • the second subsystem includes: a second control unit 92, a booster drive motor 201, a one-way booster cylinder 202, a booster check valve 202v, a first booster control valve 21, a second booster control valve 22.
  • the second subsystem also includes a first one-way valve 31v, a second one-way valve 32v, a third one-way valve 33v, and a fourth one-way valve 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • the second subsystem includes a first interface, a second interface (8f, 8g), and a third interface (8e).
  • the first interface is used to connect with the brake wheel cylinders (3a, 3b, 3c, 3d) of the wheels respectively
  • the second interface (8f, 8g) is used to connect with the brake master cylinder 1
  • the third interface (8e) Used to connect with the liquid storage container 5.
  • the second subsystem is connected to the interface 8E, interface 8F, and interface 8G of the first subsystem through the interface 8e, interface 8f, and interface 8g respectively, and the first subsystem and the second subsystem
  • the system forms a braking system.
  • the second subsystem of the braking system provided in Embodiment 3 uses a one-way boost cylinder 202, and reduces the third boost control valve 23 and The fourth boost control valve 24 .
  • the connection relationship between the one-way booster cylinder 202 of the supercharger 2 and the brake wheel cylinder in the second subsystem can be described as: the one-way booster cylinder 202 passes through the first
  • the first boost control valve 21 on the boost branch is connected to the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 respectively, and the first wheel cylinder boost valve 31 is connected to the interface 4a, and through the interface 4a It is connected with the first wheel cylinder 3a;
  • the second booster valve 32 is connected with the interface 4b, and is connected with the second wheel cylinder 3b through the interface 4b; at the same time, the one-way booster cylinder 202 passes through the second booster on the first booster branch.
  • the pressure control valve 22 is respectively connected with the third wheel cylinder boost valve 33 and the fourth wheel cylinder boost valve 34;
  • the third wheel cylinder boost valve 33 is connected with the interface 4c, and is connected with the third wheel cylinder 3c through the interface 4c;
  • the fourth wheel cylinder boost valve 34 is connected to the port 4d, and is connected to the fourth wheel cylinder 3d through the port 4d.
  • the brake circuit pressure sensor BCPS is set between the one-way boost cylinder 202 and the first boost control valve 21, or between the one-way boost valve 202 and the second boost control valve Between 22.
  • the one-way booster cylinder 202 of the supercharger 2 is connected to the interface 8e through the one-way valve 202v, and connected to the liquid storage container 5 through the interface 8E and the third liquid storage pipeline 5k.
  • the one-way valve 202v is configured to Under certain conditions, the brake fluid is allowed to flow from the supercharger liquid storage pipeline 202k to the one-way booster cylinder 202 through the one-way valve 202v.
  • the brake system provided by Embodiment 3 uses a one-way boost cylinder 202, and reduces the third boost control valve and the fourth boost control valve. , simple structure and lower cost.
  • the braking system provided in the third embodiment for features not described here, reference may be made to the relevant descriptions in the braking system provided in the first embodiment.
  • Fig. 6-a is a schematic diagram of another braking system provided by Embodiment 4 of the present application. As shown in Figure 6-a, the braking system provided by Embodiment 4 is similar to the braking system provided by Embodiment 1. The differences of the braking system provided by Embodiment 4 will be described below, and the rest can be referred to in the implementation The description of the braking system in Example 1 will not be repeated here.
  • the brake system provided by Embodiment 4 includes a first subsystem and a second subsystem:
  • the first subsystem includes: the first control unit 91, the brake master cylinder 1, the liquid storage container 5, the pedal feeling simulator 6, the pedal stroke sensor PTS, the oil tank level sensor RLS, and the master cylinder push rod 1k.
  • the first subsystem further includes interfaces (8F, 8G, 8H, 8I, 8J).
  • the first subsystem can also be integrated with a filter, or realize the impurity filtering function by selecting a control valve with a filter and a liquid storage container 5 with a filter.
  • the second subsystem includes: second control unit 92, first master cylinder isolation valve 11, second master cylinder isolation valve 12, pedal simulation valve 61, test valve 51, master cylinder pressure sensor MCPS, booster drive motor 201, two-way booster cylinder 202, booster check valve 202v, first booster control valve 21, second booster control valve 22, third booster control valve 23, fourth booster control valve 24, first Wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42.
  • the second subsystem also includes the fifth one-way valve 51v, the sixth one-way valve 61v, the first one-way valve 31v, the second one-way valve 32v, the third one-way valve 33v, the Four check valves 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • the second subsystem includes a first interface, a second interface (8f, 8g), and a fourth interface (8h, 8i, 8j).
  • the first interface is respectively used for connecting with the brake wheel cylinders (3a, 3b, 3c, 3d) of the wheel
  • the second interface (8f, 8g) is used for connecting with the brake master cylinder 1
  • the third interface (8h, 8i, 8j) for connection with the fluid storage container 5 or the pedal feel simulator 6 .
  • the second subsystem communicates with the first subsystem's interfaces 8F, 8G, 8H, and 8I and interface 8J are connected, and the first subsystem and the second subsystem form a braking system.
  • Fig. 6-b provides a working state of the braking system for the fourth embodiment.
  • the working principle of the braking system provided by the fourth embodiment is the same as that of the braking system provided by the first embodiment.
  • the difference from the braking system provided in Embodiment 1 is that in the braking system provided in Embodiment 4, the second subsystem further includes a master cylinder pressure sensor MCPS, a pedal simulation valve 61 , and a test valve 51 .
  • the second control unit 92 directly receives the signal of the master cylinder pressure sensor MCPS.
  • the second control unit 92 may also control the pedal simulation valve 61 and the test valve 51 .
  • the first control unit 91 in the first subsystem detects the signal of the pedal travel sensor PTS and sends it to the second control unit 92 in the second subsystem. Moreover, the first control unit 91 can also collect the signal of the liquid level sensor RLS of the oil pot and send it to the second control unit 92 .
  • the first subsystem is smaller in size, simple in structure, and flexible in arrangement.
  • FIG. 7 is a schematic diagram of another braking system provided by Embodiment 5 of the present application. As shown in Figure 7, the braking system provided by Embodiment 5 is similar to the braking system provided by Embodiment 1. The differences of the braking system provided by Embodiment 5 will be described below, and the rest can refer to Embodiment 1. The description of the braking system in , will not be repeated here.
  • the braking system provided by Embodiment 5 includes a first subsystem and a second subsystem:
  • the first subsystem includes: the first control unit 91, the brake master cylinder 1, the liquid storage container 5, the pedal feeling simulator 6, the pedal stroke sensor PTS, the oil tank level sensor RLS, and the master cylinder push rod 1k.
  • the first subsystem further includes interfaces (8F, 8G, 8H, 8I, 8J).
  • the first subsystem can also be integrated with a filter, or realize the impurity filtering function by selecting a control valve with a filter and a liquid storage container 5 with a filter.
  • the second subsystem includes: second control unit 92, first master cylinder isolation valve 11, second master cylinder isolation valve 12, pedal simulation valve 61, test valve 51, master cylinder pressure sensor MCPS, booster drive motor 201.
  • the second subsystem also includes the fifth one-way valve 51v, the sixth one-way valve 61v, the first one-way valve 31v, the second one-way valve 32v, the third one-way valve 33v, the Four check valves 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • the brake circuit pressure sensor BCPS is arranged between the booster 2 and the first boost control valve 21 or between the booster 2 and the second boost control valve 22 .
  • the brake system provided by Embodiment 5 uses the one-way boost cylinder 202, and reduces the third boost control valve 23 and the fourth boost control valve 24, and has a simple structure. The cost is lower.
  • the braking system provided in Embodiment 5 for features not described here, reference may be made to the relevant descriptions in the braking system provided in Embodiment 1 or Embodiment 4.
  • FIG. 8 is a schematic diagram of another braking system provided by Embodiment 6 of the present application. As shown in Figure 8, the braking system provided by Embodiment 6 is similar to the braking system provided by Embodiment 1. The differences of the braking system provided by Embodiment 6 will be described below, and the rest can refer to Embodiment 1. The description of the braking system in , will not be repeated here.
  • the braking system provided by Embodiment 6 includes a first subsystem and a second subsystem:
  • the first subsystem includes: the first control unit 91 , the brake master cylinder 1 , the liquid storage container 5 , the pedal stroke sensor PTS, the oil tank liquid level sensor RLS, and the master cylinder push rod 1k.
  • the first subsystem further includes interfaces (8F, 8G, 8I, 8J).
  • the first subsystem can also be integrated with a filter, or the impurity filtering function can be realized by selecting the liquid storage container 5 with a filter.
  • the second subsystem includes: the second control unit 92, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the pedal feeling simulator 6, the pedal simulation valve 61, the test valve 51, the master cylinder pressure sensor MCPS, supercharging drive motor 201, two-way supercharging cylinder 202, supercharger check valve 202v, first supercharging control valve 21, second supercharging control valve 22, third supercharging control valve 23, fourth supercharging control valve Control valve 24, first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder boost valve Second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44, brake circuit pressure sensor BCPS.
  • the second subsystem also includes the fifth one-way valve 51v, the sixth one-way valve 61v, the first one-way valve 31v, the second one-way valve 32v, the third one-way valve 33v, the Four check valves 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • the second subsystem includes a first interface, a second interface (8f, 8g), and a fourth interface (8i, 8j).
  • the first interface is respectively used to connect with the brake wheel cylinders (3a, 3b, 3c, 3d) of the wheel
  • the second interface (8f, 8g) is used to connect with the brake master cylinder 1
  • the third interface (8i, 8j) For connection to the fluid reservoir 5 or the brake master cylinder 1 .
  • the second subsystem is connected to the interface 8F, interface 8G, interface 8I, and interface 8J of the first subsystem through the interface 8f, interface 8g, interface 8i, and interface 8j respectively.
  • the subsystem and the second subsystem form a braking system.
  • the working principle of the braking system provided by the sixth embodiment is the same as that of the braking system provided by the first embodiment.
  • the second subsystem also includes a master cylinder pressure sensor MCPS, a pedal feeling simulator 6, a pedal simulation valve 61, a test valve 51.
  • the second control unit 92 directly receives the signal of the master cylinder pressure sensor MCPS.
  • the second control unit 92 may also control the pedal simulation valve 61 and the test valve 51 .
  • the first control unit 91 in the first subsystem detects the signal of the pedal travel sensor PTS and sends it to the second control unit 92 in the second subsystem.
  • the first control unit 91 can also collect the signal of the liquid level sensor RLS of the oil pot and send it to the second control unit 92 .
  • the first subsystem is smaller in size, simple in structure, and flexible in arrangement.
  • the braking system provided by the sixth embodiment has fewer interfaces and simpler connections.
  • FIG. 9 is a schematic diagram of another braking system provided by Embodiment 7 of the present application. As shown in Figure 9, the braking system provided by Embodiment 7 is similar to the braking system provided by Embodiment 1. The differences of the braking system provided by Embodiment 7 will be described below, and the rest can refer to Embodiment 1. The description of the braking system in , will not be repeated here.
  • the braking system provided by Embodiment 7 includes a first subsystem and a second subsystem:
  • the first subsystem includes: the first control unit 91 , the brake master cylinder 1 , the liquid storage container 5 , the pedal stroke sensor PTS, the oil tank liquid level sensor RLS, and the master cylinder push rod 1k.
  • the first subsystem further includes interfaces (8F, 8G, 8I, 8J).
  • the first subsystem can also be integrated with a filter, or realize the impurity filtering function by selecting a control valve with a filter and a liquid storage container 5 with a filter.
  • the second subsystem includes: the second control unit 92, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the pedal feeling simulator 6, the pedal simulation valve 61, the test valve 51, the master cylinder pressure sensor MCPS, supercharging drive motor 201, one-way supercharging cylinder 202, supercharger one-way valve 202v, first supercharging control valve 21, second supercharging control valve 22, first wheel cylinder supercharging valve 31, second Wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43. Fourth wheel cylinder pressure reducing valve 44. Brake circuit pressure sensor BCPS.
  • the second subsystem also includes the fifth one-way valve 51v, the sixth one-way valve 61v, the first one-way valve 31v, the second one-way valve 32v, the third one-way valve 33v, the Four check valves 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • the brake circuit pressure sensor BCPS is arranged between the supercharger 2 and the first boost control valve 21 or between the supercharger 2 and the second boost control valve 22 .
  • the first subsystem of the braking system provided by Embodiment 7 is smaller in size, simple in structure, and flexible in arrangement; the second subsystem uses a one-way pressurized cylinder 202, and reduces The third pressure increase control valve 23 and the fourth pressure increase control valve 24 are provided, and the structure is simple and the cost is lower.
  • the braking system provided in Embodiment 7 for features not described here, reference may be made to the relevant descriptions in the braking system provided in Embodiment 1 or Embodiment 5.
  • FIG. 10 is a schematic diagram of another braking system provided by Embodiment 8 of the present application. As shown in Figure 10, the braking system provided by the eighth embodiment is similar to the braking system provided by the first embodiment. The differences of the braking system provided by the eighth embodiment are described below, and the rest can refer to the first embodiment The description of the braking system in , will not be repeated here.
  • the brake system provided by Embodiment 8 includes a first subsystem and a second subsystem:
  • the first subsystem includes: a first control unit 91, a brake master cylinder 1, a liquid storage container 5, a pedal feeling simulator 6, a test valve 51, a pedal simulation valve 61, a pedal stroke sensor PTS, and a master cylinder pressure sensor MCPS, oil tank liquid level sensor RLS, master cylinder push rod 1k.
  • the first subsystem further includes interfaces (8E, 8F, 8G).
  • the first subsystem further includes a fifth one-way valve 51v and a sixth one-way valve 61v.
  • the first subsystem can also be integrated with a filter, or realize the impurity filtering function by selecting a control valve with a filter and a liquid storage container 5 with a filter.
  • the first subsystem may include the master cylinder pushrod 1k but not the brake pedal 7 .
  • the first subsystem can be matched with different types of brake pedals 7 to adapt to more models and provide more possibilities for personalized matching.
  • the second subsystem includes: the second control unit 92, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the boost drive motor 201, the two-way boost cylinder 202, and the booster check valve 202v , the first boost control valve 21, the second boost control valve 22, the third boost control valve 23, the fourth boost control valve 24, the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32 , The third wheel cylinder boost valve 33, the fourth wheel cylinder boost valve 34, the first wheel cylinder pressure reducing valve 41, the second wheel cylinder pressure reducing valve 42, the third wheel cylinder pressure reducing valve 43, the fourth wheel cylinder Pressure reducing valve 44, brake circuit pressure sensor BCPS.
  • the second subsystem also includes a first one-way valve 31v, a second one-way valve 32v, a third one-way valve 33v, and a fourth one-way valve 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • the second subsystem includes a first interface, a second interface (8f, 8g), and a third interface (8e).
  • the first interface is used to connect with the brake wheel cylinders (3a, 3b, 3c, 3d) of the wheels respectively
  • the second interface (8f, 8g) is used to connect with the brake master cylinder 1
  • the third interface (8e) Used to connect with the liquid storage container 5.
  • the second subsystem is connected to the interface 8E, interface 8F, and interface 8G of the first subsystem through the interface 8e, interface 8f, and interface 8g respectively, and the first subsystem and the second subsystem
  • the system forms a braking system.
  • connection relationship of the interfaces of the braking system provided by Embodiment 8 of the present application will be described below with reference to FIG. 10 .
  • the second subsystem does not include brake wheel cylinders (3a, 3b, 3c, 3d), but there is at least one wheel cylinder interface, such as the first interface in Embodiment 1; at least one first interface is used It is connected with at least one brake wheel cylinder (3a, 3b, 3c, 3d) and can provide brake pressure for the wheel cylinder.
  • the braking system provided in Embodiment 8 integrates the first master cylinder isolation valve 11 and the second master cylinder isolation valve 12 into the second subsystem, and the first master cylinder isolation valve 11 is connected to brake master cylinder 1 through interface 8f in the second subsystem and interface 8F in the first subsystem, and the second master cylinder isolation valve 12 is connected to the brake master cylinder through interface 8g in the first subsystem and interface 8G in the second subsystem. Connect the master cylinder 1.
  • FIG. 11 is a schematic diagram of another braking system provided by Embodiment 9 of the present application. Compared with the brake system provided by Embodiment 8, the brake system provided by Embodiment 9 uses a one-way booster supercharger. The changes in the pipeline and connection relationship can refer to the descriptions of other embodiments, and will not be repeated here. .
  • FIG. 12 is a braking system architecture provided by the present application, and the braking system architecture can be derived from the braking systems of Embodiment 10 to Embodiment 27 of the present application.
  • the braking system provided by this application can be integrated in various forms.
  • the brake systems provided in Embodiment 10 to Embodiment 27 of the present application may include a main supercharger and a redundant supercharger.
  • the main supercharger may include an interface connected with the liquid storage container, and may also include an interface connected with the brake circuit.
  • the redundant supercharger may also include an interface connected with the master cylinder, an interface connected with the liquid storage container, and an interface connected with the brake circuit.
  • the main supercharger and the redundant supercharger can be independent integrated modules, or the main supercharger can be integrated with other pipes
  • the circuit and control valve are integrated into one; the redundant supercharger can also be integrated with the brake master cylinder. This application is not limited to this.
  • FIG. 13 is a schematic diagram of another braking system provided by Embodiment 10 of the present application. As shown in FIG. 13 , the following describes the brake system provided in Embodiment 10. For the parts not mentioned, please refer to the description of the brake system in Embodiment 1, and will not be repeated here.
  • the braking system provided by the tenth embodiment includes a first subsystem and a second subsystem.
  • both the first subsystem and the second subsystem are changed.
  • the first subsystem adds a first booster pump 203, a second booster pump 204, a first booster pump control valve 211, a second booster pump control valve 212, a one-way valve 203v, and a one-way valve 204v;
  • the second subsystem adds a third master cylinder isolation valve 13 and a fourth master cylinder isolation valve 14 .
  • the differences of the braking system provided by the tenth embodiment will be described in detail.
  • the first subsystem includes: first control unit 91, brake master cylinder 1, master cylinder push rod 1k, pedal stroke sensor PTS, test valve 51, liquid storage container 5, oil pot level sensor RLS, pedal feel Simulator 6, pedal simulation valve 61, first master cylinder isolation valve 11, second master cylinder isolation valve 12, first master cylinder pressure sensor MCPS, first booster pump 203, second booster pump 204, first booster The pressure pump control valve 211, the second booster pump control valve 212, the first booster pump check valve 203v, and the second booster pump check valve 204v.
  • the first subsystem further includes a fifth one-way valve 51v and a sixth one-way valve 61v.
  • the first subsystem can also be integrated with a filter, or realize the impurity filtering function by selecting a control valve with a filter and a liquid storage container 5 with a filter.
  • the first subsystem may include the master cylinder pushrod 1k but not the brake pedal 7 .
  • the first subsystem can be matched with different types of brake pedals 7 to adapt to more models and provide more possibilities for personalized matching.
  • first booster pump 203 and the second booster pump 204 may be driven by at least one motor, which is not shown in FIG. 13 .
  • the booster pumps appearing in other embodiments provided in the specification of this application are also driven by motors, and the driving motors are not shown.
  • the second subsystem includes: the second control unit 92, the third master cylinder isolation valve 13, the fourth master cylinder isolation valve 14, the second master cylinder pressure sensor MCPS, the boost drive motor 201, and the two-way boost cylinder 202 , supercharger check valve 202v, first supercharging control valve 21, second supercharging control valve 22, third supercharging control valve 23, fourth supercharging control valve 24, first wheel cylinder supercharging valve 31,
  • the second subsystem also includes a first one-way valve 31v, a second one-way valve 32v, a third one-way valve 33v, and a fourth one-way valve 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • each control valve in the braking system is shown in FIG. 13 .
  • the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the third master cylinder isolation valve 13, and the fourth master cylinder isolation valve 14 are normally open valves.
  • the normally open valve When the normally open valve is controlled and powered on, the normally open valve will switch to the state of disconnecting the pipelines at both ends of the control valve, that is, when the normally open valve is powered on and disconnected, The fluid in the pipeline cannot flow from one end of the normally open valve to the other end of the normally open valve through the normally open valve.
  • the normally open valves may include: a test valve 51, a first master cylinder isolation valve 11, a second master cylinder isolation valve 12, a third master cylinder isolation valve 13, a second master cylinder isolation valve Four master cylinder isolation valves 14 , first wheel cylinder boost valve 31 , second wheel cylinder boost valve 32 , third wheel cylinder boost valve 33 , fourth wheel cylinder boost valve 34 .
  • the normally closed valves may include: a first boost pump control valve 211, a second boost pump control valve 212, a pedal simulation valve 61, a first boost control valve 21.
  • the connection relationship of the first subsystem is introduced.
  • the first subsystem includes an interface 8E, an interface 8F, and an interface 8G.
  • the first master chamber 1i of the brake master cylinder 1 is connected to the interface 8F through the first master cylinder isolation valve 11, and the second master chamber 1j of the brake master cylinder 1 is connected to the port 8F through the second master cylinder isolation valve 12. Interface 8G connection.
  • the liquid storage container 5 is connected to the port 8E.
  • the first main chamber 1i of the brake master cylinder 1 is connected to the fluid storage container 5 through a pipeline 5i
  • the second master chamber 1j of the brake master cylinder 1 is connected to the fluid storage container 5 through a test valve 51 and a pipeline 5j.
  • Both ends of the test valve 51 are connected in parallel with a one-way valve 51v, which is configured to allow the brake fluid to flow from the fluid storage container 5 to the brake master cylinder 1 through the one-way valve 51v under certain conditions.
  • the master cylinder push rod 1k can push the master cylinder piston under the action of external force
  • the master cylinder push rod 1k can be connected with the brake pedal 7, and the pedal stroke sensor PTS can detect the pedal stroke.
  • the input end of the first booster pump 203 is referred to as the first end of the first booster pump 203
  • the output end of the first booster pump 203 is referred to as the second end of the first booster pump 203
  • denote the input end of the second booster pump 204 as the first end of the second booster pump end 204
  • denote the output end of the second booster pump 204 as the second end of the second booster pump 204 .
  • the input end of the booster pump may also be marked as the second end
  • the output end of the booster pump may also be marked as the first end, which is not limited in this application.
  • the liquid storage container 5 is connected to the first end of the first booster pump 203 through a one-way valve 203v.
  • the one-way valve 203v is configured to allow the brake fluid to flow from the fluid storage container 5 to the first end of the first booster pump 203 through the one-way valve 203v under certain conditions.
  • the first end of the first booster pump 203 is also connected to the interface 8G through the first booster pump control valve 211 .
  • the second end of the first booster pump is connected to the interface 8F, and the second end of the first booster pump 203 is also connected to the first master chamber 1i of the brake master cylinder 1 through the first master cylinder isolation valve 11 .
  • the liquid storage container 5 is connected to the first end of the second booster pump 204 through a one-way valve 204v.
  • the one-way valve 204v is configured to allow the brake fluid to flow from the fluid storage container 5 to the first end of the second booster pump 204 through the one-way valve 204v under certain conditions.
  • the first end of the second boost pump 204 is also connected to the interface 8G through the second boost pump control valve 212 .
  • the second end of the second booster pump is connected to the interface 8G, and the second end of the second booster pump 204 is also connected to the second master chamber 2j of the brake master cylinder 1 through the second master cylinder isolation valve 12 .
  • connection relationship of the liquid storage container 5 in the first subsystem is only a possible situation provided by Embodiment 10, and this application does not limit the number of ports on the liquid storage container 5 .
  • the pipeline 5k, pipeline 5i, pipeline 5j, and pipeline 5m connected to the liquid storage container 5 can be connected to the liquid storage container 5 through four liquid storage container interfaces; a possible
  • the pipeline 5k, pipeline 5i, pipeline 5j, and pipeline 5m connected to the liquid storage container 5 may be merged before being connected to the liquid storage container 5, and connected to the liquid storage container 5 through one interface.
  • a master cylinder pressure sensor MCPS may also be provided between the second master chamber 1 j and the second master cylinder isolation valve 12 .
  • the pedal feeling simulator 6 is connected to the second master chamber 1 j of the master cylinder through a pedal simulation valve 61 .
  • a one-way valve 61v is also connected in parallel at both ends of the pedal simulation valve 61 . It should be noted that when the pedal simulation valve 61 includes the function of a one-way valve, it is not necessary to connect a one-way valve in parallel at both ends thereof.
  • the master cylinder pressure sensor MCPS and the pedal simulator 6 can be connected with the second master chamber 1j of the brake master cylinder 1, or can be connected with the first master chamber 1i of the brake master cylinder. This is not limited.
  • the second subsystem includes a first interface, a second interface (8f, 8g), and a third interface (8e).
  • the first interfaces of the second subsystem are respectively used to connect with the brake wheel cylinders (3a, 3b, 3c, 3d) of the wheels.
  • the interface 8f is connected to the first end of the third master cylinder isolation valve 13, and the second end of the third master cylinder isolation valve 13 is connected to the first brake line 3i, specifically, the third master cylinder
  • the second end of the isolation valve 13 is connected to the first end of the first wheel cylinder boost valve 31, and the second end of the first wheel cylinder boost valve 31 is connected to the interface 4a; the second end of the third master cylinder isolation valve 13 It is connected to the first end of the second wheel cylinder boost valve 32, and the second end of the second wheel cylinder boost valve 32 is connected to the interface 4b.
  • the interface 8g is connected to the first end of the fourth master cylinder isolation valve 14, and the second end of the fourth master cylinder isolation valve 14 is connected to the second brake line 3j, specifically, the fourth master cylinder
  • the second end of the isolation valve 14 is connected to the first end of the third wheel cylinder boost valve 33, and the second end of the third wheel cylinder boost valve 33 is connected to the interface 4c; the second end of the fourth master cylinder isolation valve 14 It is connected to the first end of the fourth wheel cylinder boost valve 34, and the second end of the fourth wheel cylinder boost valve 34 is connected to the interface 4d.
  • the first boost chamber 202i of the two-way boost cylinder 202 is respectively connected to the first end of the first boost control valve 21 and the first end of the second boost control valve 22 through the first boost branch 2i.
  • the second end of the first boost control valve 21 is connected to the first brake line 3i, specifically, the second end of the first boost control valve 21 is connected to the first end of the first wheel cylinder boost valve 31.
  • the second end of the first boost control valve 21 is connected to the first end of the second wheel cylinder boost valve 32; the second end of the second boost control valve 22 is connected to the second brake line 3j, Specifically, the second end of the second boost control valve 22 is connected to the first end of the third wheel cylinder boost valve 33, and the second end of the second boost control valve 22 is connected to the fourth wheel cylinder boost valve 34. The first end is connected.
  • the second boost chamber 202j of the two-way boost cylinder 202 is respectively connected to the first end of the third boost control valve 23 and the first end of the fourth boost control valve 24 through the second boost branch 2j.
  • the second end of the third boost control valve 23 is connected to the first brake line 3i, specifically, the second end of the third boost control valve 23 is connected to the first end of the first wheel cylinder boost valve 31.
  • the second end of the third boost control valve 23 is connected to the first end of the second wheel cylinder boost valve 32; the second end of the fourth boost control valve 24 is connected to the second brake line 3j, Specifically, the second end of the fourth boost control valve 24 is connected to the first end of the third wheel cylinder boost valve 33, and the second end of the fourth boost control valve 24 is connected to the fourth wheel cylinder boost valve 34. The first end is connected.
  • the interface 8e is connected to the first boost chamber 202i of the two-way boost cylinder 202 through a one-way valve 202v.
  • a first end of the one-way valve 202v is connected to the interface 8e, and a second end of the one-way valve 202v is connected to the first pressurized chamber 202i.
  • the one-way valve 202v is configured to allow the brake fluid to flow from the pipeline 202k through the one-way valve 202v into the first booster chamber 202i under certain conditions. That is, the one-way valve 202v allows the brake fluid to flow from its first end to the second end under certain conditions.
  • the brake circuit pressure sensor BCPS is arranged at the first brake pipeline 3 i and can collect the pressure at the first wheel cylinder boost valve 31 or the second wheel cylinder boost valve 32 . It should be noted that the brake circuit pressure sensor BCPS can also be arranged at the second brake pipeline 3j, and can collect the pressure at the third wheel cylinder boost valve 33 or the fourth wheel cylinder boost valve 34. There is no limit to this.
  • the interface 4a is connected to the interface 8e through the first wheel cylinder pressure reducing valve 41
  • the interface 4b is connected to the interface 8e through the second wheel cylinder pressure reducing valve 42
  • the interface 4c is connected to the interface 8e through the third wheel cylinder pressure reducing valve 43.
  • the port 8e is connected
  • the port 4d is connected to the port 8e through the fourth wheel cylinder decompression valve 44 .
  • the first subsystem and the second subsystem form a braking system.
  • the second subsystem is connected to the interface 8E, the interface 8F, and the interface 8G of the first subsystem respectively through the interface 8e, the interface 8f, and the interface 8g.
  • the brake system is also connected to the brake wheel cylinder through the interface 4a, the interface 4b, the interface 4c, and the interface 4d respectively.
  • the first master chamber 1i of the brake master cylinder 1 is connected to the interface 8F through the first master cylinder isolation valve 11, and is connected to the third master cylinder isolation valve 13 through the interface 8f, and the third master cylinder isolation valve 13 is connected to the first brake
  • the pipeline 3i is connected, specifically, the third master cylinder isolation valve 13 is connected with the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 respectively;
  • the first wheel cylinder boost valve 31 is connected with the interface 4a, It is connected with the first wheel cylinder 3a through the interface 4a;
  • the second booster valve 32 is connected with the interface 4b, and connected with the second wheel cylinder 3b through the interface 4b;
  • the second master chamber 1j of the brake master cylinder 1 is connected through the second master
  • the cylinder isolation valve 12 is connected to the interface 8G, and is
  • the output end of the first booster pump 203 is connected to the interface 8F, and is connected to the third master cylinder isolation valve 13 through the interface 8f; the output end of the second booster pump 204 is connected to the interface 8G , and is connected to the fourth master cylinder isolation valve 14 through the interface 8g.
  • the connection relationship between the first booster pump 203 and the second booster pump 204 and the brake wheel cylinders (3a, 3b, 3c, 3d) in the second subsystem can refer to the brake master cylinder 1 and the brake wheel cylinder (3a , 3b, 3c, 3d) connection relationship, which will not be repeated here.
  • the first pressurization chamber 202i of the supercharger 2 is connected to the interface 8e through the check valve 202v, and is connected to the liquid storage container 5 through the interface 8E and the pipeline 5k;
  • the wheel cylinder decompression valve (41, 42, 43, 44) are respectively connected to the interface 8e, and connected to the liquid storage container 5 through the interface 8E and the pipeline 5k.
  • the objects controlled by the first control unit 91 include: the pedal simulation valve 61, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the test valve 51, the first booster pump control valve 211, the second booster pump control valve Pressure pump control valve 212.
  • the first control unit 91 receives signals from the master cylinder pressure sensor MCPS, the pedal travel sensor PTS and the oil level sensor RLS.
  • the objects controlled by the second control unit 92 include: boost drive motor 201 , third master cylinder isolation valve 13 , fourth master cylinder isolation valve 14 , first boost control valve 21 , second boost control valve 22 , the third boost control valve 23, the fourth boost control valve 24, the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32, the third wheel cylinder boost valve 33, the fourth wheel cylinder boost valve Valve 34 , first wheel cylinder pressure reducing valve 41 , second wheel cylinder pressure reducing valve 42 , third wheel cylinder pressure reducing valve 43 , fourth wheel cylinder pressure reducing valve 44 .
  • the second control unit 92 receives signals from the brake circuit pressure sensor BCPS and the motor position sensor MPS.
  • the brake system includes a first controller and a second controller, the first controller includes a first control unit 91, the second controller includes a second control unit 92, and the first controller and
  • the second controller also includes at least various solenoid valve drives and various signal processing and control output interfaces.
  • the second controller also includes signal processing related to motor driving and a control output interface.
  • the controller can also receive measurement or detection signals from various sensors, such as environmental conditions, driver input, braking system status, etc., and control the braking characteristics of the braking system through calculation and judgment.
  • Embodiment 10 The system composition, connection relationship, integration mode, interface setting, control relationship, etc. of the brake system provided by Embodiment 10 are introduced above with reference to FIG. 13 .
  • the working mode of the braking system provided by Embodiment 10 will be described below with reference to FIG. 13 .
  • the braking intention described in the specification of this application may include the braking intention from the driver and the active braking intention from the vehicle.
  • the braking intention can be obtained through the driver's stepping action on the pedal, the driver's braking intention can be obtained through the signal of the pedal travel sensor PTS, or can be obtained by combining the signals of the pedal travel sensor PTS and the master cylinder pressure sensor MCPS to determine braking intent.
  • the braking intention can also be obtained through the active braking request of the automatic driving system ADS or the driving assistance system ADAS.
  • the active braking request can be generated by the automatic driving controller and received by the control unit of the braking system; for another example, in the ACC mode, when the following distance is less than the preset distance, the ACC system sends an active braking request, The control unit of the braking system receives the braking request and performs a corresponding braking action.
  • the description of this application does not limit the method for obtaining the braking intention.
  • the braking system provided by the embodiment of the present application can provide ABS, TCS, ESC, BBF, AEB, ACC and other functions.
  • the brake system can also provide other additional functions VAF, such as AEB, ABP, ABA, AWB, CDD, VLC, AVH, BDW, HAZ, HBA, HFC, HRB, HAS, HDC, etc.
  • the first control unit 91 is also referred to as ECU1 in some embodiments
  • the second control unit 92 is also referred to as ECU2 in some embodiments.
  • the braking system After obtaining the braking intention, the braking system has different working modes under different fault scenarios.
  • the braking system provided by Embodiment 10 of the present application includes at least four working modes: (1) ECU1 and ECU2 work together; (2) ECU1 works alone; (3) ECU2 works alone; (4) mechanical backup mode.
  • ECU1 and ECU2 work together.
  • the master cylinder push rod 1k pushes the brake master cylinder piston, and the pressure in the master cylinder rises.
  • the ECU1 controls the first master cylinder isolation valve 11 and the second master cylinder isolation valve 12 to be disconnected.
  • the ECU 1 controls the pedal simulation valve 61 to be connected, so that the second main chamber 1j of the brake master cylinder 1 is connected to the pedal feeling simulator 6, and the pedal feeling simulator works to generate a pedal feeling.
  • the first booster pump 203 and the second booster pump 204 do not work.
  • ECU1 also receives signals from pedal travel sensor PTS and first master cylinder pressure sensor MCPS, and transmits the received signals to ECU2.
  • ECU1 also receives the RLS signal of the oil tank liquid level sensor.
  • ECU1 transmits signals to ECU2, which can be communicated through CAN (Controller Area Network), Ethernet or other methods, which is not limited in this application.
  • CAN Controller Area Network
  • Ethernet or other methods, which is not limited in this application.
  • ECU2 determines the driver's braking intention according to the signal of pedal stroke sensor PTS and the signal of master cylinder pressure sensor MCPS transmitted by ECU1.
  • Embodiment 10 the conventional pressure building process of the brake system provided in Embodiment 10 can be described as follows: ECU2 controls the first boost control valve 21, the second boost control valve 22, and the third boost control valve 23 .
  • the fourth boost control valve 24 is opened, and the boost drive motor 201 is controlled to push the piston in the two-way boost cylinder 202 to move to the right.
  • Part of the oil in the first boost chamber 202i passes through the first boost control valve 21 and the second boost control valve 22, and flows into the brake wheel cylinders through the wheel cylinder boost valves (31, 32, 33, 34) respectively. (3a, 3b, 3c, 3d), to achieve wheel braking; another part of oil flows into the second boost chamber 202j of the two-way boost cylinder 202 through the third boost control valve 23 and the fourth boost control valve 24 .
  • the ECU2 judges the position of the piston in the two-way pressurized cylinder 202 through the signal of the motor position sensor MPS. If the piston position reaches the far right of the two-way booster cylinder 202, and the brake wheel cylinder still needs to be boosted at this time, the ECU2 controls the first booster control valve 21 and the second booster control valve 22 to be in a closed state, and Control the reverse rotation of the supercharging drive motor 201, the piston in the two-way supercharging cylinder moves to the left, and the brake fluid in the second supercharging chamber 202j passes through the third supercharging control valve 23, the fourth supercharging control valve, the wheel cylinder
  • the pressure boost valves (31, 32, 33, 34) flow into the brake wheel cylinders to achieve wheel pressure.
  • the two-way booster cylinder 202 can make the boosting process continuous and stable, and bring good boosting characteristics to the braking system.
  • Embodiment 10 When the braking pressure of a certain wheel cylinder is too large, the conventional decompression process of the braking system provided by Embodiment 10 can be described as follows: The valve 31 is disconnected, and the corresponding wheel cylinder decompression valve 41 is connected, and the brake fluid in the wheel cylinder flows into the liquid storage container 5 through the wheel cylinder decompression valve 41 to realize decompression.
  • the ECU 2 calculates the control signals of the boost drive motor 201 and the solenoid valves in the second subsystem according to the sensor signals.
  • ECU2 controls the state of the first boost control valve 21, the second boost control valve 22, the third boost control valve 23 and the fourth boost control valve 24, and controls the boost drive motor 201 to push the supercharger Piston builds pressure.
  • ECU2 controls the on and off of the wheel cylinder boost valves (31, 32, 33, 34) and the wheel cylinder decompression valves (41, 42, 43, 44) to realize the brake wheel cylinders (3a, 3b ,3c,3d) pressure control, so as to realize ABS/TCS/ESC/BBF/AEB/ACC and other functions.
  • ECU1 works alone. Since the third master cylinder isolation valve 13 and the fourth master cylinder isolation valve 14 are normally open valves, when the ECU2 fails to work normally, the brake pressure generated by the first subsystem can still pass through the third master cylinder isolation valve 13 and The fourth master cylinder isolation valve 14 passes to the brake wheel cylinders.
  • ECU1 controls the isolation valve 11 of the first master cylinder and the isolation valve 12 of the second master cylinder to be disconnected, and controls the pedal simulation valve 61 to be connected, and the brake fluid of the brake master cylinder 1 enters the pedal feeling simulator 6 , Pedal Feel Simulator 6 works to provide pedal feel.
  • the line pressure boosted by the first booster pump 203 and the second booster pump 204 will not be transmitted back to the brake master cylinder through the first master cylinder isolation valve 11 or the second master cylinder isolation valve 12, avoiding The driver cannot step on the brake pedal or the pressure of the brake master cylinder 1 suddenly increases and the driver is injured.
  • the ECU1 controls the operation of the first boost pump 203 and the second boost pump 204 to pressurize the brake pipeline.
  • the brake fluid flows from the fluid storage container 5 to the input end of the first booster pump 203 through the one-way valve 203v, and the brake fluid also flows from the fluid storage container 5 to the second booster pump 204 through the one-way valve 204v input terminal.
  • the ECU1 can pressurize the brake wheel cylinders by controlling the first booster pump 203 and the second booster pump 204, and cooperate with the first booster pump control valve 211 and the second booster pump control valve 212 to realize control Control of the boost pressure of the wheel cylinder. Therefore, in the case of failure of ECU2, ECU1 can realize the braking function by controlling the first subsystem. But at this time, the system cannot realize the active decompression of the wheels and the independent supercharging of the four wheels. Therefore, the backup function is weak and can only support simple functions such as driving brakes.
  • Embodiment 10 can respond to active braking requests in this mode, such as AEB/ESC/TCS and additional functions (value added function, VAF) and other braking requests (the above functions do not require the driver to step on the brake. pedal to trigger).
  • active braking requests such as AEB/ESC/TCS and additional functions (value added function, VAF) and other braking requests (the above functions do not require the driver to step on the brake. pedal to trigger).
  • ECU2 when the pedal stroke sensor PTS transmits signals to ECU1 and ECU2 respectively, when ECU1 fails, ECU2 can obtain the PTS signal, and at this time ECU2 can obtain the braking intention, which is not limited in this application.
  • ECU2 responds to the braking request, and calculates the control signals of the booster drive motor 201 and the solenoid valves in the second subsystem.
  • the principle of ECU2 working alone is similar to working mode 1 in which ECU1 and ECU2 work together, and will not be repeated here.
  • the ECU2 controls the third master cylinder isolation valve 13 and the fourth master cylinder isolation valve 14 to be disconnected, and the ECU2 controls the supercharging drive motor 201 to push the supercharger piston to build pressure, and controls the first supercharger pressure control valve 21, the second pressure increase control valve 22, the third pressure increase control valve 23 and the fourth pressure increase control valve 24 to perform pressure increase, and by controlling the wheel cylinder pressure increase valves (31, 32, 33, 34 ) and wheel cylinder decompression valves (41, 42, 43, 44) on and off to realize the pressure control of each brake wheel cylinder (3a, 3b, 3c, 3d), thereby realizing ABS/TCS/ESC /BBF/AEB/ACC and other functions.
  • the brake system when both ECU1 and ECU2 fail, the brake system provided by this embodiment can perform mechanical backup.
  • the brake fluid can flow from the brake master cylinder 1 to the first wheel cylinder 3a and the second wheel cylinder 3b through the first master cylinder isolation valve 11 and the third master cylinder isolation valve 13, or
  • the brake master cylinder 1 flows through the second master cylinder isolation valve 12 and the fourth master cylinder isolation valve 14 to the third wheel cylinder 3c and the fourth wheel cylinder 3d to achieve braking.
  • Fig. 17 is a schematic diagram of another braking system provided by Embodiment 11 of the present application.
  • the difference of the braking system provided by the eleventh embodiment is that the supercharger 2 in the second subsystem is a one-way supercharging device, and the one-way supercharging of the supercharger 2
  • the cylinder 202 is connected to the first brake circuit 3i through the first boost control valve 21, and the one-way boost cylinder 202 of the supercharger 2 is connected to the second brake circuit 3j through the second boost control valve 22;
  • the booster cylinder 202 is also connected to the interface 8e through the booster check valve 202v.
  • connection relationships, interface settings and working principles in different working modes of the braking system provided by Embodiment 11, refer to the descriptions of other embodiments in the specification of this application, and will not be repeated here.
  • the brake system provided by Embodiment 11 omits the third boost control valve 23 and the fourth boost control valve 24 , and has a simpler structure. Therefore, the braking system provided by the eleventh embodiment can reduce costs and improve system reliability. However, the system provided by the eleventh embodiment cannot realize two-way continuous supercharging. When the piston in the supercharger 2 reaches the rightmost side and the system still needs supercharging, the first supercharging control valve 11 and the second supercharging control valve 11 need to be turned on. The pressure control valve 12 is disconnected, and the supercharging driving motor 201 is controlled to reverse to push the piston of the supercharger 2 to the left, and then the pressure is rebuilt, that is, the pressure can be maintained for a period of time before the supercharging can be continued.
  • FIG. 18 and FIG. 19 are schematic diagrams of braking systems provided in Embodiment 12 and Embodiment 13 of the present application, respectively.
  • ECU3 is added to the braking system provided by Embodiment 12 and Embodiment 13, and the booster drive motor 201 is changed from a three-phase motor to a six-phase motor .
  • the six-phase motor includes two sets of three-phase windings, ECU2 controls one set of three-phase windings of the booster drive motor 201 , and ECU3 controls the other set of three-phase windings of the booster drive motor 201 .
  • the ECU 1 controls the pedal simulation valve 61 , the first master cylinder isolation valve 11 , the second master cylinder isolation valve 12 , the test valve 51 , the first booster pump control valve 211 , and the second booster pump control valve 212 .
  • ECU1 receives signals from master cylinder pressure sensor MCPS, pedal stroke sensor PTS and oil tank level sensor RLS.
  • ECU2 and ECU3 can jointly drive and control the first boost control valve 21, the second boost control valve 22, the third boost control valve 23, the fourth boost control valve 24, the third master cylinder isolation valve 13, the fourth master cylinder Cylinder isolation valve 14.
  • ECU2 also controls the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32, the third wheel cylinder boost valve 33, the fourth wheel cylinder boost valve 34, the first wheel cylinder pressure reducing valve 41, The second wheel cylinder pressure reducing valve 42 , the third wheel cylinder pressure reducing valve 43 , and the fourth wheel cylinder pressure reducing valve 44 .
  • ECU2 receives the signal of the brake circuit pressure sensor BCPS and the signal of the motor position sensor MPS.
  • ECU1 controls the three-phase motor to push the piston in the supercharger 2 for supercharging.
  • ECU2 controls all solenoid valves in the second subsystem.
  • the ECU3 increases the motor power by controlling the other three-phase windings of the motor.
  • ECU3 can control another set of three-phase windings of the boost drive motor 201, and control the first boost control valve 21 and the second boost control valve 22 , the states of the third boost control valve 23, the fourth boost control valve 24, the third master cylinder isolation valve 13, and the fourth master cylinder isolation valve 14 to realize the boost of the wheel cylinders, thereby providing redundant control for the system Automatic backup function.
  • ECU1 in the first subsystem controls the first booster pump 203 and the second booster pump 204 and the first booster pump control valve 203, the second booster pump
  • the control valve 204, the first master cylinder isolation valve 11, and the second master cylinder isolation valve 12 realize wheel cylinder boosting and complete brake function backup. Therefore, the system has a triple redundant brake backup feature.
  • both the first subsystem and the second subsystem in the braking system provided by the twelfth embodiment can provide redundant pressurization backup.
  • the booster pump of the first subsystem can provide a redundant boost function, and the booster motor, the first booster control valve 21, the second booster control valve 22, and the third booster control valve are controlled by the ECU3 in the second subsystem.
  • the valve 23, the fourth boost control valve 24, the third master cylinder isolation valve 13, and the fourth master cylinder isolation valve 14 may also provide redundant boost functions.
  • the second subsystem can realize the four-wheel low-selection ABS function in the redundant backup braking mode, and at the same time, it has faster boosting capacity and more precise pressure control accuracy.
  • the thirteenth embodiment also provides a braking system.
  • the booster 2 of the braking system provided by Embodiment 13 adopts a one-way booster cylinder, and its connection relationship is shown in FIG. 19 .
  • the one-way boost cylinder 202 is connected to the interface 8e through the one-way valve 202v, and the one-way boost cylinder 202 is connected to the first boost control valve 21 and the second boost control valve 22 through the first boost branch 2i.
  • the one-way boost cylinder 202 is connected with the third boost control valve 23 and the fourth boost control valve 24 through the second boost branch 2j.
  • the first pressure increase control valve 21 and the third pressure increase control valve 23 are connected to the first brake circuit 3i
  • the second pressure increase control valve 22 and the fourth pressure increase control valve 24 are connected to the second brake circuit 3j.
  • the booster cylinder 202 is respectively connected to the first end of the first booster control valve 21 and the first end of the second booster control valve 22 through the first booster branch 2i.
  • the second end of the first boost control valve 21 is connected to the first brake line 3i, specifically, the second end of the first boost control valve 21 is connected to the first end of the first wheel cylinder boost valve 31,
  • the second end of the first boost control valve 21 is connected to the first end of the second wheel cylinder boost valve 32 .
  • the second end of the second boost control valve 22 is connected to the second brake line 3j, specifically, the second end of the second boost control valve 22 is connected to the first end of the third wheel cylinder boost valve 33, A second end of the second boost control valve 22 is connected to a first end of the fourth wheel cylinder boost valve 34 .
  • the booster cylinder 202 is also connected to the first end of the third booster control valve 23 and the first end of the fourth booster control valve 24 through the second booster branch 2j.
  • the second end of the third boost control valve 23 is connected to the first brake line 3i, specifically, the second end of the third boost control valve 23 is connected to the first end of the first wheel cylinder boost valve 31,
  • the second end of the third boost control valve 23 is connected to the first end of the second wheel cylinder boost valve 32 .
  • the second end of the fourth boost control valve 24 is connected to the second brake line 3j, specifically, the second end of the fourth boost control valve 24 is connected to the first end of the third wheel cylinder boost valve 33, The second end of the fourth boost control valve 24 is connected to the first end of the fourth wheel cylinder boost valve 34 .
  • ECU2 and ECU3 jointly control the third master cylinder isolation valve 13 and the fourth master cylinder isolation valve 14, and ECU3 independently controls the third pressure boost control valve 23 and the fourth master cylinder isolation valve 14.
  • the fourth boost control valve 24, ECU2 controls the first boost control valve 21, the second boost control valve 22, the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32, the third wheel cylinder boost valve Valve 33 , fourth wheel cylinder boost valve 34 , first wheel cylinder pressure reducing valve 41 , second wheel cylinder pressure reducing valve 42 , third wheel cylinder pressure reducing valve 43 , fourth wheel cylinder pressure reducing valve 44 .
  • the booster 2 of the brake system provided by the thirteenth embodiment adopts a one-way booster cylinder, and reduces the number of electromagnetic valves jointly driven by ECU2 and ECU3, which can reduce costs and can be used in partial failure Realize low-selection ABS function in failure mode.
  • the braking system provided by Embodiment 13 and Embodiment 15 can improve the redundancy backup capability of the braking system, and its working mode or other unmentioned parts can refer to the descriptions of other embodiments of this application, which are not discussed here. Let me repeat.
  • Embodiment 14 and Embodiment 15 are identical to Embodiment 14 and Embodiment 15
  • Fig. 20 and Fig. 21 are schematic diagrams of another braking system provided in Embodiment 14 and Embodiment 15 of the present application respectively.
  • the solenoid valves jointly controlled by ECU2 and ECU3 include the third master cylinder isolation valve 13 and the fourth master cylinder isolation valve 14 , the first boost control valve 11, the second boost control valve 12, the third boost control valve 13, the fourth boost control valve 14, the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32 , The third wheel cylinder boost valve 33, the fourth wheel cylinder boost valve 34, the first wheel cylinder pressure reducing valve 41, the second wheel cylinder pressure reducing valve 42, the third wheel cylinder pressure reducing valve 43, the fourth wheel cylinder Pressure relief valve 44.
  • the braking system provided by Embodiment 14 has higher redundancy.
  • the solenoid valves jointly controlled by ECU2 and ECU3 include the third master cylinder isolation valve 13 and the fourth master cylinder isolation valve 14 , first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder Pressure reducing valve 42 , third wheel cylinder pressure reducing valve 43 , fourth wheel cylinder pressure reducing valve 44 .
  • the braking system provided by Embodiment 15 has higher redundancy.
  • ECU3 can drive and control the three-phase winding and the above-mentioned jointly controlled solenoid valve, in redundant braking mode Realize the backup of all functions, including ABS/TCS/ESC/BBF/VAF and other functions.
  • the system adopts a one-way pressurized cylinder, which has a simpler structure, can reduce the number of solenoid valves driven together, can reduce costs, and improve the reliability of the brake system.
  • the brake system provided by Embodiment 14 and Embodiment 15 can greatly improve the redundancy backup capability of the brake system, and its system composition, connection relationship, control relationship, working mode or other unmentioned parts can be referred to The descriptions of other embodiments in the specification of this application will not be repeated here.
  • Fig. 22 is a schematic diagram of another braking system provided by Embodiment 16 of the present application.
  • the brake system provided by the sixteenth embodiment has a third boost pump control valve 213 and a fourth boost pump control valve 214 added.
  • the interface 8F is connected to the liquid storage container 5 through the third booster pump control valve 213
  • the interface 8G is connected to the liquid storage container 5 through the fourth booster pump control valve 214 .
  • ECU1 When ECU2 fails, ECU1 works alone.
  • the ECU1 can realize active decompression by controlling the third boost pump control valve 213 and the fourth boost pump control valve 214 .
  • the ECU1 controls the third booster pump control valve 213 and the fourth booster pump control valve 214 to be connected, and the brake wheel cylinders It can be connected with the liquid storage container 5, so as to realize the decompression of the wheel cylinder.
  • the brake system provided by the sixteenth embodiment further improves the redundancy backup capability of the brake system.
  • the third booster pump control valve 213 and the fourth booster pump control valve 214 may be solenoid valves capable of providing on and off states.
  • the third booster pump control valve 213 and the fourth booster pump control valve 214 are regulating valves, and the opening of the control valves can be adjusted through a control signal to adjust the circuit pressure.
  • ECU1 can control the opening of the third booster pump control valve 213 and the fourth booster pump control valve 214 to achieve braking. Pressure control of the moving circuit.
  • the low-selection ABS function can be realized.
  • the supercharger 2 of the brake system can also use a one-way supercharging cylinder and reduce the third supercharging control valve 23 and the fourth supercharging control valve 24, thereby reducing the cost.
  • the second subsystem of the brake system using the one-way pressure boosting device reference may be made to the description of Embodiment 11, which will not be repeated here.
  • Fig. 23 is a schematic diagram of another braking system provided by Embodiment 17 of the present application.
  • the system composition, connection relationship, control relationship, etc. of the second subsystem and other unmentioned parts can refer to the tenth embodiment, and will not be repeated here. .
  • the differences in the first subsystem are described in detail as follows.
  • the first subsystem includes: a first control unit 91, a brake master cylinder 1, a master cylinder push rod 1k, a pedal stroke sensor PTS, a test valve 51, a liquid storage container 5, and an oil tank level sensor RLS , pedal feeling simulator 6, pedal simulation valve 61, first master cylinder isolation valve 11, second master cylinder isolation valve 12, first master cylinder pressure sensor MCPS, first booster pump 203, second booster pump 204, The first booster pump control valve 211 , the second booster pump control valve 212 , and the third booster pump control valve 213 .
  • the first end of the first booster pump 203 is connected with the liquid storage container 5 through the third booster pump control valve 213, and the first end of the first booster pump 203 is also controlled by the first booster pump
  • the valve 211 is connected to the port 8F.
  • the interface 8F can be connected to the liquid storage container 5 through the first booster pump control valve 211 and the third booster pump control valve 213 in sequence.
  • the second end of the first booster pump 203 is connected to the first master chamber 1 i of the brake master cylinder 1 through the first master cylinder isolation valve 11 , and the second end of the first booster pump 203 is also connected to the interface 8F.
  • the first end of the second booster pump 204 is connected with the liquid storage container 5 through the third booster pump control valve 213, and the first end of the second booster pump 204 is also connected through the second booster pump.
  • the pump control valve 212 is connected to the port 8G.
  • the interface 8G can be connected to the liquid storage container 5 through the second booster pump control valve 212 and the third booster pump control valve 213 in sequence.
  • the second end of the second booster pump 204 is connected to the second master chamber 1 j of the brake master cylinder 1 through the second master cylinder isolation valve 12 , and the second end of the second booster pump 204 is also connected to the interface 8G.
  • the first booster pump 203 and the second booster pump 204 can realize redundant boosting.
  • the ECU1 can turn on the first boost pump control valve 211, the second boost pump control valve 212, and the third boost pump control valve 213 to make The brake fluid flows back to the fluid storage container 5 to realize the decompression of the brake wheel cylinder.
  • the first booster pump control valve 211 and the second booster pump control valve 212 are regulating valves, and the opening of the control valves can be adjusted by a control signal to adjust the circuit pressure.
  • ECU1 works alone, if the brake wheel cylinder needs to be decompressed, ECU1 controls the third booster pump control valve 213 to be turned on, and ECU1 can control the first booster pump control valve 211 and The control of the opening degree of the second booster pump control valve 214 realizes the pressure control of the brake circuit.
  • the low-selection ABS function can be realized.
  • Embodiment 17 can still provide braking functions such as low-selection ABS when the first subsystem works alone.
  • connection relationship, control relationship, working mode or other unmentioned parts of the braking system provided by the seventeenth embodiment, reference may be made to the descriptions of other embodiments in the specification of this application, which will not be repeated here.
  • Fig. 24 is another braking system provided by Embodiment 18 of the present application.
  • the system composition, connection relationship, control relationship, etc. of the second subsystem and other unmentioned parts can refer to the tenth embodiment, and will not be repeated here. .
  • the first subsystem which is described in detail as follows.
  • the first subsystem includes: a first control unit 91, a brake master cylinder 1, a master cylinder push rod 1k, a pedal stroke sensor PTS, a test valve 51, a liquid storage container 5, and an oil tank level sensor RLS , pedal feeling simulator 6, pedal simulation valve 61, first master cylinder isolation valve 11, second master cylinder isolation valve 12, first master cylinder pressure sensor MCPS, first booster pump 203, second booster pump 204, The first booster pump control valve 211 , the second booster pump control valve 212 , the third booster pump control valve 213 , and the fourth booster pump control valve 214 .
  • the first end of the first booster pump 203 is connected with the liquid storage container 5, and the first end of the first booster pump 203 also passes through the third booster pump control valve 213, the first booster pump
  • the control valve 211 is connected to the port 8F.
  • the interface 8F is connected to the fifth liquid storage container 5 through the first booster pump control valve 211 and the third booster pump control valve 213 in sequence.
  • the second end of the first booster pump 203 is connected to the first master chamber 1 i of the brake master cylinder 1 through the first master cylinder isolation valve 11 , and the second end of the first booster pump 203 is also connected to the interface 8F.
  • the first end of the second booster pump 204 is connected to the liquid storage container 5, and the first end of the second booster pump 204 also passes through the fourth booster pump control valve 214, the second The booster pump control valve 212 is connected to the port 8G.
  • the interface 8G is connected to the fifth liquid storage container 5 through the second booster pump control valve 212 and the fourth booster pump control valve 214 in sequence.
  • the second end of the second booster pump 204 is connected to the second master chamber 1 j of the brake master cylinder 1 through the second master cylinder isolation valve 12 , and the second end of the second booster pump 204 is also connected to the interface 8G.
  • each control valve in the braking system provided by Embodiment 18 is shown in FIG. 24 .
  • the first booster pump control valve 211 and the second booster pump control valve 212 are normally open valves, which are in the on state in a natural state.
  • the third booster pump control valve 213 and the fourth booster pump control valve 214 are normally closed valves, which are disconnected in a natural state.
  • first booster pump control valve 211 and the second booster pump control valve 212 are regulating valves, and the opening of the control valves can be adjusted by a control signal to adjust the circuit pressure.
  • the third boost pump control valve 213 and the fourth boost pump control valve 214 remain disconnected to prevent the brake fluid from being controlled by the third boost pump control valve 213 and the fourth boost pump Valve 214 flows to reservoir 5 to cause a drop in brake circuit pressure.
  • ECU2 controls the wheel cylinder decompression valves (41, 42, 43, 44) to be connected to realize decompression.
  • ECU1 In the redundant braking mode, when ECU1 works alone, if the brake wheel cylinder needs to be boosted, ECU1 controls the third booster pump control valve 213 and the fourth booster pump control valve 214 to keep disconnected, and ECU1 controls the first A booster pump 203 and a second booster pump 204 pressurize the brake circuit. If the brake wheel cylinder needs to be decompressed, ECU1 controls the third booster pump control valve 213 and the fourth booster pump control valve 214 to be connected, and cooperates with the first booster pump control valve 211 and the second booster pump control valve. The control of the 212 opening realizes the pressure control of the brake circuit. Thus, the low-selection ABS function can be realized.
  • connection relationship, control relationship, working mode or other unmentioned parts of the braking system provided by Embodiment 18, reference may be made to the descriptions of other embodiments in the specification of this application, and details will not be repeated here.
  • Fig. 25 is another braking system provided by the nineteenth embodiment of the present application.
  • the system composition, connection relationship, control relationship, etc. of the second subsystem and other unmentioned parts can refer to the tenth embodiment, and will not be repeated here. .
  • the differences in the first subsystem are described in detail as follows.
  • the first subsystem includes: a first control unit 91, a brake master cylinder 1, a master cylinder push rod 1k, a pedal stroke sensor PTS, a test valve 51, a liquid storage container 5, and an oil tank level sensor RLS , pedal feeling simulator 6, pedal simulation valve 61, first master cylinder isolation valve 11, second master cylinder isolation valve 12, first master cylinder pressure sensor MCPS, first booster pump 203, second booster pump 204, The first booster pump control valve 211 , the second booster pump control valve 212 , the third booster pump control valve 213 , and the fourth booster pump control valve 214 .
  • the first end of the first booster pump 203 is connected with the liquid storage container 5 through the third booster pump control valve 213, and the first end of the first booster pump 203 is also controlled by the first booster pump
  • the valve is connected to port 8F.
  • the interface 8F may be connected to the liquid storage container 5 through the first booster pump control valve 211 and the third booster pump control valve 213 .
  • the second end of the first booster pump 203 is connected to the first master chamber 1 i of the brake master cylinder 1 through the first master cylinder isolation valve 11 , and the second end of the first booster pump 203 is connected to the interface 8F.
  • the first end of the second booster pump 204 is connected to the liquid storage container 5 through the fourth booster pump control valve 214, and the first end of the second booster pump 204 is also connected through the second booster pump.
  • the pump control valve 212 is connected to the port 8G.
  • the interface 8G can be connected to the liquid storage container 5 through the second booster pump control valve 212 and the fourth booster pump control valve 214 .
  • the second end of the second booster pump 204 is connected to the second master chamber 1 j of the brake master cylinder 1 through the second master cylinder isolation valve 12 , and the second end of the second booster pump 204 is connected to the interface 8G.
  • the first booster pump 203 and the second booster pump 204 can realize redundant boosting.
  • the ECU1 can connect the interface 8F with the liquid storage container 5 by connecting the first booster pump control valve 211 and the third booster pump control valve 213, and by turning on the The second booster pump control valve 212 and the fourth booster pump control valve 214 connect the interface 8G with the liquid storage container 5 .
  • the brake fluid in the brake wheel cylinder can be made to flow back to the fluid storage container 5, so as to realize decompression of the brake wheel cylinder. Therefore, the braking system provided by the nineteenth embodiment can still provide braking functions such as low-selection ABS when the first subsystem works alone.
  • each control valve in the braking system provided by Embodiment 19 is shown in FIG. 25 .
  • the first booster pump control valve 211 and the second booster pump control valve 212 are normally open valves, which are in the on state in a natural state.
  • the third booster pump control valve 213 and the fourth booster pump control valve 214 are normally closed valves, which are disconnected in a natural state.
  • the first booster pump control valve 211 and the second booster pump control valve 212 are regulating valves, and the opening of the control valves can be adjusted by a control signal to adjust the loop pressure.
  • first booster pump control valve 211 and the second booster pump control valve 212 may also be other solenoid valves, which have two states of on and off.
  • the third boost pump control valve 213 and the fourth boost pump control valve 214 remain disconnected to prevent the brake fluid from being controlled by the third boost pump control valve 213 and the fourth boost pump Valve 214 flows to reservoir 5 to cause a drop in brake circuit pressure.
  • ECU2 controls the wheel cylinder decompression valves (41, 42, 43, 44) to be connected to realize decompression.
  • ECU1 In the redundant braking mode, when ECU1 works alone, if the brake wheel cylinder needs to be boosted, ECU1 controls the third booster pump control valve 213 and the fourth booster pump control valve 214 to connect, and ECU1 controls the first booster pump The pressure pump 203 and the second boost pump 204 pressurize the brake circuit. If the brake wheel cylinder needs to be decompressed, ECU1 controls the third booster pump control valve 213 and the fourth booster pump control valve 214 to be connected, and cooperates with the first booster pump control valve 211 and the second booster pump control valve. The control of the 212 opening realizes the pressure control of the brake circuit. Thus, the low-selection ABS function can be realized.
  • connection relationship, control relationship, working mode or other unmentioned parts of the braking system provided by the nineteenth embodiment, reference may be made to the descriptions of other embodiments in the specification of this application, which will not be repeated here.
  • Fig. 26 is another braking system provided by Embodiment 20 of the present application.
  • the system composition, connection relationship, control relationship, etc. of the second subsystem and other unmentioned parts can refer to Embodiment 10, and will not be repeated here.
  • the differences in the first subsystem are described in detail as follows.
  • the first subsystem includes: a first control unit 91, a brake master cylinder 1, a master cylinder push rod 1k, a pedal stroke sensor PTS, a test valve 51, a liquid storage container 5, and an oil tank level sensor RLS , pedal feeling simulator 6, pedal simulation valve 61, first master cylinder isolation valve 11, second master cylinder isolation valve 12, first master cylinder pressure sensor MCPS, first booster pump 203, second booster pump 204, The third booster pump control valve 213 and the fourth booster pump control valve 214 .
  • the first end of the first boost pump 203 is connected to the first master chamber 1i of the brake master cylinder 1 through the third boost pump control valve 213 .
  • the second end of the first booster pump 203 is connected to the first master chamber 1 i of the brake master cylinder 1 through the first master cylinder isolation valve 11 , and the second end of the first booster pump 203 is connected to the interface 8F.
  • the first end of the second boost pump 204 is connected to the second master chamber 1j of the brake master cylinder 1 through the third boost pump control valve 213 .
  • the second end of the second booster pump 204 is connected to the second master chamber 1j of the brake master cylinder through the second master cylinder isolation valve 12 , and the second end of the second booster pump 204 is connected to the interface 8G.
  • ECU1 controls the first master cylinder isolation valve 11 and the second master cylinder isolation valve 12 to be disconnected.
  • ECU1 controls the third boost pump control valve 213 and the fourth boost pump control valve 214 to be connected, and the brake fluid of the master cylinder 1 can enter the input of the first boost pump 203 through the third boost pump control valve 213 end, the brake fluid of the brake master cylinder 1 can enter the input end of the second boost pump 204 through the fourth boost pump control valve 214 .
  • the ECU1 controls the first boost pump 203 and the second boost pump 204 to work to increase the pressure of the brake circuit.
  • Fig. 27 is another braking system provided by Embodiment 21 of the present application.
  • the system composition, connection relationship, integration method, interface setting, control relationship, etc. of the braking system provided by Embodiment 21 of the present application will be described in conjunction with FIG. 27 .
  • the system composition of the braking system provided by the twenty-first embodiment is introduced.
  • the braking system provided by Embodiment 21 of the present application includes two subsystems:
  • the first subsystem includes: the first control unit 91, the brake master cylinder 1, the master cylinder push rod 1k, the pedal stroke sensor PTS, the test valve 51, the liquid storage container 5, the oil tank level sensor RLS, the first Master cylinder isolation valve 11, second master cylinder isolation valve 12, first master cylinder pressure sensor MCPS, first booster pump 203, second booster pump 204, first booster pump control valve 211, second booster pump Control valve 212, third booster pump control valve 213, fourth booster pump control valve 214, first booster pump check valve 203v, second booster pump check valve 204v.
  • the first subsystem When the test valve 51 in the first subsystem does not include a one-way valve, the first subsystem further includes a fifth one-way valve 51v.
  • the first subsystem can also be integrated with a filter, or realize the impurity filtering function by selecting a control valve with a filter and a liquid storage container 5 with a filter.
  • the first subsystem may include the master cylinder pushrod 1k but not the brake pedal 7 .
  • the first subsystem can be matched with different types of brake pedals 7 to adapt to more models and provide more possibilities for personalized matching.
  • the second subsystem includes: the second control unit 92, the third master cylinder isolation valve 13, the fourth master cylinder isolation valve 14, the second master cylinder pressure sensor MCPS, the pedal feeling simulator 6, the pedal simulation valve 61, Boost drive motor 201, bi-directional boost cylinder 202, booster check valve 202v, first boost control valve 21, second boost control valve 22, third boost control valve 23, fourth boost control valve 24.
  • the second subsystem further includes a sixth one-way valve 61v, a first one-way valve 31v, a second one-way valve 32v, a third one-way valve 33v, and a fourth one-way valve 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • each control valve in the braking system is shown in FIG. 27 .
  • the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the third master cylinder isolation valve 13, and the fourth master cylinder isolation valve 14 are normally open valves.
  • the normally open valve When the normally open valve is controlled and powered on, the normally open valve will switch to the state of disconnecting the pipelines at both ends of the control valve, that is, when the normally open valve is powered on and disconnected, The fluid in the pipeline cannot flow from one end of the normally open valve to the other end of the normally open valve through the normally open valve.
  • the normally open valves may include: a test valve 51, a first master cylinder isolation valve 11, a second master cylinder isolation valve 12, a third master cylinder isolation valve 13, a second master cylinder isolation valve Four master cylinder isolation valves 14 , first wheel cylinder boost valve 31 , second wheel cylinder boost valve 32 , third wheel cylinder boost valve 33 , fourth wheel cylinder boost valve 34 .
  • the normally closed valves include: a first booster pump control valve 211, a second booster pump control valve 212, a third booster pump control valve 213, a fourth booster pump control valve Pressure pump control valve 214, pedal simulation valve 61, first boost control valve 21, second boost control valve 22, third boost control valve 23, fourth boost control valve 24, first wheel cylinder pressure reducing valve 41.
  • the connection relationship of the first subsystem is introduced.
  • the first subsystem includes an interface 8E, an interface 8F, and an interface 8G.
  • the first master chamber 1i of the brake master cylinder 1 is connected to the interface 8F through the first master cylinder isolation valve 11, and the second master chamber 1j of the brake master cylinder 1 is connected to the port 8F through the second master cylinder isolation valve 12. Interface 8G connection.
  • the liquid storage container 5 is connected to the port 8E.
  • the first main chamber 1i of the brake master cylinder 1 is connected to the fluid storage container 5 through a pipeline 5i
  • the second master chamber 1j of the brake master cylinder 1 is connected to the fluid storage container 5 through a test valve 51 and a pipeline 5j.
  • Both ends of the test valve 51 are connected in parallel with a one-way valve 51v, which is configured to allow the brake fluid to flow from the fluid storage container 5 to the brake master cylinder 1 through the one-way valve 51v under certain conditions.
  • the master cylinder push rod 1k can push the master cylinder piston under the action of external force
  • the master cylinder push rod 1k can be connected with the brake pedal 7, and the pedal stroke sensor PTS can detect the pedal stroke.
  • the input end of the first booster pump 203 is referred to as the first end of the first booster pump 203
  • the output end of the first booster pump 203 is referred to as the second end of the first booster pump 203
  • denote the input end of the second booster pump 204 as the first end of the second booster pump end 204
  • denote the output end of the second booster pump 204 as the second end of the second booster pump 204 .
  • the input end of the booster pump can also be marked as the second end
  • the output end of the booster pump can also be marked as the first end, which is not limited in the present application.
  • the liquid storage container 5 is connected to the first end of the first booster pump 203 through a one-way valve 203v.
  • the one-way valve 203v is configured to allow the brake fluid to flow from the fluid storage container 5 to the first end of the first booster pump 203 through the one-way valve 203v under certain conditions.
  • the first end of the first boost pump 203 is also connected to the first master chamber 1i of the brake master cylinder 1 through the third boost pump control valve 213 .
  • the second end of the first booster pump is connected to the interface 8F, and the second end of the first booster pump 203 is also connected to the first master chamber 1i of the brake master cylinder 1 through the first master cylinder isolation valve 11 .
  • the liquid storage container 5 is also connected to the interface 8F through the first booster pump control valve 211 .
  • the liquid storage container 5 is connected to the first end of the second booster pump 204 through a one-way valve 204v.
  • the one-way valve 204v is configured to allow the brake fluid to flow from the fluid storage container 5 to the first end of the second booster pump 204 through the one-way valve 204v under certain conditions.
  • the first end of the second boost pump 204 is also connected to the second master chamber 1 j of the brake master cylinder 1 through the fourth boost pump control valve 214 .
  • the second end of the second booster pump is connected to the interface 8G, and the second end of the second booster pump 204 is also connected to the second master chamber 2j of the brake master cylinder 1 through the second master cylinder isolation valve 12 .
  • the liquid storage container 5 is also connected to the interface 8G through the second booster pump control valve 212 .
  • connection relationship of the liquid storage container 5 in the first subsystem is only a possible situation provided by the twenty-first embodiment, and this application does not limit the number of interfaces on the liquid storage container 5 .
  • the pipeline 5k, pipeline 5i, pipeline 5j, and pipeline 5m connected to the liquid storage container 5 can be connected to the liquid storage container 5 through four liquid storage container interfaces; a possible
  • the pipeline 5k, pipeline 5i, pipeline 5j, and pipeline 5m connected to the liquid storage container 5 may be merged before being connected to the liquid storage container 5, and connected to the liquid storage container 5 through one interface.
  • the second subsystem includes a first interface, a second interface (8f, 8g), and a third interface (8e).
  • the first interfaces of the second subsystem are respectively used to connect with the brake wheel cylinders (3a, 3b, 3c, 3d) of the wheels.
  • the interface 8f is connected to the first end of the third master cylinder isolation valve 13, and the second end of the third master cylinder isolation valve 13 is connected to the first brake line 3i, specifically, the third master cylinder
  • the second end of the isolation valve 13 is connected to the first end of the first wheel cylinder boost valve 31, and the second end of the first wheel cylinder boost valve 31 is connected to the interface 4a; the second end of the third master cylinder isolation valve 13 It is connected to the first end of the second wheel cylinder boost valve 32, and the second end of the second wheel cylinder boost valve 32 is connected to the interface 4b.
  • the port 8g is connected to the first end of the fourth master cylinder isolation valve 14, and the second end of the fourth master cylinder isolation valve 14 is connected to the second brake line 3j, specifically, the fourth master cylinder
  • the second end of the isolation valve 14 is connected to the first end of the third wheel cylinder boost valve 33, and the second end of the third wheel cylinder boost valve 33 is connected to the interface 4c; the second end of the fourth master cylinder isolation valve 14 It is connected to the first end of the fourth wheel cylinder boost valve 34, and the second end of the fourth wheel cylinder boost valve 34 is connected to the port 4d.
  • the pedal feeling simulator 6 is connected to the port 8 g through a pedal simulation valve 61 .
  • a one-way valve 61v is also connected in parallel at both ends of the pedal simulation valve 61 . It should be noted that when the pedal simulation valve 61 includes the function of a one-way valve, it is not necessary to connect a one-way valve in parallel at both ends thereof.
  • a second master cylinder pressure sensor MCPS may also be provided between the interface 8 g and the fourth master cylinder isolation valve 14 .
  • the first boost chamber 202i of the two-way boost cylinder 202 is respectively connected to the first end of the first boost control valve 21 and the first end of the second boost control valve 22 through the first boost branch 2i.
  • the second end of the first boost control valve 21 is connected to the first brake line 3i, specifically, the second end of the first boost control valve 21 is connected to the first end of the first wheel cylinder boost valve 31.
  • the second end of the first boost control valve 21 is connected to the first end of the second wheel cylinder boost valve 32; the second end of the second boost control valve 22 is connected to the second brake line 3j, Specifically, the second end of the second boost control valve 22 is connected to the first end of the third wheel cylinder boost valve 33, and the second end of the second boost control valve 22 is connected to the fourth wheel cylinder boost valve 34. The first end is connected.
  • the second boost chamber 202j of the two-way boost cylinder 202 is respectively connected to the first end of the third boost control valve 23 and the first end of the fourth boost control valve 24 through the second boost branch 2j.
  • the second end of the third boost control valve 23 is connected to the first brake line 3i, specifically, the second end of the third boost control valve 23 is connected to the first end of the first wheel cylinder boost valve 31.
  • the second end of the third boost control valve 23 is connected to the first end of the second wheel cylinder boost valve 32; the second end of the fourth boost control valve 24 is connected to the second brake line 3j, Specifically, the second end of the fourth boost control valve 24 is connected to the first end of the third wheel cylinder boost valve 33, and the second end of the fourth boost control valve 24 is connected to the fourth wheel cylinder boost valve 34. The first end is connected.
  • the interface 8e is connected to the first boost chamber 202i of the two-way boost cylinder 202 through a one-way valve 202v.
  • a first end of the one-way valve 202v is connected to the interface 8e, and a second end of the one-way valve 202v is connected to the first pressurized chamber 202i.
  • the one-way valve 202v is configured to allow the brake fluid to flow from the pipeline 202k through the one-way valve 202v into the first booster chamber 202i under certain conditions. That is, the one-way valve 202v allows the brake fluid to flow from the first end to the second end under certain conditions.
  • connection line between the second pressurization chamber 202j of the two-way booster cylinder 202 and the liquid storage container 5 in FIG. 27 only indicates that rapid decompression can be achieved when the piston of the two-way booster cylinder returns to the far left.
  • the description in this article is also applicable to other embodiments provided in the specification of this application.
  • the brake circuit pressure sensor BCPS is arranged at the first brake pipeline 3 i and can collect the pressure at the first wheel cylinder boost valve 31 or the second wheel cylinder boost valve 32 . It should be noted that the brake circuit pressure sensor BCPS can also be arranged at the second brake pipeline 3j, and can collect the pressure at the third wheel cylinder boost valve 33 or the fourth wheel cylinder boost valve 34. There is no limit to this.
  • the interface 4a is connected to the interface 8e through the first wheel cylinder pressure reducing valve 41
  • the interface 4b is connected to the interface 8e through the second wheel cylinder pressure reducing valve 42
  • the interface 4c is connected to the interface 8e through the third wheel cylinder pressure reducing valve 43.
  • the port 8e is connected
  • the port 4d is connected to the port 8e through the fourth wheel cylinder decompression valve 44 .
  • the first subsystem and the second subsystem form a braking system.
  • the second subsystem is connected to the interface 8E, the interface 8F, and the interface 8G of the first subsystem respectively through the interface 8e, the interface 8f, and the interface 8g.
  • the brake system is also connected to the brake wheel cylinder through the interface 4a, the interface 4b, the interface 4c, and the interface 4d respectively.
  • the first master chamber 1i of the brake master cylinder 1 is connected to the interface 8F through the first master cylinder isolation valve 11, and is connected to the third master cylinder isolation valve 13 through the interface 8f, and the third master cylinder isolation valve 13 is connected to the first brake
  • the pipeline 3i is connected, specifically, the third master cylinder isolation valve 13 is connected with the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 respectively;
  • the first wheel cylinder boost valve 31 is connected with the interface 4a, It is connected with the first wheel cylinder 3a through the interface 4a;
  • the second booster valve 32 is connected with the interface 4b, and connected with the second wheel cylinder 3b through the interface 4b;
  • the second master chamber 1j of the brake master cylinder 1 is connected through the second master
  • the cylinder isolation valve 12 is connected to the interface 8G, and is
  • the output end of the first booster pump 203 is connected to the interface 8F, and is connected to the third master cylinder isolation valve 13 through the interface 8f; the output end of the second booster pump 204 is connected to the interface 8G , and is connected to the fourth master cylinder isolation valve 14 through the interface 8g.
  • the connection relationship between the first booster pump 203 and the second booster pump 204 and the brake wheel cylinders (3a, 3b, 3c, 3d) in the second subsystem can refer to the brake master cylinder 1 and the brake wheel cylinder (3a , 3b, 3c, 3d) connection relationship, which will not be repeated here.
  • the first boost chamber 202i of the supercharger 2 is connected to the interface 8e through the check valve 202v, and is connected to the liquid storage container 5 through the interface 8E and the pipeline 5k;
  • the wheel cylinder decompression valve (41, 42, 43, 44) are respectively connected to the interface 8e, and connected to the liquid storage container 5 through the interface 8E and the pipeline 5k.
  • the system composition, connection relationship, integration mode, and interface settings of the braking system provided by the twenty-first embodiment are described above.
  • the control relationship of the braking system provided by the twenty-first embodiment will be described.
  • the objects controlled by the first control unit 91 and the second control unit 92 are as follows:
  • the objects controlled by the first control unit 91 include: the first master cylinder isolation valve 11 , the second master cylinder isolation valve 12 , the test valve 51 , the first booster pump control valve 211 , and the second booster pump control valve 212 , the third booster pump control valve 213 , and the fourth booster pump control valve 214 .
  • the first control unit 91 receives signals from the first master cylinder pressure sensor MCPS, the pedal stroke sensor PTS and the oil tank level sensor RLS.
  • the objects controlled by the second control unit 92 include: pedal simulation valve 61, boost drive motor 201, third master cylinder isolation valve 13, fourth master cylinder isolation valve 14, first boost control valve 21, second Boost control valve 22, third boost control valve 23, fourth boost control valve 24, first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve Four wheel cylinder boost valve 34 , first wheel cylinder pressure reducing valve 41 , second wheel cylinder pressure reducing valve 42 , third wheel cylinder pressure reducing valve 43 , fourth wheel cylinder pressure reducing valve 44 .
  • the second control unit 92 receives signals from the second master cylinder pressure sensor MCPS, the brake circuit pressure sensor BCPS and the motor position sensor MPS.
  • the brake system includes a first controller and a second controller, the first controller includes a first control unit 91, the second controller includes a second control unit 92, and the first controller and
  • the second controller also includes at least various solenoid valve drives and various signal processing and control output interfaces.
  • the second controller also includes signal processing related to motor driving and a control output interface.
  • the controller can also receive measurement or detection signals from various sensors, such as environmental conditions, driver input, braking system status, etc., and control the braking characteristics of the braking system through calculation and judgment.
  • the system composition, connection relationship, integration mode, interface setting, control relationship, etc. of the braking system provided by the twenty-first embodiment have been introduced above with reference to FIG. 27 .
  • the working mode of the braking system provided by the twenty-first embodiment will be described below with reference to FIG. 27 .
  • the braking intention described in the specification of this application may include the braking intention from the driver and the active braking intention from the vehicle.
  • the braking intention can be obtained through the driver's stepping action on the pedal, the driver's braking intention can be obtained through the signal of the pedal travel sensor PTS, or can be obtained by combining the signals of the pedal travel sensor PTS and the master cylinder pressure sensor MCPS to determine braking intent.
  • the braking intention can also be obtained through the active braking request of the automatic driving system ADS or the driving assistance system ADAS.
  • the active braking request can be generated by the automatic driving controller and received by the control unit of the braking system; for another example, in the ACC mode, when the following distance is less than the preset distance, the ACC system sends an active braking request, The control unit of the braking system receives the braking request and performs a corresponding braking action.
  • the description of this application does not limit the method for obtaining the braking intention.
  • the braking system provided by the embodiment of the present application can provide ABS, TCS, ESC, BBF, AEB, ACC and other functions.
  • the brake system can also provide other additional functions VAF, such as AEB, ABP, ABA, AWB, CDD, VLC, AVH, BDW, HAZ, HBA, HFC, HRB, HAS, HDC, etc.
  • the first control unit 91 is also referred to as ECU1 in some embodiments
  • the second control unit 92 is also referred to as ECU2 in some embodiments.
  • the braking system provided by Embodiment 21 of the present application includes at least four working modes: (1) ECU1 and ECU2 work together; (2) ECU1 works alone; (3) ECU2 works alone; (4) mechanical backup mode.
  • ECU1 and ECU2 work together.
  • ECU1 controls the first master cylinder isolation valve 11 and the second master cylinder isolation valve 12 to be connected, and controls the third master cylinder isolation valve 13 and the fourth master cylinder isolation valve 14 to be disconnected.
  • the second main cavity 1j of the brake master cylinder 1 is connected to the pedal feeling simulator 6, and the pedal feeling simulator works to generate a pedal feeling.
  • ECU1 controls the first booster pump control valve 211, the second booster pump control valve 212, the third booster pump control valve 213, and the fourth booster pump control valve 214 to be disconnected.
  • the second booster pump 204 does not work.
  • ECU1 also receives signals from pedal travel sensor PTS and first master cylinder pressure sensor MCPS, and transmits the received signals to ECU2.
  • ECU2 determines the driver's braking intention according to the signal of pedal stroke sensor PTS and the signal of master cylinder pressure sensor MCPS transmitted by ECU1.
  • ECU2 controls the first boost control valve 21, the second boost control valve 22, and the third boost control valve 23 .
  • the fourth boost control valve 24 is opened, and the boost drive motor 201 is controlled to push the piston in the two-way boost cylinder 202 to move to the right.
  • a part of the brake fluid in the first boost chamber 202i passes through the first boost control valve 21 and the second boost control valve 22, and flows into the brake wheels through the wheel cylinder boost valves (31, 32, 33, 34) respectively.
  • Cylinders (3a, 3b, 3c, 3d) to achieve wheel braking; another part of the brake fluid flows into the second boost chamber 202j of the two-way boost cylinder 202 through the third boost control valve 23 and the fourth boost control valve 24 .
  • the ECU2 judges the position of the piston in the two-way pressurized cylinder 202 through the signal of the motor position sensor MPS. If the piston position reaches the far right of the two-way booster cylinder 202, and the brake wheel cylinder still needs to be boosted at this time, the ECU2 controls the first booster control valve 21 and the second booster control valve 22 to be in a closed state, and Control the reverse rotation of the supercharging drive motor 201, the piston in the two-way supercharging cylinder moves to the left, and the brake fluid in the second supercharging chamber 202j passes through the third supercharging control valve 23, the fourth supercharging control valve 24, the wheel Cylinder boost valves (31, 32, 33, 34) flow into the brake wheel cylinders to achieve wheel boost.
  • the two-way booster cylinder 202 can make the boosting process continuous and stable, and bring good boosting characteristics to the braking system.
  • Embodiment 21 When the braking pressure of a certain wheel cylinder is too high, the conventional decompression process of the braking system provided by Embodiment 21 can be described as follows: For example, when the pressure of the brake wheel cylinder 3a is too high, control the corresponding wheel cylinder The booster valve 31 is disconnected, and the corresponding wheel cylinder decompression valve 41 is connected, and the brake fluid in the wheel cylinder flows into the liquid storage container 5 through the wheel cylinder decompression valve 41 to realize decompression of the brake wheel cylinder 3a, and It will not affect the pressure of other brake wheel cylinders.
  • the ECU 2 calculates the control signals of the boost drive motor 201 and the solenoid valves in the second sub-system according to the sensor signals.
  • ECU2 controls the states of the first boost control valve 21, the second boost control valve 22, the third boost control valve 23 and the fourth boost control valve 24, and controls the boost drive motor 201 to push the supercharger piston pressure.
  • ECU2 controls the on and off of the wheel cylinder boost valves (31, 32, 33, 34) and the wheel cylinder decompression valves (41, 42, 43, 44) to realize the brake wheel cylinders (3a, 3b ,3c,3d) pressure control, so as to realize ABS/TCS/ESC/BBF/AEB/ACC and other functions.
  • the ECU1 controls the first booster pump 203 and the second booster pump 204 to work to pressurize the brake pipeline.
  • the brake fluid can flow from the fluid storage container 5 to the input end of the first booster pump 203 through the one-way valve 203v, and the brake fluid can also flow from the fluid storage container 5 to the second booster pump through the one-way valve 204v.
  • the input of the pump 204 is not limited to the one-way valve 203v.
  • ECU1 controls the third booster pump control valve 213 and the fourth booster pump control valve 214 to be connected, and at this time, the brake fluid in the master cylinder 1 can pass through the third booster pump control valve 213 and the fourth booster pump control valve 213 and the fourth booster pump control valve 213 respectively.
  • the pump control valve 214 flows into the brake pipeline, specifically, the brake fluid of the brake master cylinder 1 flows into the input end of the first boost pump 203 through the third boost pump control valve 213, and the brake fluid of the brake master cylinder 1 Liquid also flows into the input end of the second boost pump 204 through the fourth boost pump control valve 214 .
  • This can provide a certain pedal feeling, ensure that the driver can step on the pedal, and avoid the situation that the driver cannot step on the pedal due to too high master cylinder pressure.
  • ECU1 controls the first master cylinder isolation valve 11 and the second master cylinder isolation valve 12 to be disconnected, and the pressure boosted by the first booster pump 203 and the second booster pump 204 will not pass through the first master cylinder isolation valve 11 or the second master cylinder isolation valve 12 is passed back to the brake master cylinder, which also avoids the situation that the driver does not step on the brake pedal or the pressure of the brake master cylinder 1 suddenly increases and injures the driver.
  • the ECU1 controls the first booster pump control valve 211 and the second booster pump control valve 212 to remain in the disconnected state.
  • the pressure generated by the first booster pump 203 and the second booster pump 204 can pass through the third master cylinder isolation valve 13 and the fourth master cylinder isolation valve 14 respectively, and pass through the wheel cylinder booster valves (31, 32, 33, 34 ) to the brake wheel cylinder.
  • ECU1 can control the first booster pump control valve 211 and the second booster pump control valve 212 to connect, so that the brake fluid in the brake wheel cylinder flows back to the liquid storage container 5, so as to reduce the brake pressure. Wheel cylinder pressure.
  • the first booster pump control valve 211 and the second booster pump control valve 212 are regulating valves, and the opening of the control valves can be adjusted by a control signal to adjust the loop pressure.
  • ECU1 when ECU1 is working alone, if the brake wheel cylinder needs to be decompressed, ECU1 can control the opening of the first booster pump control valve 211 and the second booster pump control valve 212 to achieve braking. Pressure control of the moving circuit.
  • the low-selection ABS function can be realized.
  • ECU1 can pressurize the brake wheel cylinder through the control of the third boost pump control valve 213, the fourth boost pump control valve 214, the first boost pump 203, and the second boost pump 204, and cooperate with the The control of the first boost pump control valve 211 and the second boost pump control valve 212 realizes decompression of the brake wheel cylinders.
  • the ECU1 can still implement the braking function by controlling the first subsystem.
  • ECU2 works alone. After obtaining the braking intention, the ECU2 calculates the control signals of the booster drive motor 201 and the solenoid valves in the second subsystem. In a possible implementation manner, the ECU2 obtains a brake pressure signal from the second master cylinder pressure sensor MCPS, and determines the driving intention according to the signal. In another possible implementation manner, the ECU2 receives the signal of the pedal travel sensor PTS, and determines the driving intention according to the signals of the pedal travel sensor PTS and the master cylinder pressure sensor MCPS.
  • ECU2 calculates the control signals of the boost drive motor 201 and the solenoid valves in the second subsystem according to the sensor signals.
  • ECU2 controls the supercharging drive motor 201 to push the supercharger piston to build pressure, and controls the first supercharging control valve 21, the second supercharging control valve 22, the third supercharging control valve 23 and the fourth supercharging control valve 24 pressurize the brake circuit, and at the same time control the on and off of the wheel cylinder boost valves (31, 32, 33, 34) and the wheel cylinder decompression valves (41, 42, 43, 44) Pressure control of the brake wheel cylinders (3a, 3b, 3c, 3d), so as to realize functions such as ABS/TCS/ESC/BBF/AEB/ACC.
  • the brake system when both ECU1 and ECU2 fail, the brake system provided by this embodiment can perform mechanical backup.
  • the brake fluid can flow from the brake master cylinder 1 to the first wheel cylinder 3a and the second wheel cylinder 3b through the first master cylinder isolation valve 11 and the third master cylinder isolation valve 13, or
  • the brake master cylinder 1 flows through the second master cylinder isolation valve 12 and the fourth master cylinder isolation valve 14 to the third wheel cylinder 3c and the fourth wheel cylinder 3d to achieve braking.
  • Fig. 28 is another braking system provided by Embodiment 22 of the present application.
  • the system composition, connection relationship, integration mode, interface setting, control relationship, etc. of the braking system provided by Embodiment 22 of the present application will be described in conjunction with FIG. 28 .
  • the system composition of the braking system provided by the twenty-second embodiment is introduced.
  • the braking system provided by Embodiment 22 of the present application includes two subsystems, wherein, the first subsystem of the braking system provided by Embodiment 22 is the same as the braking system provided by Embodiment 21. The first subsystem of the system is the same and will not be repeated here.
  • the second subsystem of the braking system provided by Embodiment 22 is described below:
  • the second subsystem of the braking system provided in Embodiment 22 includes: a second control unit 92, a third master cylinder isolation valve 13, a fourth master cylinder isolation valve 14, a second master cylinder pressure sensor MCPS, and a pedal feel simulation 6, pedal simulation valve 61, booster drive motor 201, one-way booster cylinder 202, booster check valve 202v, first booster control valve 21, second booster control valve 22, first wheel cylinder booster Pressure valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, Three wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44, brake circuit pressure sensor BCPS.
  • the second subsystem further includes a sixth one-way valve 61v, a first one-way valve 31v, a second one-way valve 32v, a third one-way valve 33v, and a fourth one-way valve 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • the brake circuit pressure sensor BCPS is arranged on the first pressurization branch 2i for obtaining the brake pressure of the brake circuit.
  • each control valve in the braking system is shown in FIG. 28 .
  • the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the third master cylinder isolation valve 13, and the fourth master cylinder isolation valve 14 are normally open valves.
  • the normally open valve When the normally open valve is controlled and powered on, the normally open valve will switch to the state of disconnecting the pipelines at both ends of the control valve, that is, when the normally open valve is powered on and disconnected, The fluid in the pipeline cannot flow from one end of the normally open valve to the other end of the normally open valve through the normally open valve.
  • the normally open valves may include: a test valve 51, a first master cylinder isolation valve 11, a second master cylinder isolation valve 12, a third master cylinder isolation valve 13, a second master cylinder isolation valve Four master cylinder isolation valves 14 , first wheel cylinder boost valve 31 , second wheel cylinder boost valve 32 , third wheel cylinder boost valve 33 , fourth wheel cylinder boost valve 34 .
  • the normally closed valves include: a first booster pump control valve 211, a second booster pump control valve 212, a third booster pump control valve 213, a fourth booster pump control valve Pressure pump control valve 214, pedal simulation valve 61, first boost control valve 21, second boost control valve 22, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve pressure valve 43, the fourth wheel cylinder decompression valve 44.
  • Embodiment 22 of the present application will be described below with reference to FIG. 28 .
  • connection relationship of the first subsystem of the braking system provided in Embodiment 22 reference may be made to the description of the braking system provided in Embodiment 21, which will not be repeated here.
  • the second subsystem includes a first interface, a second interface (8f, 8g), and a third interface (8e).
  • the first interfaces of the second subsystem are respectively used to connect with the brake wheel cylinders (3a, 3b, 3c, 3d) of the wheels.
  • the port 8f is connected to the first end of the third master cylinder isolation valve 13, and the second end of the third master cylinder isolation valve 13 is connected to the first brake line 3i, specifically, the third master cylinder
  • the second end of the isolation valve 13 is connected to the first end of the first wheel cylinder boost valve 31, and the second end of the first wheel cylinder boost valve 31 is connected to the interface 4a; the second end of the third master cylinder isolation valve 13 It is connected to the first end of the second wheel cylinder boost valve 32, and the second end of the second wheel cylinder boost valve 32 is connected to the interface 4b.
  • the port 8g is connected to the first end of the fourth master cylinder isolation valve 14, and the second end of the fourth master cylinder isolation valve 14 is connected to the second brake line 3j, specifically, the fourth master cylinder
  • the second end of the isolation valve 14 is connected to the first end of the third wheel cylinder boost valve 33, and the second end of the third wheel cylinder boost valve 33 is connected to the interface 4c; the second end of the fourth master cylinder isolation valve 14 It is connected to the first end of the fourth wheel cylinder boost valve 34, and the second end of the fourth wheel cylinder boost valve 34 is connected to the port 4d.
  • the pedal feeling simulator 6 is connected to the interface 8 g through a pedal simulation valve 61 .
  • a one-way valve 61v is also connected in parallel at both ends of the pedal simulation valve 61 . It should be noted that when the pedal simulation valve 61 includes the function of a one-way valve, it is not necessary to connect a one-way valve in parallel at both ends thereof.
  • a second master cylinder pressure sensor MCPS may also be provided between the interface 8 g and the fourth master cylinder isolation valve 14 .
  • the one-way boost cylinder 202 is respectively connected to the first end of the first boost control valve 21 and the first end of the second boost control valve 22 through the first boost branch 2i;
  • the second end of the pressure control valve 21 is connected to the first brake line 3i, specifically, the second end of the first boost control valve 21 is connected to the first end of the first wheel cylinder boost valve 31, and the first booster
  • the second end of the pressure control valve 21 is connected to the first end of the second wheel cylinder boost valve 32;
  • the second end of the second boost control valve 22 is connected to the second brake line 3j, specifically, the second booster
  • the second end of the pressure control valve 22 is connected to the first end of the third wheel cylinder boost valve 33 , and the second end of the second boost control valve 22 is connected to the first end of the fourth wheel cylinder boost valve 34 .
  • the interface 8e is connected to the one-way pressurized cylinder 202 through the one-way valve 202v.
  • a first end of the one-way valve 202v is connected to the interface 8e, and a second end of the one-way valve 202v is connected to the one-way booster cylinder 202.
  • the one-way valve 202v is configured to allow the brake fluid to flow into the one-way booster cylinder 202 from the pipeline 202k through the one-way valve 202v under certain conditions.
  • the brake circuit pressure sensor BCPS is arranged on the first pressurization branch 2i for obtaining the brake pressure of the brake circuit.
  • the port 4a is connected to the port 8e through the first wheel cylinder pressure reducing valve 41
  • the port 4b is connected to the port 8e through the second wheel cylinder pressure reducing valve 42
  • the port 4c is connected to the port 8e through the third wheel cylinder pressure reducing valve 43.
  • the port 8e is connected
  • the port 4d is connected to the port 8e through the fourth wheel cylinder decompression valve 44 .
  • the first subsystem and the second subsystem form a braking system.
  • the second subsystem is connected to the interface 8E, the interface 8F, and the interface 8G of the first subsystem respectively through the interface 8e, the interface 8f, and the interface 8g.
  • the brake system is also connected to the brake wheel cylinder through the interface 4a, the interface 4b, the interface 4c, and the interface 4d respectively.
  • connection relationship between the brake master cylinder 1 and the brake wheel cylinders (3a, 3b, 3c, 3d) can refer to the embodiment The description in 21 will not be repeated here.
  • the one-way booster cylinder 202 of the supercharger 2 is connected to the interface 8e through the one-way valve 202v, and is connected to the liquid storage container 5 through the interface 8E and the pipeline 5k;
  • the wheel cylinder decompression valve (41, 42, 43, 44) are respectively connected to the interface 8e, and connected to the liquid storage container 5 through the interface 8E and the pipeline 5k.
  • the system composition, connection relationship, integration mode, and interface settings of the braking system provided by the twenty-second embodiment are described above.
  • the control relationship of the braking system provided by the twenty-second embodiment will be described.
  • the objects controlled by the first control unit 91 and the second control unit 92 are as follows:
  • the objects controlled by the first control unit 91 include: the first master cylinder isolation valve 11 , the second master cylinder isolation valve 12 , the test valve 51 , the first booster pump control valve 211 , and the second booster pump control valve 212 , the third booster pump control valve 213 , and the fourth booster pump control valve 214 .
  • the first control unit 91 receives signals from the first master cylinder pressure sensor MCPS, the pedal stroke sensor PTS and the oil tank level sensor RLS.
  • ECU1 when the signal of the oil level sensor RLS indicates that the liquid level is low, ECU1 will issue a warning to the entire vehicle, and the control functions of ECU1 and ECU2 will be degraded, for example, the boost target value will be limited.
  • the objects controlled by the second control unit 92 include: pedal simulation valve 61, boost drive motor 201, third master cylinder isolation valve 13, fourth master cylinder isolation valve 14, first boost control valve 21, second Boost control valve 22, first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41 , the second wheel cylinder pressure reducing valve 42, the third wheel cylinder pressure reducing valve 43, the fourth wheel cylinder pressure reducing valve 44.
  • the second control unit 92 receives signals from the second master cylinder pressure sensor MCPS, the brake circuit pressure sensor BCPS and the motor position sensor MPS.
  • the pedal travel sensor PTS can be powered independently, and pedal travel signals are provided to ECU1 and ECU2 respectively.
  • the brake system includes a first controller and a second controller, the first controller includes a first control unit 91, the second controller includes a second control unit 92, and the first controller and
  • the second controller also includes at least various solenoid valve drives and various signal processing and control output interfaces.
  • the second controller also includes signal processing related to motor driving and a control output interface.
  • the controller can also receive measurement or detection signals from various sensors, such as environmental conditions, driver input, braking system status, etc., and control the braking characteristics of the braking system through calculation and judgment.
  • Embodiment 22 The system composition, connection relationship, integration mode, interface setting, control relationship, etc. of the braking system provided by Embodiment 22 have been introduced above with reference to FIG. 28 .
  • the working mode of the braking system provided by the twenty-second embodiment will be described below with reference to FIG. 28 .
  • the first control unit 91 is also referred to as ECU1 in some embodiments
  • the second control unit 92 is also referred to as ECU2 in some embodiments.
  • the braking system provided by Embodiment 22 of the present application includes at least four working modes: (1) ECU1 and ECU2 work together; (2) ECU1 works alone; (3) ECU2 works alone; (4) mechanical backup mode.
  • ECU1 and ECU2 work together.
  • the master cylinder push rod 1k pushes the brake master cylinder piston, and the pressure in the master cylinder rises.
  • the ECU 1 controls the first master cylinder isolation valve 11 and the second master cylinder isolation valve 12 to be connected, and controls the third master cylinder isolation valve 13 and the fourth master cylinder isolation valve 14 to be disconnected.
  • the second main cavity 1j of the brake master cylinder 1 is connected to the pedal feeling simulator 6, and the pedal feeling simulator works to generate a pedal feeling.
  • ECU1 controls the first booster pump control valve 211, the second booster pump control valve 212, the third booster pump control valve 213, and the fourth booster pump control valve 214 to be disconnected.
  • the second booster pump 204 does not work.
  • ECU1 also receives signals from pedal travel sensor PTS and first master cylinder pressure sensor MCPS, and transmits the received signals to ECU2.
  • ECU2 determines the driver's braking intention according to the signal of pedal stroke sensor PTS and the signal of master cylinder pressure sensor MCPS transmitted by ECU1.
  • Embodiment 22 when a braking demand is identified, the conventional pressure building process of the braking system provided by Embodiment 22 can be described as follows: ECU2 controls the boost drive motor 201 to push the piston in the one-way boost cylinder 202 to move to the right , the second control unit 92 controls the first boost control valve 21 and the second boost control valve 22 to open. Part of the oil in the first boost chamber 202i passes through the first boost control valve 21 and the second boost control valve 22, and flows into the brake wheel cylinders through the wheel cylinder boost valves (31, 32, 33, 34) respectively. (3a, 3b, 3c, 3d), to achieve wheel braking.
  • the ECU2 judges the position of the piston in the two-way pressurized cylinder 202 through the signal of the motor position sensor MPS. If the piston position reaches the far right of the two-way booster cylinder 202, and the brake wheel cylinder still needs to be boosted at this time, the ECU2 controls the first booster control valve 21 and the second booster control valve 22 to be in a closed state, and Control the supercharging driving motor 201 to reverse, the piston in the one-way supercharging cylinder 202 moves to the left, and the brake fluid flows into the one-way supercharging cylinder 202 from the liquid storage container 5 through the one-way valve 202v. It should be noted that when the piston in the one-way booster cylinder moves to the left, that is, when the booster cylinder piston returns, this process cannot continue to pressurize the brake circuit. to continue to pressurize.
  • Embodiment 22 When the braking pressure of a certain wheel cylinder is too high, the conventional decompression process of the braking system provided by Embodiment 22 can be described as follows: For example, when the pressure of the brake wheel cylinder 3a is too high, control the corresponding wheel cylinder The booster valve 31 is disconnected, and the corresponding wheel cylinder decompression valve 41 is connected, and the brake fluid in the wheel cylinder flows into the liquid storage container 5 through the wheel cylinder decompression valve 41 to realize decompression.
  • the ECU 2 calculates the control signals of the boost drive motor 201 and the solenoid valves in the second subsystem according to the sensor signals.
  • the ECU 2 controls the states of the first boost control valve 21 and the second boost control valve 22 , and controls the boost drive motor 201 to push the booster piston to build pressure.
  • ECU2 controls the on and off of the wheel cylinder boost valves (31, 32, 33, 34) and the wheel cylinder decompression valves (41, 42, 43, 44) to realize the brake wheel cylinders (3a, 3b ,3c,3d) pressure control, so as to realize ABS/TCS/ESC/BBF/AEB/ACC and other functions.
  • ECU2 works alone.
  • ECU2 obtains the brake pressure signal according to the second master cylinder pressure sensor MCPS, and determines the driving intention according to the signal.
  • the ECU2 calculates the control signals of the booster drive motor 201 and the solenoid valves in the second subsystem.
  • ECU2 calculates the control signals of the boost drive motor 201 and the solenoid valves in the second subsystem according to the sensor signals.
  • the ECU 2 controls the states of the first boost control valve 21 and the second boost control valve 22 , and controls the boost drive motor 201 to push the booster piston to build pressure.
  • ECU2 controls the on and off of the wheel cylinder boost valves (31, 32, 33, 34) and the wheel cylinder decompression valves (41, 42, 43, 44) to realize the brake wheel cylinders (3a, 3b ,3c,3d) pressure control, so as to realize ABS/TCS/ESC/BBF/AEB/ACC and other functions.
  • the brake system when both ECU1 and ECU2 fail, the brake system provided by this embodiment can perform mechanical backup.
  • the brake fluid can flow from the brake master cylinder 1 to the first wheel cylinder 3a and the second wheel cylinder 3b through the first master cylinder isolation valve 11 and the third master cylinder isolation valve 13, or
  • the brake master cylinder 1 flows through the second master cylinder isolation valve 12 and the fourth master cylinder isolation valve 14 to the third wheel cylinder 3c and the fourth wheel cylinder 3d to achieve braking.
  • Fig. 29 is another braking system provided by Embodiment 23 of the present application.
  • the system composition, connection relationship, control relationship, etc. of the first subsystem and other unmentioned parts can refer to Embodiment 21, here No longer.
  • the second subsystem which is described in detail as follows.
  • the second subsystem includes: the second control unit 92, the third master cylinder isolation valve 13, the fourth master cylinder isolation valve 14, the second master cylinder pressure sensor MCPS, the pedal feeling simulator 6, the pedal simulation Valve 61, supercharging drive motor 201, two-way supercharging cylinder 202, supercharger check valve 202v, first supercharging control valve 21, second supercharging control valve 22, fifth supercharging control valve 25, first wheel Cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42 , the third wheel cylinder pressure reducing valve 43, the fourth wheel cylinder pressure reducing valve 44, the brake circuit pressure sensor BCPS.
  • the second subsystem further includes a sixth one-way valve 61v, a first one-way valve 31v, a second one-way valve 32v, a third one-way valve 33v, and a fourth one-way valve 34v.
  • the second subsystem can also be integrated with a filter, or the function of impurity filtering can be realized by selecting a control valve with a filter.
  • each control valve in the braking system is shown in FIG. 29 .
  • the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the third master cylinder isolation valve 13, and the fourth master cylinder isolation valve 14 are normally open valves.
  • the normally open valve When the normally open valve is controlled and powered on, the normally open valve will switch to the state of disconnecting the pipelines at both ends of the control valve, that is, when the normally open valve is powered on and disconnected, The fluid in the pipeline cannot flow from one end of the normally open valve to the other end of the normally open valve through the normally open valve.
  • the normally open valves may include: a test valve 51, a first master cylinder isolation valve 11, a second master cylinder isolation valve 12, a third master cylinder isolation valve 13, a second master cylinder isolation valve Four master cylinder isolation valves 14 , first wheel cylinder boost valve 31 , second wheel cylinder boost valve 32 , third wheel cylinder boost valve 33 , fourth wheel cylinder boost valve 34 .
  • the normally closed valves include: a first booster pump control valve 211, a second booster pump control valve 212, a third booster pump control valve 213, a fourth booster pump control valve Pressure pump control valve 214, pedal simulation valve 61, first boost control valve 21, second boost control valve 22, fifth boost control valve 25, first wheel cylinder decompression valve 41, second wheel cylinder decompression valve 42 , the third wheel cylinder decompression valve 43 , and the fourth wheel cylinder decompression valve 44 .
  • Embodiment 21 As shown in FIG. 29 , for the description of the first subsystem provided in Embodiment 23, reference may be made to Embodiment 21 or Embodiment 22.
  • the supercharger 2 adopts a two-way supercharging cylinder 202 .
  • the first booster chamber 202i is connected to the interface 8e through the booster check valve 202v.
  • the supercharger one-way valve 202v is configured to allow brake fluid to flow from the pipeline 202k to the first supercharging chamber 202i through the supercharger one-way valve 202v under certain conditions.
  • the first boost chamber 202i of the booster 2 is connected to the first end of the fifth boost control valve 25 .
  • the second end of the fifth boost control valve 25 is connected to the second boost chamber 202j, and the second end of the fifth boost control valve 25 is also respectively connected to the first end of the first boost control valve 21 and the second boost chamber.
  • the first end of the control valve 22 is connected.
  • the second end of the first boost control valve 21 is connected to the first brake circuit 3i, specifically, the second end of the first boost control valve 21 is connected to the first end, the second end of the first wheel cylinder boost valve 31
  • the first end of the wheel cylinder boost valve 32 is connected, the second end of the first wheel cylinder boost valve 31 is connected with the interface 4a, and is connected with the first wheel cylinder 3a through the interface 4a; the second end of the second wheel cylinder boost valve 32
  • the second end is connected to the interface 4b, and is connected to the second wheel cylinder 3b through the interface 4b.
  • the second end of the second boost control valve 22 is connected to the second brake circuit 3j, specifically, the second end of the second boost control valve 22 is respectively connected to the first end of the third wheel cylinder boost valve 33.
  • the first end of the fourth wheel cylinder booster valve 34 is connected, the second end of the third wheel cylinder booster valve 33 is connected with the interface 4c, and is connected with the third wheel cylinder 3c through the interface 4c; the fourth wheel cylinder booster
  • the second end of the pressure valve 34 is connected to the port 4d, and is connected to the fourth wheel cylinder 3d through the port 4d.
  • the ECU2 judges the position of the piston in the two-way pressurized cylinder 202 through the signal of the motor position sensor MPS. If the piston position reaches the far right of the two-way booster cylinder 202, and the brake wheel cylinder still needs to be boosted at this time, the ECU2 controls the fifth booster control valve 25 to be in the disconnected state, and controls the booster drive motor 201 to reverse Turn, the piston in the two-way booster cylinder moves to the left, and the brake fluid in the second booster chamber 202j passes through the first booster control valve 21, the second booster control valve 22, the wheel cylinder booster valve (31, 32,33,34) into the brake wheel cylinder to achieve wheel pressure.
  • the braking system provided in the twenty-third embodiment can reduce the number of solenoid valves, reduce the cost, and facilitate the simplification of the braking system.
  • the braking system provided by Embodiment 1 to Embodiment 23 of the present application has the advantages of high redundancy, high integration, small size, flexible module division, low cost, high reliability and high safety, and can meet the requirements of vehicle ABS. /BBF/TCS/ESC/AEB/ACC and other integrated braking function requirements.
  • Fig. 30 is the braking system provided by the twenty-fourth embodiment of the present application.
  • the brake main chamber 1 of the brake system provided by Embodiment 24 only includes one brake main chamber, and the first subsystem only includes A redundant pressurization line.
  • the present application does not limit the number of main cavities in the brake master cylinder of the braking system under the concept of the present invention, nor does it limit the number of redundant booster circuits in the first subsystem.
  • the number of brake master chambers included in the brake master cylinder 1 can be 1, 2 or more; it can also be understood that the number of booster pumps in the first subsystem can be 1 , 2 or more, the redundant booster lines in the first subsystem can be 1, 2 or more.
  • Fig. 31 is the braking system provided by Embodiment 25 of the present application. Compared with the braking system provided in Embodiment 23, the braking system provided in Embodiment 25 is different in the redundant design of the control unit.
  • the first control unit 91 is also called ECU1
  • the second control unit 92 is also called ECU2
  • the third control unit 93 is also called ECU3.
  • the ECU is not a limitation to the embodiment of the present application, and the control unit may also be of other types, for example, it may be a domain controller, or it may also be a central centralized controller.
  • the second subsystem Module2 includes a second control unit 92 and a third control unit 93.
  • the braking system provided by the twenty-fifth embodiment further includes a first control unit 91 .
  • the objects controlled by the first control unit 91, the second control unit 92 and the third control unit 93 are as follows:
  • the objects controlled by the first control unit 91 include: the first master cylinder isolation valve 11 , the second master cylinder isolation valve 12 , the test valve 51 , the first booster pump control valve 211 , and the second booster pump control valve 212 , the third booster pump control valve 213 , and the fourth booster pump control valve 214 .
  • the first control unit 91 receives signals from the first master cylinder pressure sensor MCPS, the pedal stroke sensor PTS and the oil tank level sensor RLS.
  • ECU1 when the signal of the oil level sensor RLS indicates that the liquid level is low, ECU1 will issue a warning to the entire vehicle, and the control functions of ECU1 and ECU2 will be degraded, for example, the boost target value will be limited.
  • the objects controlled by the second control unit 92 include: boost drive motor 201, pedal simulation valve 61, third master cylinder isolation valve 13, fourth master cylinder isolation valve 14, first boost control valve 21, second Boost control valve 22, fifth boost control valve 25, first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, The first wheel cylinder pressure reducing valve 41 , the second wheel cylinder pressure reducing valve 42 , the third wheel cylinder pressure reducing valve 43 , and the fourth wheel cylinder pressure reducing valve 44 .
  • the objects controlled by the third control unit 93 include: boost drive motor 201, first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder Boost valve 34 , first wheel cylinder pressure reducing valve 41 , second wheel cylinder pressure reducing valve 42 , third wheel cylinder pressure reducing valve 43 , fourth wheel cylinder pressure reducing valve 44 .
  • the second control unit 92 and the third control unit jointly control the following objects: boost drive motor 201, first wheel cylinder boost valve 31, second Wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43.
  • the pressure reducing valve 44 for the fourth wheel cylinder is not limited to the first wheel cylinder boost valve 31, second Wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43.
  • the second control unit 92 and the third control unit 93 receive signals from the second master cylinder pressure sensor MCPS, the brake circuit pressure sensor BCPS and the motor position sensor MPS.
  • the pedal travel sensor PTS can be powered independently, and pedal travel signals are provided to ECU1, ECU2 and ECU3 respectively.
  • the braking system includes a first controller and a second controller, the first controller includes a first control unit 91, the second controller includes a second control unit 92 and a third control unit 93, and , the first controller and the second controller at least include various solenoid valve drives and various signal processing and control output interfaces.
  • the second controller also includes signal processing related to motor driving and a control output interface.
  • the controller can also receive measurement or detection signals from various sensors, such as environmental conditions, driver input, braking system status, etc., and control the braking characteristics of the braking system through calculation and judgment.
  • the braking system provided by Embodiment 25 of the present application includes at least four working modes: (1) ECU1, ECU2, and ECU3 work together; (2) ECU1 works alone; (3) ECU2 works alone; (4) ECU3 works alone ; (5) mechanical backup mode.
  • ECU1, ECU2, and ECU3 work together.
  • the master cylinder push rod 1k pushes the brake master cylinder piston, and the pressure in the master cylinder rises.
  • the ECU 1 controls the first master cylinder isolation valve 11 and the second master cylinder isolation valve 12 to be connected, and controls the third master cylinder isolation valve 13 and the fourth master cylinder isolation valve 14 to be disconnected.
  • the second main cavity 1j of the brake master cylinder 1 is connected to the pedal feeling simulator 6, and the pedal feeling simulator works to generate a pedal feeling.
  • ECU1 controls the first booster pump control valve 211, the second booster pump control valve 212, the third booster pump control valve 213, and the fourth booster pump control valve 214 to be disconnected.
  • the second booster pump 204 does not work.
  • ECU1 also receives signals from the pedal travel sensor PTS and the first master cylinder pressure sensor MCPS, and transmits the received signals to ECU2 and/or ECU3.
  • ECU2 and ECU3 can communicate with each other.
  • ECU2 and/or ECU3 determine the driver's braking intention according to the signal of pedal stroke sensor PTS and the signal of master cylinder pressure sensor MCPS transmitted by ECU1.
  • Embodiment 25 when a braking demand is recognized, the conventional pressure building process of the braking system provided by Embodiment 25 can be described as follows: ECU2 controls the boost drive motor 201 to push the piston in the one-way boost cylinder 202 to move to the right , ECU2 controls the first boost control valve 21, the second boost control valve 22, and the fifth boost control valve 25 to open. Part of the oil in the first boost chamber 202i passes through the first boost control valve 21 and the second boost control valve 22, and flows into the brake wheel cylinders through the wheel cylinder boost valves (31, 32, 33, 34) respectively. (3a, 3b, 3c, 3d), to achieve wheel braking.
  • the ECU2 judges the position of the piston in the two-way pressurized cylinder 202 through the signal of the motor position sensor MPS. If the piston position reaches the far right of the two-way booster cylinder 202, and the brake wheel cylinder still needs to be boosted at this time, the ECU2 controls the fifth booster control valve 25 to be in a closed state, and keeps the first booster control valve 21 Connect with the second boost control valve 22, and control the boost drive motor 201 to reverse, the piston in the one-way boost cylinder 202 moves to the left, and pushes the brake fluid to flow from the second boost chamber 202j to the first boost pressure chamber 202j. control valve 21 or the second boost control valve 22 .
  • Embodiment 25 When the braking pressure of a certain wheel cylinder is too high, the conventional decompression process of the braking system provided by Embodiment 25 can be described as follows: For example, when the pressure of the brake wheel cylinder 3a is too high, control the corresponding wheel cylinder The booster valve 31 is disconnected, and the corresponding wheel cylinder decompression valve 41 is connected, and the brake fluid in the wheel cylinder flows into the liquid storage container 5 through the wheel cylinder decompression valve 41 to realize decompression.
  • the ECU 2 calculates the control signals of the boost drive motor 201 and the solenoid valves in the second subsystem according to the sensor signals.
  • the ECU 2 controls the states of the first boost control valve 21 , the second boost control valve 22 , and the fifth boost control valve 25 , and controls the boost drive motor 201 to push the booster piston to build pressure.
  • ECU2 controls the on and off of the wheel cylinder boost valves (31, 32, 33, 34) and the wheel cylinder decompression valves (41, 42, 43, 44) to realize the brake wheel cylinders (3a, 3b ,3c,3d) pressure control, so as to realize ABS/TCS/ESC/BBF/AEB/ACC and other functions.
  • ECU2 works alone.
  • ECU2 obtains the brake pressure signal according to the second master cylinder pressure sensor MCPS, and determines the driving intention according to the signal.
  • the ECU2 calculates the control signals of the booster drive motor 201 and the solenoid valves in the second subsystem.
  • ECU2 calculates the control signals of the boost drive motor 201 and the solenoid valves in the second subsystem according to the sensor signals.
  • the ECU 2 controls the states of the first boost control valve 21 and the second boost control valve 22 , and controls the boost drive motor 201 to push the booster piston to build pressure.
  • ECU2 controls the on and off of the wheel cylinder boost valves (31, 32, 33, 34) and the wheel cylinder decompression valves (41, 42, 43, 44) to realize the brake wheel cylinders (3a, 3b ,3c,3d) pressure control, so as to realize ABS/TCS/ESC/BBF/AEB/ACC and other functions.
  • ECU3 performs redundant control on the wheel cylinder boost valve and wheel cylinder pressure reducing valve.
  • ECU2 fails, ECU3 cooperates with ECU1 in Module1 to realize the wheel cylinder of each wheel.
  • the pressure is independently controlled to realize most of the brake control functions.
  • the braking system provided by Embodiment 25 can perform mechanical backup.
  • the brake fluid can flow from the brake master cylinder 1 to the first wheel cylinder 3a and the second wheel cylinder 3b through the first master cylinder isolation valve 11 and the third master cylinder isolation valve 13, or
  • the brake master cylinder 1 flows through the second master cylinder isolation valve 12 and the fourth master cylinder isolation valve 14 to the third wheel cylinder 3c and the fourth wheel cylinder 3d to achieve braking.
  • Fig. 32 is the braking system provided by the twenty-sixth embodiment of the present application.
  • Module1 does not contain ECU, sensor PTS and solenoid valve are connected to Module2 through wiring harness, and ECU2 in Module2 performs sensor signal processing and solenoid valve control.
  • the solution is simple, low cost, and suitable for low-end vehicles.
  • Fig. 33 is the braking system provided by the twenty-seventh embodiment of the present application.
  • ECU3 performs redundant control on all control valves, and ECU2 and ECU3 jointly control the supercharger drive motor 201 .
  • ECU2 may control one set of windings of the boost driving motor 201
  • ECU3 may control another set of windings of the boost driving motor 201 .
  • ECU2 fails, ECU3 realizes the same function as ECU2, realizing full function backup.
  • the PTS sensor and TSV in the first subsystem Moudle1 are connected to ECU2 and/or ECU3 through a wire harness, which has more comprehensive functions.
  • the braking system provided by the embodiments of the present application includes various first subsystems and various second subsystems.
  • the second subsystems can be recombined to form a new braking system, which is not limited in this application.
  • Figure 13, Figure 22 to Figure 26 respectively provide 6 different first subsystems
  • Figure 13, Figure 17 to Figure 21 respectively provide 6 different second subsystems, among the above 6 kinds of first subsystems Any one of them can be connected with the interface 8e, interface 8f, and interface 8g of any one of the above six kinds of second subsystems through its interface 8E, interface 8F, and interface 8G respectively, so as to form a new braking system.
  • the second subsystem provided in Figure 27 and Figure 28 of this application can also be replaced by any one of the following second subsystems: the six second subsystems respectively provided in Figure 13, Figure 17 to Figure 21
  • the second subsystem formed by the pedal feeling simulator and the master cylinder pressure sensor as shown in Figure 27 is added.
  • the second subsystem of the braking system shown in FIG. 29 may also be combined with other first subsystems provided in the embodiment of the present application to form a new braking system.
  • the brake system provided in the specification of this application can adjust its redundancy, cost, structural complexity, system reliability and other characteristics through flexible combination to meet the needs of different levels of vehicle models and application scenarios.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

一种制动系统,包括制动主缸(1)、第一增压器和第二增压器;通过第一增压器或第二增压器,制动系统能够实现丰富的制动功能。同时,制动系统具有多重冗余设计,能够保证制动系统在控制器或者关键电磁阀失效的情况下还能够满足车辆的多种制动功能需求,提高制动系统的安全性,保证驾驶员的踏板感受,给驾驶员带来更加稳定舒适的驾驶体验,适用于智能化、电动化趋势下的车辆。还提供了一种液压装置、控制方法、可读存储介质和车辆。

Description

一种液压装置、制动系统及车辆 技术领域
本申请涉及车辆制动领域,尤其涉及一种制动系统。
背景技术
制动系统在车辆行驶过程中能够提供自动紧急制动(AEB)、制动防抱死(ABS)、牵引力控制(TCS)和稳定性控制(ESC)等功能。然而随着自动驾驶技术的发展,制动系统面临的挑战包括:在满足小型化、低成本的同时兼顾对制动系统安全性、可靠性的要求,提高系统的冗余程度。不仅如此,在对制动系统进行冗余备份时,还需关注如何在兼顾成本和系统复杂度的前提下,提供更丰富的制动功能,以配合驾驶辅助功能或者自动驾驶等功能。
发明内容
本申请涉及一种满足自动驾驶汽车冗余安全需求的制动系统,本申请针对当前制动系统面临的冗余备份、成本控制以及多种功能支持等挑战,提出一种多重冗余控制的电液制动系统。
本申请第一方面提供一种制动系统,在第一方面的第一种可能的实施方式中,该制动系统包括:制动主缸(1)、第一增压器、第二增压器、至少一个第一接口。其中,至少一个第一接口用于与至少一个制动轮缸连接。第一增压器通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。制动主缸(1)包括第一主腔(1i),第一主腔(1i)通过第二增压器与第二控制阀(13)连接,第二控制阀(13)通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
可选的,制动主缸还可以包括更多制动主腔。
根据第一方面的第一种可能的实施方式,在第二种可能的实施方式中,制动系统还包括储液容器(5),至少一个第一接口通过至少一个第三控制阀(41,42,43,44)与储液容器(5)连接。
可选的,第三控制阀的数量可以为4个,或者可以为更多。车辆包括4个以上制动轮缸时,第三控制阀的数量也可以大于4个。
根据第一方面的第二种可能的实施方式,在第三种可能的实施方式中,第二增压器包括第四控制阀(11),第一主腔(1i)依次通过第四控制阀(11)、第二控制阀(13)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第一方面的第三种可能的实施方式,在第四种可能的实施方式中,第二增压器还包括第一增压泵(203),第一增压泵(203)的输出端接入第四控制阀(11)与第二控制阀(13)之间的管路,并依次通过第二控制阀(13)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
可选的,接口可以是进液口或出液口或者同时包括进液口和出液口,或者兼具进液口和出液口的功能。
根据第一方面的第四种可能的实施方式,在第五种可能的实施方式中,第一增压泵(203)的输入端与储液容器(5)连接。
根据第一方面的第五种可能的实施方式,在第六种可能的实施方式中,第二增压器还包括第一单向阀(203v),储液容器(5)与第一单向阀(203v)的第一端连接,第一单向阀(203v) 的第二端与第一增压泵(203)的输入端连接,第一单向阀(203v)被配置为允许制动液由储液容器(5)经第一单向阀(203v)流向第一增压泵(203)的输入端。
可选的,还可以包括更多数量的增压泵,当增压泵数量更多时,可以实现更快速的建压。
可选的,多个增压泵可以由同一个电机驱动,也可以由不同的电机驱动。由一个电机统一驱动时可以降低成本,使系统更简单。如使用更多增压泵,则可提高系统的冗余程度。
根据第一方面的第六种可能的实施方式,在第七种可能的实施方式中,根据第一方面的第五种可能的实施方式,在第六种可能的实施方式中,第二增压器还包括第五控制阀(211),储液容器(5)依次通过第五控制阀(211)、第二控制阀(13)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第一方面的第七种可能的实施方式,在第八种可能的实施方式中,第二增压器还包括第六控制阀(213),第六控制阀(213)的第一端与第一主腔(1i)连接,第六控制阀(213)的第二端接入第一单向阀(203v)和第一增压泵(203)之间的管路并与第一增压泵(203)的输入端连接。
需要说明的是,第六控制阀可以使制动主腔的制动液进入第一增压泵,当驾驶员踩下踏板时可以提供一定的踏板感觉。
根据第一方面的第八种可能的实施方式,在第九种可能的实施方式中,制动主缸(1)还包括第二主腔(1j),第二主腔(1j)依次通过第七控制阀(12)、第八控制阀(14)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第二增压器还包括第二增压泵(204)、第九控制阀(212)、第二单向阀(204v)、第十控制阀(214),其中,储液容器(5)与第二单向阀(204v)的第一端连接,第二单向阀(204v)的第二端与第二增压泵(204)的输入端连接,第二单向阀(204v)被配置为允许制动液由储液容器(5)经第二单向阀(204v)流向第二增压泵(204)的输入端。第二增压泵(204)的输出端依次通过第八控制阀(14)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。储液容器(5)依次通过第九控制阀(212)、第八控制阀(14)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第十控制阀(214)的第一端与第二主腔(1j)连接,第十控制阀(214)的第二端接入第二单向阀(204v)和第二增压泵(204)之间的管路并与第二增压泵(204)的输入端连接。
需要说明的是,第二主腔可以与第一主腔互为冗余,提高制动系统的可靠性。
根据第一方面的第六种可能的实施方式,在第十种可能的实施方式中,第二增压器还包括第五控制阀(211),第五控制阀(211)的第一端接入第一增压泵(203)的输出端与第二控制阀(13)之间的管路,第五控制阀(211)的第二端接入第一增压泵(203)的输入端与第一单向阀(203v)的第二端之间的管路。
根据第一方面的第十种可能的实施方式,在第十一种可能的实施方式中,第二增压器还包括第六控制阀(213),储液容器(5)依次通过第六控制阀(213)、第二控制阀(13)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第一方面的第五种可能的实施方式,在第十二种可能的实施方式中,第二增压器还包括第五控制阀(211)和第六控制阀(213),其中,储液容器(5)还依次通过第六控制阀(213)、第五控制阀(211)、第二控制阀(13)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第一方面的第十二种可能的实施方式,在第十三种可能的实施方式中,储液容器(5)还通过第六控制阀(213)与第一增压泵(203)的输入端连接。
根据第一方面的第十三种可能的实施方式,在第十四种可能的实施方式中,制动主缸(1)还包括第二主腔(1j),第二主腔(1j)依次通过第七控制阀(12)、第八控制阀(14)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第二增压器还包括第二增压泵(204)、第九控制阀(212),其中,储液容器(5)通过第六控制阀(213)与第二增压泵(204)的输入端连接,储液容器(5)依次通过第六控制阀(213)、第九控制阀(212)、第八控制阀(14)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第一方面的第四种可能的实施方式,在第十五种可能的实施方式中,第二增压器还包括第六控制阀(213),第六控制阀(213)的第一端接入第四控制阀(11)与第一主腔(1i)之间的管路,第六控制阀(213)的第二端与第一增压泵(203)的输入端连接。
根据第一方面的第二种可能的实施方式,在第十六种可能的实施方式中,第一增压器包括第一增压腔(202i),第一增压腔(202i)分别与第一增压控制阀(21)的第一端以及第二增压控制阀(22)的第一端连接,第一增压控制阀(21)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第二增压控制阀(22)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第一方面的第十六种可能的实施方式,在第十七种可能的实施方式中,第一增压器还包括第三增压控制阀(23)和第四增压控制阀(24),第一增压腔(202i)分别与第三增压控制阀(23)的第一端以及第四增压控制阀(24)的第一端连接,第三增压控制阀(23)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第四增压控制阀(24)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第一方面的第十六种可能的实施方式,在第十八种可能的实施方式中,第一增压器还包括第二增压腔(202j)、第三增压控制阀(23)和第四增压控制阀(24),第二增压腔(202j)分别与第三增压控制阀(23)的第一端以及第四增压控制阀(24)的第一端连接,第三增压控制阀(23)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第四增压控制阀(24)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第一方面的第十六种可能的实施方式,在第十九种可能的实施方式中,第一增压器还包括第二增压腔(202j)和第五增压控制阀(25),第一增压腔(202i)与第五增压控制阀(25)的第一端连接,第五增压控制阀(25)的第二端分别与第一增压控制阀(21)的第一端以及第二增压控制阀(22)的第一端连接。第二增压腔(202j)分别与第一增压控制阀(21)的第一端以及第二增压控制阀(22)的第一端连接。第一增压控制阀(21)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第二增压控制阀(22)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第一方面的第十七种可能的实施方式,在第二十种可能的实施方式中,制动系统包括第一控制单元(92)和第二控制单元(93),第二控制阀(13)被配置为受第一控制单元(92)和第二控制单元(93)共同控制,第一增压控制阀(21)和第二增压控制阀(22)被配置为受第一控制单元(92)控制,第三增压控制阀(23)和第四增压控制阀(24)被配置为受第二控制单元(93)控制。
根据第一方面的第十八种可能的实施方式,在第二十一种可能的实施方式中,制动系统包括第一控制单元(92)和第二控制单元(93),第二控制阀(13)、第一增压控制阀(21)、第二增压控制阀(22)、第三增压控制阀(23)、第四增压控制阀(24)被配置为受第一控制单元(92)和第二控制单元(93)共同控制。
根据第一方面的第十九种可能的实施方式,在第二十二种可能的实施方式中,制动系统包括第一控制单元(92)和第二控制单元(93),第一增压控制阀(21)、第二增压控制阀(22)、第五增压控制阀(25)、第二控制阀(13)被配置为受第一控制单元(92)控制,至少一个第一控制阀(31,32,33,34)、至少一个第三控制阀(41,42,43,44)被配置为受第一控制单元(92)和第二控制单元(93)共同控制。
根据第一方面的第二十至第二十二种可能的实施方式,在第二十三种可能的实施方式中,第一增压器被配置为受第一控制单元(92)和第二控制单元(93)共同控制。
根据第一方面的第二种至第二十三种可能的实施方式,在第二十四种可能的实施方式中,制动系统包括第一子系统和第二子系统:
其中,第一子系统包括:制动主缸(1)、储液容器(5)、第二增压器、至少一个第一接口(8F,8G)、第二接口(8E)。其中,制动主缸(1)与储液容器(5)连接,制动主缸(1)通过第二增压器与至少一个第一接口(8F,8G)连接,储液容器(5)与第二接口(8E)连接。
第二子系统包括:第一增压器、至少一个第二控制阀(13,14)、至少一个第一控制阀(31,32,33,34)、至少一个第三控制阀(41,42,43,44)、至少一个第四接口(8f,8g)、第五接口(8e)、至少一个第一接口。其中,至少一个第四接口(8f,8g)通过至少一个第二控制阀(13,14)与至少一个第一控制阀(31,32,33,34)的第一端连接,第五接口(8e)与第一增压器(2)连接,第一增压器(2)与至少一个第一控制阀(31,32,33,34)的第一端连接,至少一个第一控制阀(31,32,33,34)的第二端与至少一个第一接口连接,至少一个第一接口用于与至少一个制动轮缸连接。至少一个第一接口通过至少一个第三控制阀(41,42,43,44)与第五接口(8e)连接。至少一个第一接口(8F,8G)和至少一个第四接口(8f,8g)一一对应连接,第二接口(8E)与第五接口(8e)连接。
本申请第二方面提供一种液压装置,在第二方面的第一种可能的实施方式中,该液压装置包括:制动主缸(1)、储液容器(5)、第二增压器、至少一个第一接口、第二接口(8E)。其中,制动主缸(1)包括第一主腔(1i),至少一个第一接口包括第一输出接口(8F)。第一主腔(1i)通过第二增压器与第一输出接口(8F)连接,储液容器(5)与第一主腔(1i)连接,储液容器(5)与第二接口(8E)连接。
根据第二方面的第一种可能的实施方式,在第二种可能的实施方式中,第二增压器包括第四控制阀(11),第一主腔(1i)通过第四控制阀(11)与第一输出接口(8F)连接。
根据第二方面的第二种可能的实施方式,在第三种可能的实施方式中,第二增压器还包括第一增压泵(203),第一增压泵(203)的输出端接入第四控制阀(11)与第一输出接口(8F)之间的管路。
根据第二方面的第三种可能的实施方式,在第四种可能的实施方式中,第一增压泵(203)的输入端与储液容器(5)连接。
根据第二方面的第四种可能的实施方式,在第五种可能的实施方式中,还包括第一单向阀(203v),储液容器(5)与第一单向阀(203v)的第一端连接,第一单向阀(203v)的第二端与第一增压泵(203)的输入端连接,第一单向阀(203v)被配置为允许制动液由储液容器(5)经第一单向阀(203v)流向第一增压泵(203)的输入端。
根据第二方面的第五种可能的实施方式,在第六种可能的实施方式中,第二增压器还包括第五控制阀(211),储液容器(5)通过第五控制阀(211)与第一输出接口(8F)连接。
根据第二方面的第六种可能的实施方式,在第七种可能的实施方式中,第二增压器还包 括第六控制阀(213),第六控制阀(213)的第一端与第一主腔(1i)连接,第六控制阀(213)的第二端接入第一单向阀(203v)和第一增压泵(203)之间的管路并与第一增压泵(203)的输入端连接。
根据第二方面的第七种可能的实施方式,在第八种可能的实施方式中,制动主缸(1)还包括第二主腔(1j),第二主腔(1j)通过第七控制阀(12)与第二输出接口(8G)连接。第二增压器还包括第二增压泵(204)、第九控制阀(212)、第二单向阀(204v)、第十控制阀(214),其中,储液容器(5)与第二单向阀(204v)的第一端连接,第二单向阀(204v)的第二端与第二增压泵(204)的输入端连接,第二单向阀(204v)被配置为允许制动液由储液容器(5)经第二单向阀(204v)流向第二增压泵(204)的输入端。第二增压泵(204)的输出端接入第七控制阀(12)与第二输出接口(8G)之间的管路。储液容器(5)依次通过第九控制阀(212)与第二输出接口(8G)连接。第十控制阀(214)的第一端与第二主腔(1j)连接,第十控制阀(214)的第二端接入第二单向阀(204v)和第二增压泵(204)之间的管路并与第二增压泵(204)的输入端连接。
根据第二方面的第五种可能的实施方式,在第九种可能的实施方式中,第二增压器还包括第五控制阀(211),第五控制阀(211)的第一端接入第一增压泵(203)的输出端与第一输出接口(8F)之间的管路,第五控制阀(211)的第二端接入第一增压泵(203)的输入端与第一单向阀(203v)的第二端之间的管路。
根据第二方面的第九种可能的实施方式,在第十种可能的实施方式中,第二增压器还包括第六控制阀(213),储液容器(5)通过第六控制阀(213)与第一输出接口(8F)连接。
根据第二方面的第四种可能的实施方式,在第十一种可能的实施方式中,第二增压器还包括第五控制阀(211)和第六控制阀(213),其中,储液容器(5)还依次通过第六控制阀(213)、第五控制阀(211)与第一输出接口(8F)连接。
根据第二方面的第十一种可能的实施方式,在第十二种可能的实施方式中,储液容器(5)还通过第六控制阀(213)与第一增压泵(203)的输入端连接。
根据第二方面的第十二种可能的实施方式,在第十三种可能的实施方式中,制动主缸(1)还包括第二主腔(1j),第二主腔(1j)通过第七控制阀(12)与第二输出接口(8G)连接。第二增压器还包括第二增压泵(204)、第九控制阀(212),其中,储液容器(5)通过第六控制阀(213)与第二增压泵(204)的输入端连接,储液容器(5)依次通过第六控制阀(213)、第九控制阀(212)与第二输出接口(8G)连接。
根据第二方面的第三种可能的实施方式,在第十四种可能的实施方式中,根据第二方面的第二增压器还包括第六控制阀(213),第六控制阀(213)的第一端接入第四控制阀(11)与第一主腔(1i)之间的管路,第六控制阀(213)的第二端与第一增压泵(203)的输入端连接。
本申请第三方面提供一种液压装置,在第三方面的第一种可能的实施方式中,液压装置包括:第一增压器、至少一个第一控制阀(31,32,33,34)、至少一个第二控制阀(13,14)、至少一个第三控制阀(41,42,43,44)、至少一个第四接口(8f,8g)、第五接口(8e)、至少一个第一接口。其中,至少一个第四接口(8f,8g)通过至少一个第二控制阀(13,14)与至少一个第一控制阀(31,32,33,34)的第一端连接,第五接口(8e)与第一增压器(2)连接,第一增压器(2)与至少一个第一控制阀(31,32,33,34)的第一端连接,至少一个第一控制阀(31,32,33,34)的第二端与至少一个第一接口连接,至少一个第一接口用于与至少一个制动轮缸连接。至少一个第一接口通过至少一个第三控制阀(41,42,43,44)与第五接口(8e) 连接。
根据第三方面的第一种可能的实施方式,在第二种可能的实施方式中,第一增压器包括第一增压腔(202i),第一增压腔(202i)分别与第一增压控制阀(21)的第一端以及第二增压控制阀(22)的第一端连接,第一增压控制阀(21)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第二增压控制阀(22)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第三方面的第二种可能的实施方式,在第三种可能的实施方式中,第一增压器还包括第三增压控制阀(23)和第四增压控制阀(24),第一增压腔(202i)分别与第三增压控制阀(23)的第一端以及第四增压控制阀(24)的第一端连接,第三增压控制阀(23)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第四增压控制阀(24)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第三方面的第二种可能的实施方式,在第四种可能的实施方式中,第一增压器还包括第二增压腔(202j)、第三增压控制阀(23)和第四增压控制阀(24),第二增压腔(202j)分别与第三增压控制阀(23)的第一端以及第四增压控制阀(24)的第一端连接,第三增压控制阀(23)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第四增压控制阀(24)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第三方面的第二种可能的实施方式,在第五种可能的实施方式中,第一增压器还包括第二增压腔(202j)和第五增压控制阀(25),第一增压腔(202i)与第五增压控制阀(25)的第一端连接,第五增压控制阀(25)的第二端分别与第一增压控制阀(21)的第一端以及第二增压控制阀(22)的第一端连接。第二增压腔(202j)分别与第一增压控制阀(21)的第一端以及第二增压控制阀(22)的第一端连接。第一增压控制阀(21)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第二增压控制阀(22)的第二端通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
根据第三方面的第三种可能的实施方式,在第六种可能的实施方式中,还包括第一控制单元(92)和第二控制单元(93),第二控制阀(13)被配置为受第一控制单元(92)和第二控制单元(93)共同控制,第一增压控制阀(21)和第二增压控制阀(22)被配置为受第一控制单元(92)控制,第三增压控制阀(23)和第四增压控制阀(24)被配置为受第二控制单元(93)控制。
根据第三方面的第四种可能的实施方式,在第七种可能的实施方式中,还包括第一控制单元(92)和第二控制单元(93),第二控制阀(13)、第一增压控制阀(21)、第二增压控制阀(22)、第三增压控制阀(23)、第四增压控制阀(24)被配置为受第一控制单元(92)和第二控制单元(93)共同控制。
根据第三方面的第五种可能的实施方式,在第八种可能的实施方式中,还包括第一控制单元(92)和第二控制单元(93),第一增压控制阀(21)、第二增压控制阀(22)、第五增压控制阀(25)、第二控制阀(13)被配置为受第一控制单元(92)控制,至少一个第一控制阀(31,32,33,34)、至少一个第三控制阀(41,42,43,44)被配置为受第一控制单元(92)和第二控制单元(93)共同控制。
根据第三方面的第一种至第八种之中任意一种可能的实施方式,在第九种可能的实施方式中,第一增压器被配置为受第一控制单元(92)和第二控制单元(93)共同控制。
本申请第四方面提供一种制动系统的控制方法,在第四方面的第一种可能的实施方式中, 制动系统包括:制动主缸、第一增压器、第二增压器、至少一个第一接口。其中,至少一个第一接口用于与至少一个制动轮缸连接。第一增压器通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。制动主缸包括第一主腔(1i),第一主腔(1i)通过第二增压器与第二控制阀(13)连接,第二控制阀(13)通过至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。
方法包括:获取第一制动需求。当制动系统处于第一状态时,控制第二增压器工作。第一状态包括以下至少一种:第一增压器故障、第二控制阀(13)故障、至少一个第一控制阀(31,32,33,34)故障。
根据第四方面的第一种可能的实施方式,在第二种可能的实施方式中,制动系统包括第一增压泵(203)、第四控制阀(11),其中,第一主腔(1i)依次通过第四控制阀(11)、第二控制阀(13)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。第一增压泵(203)的输出端接入第四控制阀(11)与第二控制阀(13)之间的管路,并依次通过第二控制阀(13)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。方法包括:控制第二增压器工作包括:控制第四控制阀(11)处于断开状态。
根据第四方面的第二种可能的实施方式,在第三种可能的实施方式中,制动系统还包括第六控制阀(213),第六控制阀(213)的第一端与第一主腔(1i)连接,第六控制阀(213)的第二端与第一增压泵(203)的输入端连接。方法包括:控制第二增压器工作包括:控制第六控制阀(213)处于接通状态。
根据第四方面的第二种可能的实施方式,在第四种可能的实施方式中,制动系统包括储液容器(5)、第五控制阀(211),其中,储液容器(5)与第一增压泵(203)的输入端连接,储液容器(5)通过第五控制阀(211)、第二控制阀(13)、至少一个第一控制阀(31,32,33,34)与至少一个第一接口连接。方法包括:获取第二制动需求。控制第五控制阀(211)处于接通状态。
根据第四方面的第四种可能的实施方式,在第五种可能的实施方式中,该方法包括:根据第二制动需求,控制第五控制阀(211)的开度或开关频率。
根据第四方面的第一种可能的实施方式,在第六种可能的实施方式中,制动系统包括第一控制单元(91)、第二控制单元(92),第二增压器被配置为受第一控制单元(91)控制,第二控制阀(13)和第一增压器被配置为受第二控制单元控制(92)。该方法包括:第一状态还包括:第二控制单元故障。
本申请第五方面提供一种液压装置,在第五方面的第一种可能的实施方式中,该液压装置包括:第二增压器、至少一个第一接口、第二接口(8E)、至少一个第三接口、至少一个第四接口。其中,至少一个第一接口包括第一输出接口(8F)。至少一个第三接口用于与制动主缸连接,至少一个第四接口用于与第四接口连接。第三接口通过第二增压器与第一输出接口(8F)连接。
根据第五方面的第一种可能的实施方式,在第二种可能的实施方式中,第二增压器包括第四控制阀(11),第三接口通过第四控制阀(11)与第一输出接口(8F)连接。
根据第五方面的第二种可能的实施方式,在第三种可能的实施方式中,第二增压器还包括第一增压泵(203),第一增压泵(203)的输出端接入第四控制阀(11)与第一输出接口(8F)之间的管路。
根据第五方面的第三种可能的实施方式,在第四种可能的实施方式中,第一增压泵(203)的输入端与第四接口连接。
根据第五方面的第四种可能的实施方式,在第五种可能的实施方式中,还包括第一单向阀(203v),第四接口与第一单向阀(203v)的第一端连接,第一单向阀(203v)的第二端与第一增压泵(203)的输入端连接,第一单向阀(203v)被配置为允许制动液由第四接口经第一单向阀(203v)流向第一增压泵(203)的输入端。
根据第五方面的第五种可能的实施方式,在第六种可能的实施方式中,第二增压器还包括第五控制阀(211),第四接口通过第五控制阀(211)与第一输出接口(8F)连接。
根据第五方面的第六种可能的实施方式,在第七种可能的实施方式中,第二增压器还包括第六控制阀(213),第六控制阀(213)的第一端与第三接口连接,第六控制阀(213)的第二端接入第一单向阀(203v)和第一增压泵(203)之间的管路并与第一增压泵(203)的输入端连接。
根据第五方面的第七种可能的实施方式,在第八种可能的实施方式中,制动主缸(1)还包括第二主腔(1j),第二主腔(1j)通过第七控制阀(12)与第二输出接口(8G)连接。第二增压器还包括第二增压泵(204)、第九控制阀(212)、第二单向阀(204v)、第十控制阀(214),其中,第四接口与第二单向阀(204v)的第一端连接,第二单向阀(204v)的第二端与第二增压泵(204)的输入端连接,第二单向阀(204v)被配置为允许制动液由第四接口经第二单向阀(204v)流向第二增压泵(204)的输入端。第二增压泵(204)的输出端接入第七控制阀(12)与第二输出接口(8G)之间的管路。第四接口依次通过第九控制阀(212)与第二输出接口(8G)连接。第十控制阀(214)的第一端与第二主腔(1j)连接,第十控制阀(214)的第二端接入第二单向阀(204v)和第二增压泵(204)之间的管路并与第二增压泵(204)的输入端连接。
根据第五方面的第五种可能的实施方式,在第九种可能的实施方式中,第二增压器还包括第五控制阀(211),第五控制阀(211)的第一端接入第一增压泵(203)的输出端与第一输出接口(8F)之间的管路,第五控制阀(211)的第二端接入第一增压泵(203)的输入端与第一单向阀(203v)的第二端之间的管路。
根据第五方面的第九种可能的实施方式,在第十种可能的实施方式中,第二增压器还包括第六控制阀(213),第四接口通过第六控制阀(213)与第一输出接口(8F)连接。
根据第五方面的第四种可能的实施方式,在第十一种可能的实施方式中,第二增压器还包括第五控制阀(211)和第六控制阀(213),其中,第四接口还依次通过第六控制阀(213)、第五控制阀(211)与第一输出接口(8F)连接。
根据第五方面的第十一种可能的实施方式,在第十二种可能的实施方式中,第四接口还通过第六控制阀(213)与第一增压泵(203)的输入端连接。
根据第五方面的第十二种可能的实施方式,在第十三种可能的实施方式中,制动主缸(1)还包括第二主腔(1j),第二主腔(1j)通过第七控制阀(12)与第二输出接口(8G)连接。第二增压器还包括第二增压泵(204)、第九控制阀(212),其中,第四接口通过第六控制阀(213)与第二增压泵(204)的输入端连接,第四接口依次通过第六控制阀(213)、第九控制阀(212)与第二输出接口(8G)连接。
根据第五方面的第三种可能的实施方式,在第十四种可能的实施方式中,根据第五方面的第二增压器还包括第六控制阀(213),第六控制阀(213)的第一端接入第四控制阀(11)与第三接口之间的管路,第六控制阀(213)的第二端与第一增压泵(203)的输入端连接。
本申请第六方面提供一种可读存储介质,可读存储介质存储有程序指令,当程序指令被执行时执行如第四方面任意一种方法。
本申请第七方面提供一种车辆,该车辆包括如第一方面提供的任一项的制动系统,或者车辆包括如第二方面或第三方面或第五方面提供的任一项液压装置。
本申请实施例提供的制动系统具有多重冗余设计,能够保证制动系统在控制器或者关键电磁阀失效的情况下还能够满足车辆多种制动功能需求,提高制动系统的安全性,保证驾驶员的踏板感受,给驾驶员带来更加稳定舒适的驾驶体验
附图说明
图1为本申请实施例提供的一种整车系统架构示意图;
图2为本申请实施例提供的一种制动系统在车辆中的布置形式示意图;
图3-a为本申请实施例提供的一种制动系统示意图;
图3-b为本申请实施例提供的一种制动系统的一种工作状态示意图;
图4为本申请实施例提供的又一种制动系统示意图;
图5为本申请实施例提供的又一种制动系统示意图;
图6-a为本申请实施例提供的又一种制动系统示意图;
图6-b为本申请实施例提供的又一种制动系统的一种工作状态示意图;
图7为本申请实施例提供的又一种制动系统示意图;
图8为本申请实施例提供的又一种制动系统示意图;
图9为本申请实施例提供的又一种制动系统示意图;
图10为本申请实施例提供的又一种制动系统示意图;
图11为本申请实施例提供的又一种制动系统示意图;
图12为本申请实施例提供的又一种制动系统架构示意图;
图13为本申请实施例提供的又一种制动系统示意图;
图14为本申请实施例提供的又一种制动系统的一种工作状态示意图;
图15为本申请实施例提供的又一种制动系统的一种工作状态示意图;
图16为本申请实施例提供的又一种制动系统的一种工作状态示意图;
图17为本申请实施例提供的又一种制动系统示意图;
图18为本申请实施例提供的又一种制动系统示意图;
图19为本申请实施例提供的又一种制动系统示意图;
图20为本申请实施例提供的又一种制动系统示意图;
图21为本申请实施例提供的又一种制动系统示意图;
图22为本申请实施例提供的又一种制动系统示意图;
图23为本申请实施例提供的又一种制动系统示意图;
图24为本申请实施例提供的又一种制动系统示意图;
图25为本申请实施例提供的又一种制动系统示意图;
图26为本申请实施例提供的又一种制动系统示意图;
图27为本申请实施例提供的又一种制动系统示意图;
图28为本申请实施例提供的又一种制动系统示意图;
图29为本申请实施例提供的又一种制动系统示意图;
图30为本申请实施例提供的又一种制动系统示意图;
图31为本申请实施例提供的又一种制动系统示意图;
图32为本申请实施例提供的又一种制动系统示意图;
图33为本申请实施例提供的又一种制动系统示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。显然,所描述的实施例仅仅是本申请提供的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了便于理解,本申请说明书先对本申请实施例可能涉及的相关术语和概念进行介绍。
集成制动系统(integrated brake system,IBS):由电动线性泵及电磁阀和阀体等组成的电液线控制动系统,可以实现车辆的ABS/AEB/TCS/ESC等制动功能。
冗余制动模块(redundant brake unit,RBU):对主制动系统形成备份的独立制动模块,当车辆主制动系统失效时,RBU模块完成车辆的制动,提高车辆的安全性。
基础制动功能(basic brake function,BBF):响应于制动意图,执行基础的制动功能。
制动防抱死系统(antilock brake system,ABS):一般车辆在紧急制动或在冰雪路面制动,车轮会趋于抱死。车轮抱死带来使制动距离增加、失去转向意图等问题。ABS系统根据车轮的抱死情况,适当的减小趋于抱死车轮处的制动力,以实现防抱死功能。
电子稳定性控制系统(electronic stability control system,ESC):传感器收集车辆信息来判断车辆失稳情况,当车辆趋于失稳,ESC系统通过对单个或部分车轮施加制动力,以获取使车轮稳定的横摆力矩,从而实现稳定车辆的目的。
牵引力控制系统(traction control system,TCS):当在冰雪路面行驶,或某一车轮陷入泥泞路面等情况发生时,由于车轮打滑严重,车辆无法正常行驶。TCS系统根据车轮打滑情况,适当减小驱动力或对打滑车轮施加制动力,减弱车轮打滑情况,保证车辆正常行驶。
自适应巡航控制(adaptive cruise control,ACC):在按设定车速进行巡航控制的系统上,增加了与前方车辆保持合理间距控制功能的系统,其子功能有定速巡航、跟随巡航、弯道巡航、驾驶模式选择、智慧过弯、智能限速等,主要通过制动系统和驱动系统控制车辆速度实现巡航功能。
自动紧急制动(automatic emergency braking,AEB):在车辆遇到突发危险情况或与前车及行人距离小于安全距离时主动进行刹车,以避免或减少追尾等碰撞事故的发生。
制动预填充(AEB prefill,ABP):通过减少制动盘与摩擦片之间的距离而更好地为建压做准备。
自适应制动辅助(adaptive braking assist,ABA):通过感知他车速度、间距等自适应调整自车制动力,例如当可能发生碰撞而驾驶员对制动踏板施加的踏板力不足时,主动提高制动系统的制动力。
自动告警制动(automatic warning braking,AWB):在全力制动前通过短促的制动对驾驶员提供警告。
车辆纵向控制(vehicle longitudinal control,VLC):包括车辆在纵向上的速度、加速度等的控制。
驾驶辅助减速控制(controller driving deceleration,CDD):帮助车辆完成从制动到静止状态的转变,同时还可以帮助车辆完成从静止状态舒适地起步。
自动驻车控制(automatic vehicle hold,AVH):车辆在停车等待的情况下可以自动保持制动状态,驾驶员不需要长时间踩制动踏板。
制动盘清洗(brake disc washing,BDW):通过提高制动系统压力使刹车片与制动盘接触, 以清除污垢和水渍。
紧急制动灯提示(hazzard lights,HAZ):当车辆进行紧急制动时,通过闪烁车辆的信号灯向环境中的其他车辆发送告警。
液压制动辅助(hydraulic brake assist,HBA):在紧急制动过程中,当驾驶员对制动踏板施加的踏板力不足时,液压系统可以迅速增大制动力。
液压衰退补偿(hydraulic fading compensation,HFC):识别并补偿由于制动系统过热造成的制动系统性能衰退。
后轮液压助力(hydraulic rear-wheel boost,HRB):在车辆紧急制动时提高后轮制动力。
坡道起步辅助(hill-start assist system,HAS):在坡道起步时避免车辆溜坡。
陡坡缓降控制(hill,descent control,HDC):在下坡过程中,车辆通过对制动系统的自动控制实现平稳下坡,驾驶员无需踩制动踏板。
附加功能(value added function,VAF):包括如AEB、ABP、ABA、AWB、CDD、VLC、AVH、BDW、HAZ、HBA、HFC、HRB、HAS、HDC等的附加制动功能。可用于支持自动驾驶系统(autonomous driving system,ADS)或驾驶辅助系统(Advanced Driving Assistance System,ADAS)。
本申请说明书中涉及的其他术语或概念还包括:油壶液位传感器(reservoir level sensor,RLS)、测试阀(test simulation valve,TSV)、踏板模拟阀(pedal simulation valve,PSV)、踏板行程传感器(pedal travel sensor,PTS)、主缸压力传感器(master cylinder pressure sensor,MCPS)、制动回路压力传感器(brake circuit pressure sensor,BCPS)、电机位置传感器(motor position sensor,MPS)、电子控制单元(electronic control unit,ECU)、双向移动活塞缸(dual apply plunger,DAP)等。
需要说明的是,上述术语和概念的介绍仅为帮助理解使用,不应理解为对本申请实施例的限定。
以下,本申请说明书将结合图1至图21对本申请实施例提供的制动系统进行说明。
车辆正在经历着电动化、网联化、智能化的变革。对于车辆而言,包括制动系统在内的各个系统也面临着改变和升级。制动系统的结构改变和功能升级与整车架构的革新紧密相关。具体地,下面结合图1对整车的各个系统进行描述。
图1为本申请实施例提供的一种车辆100的一个示意图。车辆100可包括各种子系统,例如信息娱乐系统110、感知系统120、决策控制系统130、驱动系统140以及计算平台150。可选地,车辆100可包括更多或更少的子系统,并且每个子系统都可包括多个部件。另外,车辆100的每个子系统和部件可以通过有线或者无线的方式实现互连。
对于车辆而言,制动系统135是其最为关键的系统之一,直接关系到车辆综合性能表现及乘员的生命财产安全。制动系统135可用于控制车辆100的速度。制动系统135可通过摩擦力来减慢车轮144转速。在一些实施例中,制动系统135还可以具有能量再生制动功能。此外,制动系统135也可通过其他方式控制车辆100的速度。
对于再生制动功能而言,车辆在减速或制动时,可通过电机将汽车的一部分机械能转化为电能并储存在电池中,同时产生一部分制动力实现汽车的减速或制动。当汽车再次加速时,电机将储存于电池中的能量再次转换为汽车行驶的动能。但是,由于再生制动面临制动强度限制等挑战,并不能满足全部制动工况的需求。为此,液压制动系统在新能源汽车中仍有较高应用价值。
车辆在智能化方面的发展为制动系统的功能开发提供了更多可能。如图1所示,本申请 实施例提供的车辆100可以被配置为完全或部分自动驾驶模式。例如:车辆100可以通过感知系统120获取其周围的环境信息,并基于对周边环境信息的分析得到自动驾驶策略以实现完全自动驾驶,或者将分析结果呈现给用户以实现部分自动驾驶。在一些实施例中,车辆100可以通过对其周边环境的感知来调整自车的车速。周边环境可以包括其它车辆和/或行人等交通参与者,也可以包括道路、基础设施或或者其它物体。在一些示例中,车辆100可以自主识别周边环境,并且根据环境中物体的信息(如速度、加速度、与自车的距离等)确定自车的车速。
车辆在计算和控制资源方面的提升为制动系统控制方法的设计提供了更多选择。如图1所示,本申请实施例提供的车辆100的部分或所有功能受计算平台150控制。计算平台150可基于从各种子系统(例如,驱动系统140、感知系统120和决策控制系统130)接收的输入来控制车辆100的各项功能。尤其对于制动系统135而言,计算平台150能够为制动系统135的功能开发带来更多可能。例如,计算平台150可以根据来自决策控制系统130的输入控制制动系统135来避免与由感知系统120检测到的障碍物发生碰撞。
下面结合图1对计算平台150进行描述。
计算平台150可包括至少一个处理器151,处理器151可以执行存储在例如存储器152这样的非暂态计算机可读介质中的指令153。在一些实施例中,计算平台150还可以是采用分布式方式控制车辆100的个体组件或子系统的多个计算设备。
对于如图1中所示的计算平台150,其中的处理器151可以是任何常规的处理器,如中央处理单元(central process unit,CPU)。替选地,处理器151还可以包括诸如图像处理器(graphic process unit,GPU),现场可编程门阵列(field programmable gate array,FPGA)、片上系统(sysem on chip,SOC)、专用集成芯片(application specific integrated circuit,ASIC)或它们的组合。尽管图1功能性地图示了处理器、存储器和其它元件,但是本领域的普通技术人员应该理解该处理器、计算机、或存储器实际上可以包括可以或者可以不存储在相同的物理外壳内的多个处理器、计算机、或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机的外壳内的其它存储介质。因此,对处理器或计算机的引用将被理解为包括对可以或者可以不并行操作的处理器或计算机或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和制动组件的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。在此处所描述的各个方面中,处理器可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行,包括采取执行单一操纵的必要步骤。在一些实施例中,存储器152可包含指令153,例如,程序逻辑。指令153可被处理器151执行来执行车辆100的各种功能。存储器152也可包含额外的指令,包括向信息娱乐系统110、感知系统120、决策控制系统130驱动系统140中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。在一些实施例中,除了指令153以外,存储器152还可存储数据,例如道路地图、路线信息,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息。这些信息可在车辆100在自主、半自主和/或手动模式操作期间被车辆100和计算平台150使用。
需要说明的是,图1不应理解为对本申请实施例的限制。可选地,上述这些组件中的一个或多个可与车辆100分开安装或关联。例如,存储器152可以部分或完全地与车辆100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除或者重新划 分。另外,上述车辆100可以为乘用车、商用车、摩托车、专用车辆(如消防车、救护车、矿用车、道路施工车辆等)、轨道车辆、船舶、飞行器等,本申请实施例不做特别的限定。
为便于理解制动系统在整车布置中的形式,如图2所示,本申请说明书还提供一种制动系统在车辆中布置的示意图。在一些实施例中,制动系统135在车辆中的布置形式可以如图2所示。在一些实施例中,制动系统135可以包括制动踏板、制动主缸、增压器、制动管路、制动轮缸等组件。当驾驶员踩下制动踏板,或当接收到制动信号时,制动主缸或增压器向制动轮缸提供制动压力,并进一步驱动制动执行器对车辆进行制动。
当然,除了图2提供的一种可能的布置形式之外,制动系统在车辆中还可以采用其他的布置方式。例如,后轴的车轮可以采用机械制动;又如,当车辆包括更多数量的车轮时,例如当车辆包括6个车轮时,制动系统还可以包括更多制动管路和更多制动轮缸。因此需要说明的是,图2仅作为本申请实施例提供的一种制动系统可能的布置方式,不应理解为对本申请实施例的限制。
由此,通过以上描述可以理解:电动化、网联化、智能化的发展趋势对车辆制动系统的可靠性、安全性提出了更高的要求,也同时为制动系统功能的开发带来更多可能。
面对这些全新的挑战和机遇,本申请实施例提供的制动系统能够保证车辆在主制动系统控制器或者关键电磁阀失效的情况下,依然能够通过冗余控制器实现车辆制动功能,并且在一些实施例中还可以满足车辆的ABS/AEB/TCS/ESC等制动功能需求,大幅提高车辆的安全性和可靠性。
以下结合具体实施例对本申请提供的制动系统进行详细说明。
首先,需要说明的是,本申请说明书中出现的制动系统中控制阀的名称不代表控制阀的类型,仅表示其具有的功能。例如,对于在本申请实施例中可能出现的“隔离阀”、“增压阀”、“减压阀”、“双控制器共同驱动的电磁阀”、“单控制器独立驱动的电磁阀”等均不是对所涉及控制阀的类型的限定。例如,用于控制进液管路连通或者断开的控制阀可以称为“进液阀”或者“增压阀”;用于控制回液管路连通或者断开的控制器可以称为“出液阀”或者“减压阀”;用于隔离两级制动子系统的控制阀可以称为“隔离阀”。其中,上述控制阀可以是现有的制动系统中常用的阀,例如,电磁阀等。应理解,本申请不对控制阀的种类进行限定。
并且,需要说明的是,在本申请一些实施例提供的制动系统中,还可以包括单向阀(31v,32v,33v,34v,51v,61v,202v)。单向阀可以是独立的单元,也可以是通过选用集成了单向阀的控制阀而实现,本申请对此不作限制。
同时,需要说明的是,本申请说明书中出现的制动管路可以仅为“出液管路”或者“进液管路”,或者,制动管路还可以为“出液管路”和“进液管路”。例如,在为汽车的车轮的制动轮缸减压的过程中,制动系统中的制动管路用于将制动轮缸中的制动液输送至储液装置,此时,制动管路可以称为“出液管路”。在为汽车的车轮的制动轮缸增压的过程中,该制动管路用于为汽车的车轮提供制动液,以为汽车的车轮提供制动力,此时,制动管路可以称为“进液管路”。
接着,需要说明的是,本申请实施例提供的制动系统与制动轮缸之间可以采用多种连接形式,例如,可以呈X型布置、H型布置、工型布置等。X型布置可以为一路制动回路连接左前轮(front left,FL)的制动轮缸和右后轮(rear right,RR)的制动轮缸,另一路制动回路连接右前轮(front right,FR)的制动轮缸和左后轮(rear left,RL)的制动轮缸。H型布置可以为一路制动回路连接左前轮的制动轮缸FL和左后轮RL的制动轮缸,另一路制动回路连接右前轮FR的制动轮缸和右后轮RR的制动轮缸。工型布置可以为一路制动回路连接左前轮FL的制动轮缸和右前轮FR的制动轮缸,另一路制动回路连接左后轮RL的制动轮缸和右后 轮RR的制动轮缸。应理解,尽管本申请提供的一些实施例以X型制动回路为例,但是本申请实施例对制动回路的类型不作限制。
其次,需要说明的是,在本申请提供的一些实施例中,本申请说明书并未示电机控制信号的生成过程,控制单元与增压器驱动装置之间的连接关系仅表示控制关系。
同时,需要说明的是,在本申请说明书中,第一控制单元91在一些实施例中也被称作ECU1,第二控制单元92在一些实施例中也被称作ECU2,第三控制单元93在一些实施例中也被称作ECU3。
另外,需要说明的是,本申请提供的一些实施例中,控制单元可以为控制器或者可以被集成在控制器中,控制器中至少还包括各种电磁阀驱动、电机驱动以及各种信号处理及控制的输出接口。控制器接收各种传感器的测量或检测信号,如环境条件、驾驶员输入、制动系统状态等,通过计算和判断来控制制动系统的制动特性。
此外,需要说明的是,在本申请说明书中出现的常开阀可以理解为在不上电或不动作的初始条件下处于导通状态的控制阀,常开阀在上电或者动作时由导通状态切换为关闭状态;在本申请说明书中出现的常闭阀可以理解为在不上电或不动作的初始条件下为关闭的控制阀,常闭阀上电或者动作时有关闭状态切换为导通状态。
基于上述说明,本申请说明书将结合附图3至附图21对本申请实施例进行详细介绍。
实施例一
图3-a为本申请实施例一提供的一种制动系统示意图。以下结合图3对实施例一提供的制动系统的系统组成、连接关系、集成方式、接口设置、控制关系等进行描述。
首先,介绍系统组成和连接关系。如图3所示,本申请实施例一提供的制动系统包括:制动主缸1、增压器2、第一控制阀(11,12)、第二控制阀(21,22,23,24)、第三控制阀(31,32,33,34)、第四控制阀(41,42,43,44)、第一控制单元91、第二控制单元92。
需要说明的是,在本申请说明书中出现的第一控制阀(11,12)也可以被称为主缸隔离阀;第二控制阀(21,22,23,24),本申请说明书中也可被称为增压控制阀;第三控制阀(31,32,33,34)也可被称为增压阀或者轮缸增压阀;第四控制阀(41,42,43,44)也可被称为减压阀、轮缸减压阀或者泄压阀;在本申请提供的一些实施例中南,第五控制阀(51)也可以被称为测试阀(test simulation valve,TSV);第六控制阀(61)也可以被称为踏板模拟阀(pedal simulation valve,PSV)。应理解,对控制阀功能的描述不应理解为对控制阀类型的限定。
可选地,在实施例一中,制动主缸1包括两个可对外输出压力的液压腔,分别记为第一主腔1i和第二主腔1j。第一主腔1i和第二主腔1j分别通过第一主缸隔离阀11和第二主缸隔离阀12与轮缸制动管路连接。
可选地,在实施例一中,制动系统还可以包括主缸压力传感器(master cylinder pressure sensor,MCPS)。如图3所示,主缸压力传感器MCPS与制动主缸的第二主腔1j连接。
可选地,在实施例一中,制动系统还可以包括主缸推杆1k。主缸推杆1k的一端与主缸活塞连接,主缸推杆1k的另一端用于与制动踏板7连接。当接收到踏板力时,主缸推杆1k可以推动制动主缸1的活塞,以提高制动主缸1中的油压。
可选地,在实施例一中,制动系统还可以包括踏板行程传感器PTS。踏板行程传感器PTS可用于采集的制动踏板7的行程信号。
可选地,一种可能的实施方式,制动系统还可以包括制动踏板7。制动踏板7与制动系统的主缸推杆连接。如图3-a所示,驾驶员踩下制动踏板7后,可以根据踏板行程传感器PTS 采集的踏板行程信号获得目标制动力。根据该目标制动力,制动系统通过控制相关控制阀以向制动轮缸提供相应的制动压力。
具体地,如图3-a所示,制动主缸与制动轮缸之间的连接关系可以描述如下:制动主缸1的第一主腔1i通过第一主缸隔离阀11分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31与第一轮缸3a连接,第二增压阀32与第二轮缸3b连接;制动主缸1的第二主腔1j通过第二主缸隔离阀12分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33与第三轮缸3c连接,第四轮缸增压阀34与第四轮缸3d连接。
可选地,在实施例一中,主缸隔离阀11和主缸隔离阀12为常开阀。
可选地,在实施例一中,增压器2包括增压驱动电机201。需要说明的是,在本申请一些实施例提供的制动系统中,增压驱动电机201可以为三相电机、六相电机、十二相电机等。例如可以是三相永磁同步电机。
可选地,在实施例一中,增压驱动电机201还可以包括电机位置传感器(motor position sensor,MPS)。电机位置传感器MPS用于获取电机位置信号以实现电机控制或提高电机控制精度。具体地,如图3-a所示,增压驱动电机201被配置为受第二控制单元92控制。
可选地,在实施例一中,增压器2包括双向增压缸202(dual apply plunger,DAP),其中,双向增压缸202包括第一增压腔202i和第二增压腔202j。第一增压腔202i与第一增压支路2i连接,第二增压腔202j与第二增压支路2j连接。需要说明的是,双向增压缸202能够使增压过程连续稳定,为制动系统带来良好的增压特性。
具体地,如图3-a所示,增压器2的双向增压缸与制动轮缸之间的连接关系可以描述如下:第一增压腔202i通过第一增压支路2i上的第一增压控制阀21分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31与第一轮缸3a连接,第二轮缸增压阀32与第二轮缸3b连接;同时,第一增压腔202i通过第一增压2i支路上的第二增压控制阀22分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33与第三轮缸3c连接,第四轮缸增压阀34与第四轮缸3d连接。类似地,第二增压腔202j通过第二增压支路2i上的第三增压控制阀23分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31与第一轮缸3a连接,第二增压阀32与第二轮缸3b连接;同时,第二增压腔202j通过第二增压支路2j上的第四增压控制阀24分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33与第三轮缸3c连接,第四轮缸增压阀34与第四轮缸3d连接。
如图3-a所示,在实施例一中,制动系统还包括单向阀202v,单向阀202v的第一端与接口8e连接,单向阀202v的第二端与第一增压腔202i连接,单向阀202v被配置为在一定条件下允许制动液由接口8e经过单向阀202v流向第一增压腔202i。
可选地,如图3-a所示,在实施例一中,第一增压控制阀21、第二增压控制阀22、第三增压控制阀23和第四增压控制阀24为常闭阀。
可选地,在实施例一中,制动系统还可以包括制动回路压力传感器(brake circuit pressure sensor,BCPS)。一种可能的实施方式,如图3-a所示,制动回路压力传感器BCPS与制动回路的连接点位于第一轮缸增压阀31与第二轮缸增压阀32之间的管路上。本处可以理解的是,制动回路压力传感器BCPS的在制动回路中的接入位置并不限于如图3所示的接入位置,其接入位置还可以设置在第三轮缸增压阀33与第四轮缸增压阀34之间的管路上,本申请不对其具体的接入位置进行限定。
需要说明的是,在实施例一中,如图3-a所示,第一轮缸增压阀31的第一端与第二轮缸增压阀32的第一端连接,第一轮缸增压阀31的第二端用于与第一轮缸3a连接,第二轮缸增 压阀32的第二端用于与第二轮缸3b连接;第三轮缸增压阀33的第一端与第四轮缸增压阀34的第一端连接;第三轮缸增压阀33的第二端用于与第三轮缸3c连接;第四轮缸增压阀34的第二端用于与第四轮缸3d连接。当制动回路压力传感器BCPS被设置在第一轮缸增压阀31与第二轮缸增压阀32之间的管路上时,或者,被设置在第三轮缸增压阀33与第四轮缸增压阀34之间的管路上时,制动压力传感器BCPS能够获取管路的油液压力。
可选地,在实施例一中,制动系统还可以包括储液容器5。
可选地,在实施例一中,制动系统还可以包括油壶液位传感器(reservoir level sensor,RLS)。如图3-a所示,油壶液位传感器RLS可以设置在储液容器5中,用于检测储液容器中液压油的液位。
如图3-a所示,制动主缸1的第一主腔1i与储液容器5通过第一储液管路5i连接,制动主缸1的第二主腔2j通过测试阀51与储液容器5连接,第二主腔2j与储液容器5连接的管路为第二储液管路5j;增压器2的第一增压腔202i与储液装置5通过第三储液管路5k连接,增压器2的第一增压腔202i通过单向阀202v与储液容器5连接,单向阀202v被配置为在一定条件下允许制动液从第三储液管路202k经单向阀202v流向第一增压腔202i;减压阀(41,42,43,44)的第一端通过第三储液管路与储液容器5连接,减压阀(41,42,43,44)的第二端用于分别与制动轮缸(41,42,43,44)连接。
可选地,在实施例一中,制动系统还可以包括踏板感觉模拟器6和踏板模拟阀61。
如图3-a所示,踏板感觉模拟器6通过踏板模拟阀61与制动主缸1的第二主腔连接。踏板模拟阀61还通过单向阀与制动主缸1的第二主腔连接。在踏板感觉模拟器6和第二主腔之间,踏板模拟阀61与单向阀为并联关系,且该单向阀61v被配置为允许制动液由踏板感觉模拟器6经单向阀61v流向制动主缸1。一种可能的实施方式,踏板感觉模拟阀61与单向阀集成为一体,可被直接选用。
可选地,如图3-a所示,轮缸增压阀(31,32,33,34)的两端可以并联单向阀(31v,32v,33v,34v),并且,每一个并联在轮缸增压阀(31,32,33,34)两端的单向阀(31v,32v,33v,34v)被配置为允许制动液从制动轮缸经单向阀并流向制动回路;一种可能的实施方式,并联在轮缸增压阀(31,32,33,34)两端的单向阀(31v,32v,33v,34v)可以被轮缸增压阀(31,32,33,34)集成为一体。在实际实施时,可以直接选用集成了单向阀功能的轮缸增压阀(31,32,33,34),而使制动系统的组成更加简单。
可选地,如图3-a所示,测试阀51两端可以并联单向阀51v,并且,并联在测试阀51两端的单向阀51v被配置为允许制动液由储液容器5经单向阀51v流向制动主缸1。一种可能的实施方式,并联在测试阀51两端的单向阀51v可以与测试阀51集成为一体,可被直接选用。
可选地,如图3-a所示,踏板模拟阀61两端也可并联单向阀61v,并且并联在踏板模拟阀61两端的单向阀61v被配置为允许制动液由踏板模拟器经单向阀61v流向制动主缸1。
可选地,如图3-a所示,增压器2通过单向阀202v与储液容器5连接,该单向阀202v被配置为在一定条件下允许制动液由储液容器5经单向阀202v流向增压器2。
需要说明的是,制动主缸1或增压器2可能存在泄漏,电磁阀也可能出现卡滞或其他故障。因此,当出现以上情况时,可以通过单向阀进行补液:例如,储液容器5中的制动液可以通过单向阀51v进入制动主缸1中;或者,制动液可以通过202v进入增压器2。
需要说明的是,本申请实施例中描述的接口可以是进液口,也可以是出液口,也可以包括进液口和出液口。
可选地,在实施例一中,如图3所示,制动系统还可以包括过滤器。过滤器可以过滤液压回路中的杂质。过滤器可以单独安装到制动系统中,或者可以通过选用带有过滤器的控制阀、带过滤器的储液容器等方式实现杂质过滤。
以上,为实施例一提供的制动系统的系统组成和连接关系的描述。以下,结合图3-a对实施例一提供的制动系统的集成方式和接口设置进行描述。
如图3-a所示,本申请实施例一提供的制动系统包括两个子系统:
(1)第一子系统包括:第一控制单元91、制动主缸1、储液容器5、踏板感觉模拟器6、第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、踏板模拟阀61、踏板行程传感器PTS、主缸压力传感器MCPS、油壶液位传感器RLS、主缸推杆1k。
如图3-a所示,第一子系统还包括接口(8E,8F,8G)。
当第一子系统中的测试阀51和踏板模拟阀61不包括单向阀时,第一子系统还包括第五单向阀51v、第六单向阀61v。
第一子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀、带过滤器的储液容器5来实现杂质过滤功能。
值得注意的是,第一子系统可以包括主缸推杆1k,但不包括制动踏板7。第一子系统可以搭配不同种类的制动踏板7,以适配更多车型并提供更多个性化搭配的可能。
(2)第二子系统包括:第二控制单元92、增压驱动电机201、双向增压缸202、增压器单向阀202v、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS。
当第二子系统中的第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
如图3-a所示,第二子系统包括第一接口、第二接口(8f,8g)、第三接口(8e)。其中,第一接口分别用于与车轮的制动轮缸(3a,3b,3c,3d)连接,第二接口(8f,8g)用于与制动主缸1连接,第三接口(8e)用于与储液容器5连接。
在实施例一中,如图3-a所示,第二子系统分别通过接口8e、接口8f、接口8g与第一子系统的接口8E、接口8F、接口8G连接,第一子系统和第二子系统形成制动系统。
具体地,以下结合图3-a对本申请实施例一提供的制动系统的接口的连接关系进行描述。
需要注意的是,第二子系统不包括制动轮缸(3a,3b,3c,3d),但是留有至少一个轮缸接口,如实施例一中的第一接口;至少一个第一接口用于与至少一个制动轮缸(3a,3b,3c,3d)连接,并可以为轮缸提供制动压力。
如图3-a所示,制动主缸1与制动轮缸(3a,3b,3c,3d)之间的连接关系可以描述如下:制动主缸1的第一主腔1i通过第一主缸隔离阀11与接口8F连接,并通过接口8f分别与第一轮缸增压阀31和第二轮缸增压阀32连接;第一轮缸增压阀31与接口4a连接,并通过接口4a与第一轮缸3a连接;第二增压阀32与接口4b连接,并通过接口4b与第二轮缸3b连接;制动主缸1的第二主腔1j通过第二主缸隔离阀12与接口8G连接,并通过接口8g分别与第三轮缸增压阀33和第四轮缸增压阀34连接;第三轮缸增压阀33与接口4c连接,并通 过接口4c与第三轮缸3c连接;第四轮缸增压阀34与接口4d连接,并通过接口4d与第四轮缸3d连接。
如图3-a所示,增压器2的第一增压腔202i经过单向阀202v与接口8e连接,并通过接口8E和第三储液管路5k与储液容器5连接,单向阀202v被配置为在一定条件下允许制动液从增压器储液管路202k经单向阀202v流向第一增压腔202i。
需要说明的是,图3-a中双向增压缸202的第二增压腔202j与储液容器5连接线仅表示当双向增压缸的活塞回到最左边时可以实现快速降压,并不表示该管路用于补液,类似地,本条说明也适用于本申请说明书提供的其他实施例。
如图3-a所示,轮缸减压阀(41,42,43,44)的第一端与接口8e连接,并通过接口8E和第三储液管路5k与储液容器5连接;轮缸减压阀(41,42,43,44)的第二端分别与第一接口连接,第一接口用于分别与制动轮缸(41,42,43,44)连接。
以上介绍了实施例一提供的制动系统的系统组成、连接关系、集成方式、接口设置。下面,对实施例一提供的制动系统的控制关系进行描述。在实施例一中,第一控制单元91和第二控制单元92所控制的对象分别如下:
(1)第一控制单元91控制的对象包括:第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、踏板模拟阀61。
第一控制单元91还接收主缸压力传感器MCPS和踏板行程传感器PTS的信号。
(2)第二控制单元92控制的对象包括:增压驱动电机201、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
第二控制单元92还接收制动回路压力传感器BCPS和电机位置传感器MPS的信号。
可选地,在实施例一中,第一控制单元91和第二控制单元92可以集成在同一个控制器内,也可以各自独立。
一种可能的实施方式,制动系统的控制器包括第一控制单元91和第二控制单元92,并且,控制器中至少还包括各种电磁阀驱动、电机驱动以及各种信号处理及控制输出接口。控制器接收各种传感器的测量或检测信号,如环境条件、驾驶员输入、制动系统状态等,通过计算和判断来控制制动系统的制动特性。
另一种可能的实施方式,制动系统包括第一控制器和第二控制器,第一控制器包括第一控制单元91,第二控制器包括第二控制单元92,并且,第一控制器和第二控制器中至少还包括各种电磁阀驱动以及各种信号处理及控制输出接口。第二控制器还包括电机驱动相关的信号处理及控制输出接口。控制器还可以接收各种传感器的测量或检测信号,如环境条件、驾驶员输入、制动系统状态等,通过计算和判断来控制制动系统的制动特性。
以上结合图3-a对实施例一提供制动系统的系统组成、连接关系、集成方式、接口设置、控制关系等进行了介绍。下面结合图3-b对实施例一提供的制动系统的工作模式进行描述。
如图3-b所示,当驾驶员踩下制动踏板7时,第一子系统的第一控制单元91控制第一主缸隔离阀11和第二主缸隔离阀12通电关闭,第一控制单元91控制踏板模拟阀61通电打开,制动踏板7推动制动主缸1中的油液经踏板模拟阀61流入踏板感觉模拟器6,并且第一控制单元91采集制动踏板行程传感器PTS的信号、主缸压力传感器MCPS的信号及储液容器5的油壶液位传感器RLS的信号,并将信号通过通信线路传递给第二控制单元。
如图3-b所示,第二控制单元92根据第一控制单元91传递的踏板行程传感器PTS的信 号和主缸压力传感器MCPS的信号,确定驾驶员的制动意图。
当识别到制动需求时,实施例一提供的制动系统的常规建压过程可描述如下:第二控制单元92控制增压驱动电机201推动双向增压缸202内的活塞向右运动,第二控制单元92控制第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24打开。第一增压腔202i内的油液一部分经过第一增压控制阀21和第二增压控制阀22,并分别通过轮缸增压阀(31,32,33,34)流入制动轮缸(3a,3b,3c,3d),实现车轮制动;另一部分油液经过第三增压控制阀23和第四增压控制阀24流入双向增压缸202的第二增压腔202j。
此外,第二控制单元92通过电机位置传感器MPS信号判断双向增压缸202内活塞的位置。若活塞位置到达双向增压缸202的最右侧,并且此时制动轮缸仍需继续增压,则第二控制单元92控制第一增压控制阀21和第二增压控制阀22处于关闭状态,并控制增压驱动电机201反转,双向增压缸内的活塞向左运动,第二增压腔202j腔体内的制动液经过第三增压控制阀23、第四增压控制阀、轮缸增压阀(31,32,33,34)流入制动轮缸,实现车轮增压。当活塞位置到达双向增压缸202的最左侧并且系统还有增压需求时,与上述原理类似,本处不再赘述。需要指出的是,双向增压缸202能够使增压过程连续稳定,为制动系统带来良好的增压特性。
当某一轮缸制动压力过大时,实施例一提供的制动系统的常规减压过程可描述如下:例如制动轮缸3a压力过大时,关闭轮缸3a对应的轮缸增压阀31,打开相应的轮缸减压阀41,该轮缸内的制动液通过轮缸减压阀41流入储液容器5,实现减压。
此外,当第一控制单元91和第二控制单元92全部失效时,实施例一提供的制动系统可以执行机械备份。驾驶员踩下制动踏板,制动液可以由制动主缸1分别经过第一主缸隔离阀11和第二主缸隔离阀12流至制动轮缸(4a,4b,4c,4d),以实现制动。需要说明的是,本申请实施例提供的制动系统均可实现如上所述的机械备份功能。
实施例一提供的制动系统采用分体式设计,能够显著改善NVH(noise,vibration,harshness,NVH)特性,提高驾乘感受,便于整车布置。
实施例二
图4为本申请实施例二提供的另一种制动系统的示意图。如图4所示,实施例二提供的制动系统与实施例一提供的制动系统存在相似之处,以下对实施例二提供制动系统的不同之处进行描述,其余可参考实施例一中制动系统的描述,本处不再赘述。
如图4所示,实施例二提供的制动系统包括第一子系统和第二子系统:
(1)第一子系统包括:第一控制单元91、制动主缸1、第一储液容器5a、踏板感觉模拟器6、第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、踏板模拟阀61、踏板行程传感器PTS、主缸压力传感器MCPS、油壶液位传感器RLS、主缸推杆1k。
如图4所示,第一子系统还包括接口(8F,8G)。
当第一子系统中的测试阀51和踏板模拟阀61不包括单向阀时,第一子系统还包括第五单向阀51v、第六单向阀61v。
第一子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀、带过滤器的储液容器5来实现杂质过滤功能。
(2)第二子系统包括:第二控制单元92、第二储液容器5b、增压驱动电机201、双向增压缸202、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第 一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS、增压器单向阀202v。
当第二子系统中的第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
如图4所示,第二子系统包括第一接口、第二接口(8f,8g)。其中,第一接口分别用于与车轮的制动轮缸(3a,3b,3c,3d)连接,第二接口(8f,8g)用于与制动主缸1连接。
在实施例二中,如图4所示,第二子系统分别通过接口8f、接口8g与第一子系统的接口8F、接口8G连接,第一子系统和第二子系统形成制动系统。
与实施例一提供的制动系统不同的是,实施例二提供的制动系统还包括了第二储液容器5b。如图4所示,增压器2的第一增压腔202i经过单向阀202v与第二储液容器5b连接,单向阀202v被配置为在一定条件下允许制动液从增压器储液管路202k经单向阀202v流向第一增压腔202i;增压器2的第二增压腔202j与第二储液容器5b。
如图4所示,轮缸减压阀(41,42,43,44)的第一端与第二储液容器5b连接,并通过接口8E和第三储液管路5k与第二储液容器5b连接;轮缸减压阀(41,42,43,44)的第二端分别与第一接口连接,第一接口用于分别与制动轮缸(41,42,43,44)连接。
需要说明的是,实施例二提供的制动系统中,第一储液容器5a与第二储液容器5b之间可以通过管路连接,也可以互相独立。
与实施例一提供的制动系统相比,实施例二提供的制动系统通过在第二子系统加入第二储液容器5b,能够提高冗余程度;并且减少了第一子系统与第二子系统之间的接口,简化了连接关系,提高了可靠性。
对于实施例二提供的制动系统,在本处未描述的特征可参考实施例一提供的制动系统中的相关描述。
实施例三
图5为本申请实施例三提供的另一种制动系统的示意图。如图5所示,实施例三提供的制动系统与实施例一提供的制动系统存在较多相似之处,以下对实施例三提供制动系统的不同之处进行描述,其余可参考实施例一中制动系统的描述,本处不再赘述。
如图5所示,实施例三提供的制动系统包括第一子系统和第二子系统:
(1)第一子系统包括:第一控制单元91、制动主缸1、储液容器5、踏板感觉模拟器6、第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、踏板模拟阀61、踏板行程传感器PTS、主缸压力传感器MCPS、油壶液位传感器RLS、主缸推杆1k。
如图5所示,第一子系统还包括接口(8E,8F,8G)。
当第一子系统中的测试阀51和踏板模拟阀61不包括单向阀时,第一子系统还包括第五单向阀51v、第六单向阀61v。
第一子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀、带过滤器的储液容器5来实现杂质过滤功能。
(2)第二子系统包括:第二控制单元92、增压驱动电机201、单向增压缸202、增压器单向阀202v、第一增压控制阀21、第二增压控制阀22、第一轮缸增压阀31、第二轮缸增压阀 32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS。
当第二子系统中的第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
如图5所示,第二子系统包括第一接口、第二接口(8f,8g)、第三接口(8e)。其中,第一接口分别用于与车轮的制动轮缸(3a,3b,3c,3d)连接,第二接口(8f,8g)用于与制动主缸1连接,第三接口(8e)用于与储液容器5连接。
在实施例三中,如图5所示,第二子系统分别通过接口8e、接口8f、接口8g与第一子系统的接口8E、接口8F、接口8G连接,第一子系统和第二子系统形成制动系统。
具体地,以下结合图5对本申请实施例三提供的制动系统的连接关系进行描述。
如图5所示,与实施例一提供的制动系统相比,实施例三提供的制动系统的第二子系统采用单向增压缸202,并且减少了第三增压控制阀23和第四增压控制阀24。
在实施例三提供的制动系统中,第二子系统中增压器2的单向增压缸202与制动轮缸之间的连接关系可以描述为:单向增压缸202通过第一增压支路上的第一增压控制阀21分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31与接口4a连接,并通过接口4a与第一轮缸3a连接;第二增压阀32与接口4b连接,并通过接口4b与第二轮缸3b连接;同时,单向增压缸202通过第一增压支路上的第二增压控制阀22分别与第三轮缸增压阀33和第四轮缸增压阀34连接;第三轮缸增压阀33与接口4c连接,并通过接口4c与第三轮缸3c连接;第四轮缸增压阀34与接口4d连接,并通过接口4d与第四轮缸3d连接。
在第二子系统中,制动回路压力传感器BCPS被设置在单向增压缸202与第一增压控制阀21之间,或被设置在单向增压阀202与第二增压控制阀22之间。
另外,增压器2的单向增压缸202经过单向阀202v与接口8e连接,并通过接口8E和第三储液管路5k与储液容器5连接,单向阀202v被配置为在一定条件下允许制动液从增压器储液管路202k经单向阀202v流向单向增压缸202。
如图5所示,在实施例三提供的制动系统中,当增压器2活塞到达最右侧,并且系统系统仍需增压时,需要关闭第一增压控制阀21和第二增压控制阀22,由增压驱动电机201将活塞移至最左侧,再执行增压动作。
如图5所示,与实施例一提供的制动系统相比,实施例三提供的制动系统采用单向增压缸202,并且减少了第三增压控制阀和第四增压控制阀,结构简单,成本更低。对于实施例三提供的制动系统,在本处未描述的特征可参考实施例一提供的制动系统中的相关描述。
实施例四
图6-a为本申请实施例四提供的另一种制动系统的示意图。如图6-a所示,实施例四提供的制动系统与实施例一提供的制动系统存在相似之处,以下对实施例四提供制动系统的不同之处进行描述,其余可参考实施例一中制动系统的描述,本处不再赘述。
如图6-a所示,实施例四提供的制动系统包括第一子系统和第二子系统:
(1)第一子系统包括:第一控制单元91、制动主缸1、储液容器5、踏板感觉模拟器6、踏板行程传感器PTS、油壶液位传感器RLS、主缸推杆1k。
如图6-a所示,第一子系统还包括接口(8F,8G,8H,8I,8J)。
第一子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀、带过滤器的储液容器5来实现杂质过滤功能。
(2)第二子系统包括:第二控制单元92、第一主缸隔离阀11、第二主缸隔离阀12、踏板模拟阀61、测试阀51、主缸压力传感器MCPS、增压驱动电机201、双向增压缸202、增压器单向阀202v、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS。
当第二子系统中的测试阀51、踏板模拟阀61、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第五单向阀51v、第六单向阀61v、第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
如图6-a所示,第二子系统包括第一接口、第二接口(8f,8g)、第四接口(8h,8i,8j)。其中,第一接口分别用于与车轮的制动轮缸(3a,3b,3c,3d)连接,第二接口(8f,8g)用于与制动主缸1连接,第三接口(8h,8i,8j)用于与储液容器5或踏板感觉模拟器6连接。
在实施例四中,如图6-a所示,第二子系统分别通过接口8f、接口8g、接口8h、接口8i、接口8j与第一子系统的接口8F、接口8G、接口8H、接口8I、接口8J连接,第一子系统和第二子系统形成制动系统。
图6-b为实施例四提供制动系统的一个工作状态。如图6-b所示,实施例四提供的制动系统的工作原理与实施例一提供的制动系统的工作原理相同。与实施例一提供的制动系统的区别在于,在实施例四提供的制动系统中,第二子系统还包括了主缸压力传感器MCPS、踏板模拟阀61、测试阀51。第二控制单元92直接接收主缸压力传感器MCPS的信号。第二控制单元92还可以控制踏板模拟阀61和测试阀51。在实施例四提供的制动系统中,第一子系统中的第一控制单元91检测踏板行程传感器PTS的信号并发送给第二子系统中的第二控制单元92。并且,第一控制单元91还可以采油壶液位传感器RLS的信号并发送给第二控制单元92。
相比于实施例一提供的制动系统,在实施例四提供的制动系统中,第一子系统的体积更小,结构简单,布置灵活。
实施例五
图7为本申请实施例五提供的另一种制动系统的示意图。如图7所示,实施例五提供的制动系统与实施例一提供的制动系统存在相似之处,以下对实施例五提供制动系统的不同之处进行描述,其余可参考实施例一中制动系统的描述,本处不再赘述。
如图7所示,实施例五提供的制动系统包括第一子系统和第二子系统:
(1)第一子系统包括:第一控制单元91、制动主缸1、储液容器5、踏板感觉模拟器6、踏板行程传感器PTS、油壶液位传感器RLS、主缸推杆1k。
如图6-a所示,第一子系统还包括接口(8F,8G,8H,8I,8J)。
第一子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀、带过滤器的储液容器5来实现杂质过滤功能。
(2)第二子系统包括:第二控制单元92、第一主缸隔离阀11、第二主缸隔离阀12、踏板模拟阀61、测试阀51、主缸压力传感器MCPS、增压驱动电机201、单向增压缸202、增压器单向阀202v、第一增压控制阀21、第二增压控制阀22、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS。
当第二子系统中的测试阀51、踏板模拟阀61、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第五单向阀51v、第六单向阀61v、第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
在实施例五提供的制动系统中,制动回路压力传感器BCPS被设置在增压器2与第一增压控制阀21之间或增压器2与第二增压控制阀22之间。
与实施例四提供的制动系统相比,实施例五提供的制动系统采用单向增压缸202,并且减少了第三增压控制阀23和第四增压控制阀24,结构简单,成本更低。对于实施例五提供的制动系统,在本处未描述的特征可参考实施例一或实施例四提供的制动系统中的相关描述。
实施例六
图8为本申请实施例六提供的另一种制动系统的示意图。如图8所示,实施例六提供的制动系统与实施例一提供的制动系统存在相似之处,以下对实施例六提供制动系统的不同之处进行描述,其余可参考实施例一中制动系统的描述,本处不再赘述。
如图8所示,实施例六提供的制动系统包括第一子系统和第二子系统:
(1)第一子系统包括:第一控制单元91、制动主缸1、储液容器5、踏板行程传感器PTS、油壶液位传感器RLS、主缸推杆1k。
如图6-a所示,第一子系统还包括接口(8F,8G,8I,8J)。
第一子系统还可以集成有过滤器,或者通过选用带过滤器的储液容器5来实现杂质过滤功能。
(2)第二子系统包括:第二控制单元92、第一主缸隔离阀11、第二主缸隔离阀12、踏板感觉模拟器6、踏板模拟阀61、测试阀51、主缸压力传感器MCPS、增压驱动电机201、双向增压缸202、增压器单向阀202v、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS。
当第二子系统中的测试阀51、踏板模拟阀61、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第五单向阀51v、第六单向阀61v、第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
如图8所示,第二子系统包括第一接口、第二接口(8f,8g)、第四接口(8i,8j)。其中,第一接口分别用于与车轮的制动轮缸(3a,3b,3c,3d)连接,第二接口(8f,8g)用于与制动主缸1连接,第三接口(8i,8j)用于与储液容器5或制动主缸1连接。
在实施例六中,如图8所示,第二子系统分别通过接口8f、接口8g、接口8i、接口8j 与第一子系统的接口8F、接口8G、接口8I、接口8J连接,第一子系统和第二子系统形成制动系统。
实施例六提供的制动系统的工作原理与实施例一提供的制动系统的工作原理相同。与实施例一提供的制动系统的区别在于,在实施例六提供的制动系统中,第二子系统还包括了主缸压力传感器MCPS、踏板感觉模拟器6、踏板模拟阀61、测试阀51。第二控制单元92直接接收主缸压力传感器MCPS的信号。第二控制单元92还可以控制踏板模拟阀61和测试阀51。在实施例六提供的制动系统中,第一子系统中的第一控制单元91检测踏板行程传感器PTS的信号并发送给第二子系统中的第二控制单元92。并且,第一控制单元91还可以采油壶液位传感器RLS的信号并发送给第二控制单元92。
相比于实施例一提供的制动系统,在实施例六提供的制动系统中,第一子系统的体积更小,结构简单,布置灵活。并且相比于实施例四提供的制动系统,实施例六提供的制动系统的接口更少,连接关系更简单。
实施例七
图9为本申请实施例七提供的另一种制动系统的示意图。如图9所示,实施例七提供的制动系统与实施例一提供的制动系统存在相似之处,以下对实施例七提供制动系统的不同之处进行描述,其余可参考实施例一中制动系统的描述,本处不再赘述。
如图9所示,实施例七提供的制动系统包括第一子系统和第二子系统:
(1)第一子系统包括:第一控制单元91、制动主缸1、储液容器5、踏板行程传感器PTS、油壶液位传感器RLS、主缸推杆1k。
如图6-a所示,第一子系统还包括接口(8F,8G,8I,8J)。
第一子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀、带过滤器的储液容器5来实现杂质过滤功能。
(2)第二子系统包括:第二控制单元92、第一主缸隔离阀11、第二主缸隔离阀12、踏板感觉模拟器6、踏板模拟阀61、测试阀51、主缸压力传感器MCPS、增压驱动电机201、单向增压缸202、增压器单向阀202v、第一增压控制阀21、第二增压控制阀22、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS。
当第二子系统中的测试阀51、踏板模拟阀61、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第五单向阀51v、第六单向阀61v、第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
在实施例七提供的制动系统中,制动回路压力传感器BCPS被设置在增压器2与第一增压控制阀21之间或增压器2与第二增压控制阀22之间。
与实施例一提供的制动系统相比,实施例七提供的制动系统的第一子系统的体积更小,结构简单,布置灵活;第二子系统采用单向增压缸202,并且减少了第三增压控制阀23和第四增压控制阀24,结构简单,成本更低。对于实施例七提供的制动系统,在本处未描述的特征可参考实施例一或实施例五提供的制动系统中的相关描述。
实施例八
图10为本申请实施例八提供的另一种制动系统的示意图。如图10所示,实施例八提供的制动系统与实施例一提供的制动系统存在相似之处,以下对实施例八提供制动系统的不同之处进行描述,其余可参考实施例一中制动系统的描述,本处不再赘述。
如图10所示,实施例八提供的制动系统包括第一子系统和第二子系统:
(1)第一子系统包括:第一控制单元91、制动主缸1、储液容器5、踏板感觉模拟器6、测试阀51、踏板模拟阀61、踏板行程传感器PTS、主缸压力传感器MCPS、油壶液位传感器RLS、主缸推杆1k。
如图10所示,第一子系统还包括接口(8E,8F,8G)。
当第一子系统中的测试阀51和踏板模拟阀61不包括单向阀时,第一子系统还包括第五单向阀51v、第六单向阀61v。
第一子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀、带过滤器的储液容器5来实现杂质过滤功能。
值得注意的是,第一子系统可以包括主缸推杆1k,但不包括制动踏板7。第一子系统可以搭配不同种类的制动踏板7,以适配更多车型并提供更多个性化搭配的可能。
(2)第二子系统包括:第二控制单元92、第一主缸隔离阀11、第二主缸隔离阀12、增压驱动电机201、双向增压缸202、增压器单向阀202v、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS。
当第二子系统中的第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
如图10所示,第二子系统包括第一接口、第二接口(8f,8g)、第三接口(8e)。其中,第一接口分别用于与车轮的制动轮缸(3a,3b,3c,3d)连接,第二接口(8f,8g)用于与制动主缸1连接,第三接口(8e)用于与储液容器5连接。
在实施例八中,如图10所示,第二子系统分别通过接口8e、接口8f、接口8g与第一子系统的接口8E、接口8F、接口8G连接,第一子系统和第二子系统形成制动系统。
具体地,以下结合图10对本申请实施例八提供的制动系统的接口的连接关系进行描述。
需要注意的是,第二子系统不包括制动轮缸(3a,3b,3c,3d),但是留有至少一个轮缸接口,如实施例一中的第一接口;至少一个第一接口用于与至少一个制动轮缸(3a,3b,3c,3d)连接,并可以为轮缸提供制动压力。
与实施例一提供的制动系统相比,实施例八提供的制动系统将第一主缸隔离阀11和第二主缸隔离阀12集成在了第二子系统,第一主缸隔离阀11通过第二子系统中接口8f、第一子系统中接口8F与制动主缸1连接,第二主缸隔离阀12通过第一子系统中接口8g、第二子系统中接口8G与制动主缸1连接。
对于本申请实施例八提供的制动系统,其原理和其他特征的描述可参考实施例一提供的制动系统。
实施例九
图11为本申请实施例九提供的另一种制动系统的示意图。与实施例八提供的制动系统相比,实施例九提供的制动系统采用单向增压的增压器,其管路与连接关系变化可参考其他实施例的描述,本处不再赘述。
图12为本申请提供的一种制动系统架构,该制动系统架构可以衍生出本申请实施例十至实施例二十七的制动系统。本申请提供的制动系统可以通过多种形式集成。例如,本申请实施例十至实施例二十七提供的制动系统可以包括主增压器和冗余增压器。其中,主增压器可以包括与储液容器连接的接口,也可以包括与制动回路的接口。冗余增压器也可以包括与主缸连接的接口、与储液容器连接的接口、与制动回路连接的接口。如图12所示,在实施例十至实施例二十七提供的制动系统中,主增压器、冗余增压器可以是独立的集成模块,或者,主增压器可以与其他管路、控制阀集成为一体;冗余增压器也可以与制动主缸集成为一体。本申请对此不作限制。
实施例十
图13本申请实施例十提供的另一种制动系统的示意图。如图13所示,以下对实施例十提供制动系统的进行描述,未提及的部分可参考实施例一中制动系统的描述,本处不再赘述。
如图13所示,实施例十提供的制动系统包括第一子系统和第二子系统。与实施例一相比,在实施例十中,第一子系统和第二子系统均有所改变。其中,第一子系统增加了第一增压泵203、第二增压泵204、第一增压泵控制阀211、第二增压泵控制阀212、单向阀203v、单向阀204v;第二子系统增加了第三主缸隔离阀13、第四主缸隔离阀14。以下,对实施例十提供的制动系统的不同之处进行详细描述。
首先,在系统组成上:
(1)第一子系统包括:第一控制单元91、制动主缸1、主缸推杆1k、踏板行程传感器PTS、测试阀51、储液容器5、油壶液位传感器RLS、踏板感觉模拟器6、踏板模拟阀61、第一主缸隔离阀11、第二主缸隔离阀12、第一主缸压力传感器MCPS、第一增压泵203、第二增压泵204、第一增压泵控制阀211、第二增压泵控制阀212、第一增压泵单向阀203v、第二增压泵单向阀204v。
当第一子系统中的测试阀51、踏板模拟阀61不包括单向阀时,第一子系统还包括第五单向阀51v、第六单向阀61v。
第一子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀、带过滤器的储液容器5来实现杂质过滤功能。
值得注意的是,第一子系统可以包括主缸推杆1k,但不包括制动踏板7。第一子系统可以搭配不同种类的制动踏板7,以适配更多车型并提供更多个性化搭配的可能。
需要说明的是,第一增压泵203和第二增压泵204可以由至少一个电机驱动,该驱动电机在图13中未示出。在本申请说明书提供的其他实施例中出现的增压泵也由电机驱动,并且该驱动电机均未示出。
(2)第二子系统包括:第二控制单元92、第三主缸隔离阀13、第四主缸隔离阀14、第二主缸压力传感器MCPS、增压驱动电机201、双向增压缸202、增压器单向阀202v、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS。
当第二子系统中的第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
需要说明的是,制动系统中各控制阀的默认状态如图13中所示。例如,第一主缸隔离阀11、第二主缸隔离阀12、第三主缸隔离阀13、第四主缸隔离阀14为常开阀,常开阀在初始状态下为使控制阀两端的管路接通的状态;而当常开阀受控制上电时,常开阀会切换为使控制阀两端的管路为断开的状态,也即在常开阀上电断开时,管路中的流体无法由常开阀的一端经过常开阀流至常开阀的另一端。
类似地,在如图13所示的制动系统中,常开阀可以包括:测试阀51、第一主缸隔离阀11、第二主缸隔离阀12、第三主缸隔离阀13、第四主缸隔离阀14、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34。
类似地,在如图13所示的制动系统中,常闭阀可以包括:第一增压泵控制阀211、第二增压泵控制阀212、踏板模拟阀61、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
接着,以下结合图13对本申请实施例十提供的制动系统的接口设置和连接关系进行描述。
首先介绍第一子系统的连接关系。如图13所示,第一子系统包括接口8E、接口8F、接口8G。
如图13所示,制动主缸1的第一主腔1i通过第一主缸隔离阀11与接口8F连接,制动主缸1的第二主腔1j通过第二主缸隔离阀12与接口8G连接。
如图13所示,储液容器5与接口8E连接。制动主缸1的第一主腔1i通过管路5i与储液容器5连接,制动主缸1的第二主腔1j经过测试阀51和管路5j与储液容器5连接。测试阀51的两端还并联有单向阀51v,单向阀51v被配置为在一定条件下允许制动液由储液容器5经单向阀51v流向制动主缸1。主缸推杆1k可以在外力作用下推动主缸活塞,主缸推杆1k可以与制动踏板7连接,踏板行程传感器PTS可以检测踏板行程。
需要说明的是,以下记第一增压泵203的输入端为第一增压泵203的第一端,记第一增压泵203的输出端为第一增压泵203的第二端。类似地,记第二增压泵204的输入端为第二增压泵端204的第一端,记第二增压泵204的输出端为第二增压泵204的第二端。需要指出的是,本申请说明书中对于第一增压泵203或第二增压泵204的第一端或第二端的描述不应理解为对本申请保护范围对限制。增压泵的输入端还可以被记为第二端,增压泵的输出端还可以被记为第一端,本申请对此不作限制。
如图13所示,储液容器5通过单向阀203v与第一增压泵203的第一端连接。单向阀203v被配置为在一定条件下允许制动液从储液容器5经单向阀203v流向第一增压泵203的第一端。第一增压泵203的第一端还通过第一增压泵控制阀211与接口8G连接。第一增压泵的第二端与接口8F连接,第一增压泵203的第二端还通过第一主缸隔离阀11与制动主缸1的第一主腔1i连接。
如图13所示,储液容器5通过单向阀204v与第二增压泵204的第一端连接。单向阀204v被配置为在一定条件下允许制动液从储液容器5经单向阀204v流向第二增压泵204的第一 端。第二增压泵204的第一端还通过第二增压泵控制阀212与接口8G连接。第二增压泵的第二端与接口8G连接,第二增压泵204的第二端还通过第二主缸隔离阀12与制动主缸1的第二主腔2j连接。
需要说明的是,储液容器5在第一子系统内的连接关系仅为实施例十提供的一种可能的情况,本申请并不对储液容器5上的接口数量进行限制。例如,如图13所示,与储液容器5连接的管路5k、管路5i、管路5j、管路5m可以是通过4个储液容器接口与储液容器5连接;一种可能的实施方式,与储液容器5连接的管路5k、管路5i、管路5j、管路5m可以是在连接到储液容器5之前汇合,并通过1个接口与储液容器5连接。
如图13所示,在第二主腔1j与第二主缸隔离阀12之间还可以设置主缸压力传感器MCPS。
如图13所示,踏板感觉模拟器6通过踏板模拟阀61与制动主缸的第二主腔1j连接。踏板模拟阀61的两端还并联有单向阀61v。需要说明的是,当踏板模拟阀61包括单向阀功能时,可不必在其两端并联单向阀。
本处需要说明的是,主缸压力传感器MCPS和踏板模拟器6可以与制动主缸1的第二主腔1j连接,也可以与制动主缸的第一主腔1i连接,本申请对此不作限定。
其次,介绍第二子系统的连接关系。如图13所示,第二子系统包括第一接口、第二接口(8f,8g)、第三接口(8e)。其中,第二子系统的第一接口分别用于与车轮的制动轮缸(3a,3b,3c,3d)连接。
如图13所示,接口8f与第三主缸隔离阀13的第一端连接,第三主缸隔离阀13的第二端与第一制动管路3i连接,具体地,第三主缸隔离阀13的第二端与第一轮缸增压阀31的第一端连接,第一轮缸增压阀31的第二端与接口4a连接;第三主缸隔离阀13的第二端与第二轮缸增压阀32的第一端连接,第二轮缸增压阀32的第二端与接口4b连接。
如图13所示,接口8g与第四主缸隔离阀14的第一端连接,第四主缸隔离阀14的第二端与第二制动管路3j连接,具体地,第四主缸隔离阀14的第二端与第三轮缸增压阀33的第一端连接,第三轮缸增压阀33的第二端与接口4c连接;第四主缸隔离阀14的第二端与第四轮缸增压阀34的第一端连接,第四轮缸增压阀34的第二端与接口4d连接。
如图13所示,双向增压缸202的第一增压腔202i通过第一增压支路2i分别与第一增压控制阀21的第一端以及第二增压控制阀22的第一端连接;第一增压控制阀21的第二端与第一制动管路3i连接,具体地,第一增压控制阀21的第二端与第一轮缸增压阀31的第一端连接,第一增压控制阀21的第二端与第二轮缸增压阀32的第一端连接;第二增压控制阀22的第二端与第二制动管路3j连接,具体地,第二增压控制阀22的第二端与第三轮缸增压阀33的第一端连接,第二增压控制阀22的第二端与第四轮缸增压阀34的第一端连接。
如图13所示,双向增压缸202的第二增压腔202j通过第二增压支路2j分别与第三增压控制阀23的第一端以及第四增压控制阀24的第一端连接;第三增压控制阀23的第二端与第一制动管路3i连接,具体地,第三增压控制阀23的第二端与第一轮缸增压阀31的第一端连接,第三增压控制阀23的第二端与第二轮缸增压阀32的第一端连接;第四增压控制阀24的第二端与第二制动管路3j连接,具体地,第四增压控制阀24的第二端与第三轮缸增压阀33的第一端连接,第四增压控制阀24的第二端与第四轮缸增压阀34的第一端连接。
如图13所示,接口8e通过单向阀202v与双向增压缸202的第一增压腔202i连接。单向阀202v的第一端与接口8e连接,单向阀202v的第二端与第一增压腔202i连接。单向阀202v被配置为在一定条件下允许制动液由管路202k经单向阀202v流入第一增压腔202i。也 即,单向阀202v在一定条件下允许制动液由其第一端流向第二端。
需要说明的是,图13中双向增压缸202的第二增压腔202j与储液容器5连接线仅表示当双向增压缸的活塞回到最左边时可以实现快速降压,并不表示该管路用于补液,类似地,本条说明也适用于本申请说明书提供的其他实施例。
如图13所示,制动回路压力传感器BCPS被设置在第一制动管路3i处,可以采集第一轮缸增压阀31或第二轮缸增压阀32处的压力。需要说明的是,制动回路压力传感器BCPS还可以被设置在第二制动管路3j处,可以采集第三轮缸增压阀33或第四轮缸增压阀34处的压力,本申请对此不作限制。
如图13所示,接口4a通过第一轮缸减压阀41与接口8e连接,接口4b通过第二轮缸减压阀42与接口8e连接,接口4c通过第三轮缸减压阀43与接口8e连接,接口4d通过第四轮缸减压阀44与接口8e连接。
第一子系统和第二子系统形成制动系统。第二子系统分别通过接口8e、接口8f、接口8g与第一子系统的接口8E、接口8F、接口8G连接。并且,制动系统还通过接口4a、接口4b、接口4c、接口4d分别于制动轮缸连接。
对于第一子系统与第二子系统组成的制动系统,如图13所示,制动主缸1与制动轮缸(3a,3b,3c,3d)之间的连接关系可以描述如下:制动主缸1的第一主腔1i通过第一主缸隔离阀11与接口8F连接,并通过接口8f与第三主缸隔离阀13连接,第三主缸隔离阀13与第一制动管路3i连接,具体地,第三主缸隔离阀13与分别与第一轮缸增压阀31和第二轮缸增压阀32连接;第一轮缸增压阀31与接口4a连接,并通过接口4a与第一轮缸3a连接;第二增压阀32与接口4b连接,并通过接口4b与第二轮缸3b连接;制动主缸1的第二主腔1j通过第二主缸隔离阀12与接口8G连接,并通过接口8g与第四主缸隔离阀14连接,第四主缸隔离阀14与第二制动管路3j连接,具体地,第四主缸隔离阀14分别与第三轮缸增压阀33和第四轮缸增压阀34连接;第三轮缸增压阀33与接口4c连接,并通过接口4c与第三轮缸3c连接;第四轮缸增压阀34与接口4d连接,并通过接口4d与第四轮缸3d连接。
类似地,如图13所示,第一增压泵203的输出端与接口8F连接,并通过接口8f与第三主缸隔离阀13连接;第二增压泵204的输出端与接口8G连接,并通过接口8g与第四主缸隔离阀14连接。第一增压泵203和第二增压泵204与制动轮缸(3a,3b,3c,3d)在第二子系统内的连接关系可参考制动主缸1与制动轮缸(3a,3b,3c,3d)的连接关系,本处不再赘述。
如图13所示,增压器2的第一增压腔202i经过单向阀202v与接口8e连接,并通过接口8E和管路5k与储液容器5连接;轮缸减压阀(41,42,43,44)的第一端分别与接口8e连接,并通过接口8E和管路5k与储液容器5连接。
以上介绍了实施例十提供的制动系统的系统组成、连接关系、集成方式、接口设置。下面,对实施例十提供的制动系统的控制关系进行描述。在实施例十中,第一控制单元91和第二控制单元92所控制的对象分别如下:
(1)第一控制单元91控制的对象包括:踏板模拟阀61、第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、第一增压泵控制阀211、第二增压泵控制阀212。
第一控制单元91接收主缸压力传感器MCPS、踏板行程传感器PTS和油壶液位传感器RLS的信号。
(2)第二控制单元92控制的对象包括:增压驱动电机201、第三主缸隔离阀13、第四主缸隔离阀14、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、 第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
第二控制单元92接收制动回路压力传感器BCPS和电机位置传感器MPS的信号。
一种可能的实施方式,制动系统包括第一控制器和第二控制器,第一控制器包括第一控制单元91,第二控制器包括第二控制单元92,并且,第一控制器和第二控制器中至少还包括各种电磁阀驱动以及各种信号处理及控制输出接口。第二控制器还包括电机驱动相关的信号处理及控制输出接口。控制器还可以接收各种传感器的测量或检测信号,如环境条件、驾驶员输入、制动系统状态等,通过计算和判断来控制制动系统的制动特性。
以上结合图13对实施例十提供制动系统的系统组成、连接关系、集成方式、接口设置、控制关系等进行了介绍。下面结合图13对实施例十提供的制动系统的工作模式进行描述。
本申请说明书中所述的制动意图可以包括来自驾驶员的制动意图和来自车辆的主动制动的意图。
具体地,制动意图可以通过驾驶员对踏板的踩踏动作获得,可以通过踏板行程传感器PTS的信号获取驾驶员的制动意图,或者,可以通过结合踏板行程传感器PTS和主缸压力传感器MCPS的信号来确定制动意图。
此外,制动意图还可以通过自动驾驶系统ADS或者驾驶辅助系统ADAS的主动制动请求获得。例如,主动制动请求可以由自动驾驶控制器产生,并由制动系统的控制单元接收;又如,在ACC模式下,当跟车距离小于预设距离时,ACC系统发出主动制动请求,制动系统的控制单元接收该制动请求,并执行相应的制动动作。本申请说明书对制动意图的获得方法不作限制。
根据制动意图,本申请实施例提供的制动系统可以提供ABS、TCS、ESC、BBF、AEB、ACC等功能。此外,制动系统也可以提供其他附加功能VAF,如AEB、ABP、ABA、AWB、CDD、VLC、AVH、BDW、HAZ、HBA、HFC、HRB、HAS、HDC等。
本申请说明书提供的实施例中所包括的缩略词及其解释可参考文初的介绍。
需要说明的是,在本申请说明书中,第一控制单元91在一些实施例中也被称为ECU1,第二控制单元92在一些实施例中也被称为ECU2。
获取制动意图后,在不同的故障场景下,制动系统具有不同的工作模式。本申请实施例十提供的制动系统至少包括4种工作模式:(1)ECU1和ECU2协同工作;(2)ECU1单独工作;(3)ECU2单独工作;(4)机械备份模式。
工作模式1:常规制动模式,ECU1和ECU2协同工作
如图14所示,制动系统无任何故障时,ECU1和ECU2协同工作。一种可能的应用场景,当驾驶员踩下制动踏板时,主缸推杆1k推动制动主缸活塞,主缸内压力上升。ECU1控制第一主缸隔离阀11和第二主缸隔离阀12断开。ECU1控制踏板模拟阀61接通,使制动主缸1的第二主腔1j与踏板感觉模拟器6接通,踏板感觉模拟器工作产生踏板感。此时第一增压泵203和第二增压泵204不工作。ECU1还接收踏板行程传感器PTS的信号和第一主缸压力传感器MCPS的信号,并将所接收的信号传递给ECU2。此外,ECU1还接收油壶液位传感器RLS信号。
本处ECU1将信号传递给ECU2,可以通过CAN(Controller Area Network)、以太网或其他方式进行通讯,本申请对此不做限制。
ECU2根据ECU1传递的踏板行程传感器PTS的信号和主缸压力传感器MCPS的信号,确定驾驶员的制动意图。
具体地,根据制动意图,实施例十提供的制动系统的常规建压过程可描述如下:ECU2 控制第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24打开,并且控制增压驱动电机201推动双向增压缸202内的活塞向右运动。第一增压腔202i内的油液一部分经过第一增压控制阀21和第二增压控制阀22,并分别通过轮缸增压阀(31,32,33,34)流入制动轮缸(3a,3b,3c,3d),实现车轮制动;另一部分油液经过第三增压控制阀23和第四增压控制阀24流入双向增压缸202的第二增压腔202j。
此外,ECU2通过电机位置传感器MPS信号判断双向增压缸202内活塞的位置。若活塞位置到达双向增压缸202的最右侧,并且此时制动轮缸仍需继续增压,则ECU2控制第一增压控制阀21和第二增压控制阀22处于关闭状态,并控制增压驱动电机201反转,双向增压缸内的活塞向左运动,第二增压腔202j腔体内的制动液经过第三增压控制阀23、第四增压控制阀、轮缸增压阀(31,32,33,34)流入制动轮缸,实现车轮增压。当活塞位置到达双向增压缸202的最左侧并且系统还有增压需求时,与上述原理类似,本处不再赘述。需要指出的是,双向增压缸202能够使增压过程连续稳定,为制动系统带来良好的增压特性。
当某一轮缸制动压力过大时,实施例十提供的制动系统的常规减压过程可描述如下:例如制动轮缸3a压力过大时,控制轮缸3a对应的轮缸增压阀31断开,接通相应的轮缸减压阀41,该轮缸内的制动液通过轮缸减压阀41流入储液容器5,实现减压。
由此,ECU2根据传感器信号,计算增压驱动电机201及第二子系统内各电磁阀的控制信号。ECU2控制第一增压控制阀21、第二增压控制阀22接通、第三增压控制阀23和第四增压控制阀24的状态,并控制增压驱动电机201以推动增压器活塞建压。ECU2通过控制轮缸增压阀(31,32,33,34)和轮缸减压阀(41,42,43,44)的接通与断开来实现对各制动轮缸(3a,3b,3c,3d)的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式2:冗余制动模式,ECU1单独工作
如图15所示,当ECU2出现故障时,此时ECU1单独工作。由于第三主缸隔离阀13和第四主缸隔离阀14为常开阀,在ECU2故障失效无法正常工作时,第一子系统产生的制动压力依旧可以通过第三主缸隔离阀13和第四主缸隔离阀14传递至制动轮缸。
当ECU2出现故障时,ECU1控制第一主缸隔离阀11和第二主缸隔离阀12断开,并控制踏板模拟阀61接通,制动主缸1的制动液进入踏板感觉模拟器6,踏板感觉模拟器6工作以提供踏板感。并且,经过第一增压泵203和第二增压泵204增压后的管路压力不会经过第一主缸隔离阀11或第二主缸隔离阀12传回制动主缸,避免了驾驶员踩不动制动踏板或者制动主缸1压力突然增高而伤害驾驶员等情况的出现。
ECU1控制第一增压泵203和第二增压泵204工作,为制动管路增压。此时,制动液由储液容器5经过单向阀203v流至第一增压泵203的输入端,制动液也由储液容器5经过单向阀204v流至第二增压泵204的输入端。
ECU1可以通过对第一增压泵203、第二增压泵204的控制对制动轮缸进行增压,并配合第一增压泵控制阀211和第二增压泵控制阀212实现对制动轮缸增压压力的控制。由此,在ECU2故障失效的情况下,ECU1能够通过控制第一子系统来实现制动功能。但此时系统不能够实现车轮的主动减压以及四轮单独增压,因此,备份功能较弱,只能支持简单的行车制动等功能。
工作模式3:冗余制动模式,ECU2单独工作
如图16所示,此时ECU1故障,无法采集PTS、MCPS信号,因此ECU2无法通过踏板行程传感器PTS感知驾驶员的制动意图。但是,实施例十提供的制动系统在该模式下可以响应主动制动请求,如AEB/ESC/TCS以及附加功能(value added function,VAF)等制动请求(上 述功能无需驾驶员踩制动踏板即可触发)。
一种可能的实施方式,当踏板行程传感器PTS分别为ECU1、ECU2传递信号,在ECU1故障时,ECU2可获得PTS信号,此时ECU2可获得制动意图,本申请不对此做限制。
ECU2响应制动请求,计算增压驱动电机201及第二子系统内各电磁阀的控制信号。ECU2单独工作的原理与ECU1和ECU2协同工作的工作模式1类似,本处不再赘述。
一种可能的实施方式,ECU2控制第三主缸隔离阀13和第四主缸隔离阀14断开,并且,ECU2控制增压驱动电机201以推动增压器活塞建压,并控制第一增压控制阀21、第二增压控制阀22、第三增压控制阀23和第四增压控制阀24的状态进行增压,以及通过控制轮缸增压阀(31,32,33,34)和轮缸减压阀(41,42,43,44)的接通与断开来实现对各制动轮缸(3a,3b,3c,3d)的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式4:冗余制动模式,机械备份
此外,当ECU1和ECU2全部失效时,本实施例提供的制动系统可以执行机械备份。驾驶员踩下制动踏板,制动液可以由制动主缸1经过第一主缸隔离阀11、第三主缸隔离阀13流至第一轮缸3a和第二轮缸3b,也可以由制动主缸1经过第二主缸隔离阀12、第四主缸隔离阀14流至第三轮缸3c和第四轮缸3d,以实现制动。
实施例十一
图17本申请实施例十一提供的另一种制动系统的示意图。
如图17所示,相比于实施例十,实施例十一提供的制动系统的区别在于第二子系统中增压器2为单向增压装置,增压器2的单向增压缸202通过第一增压控制阀21与第一制动回路3i连接,增压器2的单向增压缸202通过第二增压控制阀22与第二制动回路3j连接;此外,单向增压缸202还通过增压器单向阀202v与接口8e连接。
实施例十一提供的制动系统中的其他系统组成、连接关系、接口设置以及不同工作模式下的工作原理可参考本申请说明书中其他实施例描述,本处不再赘述。
实施例十一提供的制动系统省去第三增压控制阀23和第四增压控制阀24,结构更简单。因此,实施例十一提供的制动系统能够降低成本,提高系统可靠性。但是,实施例十一提供的系统无法实现双向连续增压,当增压器2中的活塞到达最右侧,并且系统仍然需要增压时,需将第一增压控制阀11和第二增压控制阀12断开,控制增压驱动电机201反转以推动增压器2的活塞至左侧,再重新建压,即需要保压一段时间后方可继续增压。
实施例十二
图18和图19分别为本申请实施例十二和实施例十三提供的制动系统的示意图。
如图18和图19所示,与实施例十相比,实施例十二和实施例十三提供的制动系统中增加了ECU3,并且增压驱动电机201由三相电机改为六相电机。该六相电机包括两套三相绕组,ECU2控制增压驱动电机201的一套三相绕组,ECU3控制增压驱动电机201的另一套三相绕组。
在如图18所示的实施例十二提供的制动系统中,各控制单元所控制的对象如下:
ECU1控制踏板模拟阀61、第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、第一增压泵控制阀211、第二增压泵控制阀212。ECU1接收主缸压力传感器MCPS、踏板行程传感器PTS和油壶液位传感器RLS的信号。
ECU2和ECU3可共同驱动控制第一增压控制阀21、第二增压控制阀22、第三增压控制 阀23、第四增压控制阀24、第三主缸隔离阀13、第四主缸隔离阀14。
同时,ECU2还控制第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。ECU2接收制动回路压力传感器BCPS的信号和电机位置传感器MPS的信号。
常规工作模式下,ECU1控制三相电机,推动增压器2内活塞进行增压。ECU2控制第二子系统中所有的电磁阀。当电机功率(对应增压速度)难以满足系统需求时,ECU3通过控制电机的另外三相绕组,增加电机功率。
另一方面,当ECU2或者ECU2对应的电机三相绕组失效时,ECU3可以控制增压驱动电机201的另外一套三相绕组,并控制第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第三主缸隔离阀13、第四主缸隔离阀14的状态,以实现轮缸的增压,从而为系统提供冗余制动备份功能。
当ECU2或ECU3或者增压驱动电机201失效时,由第一子系统中的ECU1控制第一增压泵203和第二增压泵204以及第一增压泵控制阀203、第二增压泵控制阀204、第一主缸隔离阀11、第二主缸隔离阀12,实现轮缸增压,完成制动功能备份。因此,即该系统拥有三重冗余制动备份特性。
与实施例十相比,实施例十二提供的制动系统中的第一子系统和第二子系统均可以提供冗余增压备份。第一子系统的增压泵可以提供冗余增压功能,第二子系统中通过ECU3控制驱动增压电机、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第三主缸隔离阀13、第四主缸隔离阀14也可以提供冗余增压功能。第二子系统在冗余备份制动模式下可以实现四轮低选ABS功能的同时,具有更快的增压能力以及更加精确的压力控制精度。
实施例十三
如图19所示,实施例十三也提供一种制动系统。与实施例十二相比,实施例十三提供的制动系统的增压器2采用了单向增压缸,其连接关系如图19所示。具体地,单向增压缸202通过单向阀202v与接口8e连接,单向增压缸202通过第一增压支路2i与第一增压控制阀21和第二增压控制阀22连接,单向增压缸202通过第二增压支路2j与第三增压控制阀23和第四增压控制阀24连接。第一增压控制阀21和第三增压控制阀23与第一制动回路3i连接,第二增压控制阀22和第四增压控制阀24与第二制动回路3j连接。
具体地,如图19所示,增压缸202通过第一增压支路2i分别与第一增压控制阀21的第一端以及第二增压控制阀22的第一端连接。第一增压控制阀21的第二端与第一制动管路3i连接,具体地,第一增压控制阀21的第二端与第一轮缸增压阀31的第一端连接,第一增压控制阀21的第二端与第二轮缸增压阀32的第一端连接。第二增压控制阀22的第二端与第二制动管路3j连接,具体地,第二增压控制阀22的第二端与第三轮缸增压阀33的第一端连接,第二增压控制阀22的第二端与第四轮缸增压阀34的第一端连接。
类似地,如图19所示,增压缸202还通过第二增压支路2j分别与第三增压控制阀23的第一端以及第四增压控制阀24的第一端连接。第三增压控制阀23的第二端与第一制动管路3i连接,具体地,第三增压控制阀23的第二端与第一轮缸增压阀31的第一端连接,第三增压控制阀23的第二端与第二轮缸增压阀32的第一端连接。第四增压控制阀24的第二端与第二制动管路3j连接,具体地,第四增压控制阀24的第二端与第三轮缸增压阀33的第一端连接,第四增压控制阀24的第二端与第四轮缸增压阀34的第一端连接。
如图19所示,在实施例十三提供的制动系统中,ECU2和ECU3共同控制第三主缸隔离阀13和第四主缸隔离阀14,ECU3单独控制第三增压控制阀23和第四增压控制阀24,ECU2控制第一增压控制阀21、第二增压控制阀22、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
如图19所示,实施例十三提供的制动系统的增压器2采用单向增压缸,并且减少了ECU2和ECU3共同驱动的电磁阀的数量,能够降低成本,并且能够在部分故障失效模式下实现低选ABS功能。
总之,实施例十三与实施例十五提供的制动系统能够提高制动系统的冗余备份能力,其工作模式或其他未提及的部分可以参考本申请其他实施例的描述,本处不再赘述。
实施例十四与实施例十五
图20和图21分别为本申请实施例十四和实施例十五提供的另一种制动系统的示意图。
如图20所示,与实施例十二相比,在实施例十四提供的制动系统中,ECU2和ECU3共同控制的电磁阀包括第三主缸隔离阀13、第四主缸隔离阀14、第一增压控制阀11、第二增压控制阀12、第三增压控制阀13、第四增压控制阀14、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。实施例十四提供的制动系统具有更高的冗余度。
如图21所示,与实施例十三相比,在实施例十五提供的制动系统中,ECU2和ECU3共同控制的电磁阀包括第三主缸隔离阀13、第四主缸隔离阀14、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。实施例十五提供的制动系统具有更高的冗余度。
对于实施例十四或实施例十五提供的制动系统,当ECU2或者ECU2控制的三相绕组失效时,ECU3可驱动控制三相绕组和上述共同控制的电磁阀,在冗余制动模式下实现所有功能备份,包含ABS/TCS/ESC/BBF/VAF等功能。
对于实施例十五提供的制动系统,该系统采用单向增压缸,结构更简单,能够减少共同驱动的电磁阀数量,可以降低成本,提高制动系统的可靠性。
总之,实施例十四和实施例十五提供的制动系统能够极大地提高制动系统的冗余备份能力,其系统组成、连接关系、控制关系、工作模式或其他未提及的部分可以参考本申请说明书中其他实施例的描述,本处不再赘述。
实施例十六
图22本申请实施例十六提供的另一种制动系统的示意图。
如图22所示,与实施例十相比,实施例十六提供的制动系统增加了第三增压泵控制阀213和第四增压泵控制阀214。其中,接口8F通过第三增压泵控制阀213与储液容器5连接,接口8G通过第四增压泵控制阀214与储液容器5连接。
当ECU2失效时,ECU1单独工作。ECU1可以通过控制第三增压泵控制阀213和第四增压泵控制阀214实现主动减压。例如,当需要对制动轮缸(3a,3b,3c,3d)进行减压时,ECU1控制第三增压泵控制阀213和第四增压泵控制阀214接通,制动轮缸便可与储液容器5接通,从而实现轮缸减压。
实施例十六提供的制动系统进一步提高了制动系统的冗余备份能力,通过增加第三增压泵控制阀213和第四增压泵控制阀214,可以在冗余备份模式下实现低选ABS功能。
具体地,一种可能的实施方式,第三增压泵控制阀213和第四增压泵控制阀214可以为能够提供接通与断开状态的电磁阀。或者,另一种可能的实施方式,第三增压泵控制阀213和第四增压泵控制阀214为调节阀,可以通过控制信号调节控制阀开度,以调节回路压力。在冗余制动模式下,当ECU1单独工作时,若制动轮缸需要减压,ECU1可以通过对第三增压泵控制阀213和第四增压泵控制阀214开度的控制实现制动回路的压力控制。由此,可以实现低选ABS功能。
此外,在另一种可能的实施方式中,制动系统的增压器2也可以采用单向增压缸并减少第三增压控制阀23和第四增压控制阀24,进而降低成本。采用单向增压装置的制动系统的第二子系统可参考实施例十一的描述,本处不再赘述。
实施例十七
图23本申请实施例十七提供的另一种制动系统的示意图。
如图23所示,在实施例十七提供的制动系统中,第二子系统的系统组成、连接关系、控制关系等以及其他未提及的部分可以参考实施例十,本处不再赘述。与实施例十相比,在实施例十七提供的制动系统中,其第一子系统存在的区别具体描述如下。
如图23所示,第一子系统包括:第一控制单元91、制动主缸1、主缸推杆1k、踏板行程传感器PTS、测试阀51、储液容器5、油壶液位传感器RLS、踏板感觉模拟器6、踏板模拟阀61、第一主缸隔离阀11、第二主缸隔离阀12、第一主缸压力传感器MCPS、第一增压泵203、第二增压泵204、第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213。
如图23所示,第一增压泵203的第一端通过第三增压泵控制阀213与储液容器5连接,第一增压泵203的第一端还通过第一增压泵控制阀211与接口8F连接。接口8F可以依次通过第一增压泵控制阀211、第三增压泵控制阀213与储液容器5连接。第一增压泵203的第二端通过第一主缸隔离阀11与制动主缸1的第一主腔1i连接,第一增压泵203的第二端还与接口8F连接。
类似地,如图23所示,第二增压泵204的第一端通过第三增压泵控制阀213与储液容器5连接,第二增压泵204的第一端还通过第二增压泵控制阀212与接口8G连接。接口8G可以依次通过第二增压泵控制阀212、第三增压泵控制阀213与储液容器5连接。第二增压泵204的第二端通过第二主缸隔离阀12与制动主缸1的第二主腔1j连接,第二增压泵204的第二端还与接口8G连接。
由此,当ECU2失效而ECU1单独工作时,第一增压泵203和第二增压泵204可以实现冗余增压。当需要对制动轮缸进行减压时,ECU1可以通过接通第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213,使制动轮缸中的制动液流回储液容器5,以实现制动轮缸的减压。
一种可能的实施方式,第一增压泵控制阀211和第二增压泵控制阀212为调节阀,可以通过控制信号调节控制阀开度,以调节回路压力。在冗余制动模式下,当ECU1单独工作时,若制动轮缸需要减压,ECU1控制第三增压泵控制阀213接通,并且ECU1可以通过对第一增压泵控制阀211和第二增压泵控制阀214开度的控制实现制动回路的压力控制。由此,可以实现低选ABS功能。
由此,实施例十七提供的制动系统在第一子系统单独工作的情况下依旧可以提供低选ABS等制动功能。
关于实施例十七提供的制动系统的系统组成、连接关系、控制关系、工作模式或其他未提及的部分可以参考本申请说明书中其他实施例的描述,本处不再赘述。
实施例十八
图24为本申请实施例十八提供的另一种制动系统。如图24所示,在实施例十八提供的制动系统中,第二子系统的系统组成、连接关系、控制关系等以及其他未提及的部分可以参考实施例十,本处不再赘述。与实施例十相比,在实施例十八提供的制动系统中,其第一子系统存在区别,具体描述如下。
如图24所示,第一子系统包括:第一控制单元91、制动主缸1、主缸推杆1k、踏板行程传感器PTS、测试阀51、储液容器5、油壶液位传感器RLS、踏板感觉模拟器6、踏板模拟阀61、第一主缸隔离阀11、第二主缸隔离阀12、第一主缸压力传感器MCPS、第一增压泵203、第二增压泵204、第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214。
如图24所示,第一增压泵203的第一端与与储液容器5连接,第一增压泵203的第一端还通过第三增压泵控制阀213、第一增压泵控制阀211与接口8F连接。接口8F依次通过第一增压泵控制阀211、第三增压泵控制阀213与第五储液容器5连接。第一增压泵203的第二端通过第一主缸隔离阀11与制动主缸1的第一主腔1i连接,第一增压泵203的第二端还与接口8F连接。
类似地,如图24所示,第二增压泵204的第一端与与储液容器5连接,第二增压泵204的第一端还通过第四增压泵控制阀214、第二增压泵控制阀212与接口8G连接。接口8G依次通过第二增压泵控制阀212、第四增压泵控制阀214与第五储液容器5连接。第二增压泵204的第二端通过第二主缸隔离阀12与制动主缸1的第二主腔1j连接,第二增压泵204的第二端还与接口8G连接。
实施例十八提供的制动系统中各控制阀的自然状态如图24所示。其中,如图24所示,第一增压泵控制阀211、第二增压泵控制阀212为常开阀,在自然状态下为接通状态。第三增压泵控制阀213、第四增压泵控制阀214为常闭阀,在自然状态下为断开状态。
需要说明的是,第一增压泵控制阀211和第二增压泵控制阀212为调节阀,可以通过控制信号调节控制阀开度,以调节回路压力。
在常规制动模式下,第三增压泵控制阀213和第四增压泵控制阀214保持断开状态,以避免制动液经第三增压泵控制阀213和第四增压泵控制阀214流至储液容器5以导致制动回路压力下降。当轮缸需要减压时,ECU2通过控制轮缸减压阀(41,42,43,44)接通以实现减压。
在冗余制动模式下,当ECU1单独工作时,若制动轮缸需要增压,ECU1控制第三增压泵控制阀213和第四增压泵控制阀214保持断开状态,ECU1控制第一增压泵203和第二增压泵204为制动回路增压。若制动轮缸需要减压,ECU1控制第三增压泵控制阀213和第四增压泵控制阀214接通,并配合对第一增压泵控制阀211和第二增压泵控制阀212开度的控制实现制动回路的压力控制。由此,可以实现低选ABS功能。
关于实施例十八提供的制动系统的系统组成、连接关系、控制关系、工作模式或其他未提及的部分可以参考本申请说明书中其他实施例的描述,本处不再赘述。
实施例十九
图25为本申请实施例十九提供的另一种制动系统。如图25所示,在实施例十九提供的制动系统中,第二子系统的系统组成、连接关系、控制关系等以及其他未提及的部分可以参考实施例十,本处不再赘述。与实施例十相比,在实施例十九提供的制动系统中,其第一子系统存在的区别具体描述如下。
如图25所示,第一子系统包括:第一控制单元91、制动主缸1、主缸推杆1k、踏板行程传感器PTS、测试阀51、储液容器5、油壶液位传感器RLS、踏板感觉模拟器6、踏板模拟阀61、第一主缸隔离阀11、第二主缸隔离阀12、第一主缸压力传感器MCPS、第一增压泵203、第二增压泵204、第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214。
如图25所示,第一增压泵203的第一端通过第三增压泵控制阀213与储液容器5连接,第一增压泵203的第一端还通过第一增压泵控制阀与接口8F连接。接口8F可以通过第一增压泵控制阀211、第三增压泵控制阀213与储液容器5连接。第一增压泵203的第二端通过第一主缸隔离阀11与制动主缸1的第一主腔1i连接,第一增压泵203的第二端与接口8F连接。
类似地,如图25所示,第二增压泵204的第一端通过第四增压泵控制阀214与储液容器5连接,第二增压泵204的第一端还通过第二增压泵控制阀212与接口8G连接。接口8G可以通过第二增压泵控制阀212、第四增压泵控制阀214与储液容器5连接。第二增压泵204的第二端通过第二主缸隔离阀12与制动主缸1的第二主腔1j连接,第二增压泵204的第二端与接口8G连接。
由此,当ECU2失效而ECU1单独工作时,第一增压泵203和第二增压泵204可以实现冗余增压。当需要对制动轮缸进行减压时,ECU1可以通过接通第一增压泵控制阀211、第三增压泵控制阀213以使接口8F与储液容器5接通,并通过接通第二增压泵控制阀212和第四增压泵控制阀214以使接口8G与储液容器5接通。由此,可以使制动轮缸中的制动液流回储液容器5,以实现制动轮缸的减压。由此,实施例十九提供的制动系统在第一子系统单独工作的情况下依旧可以提供低选ABS等制动功能。
具体地,实施例十九提供的制动系统中各控制阀的自然状态如图25所示。其中,如图25所示,第一增压泵控制阀211、第二增压泵控制阀212为常开阀,在自然状态下为接通状态。第三增压泵控制阀213、第四增压泵控制阀214为常闭阀,在自然状态下为断开状态。
一种可能的实施方式,第一增压泵控制阀211和第二增压泵控制阀212为调节阀,可以通过控制信号调节控制阀开度,以调节回路压力。
一种可能的实施方式,第一增压泵控制阀211和第二增压泵控制阀212还可以为其他电磁阀,具有接通和断开两种状态。
在常规制动模式下,第三增压泵控制阀213和第四增压泵控制阀214保持断开状态,以避免制动液经第三增压泵控制阀213和第四增压泵控制阀214流至储液容器5以导致制动回路压力下降。当轮缸需要减压时,ECU2通过控制轮缸减压阀(41,42,43,44)接通以实现减压。
在冗余制动模式下,当ECU1单独工作时,若制动轮缸需要增压,ECU1控制第三增压泵控制阀213和第四增压泵控制阀214接通,ECU1控制第一增压泵203和第二增压泵204为制动回路增压。若制动轮缸需要减压,ECU1控制第三增压泵控制阀213和第四增压泵控 制阀214接通,并配合对第一增压泵控制阀211和第二增压泵控制阀212开度的控制实现制动回路的压力控制。由此,可以实现低选ABS功能。
关于实施例十九提供的制动系统的系统组成、连接关系、控制关系、工作模式或其他未提及的部分可以参考本申请说明书中其他实施例的描述,本处不再赘述。
实施例二十
图26为本申请实施例二十提供的另一种制动系统。如图26所示,在实施例二十提供的制动系统中,第二子系统的系统组成、连接关系、控制关系等以及其他未提及的部分可以参考实施例十,本处不再赘述。与实施例十相比,在实施例二十提供的制动系统中,其第一子系统存在的区别具体描述如下。
如图26所示,第一子系统包括:第一控制单元91、制动主缸1、主缸推杆1k、踏板行程传感器PTS、测试阀51、储液容器5、油壶液位传感器RLS、踏板感觉模拟器6、踏板模拟阀61、第一主缸隔离阀11、第二主缸隔离阀12、第一主缸压力传感器MCPS、第一增压泵203、第二增压泵204、第三增压泵控制阀213、第四增压泵控制阀214。
如图26所示,第一增压泵203的第一端通过第三增压泵控制阀213与制动主缸1的第一主腔1i连接。第一增压泵203的第二端通过第一主缸隔离阀11与制动主缸1的第一主腔1i连接,第一增压泵203的第二端与接口8F连接。
类似地,如图26所示,第二增压泵204的第一端通过第三增压泵控制阀213与制动主缸1的第二主腔1j连接。第二增压泵204的第二端通过第二主缸隔离阀12与制动主缸的第二主腔1j连接,第二增压泵204的第二端与接口8G连接。
当ECU2失效而ECU1单独工作时,ECU1控制第一主缸隔离阀11和第二主缸隔离阀12断开。ECU1控制第三增压泵控制阀213和第四增压泵控制阀214接通,制动主缸1的制动液可以通过第三增压泵控制阀213进入第一增压泵203的输入端,制动主缸1的制动液可以通过第四增压泵控制阀214进入第二增压泵204的输入端。ECU1控制第一增压泵203和第二增压泵204工作提高制动回路的压力。
关于实施例二十提供的制动系统的系统组成、连接关系、控制关系、工作模式或其他未提及的部分可以参考本申请说明书中其他实施例的描述,本处不再赘述。
实施例二十一
图27为本申请实施例二十一提供的另一种制动系统。以下,结合图27对本申请实施例二十一提供的制动系统的系统组成、连接关系、集成方式、接口设置、控制关系等进行描述。
首先,介绍实施例二十一提供的制动系统的系统组成。如图27所示,本申请实施例二十一提供的制动系统包括两个子系统:
(1)第一子系统包括:第一控制单元91、制动主缸1、主缸推杆1k、踏板行程传感器PTS、测试阀51、储液容器5、油壶液位传感器RLS、第一主缸隔离阀11、第二主缸隔离阀12、第一主缸压力传感器MCPS、第一增压泵203、第二增压泵204、第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214、第一增压泵单向阀203v、第二增压泵单向阀204v。
当第一子系统中的测试阀51不包括单向阀时,第一子系统还包括第五单向阀51v。
第一子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀、带过滤器的储液容器5来实现杂质过滤功能。
值得注意的是,第一子系统可以包括主缸推杆1k,但不包括制动踏板7。第一子系统可以搭配不同种类的制动踏板7,以适配更多车型并提供更多个性化搭配的可能。
(2)第二子系统包括:第二控制单元92、第三主缸隔离阀13、第四主缸隔离阀14、第二主缸压力传感器MCPS、踏板感觉模拟器6、踏板模拟阀61、增压驱动电机201、双向增压缸202、增压器单向阀202v、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS。
当第二子系统中的踏板模拟阀61、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第六单向阀61v、第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
需要说明的是,制动系统中各控制阀的默认状态如图27中所示。例如,第一主缸隔离阀11、第二主缸隔离阀12、第三主缸隔离阀13、第四主缸隔离阀14为常开阀,常开阀在初始状态下为使控制阀两端的管路接通的状态;而当常开阀受控制上电时,常开阀会切换为使控制阀两端的管路为断开的状态,也即在常开阀上电断开时,管路中的流体无法由常开阀的一端经过常开阀流至常开阀的另一端。
类似地,在如图27所示的制动系统中,常开阀可以包括:测试阀51、第一主缸隔离阀11、第二主缸隔离阀12、第三主缸隔离阀13、第四主缸隔离阀14、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34。
类似地,在如图27所示的制动系统中,常闭阀包括:第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214、踏板模拟阀61、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
接着,以下结合图27对本申请实施例二十一提供的制动系统的接口设置和连接关系进行描述。
首先介绍第一子系统的连接关系。如图27所示,第一子系统包括接口8E、接口8F、接口8G。
如图27所示,制动主缸1的第一主腔1i通过第一主缸隔离阀11与接口8F连接,制动主缸1的第二主腔1j通过第二主缸隔离阀12与接口8G连接。
如图27所示,储液容器5与接口8E连接。制动主缸1的第一主腔1i通过管路5i与储液容器5连接,制动主缸1的第二主腔1j经过测试阀51和管路5j与储液容器5连接。测试阀51的两端还并联有单向阀51v,单向阀51v被配置为在一定条件下允许制动液由储液容器5经单向阀51v流向制动主缸1。主缸推杆1k可以在外力作用下推动主缸活塞,主缸推杆1k可以与制动踏板7连接,踏板行程传感器PTS可以检测踏板行程。
需要说明的是,以下记第一增压泵203的输入端为第一增压泵203的第一端,记第一增压泵203的输出端为第一增压泵203的第二端。类似地,记第二增压泵204的输入端为第二增压泵端204的第一端,记第二增压泵204的输出端为第二增压泵204的第二端。需要指出的是,本申请说明书中对于第一增压泵203或第二增压泵204的第一端或第二端的描述不应理解为对本申请保护范围对限制。增压泵的输入端还可以被记为第二端,增压泵的输出端还 可以被记为第一端,本申请对此不作限制。
如图27所示,储液容器5通过单向阀203v与第一增压泵203的第一端连接。单向阀203v被配置为在一定条件下允许制动液从储液容器5经单向阀203v流向第一增压泵203的第一端。第一增压泵203的第一端还通过第三增压泵控制阀213与制动主缸1的第一主腔1i连接。第一增压泵的第二端与接口8F连接,第一增压泵203的第二端还通过第一主缸隔离阀11与制动主缸1的第一主腔1i连接。储液容器5还通过第一增压泵控制阀211与接口8F连接。
如图27所示,储液容器5通过单向阀204v与第二增压泵204的第一端连接。单向阀204v被配置为在一定条件下允许制动液从储液容器5经单向阀204v流向第二增压泵204的第一端。第二增压泵204的第一端还通过第四增压泵控制阀214与制动主缸1的第二主腔1j连接。第二增压泵的第二端与接口8G连接,第二增压泵204的第二端还通过第二主缸隔离阀12与制动主缸1的第二主腔2j连接。储液容器5还通过第二增压泵控制阀212与接口8G连接。
需要说明的是,储液容器5在第一子系统内的连接关系仅为实施例二十一提供的一种可能的情况,本申请并不对储液容器5上的接口数量进行限制。例如,如图27所示,与储液容器5连接的管路5k、管路5i、管路5j、管路5m可以是通过4个储液容器接口与储液容器5连接;一种可能的实施方式,与储液容器5连接的管路5k、管路5i、管路5j、管路5m可以是在连接到储液容器5之前汇合,并通过1个接口与储液容器5连接。
其次,介绍第二子系统的连接关系。如图27所示,第二子系统包括第一接口、第二接口(8f,8g)、第三接口(8e)。其中,第二子系统的第一接口分别用于与车轮的制动轮缸(3a,3b,3c,3d)连接。
如图27所示,接口8f与第三主缸隔离阀13的第一端连接,第三主缸隔离阀13的第二端与第一制动管路3i连接,具体地,第三主缸隔离阀13的第二端与第一轮缸增压阀31的第一端连接,第一轮缸增压阀31的第二端与接口4a连接;第三主缸隔离阀13的第二端与第二轮缸增压阀32的第一端连接,第二轮缸增压阀32的第二端与接口4b连接。
如图27所示,接口8g与第四主缸隔离阀14的第一端连接,第四主缸隔离阀14的第二端与第二制动管路3j连接,具体地,第四主缸隔离阀14的第二端与第三轮缸增压阀33的第一端连接,第三轮缸增压阀33的第二端与接口4c连接;第四主缸隔离阀14的第二端与第四轮缸增压阀34的第一端连接,第四轮缸增压阀34的第二端与接口4d连接。
如图27所示,踏板感觉模拟器6通过踏板模拟阀61与接口8g连接。踏板模拟阀61的两端还并联有单向阀61v。需要说明的是,当踏板模拟阀61包括单向阀功能时,可不必在其两端并联单向阀。
如图27所示,在接口8g和第四主缸隔离阀14之间还可以设置第二主缸压力传感器MCPS。
如图27所示,双向增压缸202的第一增压腔202i通过第一增压支路2i分别与第一增压控制阀21的第一端以及第二增压控制阀22的第一端连接;第一增压控制阀21的第二端与第一制动管路3i连接,具体地,第一增压控制阀21的第二端与第一轮缸增压阀31的第一端连接,第一增压控制阀21的第二端与第二轮缸增压阀32的第一端连接;第二增压控制阀22的第二端与第二制动管路3j连接,具体地,第二增压控制阀22的第二端与第三轮缸增压阀33的第一端连接,第二增压控制阀22的第二端与第四轮缸增压阀34的第一端连接。
如图27所示,双向增压缸202的第二增压腔202j通过第二增压支路2j分别与第三增压控制阀23的第一端以及第四增压控制阀24的第一端连接;第三增压控制阀23的第二端与第一制动管路3i连接,具体地,第三增压控制阀23的第二端与第一轮缸增压阀31的第一端连 接,第三增压控制阀23的第二端与第二轮缸增压阀32的第一端连接;第四增压控制阀24的第二端与第二制动管路3j连接,具体地,第四增压控制阀24的第二端与第三轮缸增压阀33的第一端连接,第四增压控制阀24的第二端与第四轮缸增压阀34的第一端连接。
如图27所示,接口8e通过单向阀202v与双向增压缸202的第一增压腔202i连接。单向阀202v的第一端与接口8e连接,单向阀202v的第二端与第一增压腔202i连接。单向阀202v被配置为在一定条件下允许制动液由管路202k经单向阀202v流入第一增压腔202i。也即,单向阀202v在一定条件下允许制动液由其第一端流向第二端。
需要说明的是,图27中双向增压缸202的第二增压腔202j与储液容器5连接线仅表示当双向增压缸的活塞回到最左边时可以实现快速降压,类似地,本条说明也适用于本申请说明书提供的其他实施例。
如图27所示,制动回路压力传感器BCPS被设置在第一制动管路3i处,可以采集第一轮缸增压阀31或第二轮缸增压阀32处的压力。需要说明的是,制动回路压力传感器BCPS还可以被设置在第二制动管路3j处,可以采集第三轮缸增压阀33或第四轮缸增压阀34处的压力,本申请对此不作限制。
如图27所示,接口4a通过第一轮缸减压阀41与接口8e连接,接口4b通过第二轮缸减压阀42与接口8e连接,接口4c通过第三轮缸减压阀43与接口8e连接,接口4d通过第四轮缸减压阀44与接口8e连接。
第一子系统和第二子系统形成制动系统。第二子系统分别通过接口8e、接口8f、接口8g与第一子系统的接口8E、接口8F、接口8G连接。并且,制动系统还通过接口4a、接口4b、接口4c、接口4d分别于制动轮缸连接。
对于第一子系统与第二子系统组成的制动系统,如图27所示,制动主缸1与制动轮缸(3a,3b,3c,3d)之间的连接关系可以描述如下:制动主缸1的第一主腔1i通过第一主缸隔离阀11与接口8F连接,并通过接口8f与第三主缸隔离阀13连接,第三主缸隔离阀13与第一制动管路3i连接,具体地,第三主缸隔离阀13与分别与第一轮缸增压阀31和第二轮缸增压阀32连接;第一轮缸增压阀31与接口4a连接,并通过接口4a与第一轮缸3a连接;第二增压阀32与接口4b连接,并通过接口4b与第二轮缸3b连接;制动主缸1的第二主腔1j通过第二主缸隔离阀12与接口8G连接,并通过接口8g与第四主缸隔离阀14连接,第四主缸隔离阀14与第二制动管路3j连接,具体地,第四主缸隔离阀14分别与第三轮缸增压阀33和第四轮缸增压阀34连接;第三轮缸增压阀33与接口4c连接,并通过接口4c与第三轮缸3c连接;第四轮缸增压阀34与接口4d连接,并通过接口4d与第四轮缸3d连接。
类似地,如图27所示,第一增压泵203的输出端与接口8F连接,并通过接口8f与第三主缸隔离阀13连接;第二增压泵204的输出端与接口8G连接,并通过接口8g与第四主缸隔离阀14连接。第一增压泵203和第二增压泵204与制动轮缸(3a,3b,3c,3d)在第二子系统内的连接关系可参考制动主缸1与制动轮缸(3a,3b,3c,3d)的连接关系,本处不再赘述。
如图27所示,增压器2的第一增压腔202i经过单向阀202v与接口8e连接,并通过接口8E和管路5k与储液容器5连接;轮缸减压阀(41,42,43,44)的第一端分别与接口8e连接,并通过接口8E和管路5k与储液容器5连接。
以上介绍了实施例二十一提供的制动系统的系统组成、连接关系、集成方式、接口设置。下面,对实施例二十一提供的制动系统的控制关系进行描述。在实施例二十一中,第一控制单元91和第二控制单元92所控制的对象分别如下:
(1)第一控制单元91控制的对象包括:第一主缸隔离阀11、第二主缸隔离阀12、测试 阀51、第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214。
第一控制单元91接收第一主缸压力传感器MCPS、踏板行程传感器PTS和油壶液位传感器RLS的信号。
(2)第二控制单元92控制的对象包括:踏板模拟阀61、增压驱动电机201、第三主缸隔离阀13、第四主缸隔离阀14、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
第二控制单元92接收第二主缸压力传感器MCPS、制动回路压力传感器BCPS和电机位置传感器MPS的信号。
一种可能的实施方式,制动系统包括第一控制器和第二控制器,第一控制器包括第一控制单元91,第二控制器包括第二控制单元92,并且,第一控制器和第二控制器中至少还包括各种电磁阀驱动以及各种信号处理及控制输出接口。第二控制器还包括电机驱动相关的信号处理及控制输出接口。控制器还可以接收各种传感器的测量或检测信号,如环境条件、驾驶员输入、制动系统状态等,通过计算和判断来控制制动系统的制动特性。
以上结合图27对实施例二十一提供制动系统的系统组成、连接关系、集成方式、接口设置、控制关系等进行了介绍。下面结合图27对实施例二十一提供的制动系统的工作模式进行描述。
本申请说明书中所述的制动意图可以包括来自驾驶员的制动意图和来自车辆的主动制动的意图。
具体地,制动意图可以通过驾驶员对踏板的踩踏动作获得,可以通过踏板行程传感器PTS的信号获取驾驶员的制动意图,或者,可以通过结合踏板行程传感器PTS和主缸压力传感器MCPS的信号来确定制动意图。
此外,制动意图还可以通过自动驾驶系统ADS或者驾驶辅助系统ADAS的主动制动请求获得。例如,主动制动请求可以由自动驾驶控制器产生,并由制动系统的控制单元接收;又如,在ACC模式下,当跟车距离小于预设距离时,ACC系统发出主动制动请求,制动系统的控制单元接收该制动请求,并执行相应的制动动作。本申请说明书对制动意图的获得方法不作限制。
根据制动意图,本申请实施例提供的制动系统可以提供ABS、TCS、ESC、BBF、AEB、ACC等功能。此外,制动系统也可以提供其他附加功能VAF,如AEB、ABP、ABA、AWB、CDD、VLC、AVH、BDW、HAZ、HBA、HFC、HRB、HAS、HDC等。
本申请说明书提供的实施例中所包括的缩略词及其解释可参考文初的介绍。
需要说明的是,在本申请说明书中,第一控制单元91在一些实施例中也被称为ECU1,第二控制单元92在一些实施例中也被称为ECU2。
本申请实施例二十一提供的制动系统至少包括4种工作模式:(1)ECU1和ECU2协同工作;(2)ECU1单独工作;(3)ECU2单独工作;(4)机械备份模式。
工作模式1:常规制动模式,此时ECU1和ECU2协同工作
制动系统无任何故障时,ECU1和ECU2协同工作。
一种可能的应用场景,当驾驶员踩下制动踏板时,主缸推杆1k推动制动主缸活塞,主缸内压力上升。ECU1控制第一主缸隔离阀11和第二主缸隔离阀12接通,并控制第三主缸隔 离阀13和第四主缸隔离阀14断开。制动主缸1的第二主腔1j与踏板感觉模拟器6接通,踏板感觉模拟器工作产生踏板感。ECU1控制第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214断开,此时第一增压泵203和第二增压泵204不工作。ECU1还接收踏板行程传感器PTS的信号和第一主缸压力传感器MCPS的信号,并将所接收的信号传递给ECU2。ECU2根据ECU1传递的踏板行程传感器PTS的信号和主缸压力传感器MCPS的信号,确定驾驶员的制动意图。
获取制动意图后,实施例二十一提供的制动系统的常规建压过程可描述如下:ECU2控制第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24打开,并且控制增压驱动电机201推动双向增压缸202内的活塞向右运动。第一增压腔202i内的制动液一部分经过第一增压控制阀21和第二增压控制阀22,并分别通过轮缸增压阀(31,32,33,34)流入制动轮缸(3a,3b,3c,3d),实现车轮制动;另一部分制动液经过第三增压控制阀23和第四增压控制阀24流入双向增压缸202的第二增压腔202j。
此外,ECU2通过电机位置传感器MPS信号判断双向增压缸202内活塞的位置。若活塞位置到达双向增压缸202的最右侧,并且此时制动轮缸仍需继续增压,则ECU2控制第一增压控制阀21和第二增压控制阀22处于关闭状态,并控制增压驱动电机201反转,双向增压缸内的活塞向左运动,第二增压腔202j腔体内的制动液经过第三增压控制阀23、第四增压控制阀24、轮缸增压阀(31,32,33,34)流入制动轮缸,实现车轮增压。当活塞位置到达双向增压缸202的最左侧并且系统还有增压需求时,与上述原理类似,本处不再赘述。需要指出的是,双向增压缸202能够使增压过程连续稳定,为制动系统带来良好的增压特性。
当某一轮缸制动压力过大时,实施例二十一提供的制动系统的常规减压过程可描述如下:例如制动轮缸3a压力过大时,控制轮缸3a对应的轮缸增压阀31断开,接通相应的轮缸减压阀41,该轮缸内的制动液通过轮缸减压阀41流入储液容器5,实现制动轮缸3a的减压,并且不会影响其他制动轮缸的压力。
由此,ECU2根据各传感器信号,计算增压驱动电机201及第二子系统内各电磁阀的控制信号。ECU2控制第一增压控制阀21、第二增压控制阀22、第三增压控制阀23和第四增压控制阀24的状态,并控制增压驱动电机201以推动增压器活塞增压。ECU2通过控制轮缸增压阀(31,32,33,34)和轮缸减压阀(41,42,43,44)的接通与断开来实现对各制动轮缸(3a,3b,3c,3d)的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式2:冗余制动模式,ECU1单独工作
当ECU2出现故障时,此时ECU1单独工作。由于第三主缸隔离阀13和第四主缸隔离阀14为常开阀,在ECU2故障失效无法正常工作时,第一子系统的制动压力依旧可以通过第三主缸隔离阀13和第四主缸隔离阀14传递至制动轮缸。
获取制动意图后,当ECU2出现故障时,ECU1控制第一增压泵203和第二增压泵204工作,为制动管路增压。此时,制动液可以由储液容器5经过单向阀203v流至第一增压泵203的输入端,制动液也可以由储液容器5经过单向阀204v流至第二增压泵204的输入端。
ECU1控制第三增压泵控制阀213和第四增压泵控制阀214接通,此时制动主缸1中的制动液能够分别经过第三增压泵控制阀213和第四增压泵控制阀214流入制动管路,具体地,制动主缸1的制动液通过第三增压泵控制阀213流入第一增压泵203的输入端,制动主缸1的制动液也通过第四增压泵控制阀214流入第二增压泵204的输入端。这可以提供一定的踏板感觉,保证驾驶员能够踩动踏板,避免因主缸压力过高驾驶员无法踩动踏板情况的出现。
同时,ECU1控制第一主缸隔离阀11和第二主缸隔离阀12断开,经过第一增压泵203 和第二增压泵204增压后的压力不会经过第一主缸隔离阀11或第二主缸隔离阀12传回制动主缸,同样避免了驾驶员踩不动制动踏板或者制动主缸1压力突然增高而伤害驾驶员等情况的出现。
在增压的过程中,ECU1控制第一增压泵控制阀211和第二增压泵控制阀212保持断开状态。第一增压泵203和第二增压泵204产生的压力能够分别经过第三主缸隔离阀13和第四主缸隔离阀14,并经过轮缸增压阀(31,32,33,34)传至制动轮缸。
当需要降低轮缸压力时,ECU1可以控制第一增压泵控制阀211和第二增压泵控制阀212接通,使制动轮缸的制动液流回储液容器5,以降低制动轮缸的压力。
一种可能的实施方式,第一增压泵控制阀211和第二增压泵控制阀212为调节阀,可以通过控制信号调节控制阀开度,以调节回路压力。在冗余制动模式下,当ECU1单独工作时,若制动轮缸需要减压,ECU1可以通过对第一增压泵控制阀211和第二增压泵控制阀212开度的控制实现制动回路的压力控制。由此,可以实现低选ABS功能。
因此,ECU1可以通过第三增压泵控制阀213、第四增压泵控制阀214、第一增压泵203、第二增压泵204的控制对制动轮缸进行增压,并配合对第一增压泵控制阀211和第二增压泵控制阀212的控制实现对制动轮缸的减压。由此,在ECU2故障失效的情况下,ECU1依旧能够通过控制第一子系统来实现制动功能。
工作模式3:冗余制动模式,ECU2单独工作
当ECU1出现故障时,ECU2单独工作。获取制动意图后,ECU2计算增压驱动电机201及第二子系统内各电磁阀的控制信号。一种可能的实施方式,ECU2根据第二主缸压力传感器MCPS获得制动压力信号,并根据该信号确定驾驶意图。另一种可能的实施方式,ECU2接收踏板行程传感器PTS的信号,并根据踏板行程传感器PTS和主缸压力传感器MCPS的信号确定驾驶意图。
ECU2单独工作的原理与ECU1和ECU2协同工作的工作模式1类似,本处不再赘述。总之,ECU2根据传感器信号,计算增压驱动电机201及第二子系统内各电磁阀的控制信号。ECU2控制增压驱动电机201以推动增压器活塞建压,并控制第一增压控制阀21、第二增压控制阀22、第三增压控制阀23和第四增压控制阀24的状态对制动回路增压,同时通过控制轮缸增压阀(31,32,33,34)和轮缸减压阀(41,42,43,44)的接通与断开来实现对各制动轮缸(3a,3b,3c,3d)的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式4:冗余制动模式,机械备份
此外,当ECU1和ECU2全部失效时,本实施例提供的制动系统可以执行机械备份。驾驶员踩下制动踏板,制动液可以由制动主缸1经过第一主缸隔离阀11、第三主缸隔离阀13流至第一轮缸3a和第二轮缸3b,也可以由制动主缸1经过第二主缸隔离阀12、第四主缸隔离阀14流至第三轮缸3c和第四轮缸3d,以实现制动。
实施例二十二
图28为本申请实施例二十二提供的另一种制动系统。以下,结合图28对本申请实施例二十二提供的制动系统的系统组成、连接关系、集成方式、接口设置、控制关系等进行描述。
首先,介绍实施例二十二提供的制动系统的系统组成。如图28所示,本申请实施例二十二提供的制动系统包括两个子系统,其中,实施例二十二提供的制动系统的第一子系统与实施例二十一提供的制动系统的第一子系统相同,本处不再赘述。以下对实施例二十二提供的制动系统的第二子系统进行描述:
实施例二十二提供的制动系统的第二子系统包括:第二控制单元92、第三主缸隔离阀13、第四主缸隔离阀14、第二主缸压力传感器MCPS、踏板感觉模拟器6、踏板模拟阀61、增压驱动电机201、单向增压缸202、增压器单向阀202v、第一增压控制阀21、第二增压控制阀22、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS。
当第二子系统中的踏板模拟阀61、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第六单向阀61v、第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
与如图27所示的实施例二十一提供的制动系统相比,在如图28所示的实施例二十二提供的制动系统中,其第二子系统采用的是单向增压缸202,并且减少了第三增压控制阀23、第四增压控制阀24。此外,在实施例二十二提供的制动系统中,如图28所示,制动回路压力传感器BCPS被设置在第一增压支路2i上,用于获取制动回路的制动压力。
需要说明的是,制动系统中各控制阀的默认状态如图28中所示。例如,第一主缸隔离阀11、第二主缸隔离阀12、第三主缸隔离阀13、第四主缸隔离阀14为常开阀,常开阀在初始状态下为使控制阀两端的管路接通的状态;而当常开阀受控制上电时,常开阀会切换为使控制阀两端的管路为断开的状态,也即在常开阀上电断开时,管路中的流体无法由常开阀的一端经过常开阀流至常开阀的另一端。
类似地,在如图28所示的制动系统中,常开阀可以包括:测试阀51、第一主缸隔离阀11、第二主缸隔离阀12、第三主缸隔离阀13、第四主缸隔离阀14、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34。
类似地,在如图28所示的制动系统中,常闭阀包括:第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214、踏板模拟阀61、第一增压控制阀21、第二增压控制阀22、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
接着,以下结合图28对本申请实施例二十二提供的制动系统的接口设置和连接关系进行描述。实施例二十二提供的制动系统的第一子系统的连接关系可参考实施例二十一提供的制动系统的描述,本处不再赘述。
下面,介绍第二子系统的连接关系。如图28所示,第二子系统包括第一接口、第二接口(8f,8g)、第三接口(8e)。其中,第二子系统的第一接口分别用于与车轮的制动轮缸(3a,3b,3c,3d)连接。
如图28所示,接口8f与第三主缸隔离阀13的第一端连接,第三主缸隔离阀13的第二端与第一制动管路3i连接,具体地,第三主缸隔离阀13的第二端与第一轮缸增压阀31的第一端连接,第一轮缸增压阀31的第二端与接口4a连接;第三主缸隔离阀13的第二端与第二轮缸增压阀32的第一端连接,第二轮缸增压阀32的第二端与接口4b连接。
如图28所示,接口8g与第四主缸隔离阀14的第一端连接,第四主缸隔离阀14的第二端与第二制动管路3j连接,具体地,第四主缸隔离阀14的第二端与第三轮缸增压阀33的第一端连接,第三轮缸增压阀33的第二端与接口4c连接;第四主缸隔离阀14的第二端与第四轮缸增压阀34的第一端连接,第四轮缸增压阀34的第二端与接口4d连接。
如图28所示,踏板感觉模拟器6通过踏板模拟阀61与接口8g连接。踏板模拟阀61的两端还并联有单向阀61v。需要说明的是,当踏板模拟阀61包括单向阀功能时,可不必在其两端并联单向阀。
如图28所示,在接口8g和第四主缸隔离阀14之间还可以设置第二主缸压力传感器MCPS。
如图28所示,单向增压缸202通过第一增压支路2i分别与第一增压控制阀21的第一端以及第二增压控制阀22的第一端连接;第一增压控制阀21的第二端与第一制动管路3i连接,具体地,第一增压控制阀21的第二端与第一轮缸增压阀31的第一端连接,第一增压控制阀21的第二端与第二轮缸增压阀32的第一端连接;第二增压控制阀22的第二端与第二制动管路3j连接,具体地,第二增压控制阀22的第二端与第三轮缸增压阀33的第一端连接,第二增压控制阀22的第二端与第四轮缸增压阀34的第一端连接。
如图28所示,接口8e通过单向阀202v与单向增压缸202连接。单向阀202v的第一端与接口8e连接,单向阀202v的第二端与单向增压缸202连接。单向阀202v被配置为在一定条件下允许制动液由管路202k经单向阀202v流入单向增压缸202。
如图28所示,制动回路压力传感器BCPS被设置在第一增压支路2i上,用于获取制动回路的制动压力。
如图28所示,接口4a通过第一轮缸减压阀41与接口8e连接,接口4b通过第二轮缸减压阀42与接口8e连接,接口4c通过第三轮缸减压阀43与接口8e连接,接口4d通过第四轮缸减压阀44与接口8e连接。
第一子系统和第二子系统形成制动系统。第二子系统分别通过接口8e、接口8f、接口8g与第一子系统的接口8E、接口8F、接口8G连接。并且,制动系统还通过接口4a、接口4b、接口4c、接口4d分别于制动轮缸连接。
对于第一子系统与第二子系统组成的制动系统,如图28所示,制动主缸1与制动轮缸(3a,3b,3c,3d)之间的连接关系可以参考实施例二十一中的描述,本处不再赘述。
如图28所示,增压器2的单向增压缸202经过单向阀202v与接口8e连接,并通过接口8E和管路5k与储液容器5连接;轮缸减压阀(41,42,43,44)的第一端分别与接口8e连接,并通过接口8E和管路5k与储液容器5连接。
以上介绍了实施例二十二提供的制动系统的系统组成、连接关系、集成方式、接口设置。下面,对实施例二十二提供的制动系统的控制关系进行描述。在实施例二十二中,第一控制单元91和第二控制单元92所控制的对象分别如下:
(1)第一控制单元91控制的对象包括:第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214。
第一控制单元91接收第一主缸压力传感器MCPS、踏板行程传感器PTS和油壶液位传感器RLS的信号。
需要说明的是,当油壶液位传感器RLS的信号指示液位较低时,ECU1会对整车发出警告,并且ECU1、ECU2的控制功能会降级,例如增压目标值将会受到限制。
(2)第二控制单元92控制的对象包括:踏板模拟阀61、增压驱动电机201、第三主缸隔离阀13、第四主缸隔离阀14、第一增压控制阀21、第二增压控制阀22、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
第二控制单元92接收第二主缸压力传感器MCPS、制动回路压力传感器BCPS和电机位置传感器MPS的信号。
一种可能的实施方式,可以对踏板行程传感器PTS进行独立供电,并分别向ECU1和ECU2提供踏板行程信号。
一种可能的实施方式,制动系统包括第一控制器和第二控制器,第一控制器包括第一控制单元91,第二控制器包括第二控制单元92,并且,第一控制器和第二控制器中至少还包括各种电磁阀驱动以及各种信号处理及控制输出接口。第二控制器还包括电机驱动相关的信号处理及控制输出接口。控制器还可以接收各种传感器的测量或检测信号,如环境条件、驾驶员输入、制动系统状态等,通过计算和判断来控制制动系统的制动特性。
以上结合图28对实施例二十二提供制动系统的系统组成、连接关系、集成方式、接口设置、控制关系等进行了介绍。下面结合图28对实施例二十二提供的制动系统的工作模式进行描述。
需要说明的是,在本申请说明书中,第一控制单元91在一些实施例中也被称为ECU1,第二控制单元92在一些实施例中也被称为ECU2。
本申请实施例二十二提供的制动系统至少包括4种工作模式:(1)ECU1和ECU2协同工作;(2)ECU1单独工作;(3)ECU2单独工作;(4)机械备份模式。
工作模式1:常规制动模式,ECU1和ECU2协同工作
制动系统无任何故障时,ECU1和ECU2协同工作。一种可能的应用场景,当驾驶员踩下制动踏板时,主缸推杆1k推动制动主缸活塞,主缸内压力上升。ECU1控制第一主缸隔离阀11和第二主缸隔离阀12接通,并控制第三主缸隔离阀13和第四主缸隔离阀14断开。制动主缸1的第二主腔1j与踏板感觉模拟器6接通,踏板感觉模拟器工作产生踏板感。ECU1控制第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214断开,此时第一增压泵203和第二增压泵204不工作。ECU1还接收踏板行程传感器PTS的信号和第一主缸压力传感器MCPS的信号,并将所接收的信号传递给ECU2。
ECU2根据ECU1传递的踏板行程传感器PTS的信号和主缸压力传感器MCPS的信号,确定驾驶员的制动意图。
具体地,当识别到制动需求时,实施例二十二提供的制动系统的常规建压过程可描述如下:ECU2控制增压驱动电机201推动单向增压缸202内的活塞向右运动,第二控制单元92控制第一增压控制阀21、第二增压控制阀22打开。第一增压腔202i内的油液一部分经过第一增压控制阀21和第二增压控制阀22,并分别通过轮缸增压阀(31,32,33,34)流入制动轮缸(3a,3b,3c,3d),实现车轮制动。
此外,ECU2通过电机位置传感器MPS信号判断双向增压缸202内活塞的位置。若活塞位置到达双向增压缸202的最右侧,并且此时制动轮缸仍需继续增压,则ECU2控制第一增压控制阀21和第二增压控制阀22处于关闭状态,并控制增压驱动电机201反转,单向增压缸202内的活塞向左运动,制动液由储液容器5经单向阀202v流入单向增压缸202。需要说明的是,在单向增压缸中的活塞向左移动时,也即增压缸活塞返回时,该过程无法继续对制动回路进行增压,需要当增压缸活塞再次向右移动时才能继续增压。
需要指出的是,当增压器2选用单向增压缸时,制动系统控制阀数量会下降,总体成本降低,结构更简单可靠。
当某一轮缸制动压力过大时,实施例二十二提供的制动系统的常规减压过程可描述如下:例如制动轮缸3a压力过大时,控制轮缸3a对应的轮缸增压阀31断开,接通相应的轮缸减压 阀41,该轮缸内的制动液通过轮缸减压阀41流入储液容器5,实现减压。
由此,ECU2根据传感器信号,计算增压驱动电机201及第二子系统内各电磁阀的控制信号。ECU2控制第一增压控制阀21、第二增压控制阀22的状态,并控制增压驱动电机201以推动增压器活塞建压。ECU2通过控制轮缸增压阀(31,32,33,34)和轮缸减压阀(41,42,43,44)的接通与断开来实现对各制动轮缸(3a,3b,3c,3d)的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式2:冗余制动模式,ECU1单独工作
本工作模式可参考实施例二十一或其他实施例的描述,本处不再赘述。
工作模式3:冗余制动模式,ECU2单独工作
当ECU1出现故障时,ECU2单独工作。ECU2根据第二主缸压力传感器MCPS获得制动压力信号,并根据该信号确定驾驶意图。ECU2计算增压驱动电机201及第二子系统内各电磁阀的控制信号。
ECU2单独工作的原理与ECU1和ECU2协同工作的工作模式1类似,本处不再赘述。总之,ECU2根据传感器信号,计算增压驱动电机201及第二子系统内各电磁阀的控制信号。ECU2控制第一增压控制阀21、第二增压控制阀22的状态,并控制增压驱动电机201以推动增压器活塞建压。ECU2通过控制轮缸增压阀(31,32,33,34)和轮缸减压阀(41,42,43,44)的接通与断开来实现对各制动轮缸(3a,3b,3c,3d)的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式4:冗余制动模式,机械备份
此外,当ECU1和ECU2全部失效时,本实施例提供的制动系统可以执行机械备份。驾驶员踩下制动踏板,制动液可以由制动主缸1经过第一主缸隔离阀11、第三主缸隔离阀13流至第一轮缸3a和第二轮缸3b,也可以由制动主缸1经过第二主缸隔离阀12、第四主缸隔离阀14流至第三轮缸3c和第四轮缸3d,以实现制动。
实施例二十三
图29为本申请实施例二十三提供的另一种制动系统。
如图29所示,在实施例二十三提供的制动系统中,第一子系统的系统组成、连接关系、控制关系等以及其他未提及的部分可以参考实施例二十一,本处不再赘述。与实施例二十一相比,在实施例二十三提供的制动系统中,其第二子系统存在区别,具体描述如下。
如图29所示,第二子系统包括:第二控制单元92、第三主缸隔离阀13、第四主缸隔离阀14、第二主缸压力传感器MCPS、踏板感觉模拟器6、踏板模拟阀61、增压驱动电机201、双向增压缸202、增压器单向阀202v、第一增压控制阀21、第二增压控制阀22、第五增压控制阀25、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS。
当第二子系统中的踏板模拟阀61、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34不包括单向阀时,第二子系统还包括第六单向阀61v、第一单向阀31v、第二单向阀32v、第三单向阀33v、第四单向阀34v。
第二子系统还可以集成有过滤器,或者通过选用带有过滤器的控制阀来实现杂质过滤功能。
需要说明的是,制动系统中各控制阀的默认状态如图29中所示。例如,第一主缸隔离阀 11、第二主缸隔离阀12、第三主缸隔离阀13、第四主缸隔离阀14为常开阀,常开阀在初始状态下为使控制阀两端的管路接通的状态;而当常开阀受控制上电时,常开阀会切换为使控制阀两端的管路为断开的状态,也即在常开阀上电断开时,管路中的流体无法由常开阀的一端经过常开阀流至常开阀的另一端。
类似地,在如图29所示的制动系统中,常开阀可以包括:测试阀51、第一主缸隔离阀11、第二主缸隔离阀12、第三主缸隔离阀13、第四主缸隔离阀14、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34。
类似地,在如图29所示的制动系统中,常闭阀包括:第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214、踏板模拟阀61、第一增压控制阀21、第二增压控制阀22、第五增压控制阀25、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
以下,对实施例二十三提供的制动系统的连接关系进行描述。
如图29所示,对于实施例二十三提供的第一子系统的描述可以参照实施例二十一或实施例二十二。
如图29所示,在实施例二十三提供的第二子系统中,增压器2采用双向增压缸202。第一增压腔202i通过增压器单向阀202v与接口8e连接。增压器单向阀202v被配置为在一定条件下允许制动液从管路202k经增压器单向阀202v流向第一增压腔202i。
需要说明的是,图29中双向增压缸202的第二增压腔202j与储液容器5连接线仅表示当双向增压缸的活塞回到最左边时可以实现快速降压,并不表示该管路用于补液,类似地,本条说明也适用于本申请说明书提供的其他实施例。
如图29所示,在实施例二十三提供的第二子系统中,增压器2的第一增压腔202i与第五增压控制阀25的第一端连接。第五增压控制阀25的第二端与第二增压腔202j连接,第五增压控制阀25的第二端还分别与第一增压控制阀21的第一端和第二增压控制阀22的第一端连接。第一增压控制阀21的第二端与第一制动回路3i连接,具体地,第一增压控制阀21的第二端与第一轮缸增压阀31的第一端、第二轮缸增压阀32的第一端连接,第一轮缸增压阀31的第二端与接口4a连接,并通过接口4a与第一轮缸3a连接;第二轮缸增压阀32的第二端与接口4b连接,并通过接口4b与第二轮缸3b连接。类似地,第二增压控制阀22的第二端与第二制动回路3j连接,具体地,第二增压控制阀22的第二端分别与第三轮缸增压阀33的第一端、第四轮缸增压阀34的第一端连接,第三轮缸增压阀33的第二端与接口4c连接,并通过接口4c与第三轮缸3c连接;第四轮缸增压阀34的第二端与接口4d连接,并通过接口4d与第四轮缸3d连接。
在如图29所示的制动系统中,其他未提及的系统组件或连接关系可参考实施例二十一,本处不再赘述。
如图29所示,对于本申请实施例二十三提供的制动系统来说,ECU2通过电机位置传感器MPS信号判断双向增压缸202内活塞的位置。若活塞位置到达双向增压缸202的最右侧,并且此时制动轮缸仍需继续增压,则ECU2控制第五增压控制阀25处于断开状态,并控制增压驱动电机201反转,双向增压缸内的活塞向左运动,第二增压腔202j腔体内的制动液经过第一增压控制阀21、第二增压控制阀22、轮缸增压阀(31,32,33,34)流入制动轮缸,实现车轮增压。
相比于实施例二十一提供的制动系统,实施例二十三提供的制动系统能够减少电磁阀数量,降低成本,有利于简化制动系统。
综上所述,本申请实施例一至实施例二十三提供的制动系统具有冗余程度高、集成度高体积小、模块划分灵活成本低、可靠性高安全性高等优点,能够满足车辆ABS/BBF/TCS/ESC/AEB/ACC等集成制动功能需求。
实施例二十四
图30为本申请实施例二十四提供的制动系统。相比于其他实施例提供的制动系统,如图30所示,实施例二十四提供的制动系统的制动主腔1只包括1个制动主腔,并且第一子系统只包括一条冗余增压管路。本申请并不对本发明构思下的制动系统的制动主缸内主腔的数量进行限制,也不对第一子系统中冗余增压线路数量进行限制。
可以理解的是,制动主缸1中包括的制动主腔的数量可以为1个、2个或者更多;同样可以理解的是,第一子系统中增压泵的数量可以为1个、2个或者更多,第一子系统中冗余增压线路可以为1条、2条或者更多。
实施例二十五
图31为本申请实施例二十五提供的制动系统。相比于实施例二十三提供的制动系统,实施例二十五提供的制动系统在控制单元的冗余设计上存在区别。需要说明的是,在本申请一些实施例中,第一控制单元91也被称为ECU1,第二控制单元92也被称为ECU2,第三控制单元93也被称为ECU3。需要说明的是,ECU并不是对于本申请实施例的限制,控制单元还可以是其他类型,例如可以是域控制器,又如,还可以是中央集中式控制器等。
如图31所示,在实施例二十三提供的制动系统的基础上,在实施例二十五提供的制动系统中,第二子系统Module2包括第二控制单元92和第三控制单元93。同时,实施例二十五提供的制动系统还包括第一控制单元91。对于实施例二十五提供的制动系统,其第一控制单元91、第二控制单元92和第三控制单元93所控制的对象分别如下:
(1)第一控制单元91控制的对象包括:第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214。
第一控制单元91接收第一主缸压力传感器MCPS、踏板行程传感器PTS和油壶液位传感器RLS的信号。
需要说明的是,当油壶液位传感器RLS的信号指示液位较低时,ECU1会对整车发出警告,并且ECU1、ECU2的控制功能会降级,例如增压目标值将会受到限制。
(2)第二控制单元92控制的对象包括:增压驱动电机201、踏板模拟阀61、第三主缸隔离阀13、第四主缸隔离阀14、第一增压控制阀21、第二增压控制阀22、第五增压控制阀25、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
(3)第三控制单元93控制的对象包括:增压驱动电机201、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
需要注意的是,在实施例二十五提供的制动系统中,第二控制单元92和第三控制单元共同控制以下对象:增压驱动电机201、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
一种可能的实施方式,第二控制单元92和第三控制单元93接收第二主缸压力传感器MCPS、制动回路压力传感器BCPS和电机位置传感器MPS的信号。
一种可能的实施方式,可以对踏板行程传感器PTS进行独立供电,并分别向ECU1、ECU2和ECU3提供踏板行程信号。
一种可能的实施方式,制动系统包括第一控制器和第二控制器,第一控制器包括第一控制单元91,第二控制器包括第二控制单元92和第三控制单元93,并且,第一控制器和第二控制器中至少还包括各种电磁阀驱动以及各种信号处理及控制输出接口。第二控制器还包括电机驱动相关的信号处理及控制输出接口。控制器还可以接收各种传感器的测量或检测信号,如环境条件、驾驶员输入、制动系统状态等,通过计算和判断来控制制动系统的制动特性。
以下介绍本申请实施例二十五提供的制动系统的不同工作模式。
本申请实施例二十五提供的制动系统至少包括4种工作模式:(1)ECU1、ECU2、ECU3协同工作;(2)ECU1单独工作;(3)ECU2单独工作;(4)ECU3单独工作;(5)机械备份模式。
工作模式1:常规制动模式,ECU1、ECU2、ECU3协同工作
制动系统无任何故障时,ECU1、ECU2、ECU3协同工作。一种可能的应用场景,当驾驶员踩下制动踏板时,主缸推杆1k推动制动主缸活塞,主缸内压力上升。ECU1控制第一主缸隔离阀11和第二主缸隔离阀12接通,并控制第三主缸隔离阀13和第四主缸隔离阀14断开。制动主缸1的第二主腔1j与踏板感觉模拟器6接通,踏板感觉模拟器工作产生踏板感。ECU1控制第一增压泵控制阀211、第二增压泵控制阀212、第三增压泵控制阀213、第四增压泵控制阀214断开,此时第一增压泵203和第二增压泵204不工作。ECU1还接收踏板行程传感器PTS的信号和第一主缸压力传感器MCPS的信号,并将所接收的信号传递给ECU2和/或ECU3。
需要说明的是,ECU2和ECU3可以互相通信。
ECU2和/或ECU3根据ECU1传递的踏板行程传感器PTS的信号和主缸压力传感器MCPS的信号,确定驾驶员的制动意图。
具体地,当识别到制动需求时,实施例二十五提供的制动系统的常规建压过程可描述如下:ECU2控制增压驱动电机201推动单向增压缸202内的活塞向右运动,ECU2控制第一增压控制阀21、第二增压控制阀22、第五增压控制阀25打开。第一增压腔202i内的油液一部分经过第一增压控制阀21和第二增压控制阀22,并分别通过轮缸增压阀(31,32,33,34)流入制动轮缸(3a,3b,3c,3d),实现车轮制动。
此外,ECU2通过电机位置传感器MPS信号判断双向增压缸202内活塞的位置。若活塞位置到达双向增压缸202的最右侧,并且此时制动轮缸仍需继续增压,则ECU2控制第五增压控制阀25处于关闭状态,并保持第一增压控制阀21和第二增压控制阀22接通,并控制增压驱动电机201反转,单向增压缸202内的活塞向左运动,推动制动液由第二增压腔202j流向第一增压控制阀21或第二增压控制阀22。
当某一轮缸制动压力过大时,实施例二十五提供的制动系统的常规减压过程可描述如下:例如制动轮缸3a压力过大时,控制轮缸3a对应的轮缸增压阀31断开,接通相应的轮缸减压阀41,该轮缸内的制动液通过轮缸减压阀41流入储液容器5,实现减压。
由此,ECU2根据传感器信号,计算增压驱动电机201及第二子系统内各电磁阀的控制信号。ECU2控制第一增压控制阀21、第二增压控制阀22、第五增压控制阀25的状态,并控制增压驱动电机201以推动增压器活塞建压。ECU2通过控制轮缸增压阀(31,32,33,34)和轮缸减压阀(41,42,43,44)的接通与断开来实现对各制动轮缸(3a,3b,3c,3d)的压力控 制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式2:冗余制动模式,ECU1单独工作
本工作模式可参考实施例二十一或其他实施例的描述,本处不再赘述。
工作模式3:冗余制动模式,ECU2单独工作
当ECU1出现故障时,ECU2单独工作。ECU2根据第二主缸压力传感器MCPS获得制动压力信号,并根据该信号确定驾驶意图。ECU2计算增压驱动电机201及第二子系统内各电磁阀的控制信号。
ECU2单独工作的原理与ECU1和ECU2协同工作的工作模式1类似,本处不再赘述。总之,ECU2根据传感器信号,计算增压驱动电机201及第二子系统内各电磁阀的控制信号。ECU2控制第一增压控制阀21、第二增压控制阀22的状态,并控制增压驱动电机201以推动增压器活塞建压。ECU2通过控制轮缸增压阀(31,32,33,34)和轮缸减压阀(41,42,43,44)的接通与断开来实现对各制动轮缸(3a,3b,3c,3d)的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式4:冗余制动模式,ECU3单独工作
在实施例二十五提供的制动系统中,ECU3对轮缸增压阀和轮缸减压阀进行冗余控制,当ECU2失效时,ECU3配合Module1中的ECU1可以实现每个车轮的轮缸压力独立控制,实现绝大部分的制动控制功能。
工作模式5:冗余制动模式,机械备份
此外,当ECU1、ECU2、ECU3全部失效时,实施例二十五提供的制动系统可以执行机械备份。驾驶员踩下制动踏板,制动液可以由制动主缸1经过第一主缸隔离阀11、第三主缸隔离阀13流至第一轮缸3a和第二轮缸3b,也可以由制动主缸1经过第二主缸隔离阀12、第四主缸隔离阀14流至第三轮缸3c和第四轮缸3d,以实现制动。
实施例二十六
图32为本申请实施例二十六提供的制动系统。
如图32所示,在实施例二十六提供的制动系统中。Module1中不含ECU,传感器PTS和电磁阀都是通过线束连接到Module2,由Module2中的ECU2进行传感器信号处理和电磁阀控制,方案简单,成本低,适合低配车辆。
实施例二十七
图33为本申请实施例二十七提供的制动系统。
如图33所示,在实施例二十七提供的制动系统中,ECU3对所有控制阀进行冗余控制,并且ECU2和ECU3共同控制增压器驱动电机201。例如,一种可能的实施方式,ECU2可以控制增压驱动电机201的一套绕组,ECU3控制增压驱动电机201的另一套绕组。当ECU2失效时,ECU3实现与ECU2相同的功能,实现全量功能备份。第一子系统Moudle1中的PTS传感器和TSV通过线束连接到ECU2和/或ECU3,功能更全面。
此外,需要说明的是,本申请实施例提供的制动系统包括多种第一子系统和多种第二子系统,在满足接口对应的前提下,不同实施例所提供的第一子系统和第二子系统之间可以重新组合以形成新的制动系统,本申请对此不作限制。例如,图13、图22至图26分别提供了6种不同的第一子系统,图13、图17至图21分别提供了6种不同的第二子系统,以上6种 第一子系统中的任意一个均可以通过其接口8E、接口8F、接口8G与以上6种第二子系统中的任意一个的接口8e、接口8f、接口8g分别对应连接,以组成新的制动系统。又如,本申请图27和图28提供的第二子系统,还可以被替换为如下第二子系统中的任意一个:在如图13、图17至图21分别提供的6种第二子系统的基础上加入如图27所示的踏板感觉模拟器和主缸压力传感器所形成的第二子系统。又如,如图29所示的制动系统的第二子系统也可以与本申请实施例提供的其他第一子系统组合形成新的制动系统。
因此,本申请说明书提供的制动系统能够通过灵活的组合调整其冗余程度、成本高低、结构复杂度、系统可靠性等特性,以适应不同级别车型和应用场景的需求。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请披露的基础上可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (55)

  1. 一种制动系统,其特征在于,所述制动系统包括:制动主缸(1)、第一增压器、第二增压器、至少一个第一接口;
    所述第一增压器通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;
    所述制动主缸(1)包括第一主腔(1i),所述第一主腔(1i)通过所述第二增压器与第二控制阀(13)连接,所述第二控制阀(13)通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  2. 根据权利要求1所述的制动系统,其特征在于,所述制动系统还包括储液容器(5),所述至少一个第一接口通过至少一个第三控制阀(41,42,43,44)与所述储液容器(5)连接。
  3. 根据权利要求2所述的制动系统,其特征在于,所述第二增压器包括第四控制阀(11),所述第一主腔(1i)依次通过所述第四控制阀(11)、所述第二控制阀(13)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  4. 根据权利要求3所述的制动系统,其特征在于,所述第二增压器还包括第一增压泵(203),所述第一增压泵(203)的输出端接入所述第四控制阀(11)与所述第二控制阀(13)之间的管路,并依次通过所述第二控制阀(13)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  5. 根据权利要求4所述的制动系统,其特征在于,所述第一增压泵(203)的输入端与所述储液容器(5)连接。
  6. 根据权利要求5所述的制动系统,其特征在于,所述第二增压器还包括第一单向阀(203v),所述储液容器(5)与所述第一单向阀(203v)的第一端连接,所述第一单向阀(203v)的第二端与所述第一增压泵(203)的输入端连接,所述第一单向阀(203v)被配置为允许制动液由所述储液容器(5)经所述第一单向阀(203v)流向所述第一增压泵(203)的输入端。
  7. 根据权利要求6所述的制动系统,其特征在于,所述第二增压器还包括第五控制阀(211),所述储液容器(5)依次通过所述第五控制阀(211)、所述第二控制阀(13)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  8. 根据权利要求7所述的制动系统,其特征在于,所述第二增压器还包括第六控制阀(213),所述第六控制阀(213)的第一端与所述第一主腔(1i)连接,所述第六控制阀(213)的第二端接入所述第一单向阀(203v)和所述第一增压泵(203)之间的管路并与所述第一增压泵(203)的输入端连接。
  9. 根据权利要求8所述的制动系统,其特征在于,所述制动主缸(1)还包括第二主腔(1j),所述第二主腔(1j)依次通过第七控制阀(12)、第八控制阀(14)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;
    所述第二增压器还包括第二增压泵(204)、第九控制阀(212)、第二单向阀(204v)、第十控制阀(214),其中,
    所述储液容器(5)与所述第二单向阀(204v)的第一端连接,所述第二单向阀(204v)的第二端与所述第二增压泵(204)的输入端连接,所述第二单向阀(204v)被配置为允许制动液由所述储液容器(5)经所述第二单向阀(204v)流向所述第二增压泵(204)的输入端;所述第二增压泵(204)的输出端依次通过所述第八控制阀(14)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;
    所述储液容器(5)依次通过所述第九控制阀(212)、所述第八控制阀(14)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;
    所述第十控制阀(214)的第一端与所述第二主腔(1j)连接,所述第十控制阀(214)的第二端接入所述第二单向阀(204v)和所述第二增压泵(204)之间的管路并与所述第二增压泵(204)的输入端连接。
  10. 根据权利要求6所述的制动系统,其特征在于,所述第二增压器还包括第五控制阀(211),所述第五控制阀(211)的第一端接入所述第一增压泵(203)的输出端与所述第二控制阀(13)之间的管路,所述第五控制阀(211)的第二端接入所述第一增压泵(203)的输入端与所述第一单向阀(203v)的第二端之间的管路。
  11. 根据权利要求10所述的制动系统,其特征在于,所述第二增压器还包括第六控制阀(213),所述储液容器(5)依次通过所述第六控制阀(213)、所述第二控制阀(13)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  12. 根据权利要求5所述的制动系统,其特征在于,所述第二增压器还包括第五控制阀(211)和第六控制阀(213),其中,所述储液容器(5)还依次通过所述第六控制阀(213)、所述第五控制阀(211)、所述第二控制阀(13)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  13. 根据权利要求12所述的制动系统,其特征在于,所述储液容器(5)还通过所述第六控制阀(213)与所述第一增压泵(203)的输入端连接。
  14. 根据权利要求13所述的制动系统,其特征在于,所述制动主缸(1)还包括第二主腔(1j),所述第二主腔(1j)依次通过第七控制阀(12)、第八控制阀(14)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;
    所述第二增压器还包括第二增压泵(204)、第九控制阀(212),其中,所述储液容器(5)通过所述第六控制阀(213)与所述第二增压泵(204)的输入端连接,所述储液容器(5)依次通过所述第六控制阀(213)、所述第九控制阀(212)、所述第八控制阀(14)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  15. 根据权利要求4所述的制动系统,其特征在于,所述第二增压器还包括第六控制阀(213),所述第六控制阀(213)的第一端接入所述第四控制阀(11)与所述第一主腔(1i)之间的管路,所述第六控制阀(213)的第二端与所述第一增压泵(203)的输入端连接。
  16. 根据权利要求2所述的制动系统,其特征在于,所述第一增压器包括第一增压腔(202i),所述第一增压腔(202i)分别与第一增压控制阀(21)的第一端以及第二增压控制阀(22)的第一端连接,所述第一增压控制阀(21)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;所述第二增压控制阀(22)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  17. 根据权利要求16所述的制动系统,其特征在于,所述第一增压器还包括第三增压控制阀(23)和第四增压控制阀(24),所述第一增压腔(202i)分别与所述第三增压控制阀(23)的第一端以及所述第四增压控制阀(24)的第一端连接,所述第三增压控制阀(23)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;所述第四增压控制阀(24)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  18. 根据权利要求16所述的制动系统,其特征在于,所述第一增压器还包括第二增压腔(202j)、第三增压控制阀(23)和第四增压控制阀(24),所述第二增压腔(202j)分别与 所述第三增压控制阀(23)的第一端以及所述第四增压控制阀(24)的第一端连接,所述第三增压控制阀(23)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;所述第四增压控制阀(24)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  19. 根据权利要求16所述的制动系统,其特征在于,所述第一增压器还包括第二增压腔(202j)和第五增压控制阀(25),所述第一增压腔(202i)与所述第五增压控制阀(25)的第一端连接,所述第五增压控制阀(25)的第二端分别与所述第一增压控制阀(21)的第一端以及所述第二增压控制阀(22)的第一端连接;
    所述第二增压腔(202j)分别与所述第一增压控制阀(21)的第一端以及所述第二增压控制阀(22)的第一端连接;
    所述第一增压控制阀(21)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;所述第二增压控制阀(22)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  20. 根据权利要求17所述的制动系统,其特征在于,所述制动系统包括第一控制单元(92)和第二控制单元(93),所述第二控制阀(13)被配置为受所述第一控制单元(92)和所述第二控制单元(93)共同控制,所述第一增压控制阀(21)和所述第二增压控制阀(22)被配置为受所述第一控制单元(92)控制,所述第三增压控制阀(23)和所述第四增压控制阀(24)被配置为受所述第二控制单元(93)控制。
  21. 根据权利要求18所述的制动系统,其特征在于,所述制动系统包括第一控制单元(92)和第二控制单元(93),所述第二控制阀(13)、所述第一增压控制阀(21)、所述第二增压控制阀(22)、所述第三增压控制阀(23)、所述第四增压控制阀(24)被配置为受所述第一控制单元(92)和所述第二控制单元(93)共同控制。
  22. 根据权利要求19所述的制动系统,其特征在于,所述制动系统包括第一控制单元(92)和第二控制单元(93),所述第一增压控制阀(21)、所述第二增压控制阀(22)、所述第五增压控制阀(25)、所述第二控制阀(13)被配置为受所述第一控制单元(92)控制,所述至少一个第一控制阀(31,32,33,34)、所述至少一个第三控制阀(41,42,43,44)被配置为受所述第一控制单元(92)和所述第二控制单元(93)共同控制。
  23. 根据权利要求20至22任一项所述的制动系统,其特征在于,所述第一增压器被配置为受所述第一控制单元(92)和所述第二控制单元(93)共同控制。
  24. 根据权利要求2至23任一项所述的制动系统,其特征在于,所述制动系统包括第一子系统和第二子系统:
    其中,所述第一子系统包括:所述制动主缸(1)、所述储液容器(5)、所述第二增压器、至少一个第二接口(8F,8G)、第三接口(8E);
    其中,所述制动主缸(1)与所述储液容器(5)连接,所述制动主缸(1)通过所述第二增压器与所述至少一个第二接口(8F,8G)连接,所述储液容器(5)与所述第三接口(8E)连接;
    所述第二子系统包括:所述第一增压器、所述至少一个第二控制阀(13,14)、所述至少一个第一控制阀(31,32,33,34)、所述至少一个第三控制阀(41,42,43,44)、至少一个第四接口(8f,8g)、第五接口(8e)、至少一个第一接口;
    其中,所述至少一个第四接口(8f,8g)通过所述至少一个第二控制阀(13,14)与所述至少一个第一控制阀(31,32,33,34)的第一端连接,所述第五接口(8e)与所述第一增压器 (2)连接,所述第一增压器(2)与所述至少一个第一控制阀(31,32,33,34)的第一端连接,所述至少一个第一控制阀(31,32,33,34)的第二端与所述至少一个第一接口连接,所述至少一个第一接口用于与至少一个制动轮缸连接;
    所述至少一个第一接口通过所述至少一个第三控制阀(41,42,43,44)与所述第五接口(8e)连接;
    所述至少一个第二接口(8F,8G)和所述至少一个第四接口(8f,8g)一一对应连接,所述第三接口(8E)与所述第五接口(8e)连接。
  25. 一种液压装置,其特征在于,所述液压装置包括:制动主缸(1)、储液容器(5)、第二增压器、至少一个第二接口、第三接口(8E);
    其中,所述制动主缸(1)包括第一主腔(1i),所述至少一个第一接口包括第一输出接口(8F);
    所述第一主腔(1i)通过所述第二增压器与所述第一输出接口(8F)连接,
    所述储液容器(5)与所述第一主腔(1i)连接,所述储液容器(5)与所述第二接口(8E)连接。
  26. 根据权利要求25所述的液压装置,其特征在于,所述第二增压器包括第四控制阀(11),所述第一主腔(1i)通过所述第四控制阀(11)与所述第一输出接口(8F)连接。
  27. 根据权利要求26所述的液压装置,其特征在于,所述第二增压器还包括第一增压泵(203),所述第一增压泵(203)的输出端接入所述第四控制阀(11)与所述第一输出接口(8F)之间的管路。
  28. 根据权利要求27所述的液压装置,其特征在于,所述第一增压泵(203)的输入端与所述储液容器(5)连接。
  29. 根据权利要求28所述的液压装置,其特征在于,还包括第一单向阀(203v),所述储液容器(5)与所述第一单向阀(203v)的第一端连接,所述第一单向阀(203v)的第二端与所述第一增压泵(203)的输入端连接,所述第一单向阀(203v)被配置为允许制动液由所述储液容器(5)经所述第一单向阀(203v)流向所述第一增压泵(203)的输入端。
  30. 根据权利要求29所述的液压装置,其特征在于,所述第二增压器还包括第五控制阀(211),所述储液容器(5)通过所述第五控制阀(211)与所述第一输出接口(8F)连接。
  31. 根据权利要求30所述的液压装置,其特征在于,所述第二增压器还包括第六控制阀(213),所述第六控制阀(213)的第一端与所述第一主腔(1i)连接,所述第六控制阀(213)的第二端接入所述第一单向阀(203v)和所述第一增压泵(203)之间的管路并与所述第一增压泵(203)的输入端连接。
  32. 根据权利要求31所述的液压装置,其特征在于,所述制动主缸(1)还包括第二主腔(1j),所述第二主腔(1j)通过第七控制阀(12)与所述第二输出接口(8G)连接;
    所述第二增压器还包括第二增压泵(204)、第九控制阀(212)、第二单向阀(204v)、第十控制阀(214),其中,
    所述储液容器(5)与所述第二单向阀(204v)的第一端连接,所述第二单向阀(204v)的第二端与所述第二增压泵(204)的输入端连接,所述第二单向阀(204v)被配置为允许制动液由所述储液容器(5)经所述第二单向阀(204v)流向所述第二增压泵(204)的输入端;所述第二增压泵(204)的输出端接入所述第七控制阀(12)与所述第二输出接口(8G)之间的管路;
    所述储液容器(5)依次通过所述第九控制阀(212)与所述第二输出接口(8G)连接;
    所述第十控制阀(214)的第一端与所述第二主腔(1j)连接,所述第十控制阀(214)的第二端接入所述第二单向阀(204v)和所述第二增压泵(204)之间的管路并与所述第二增压泵(204)的输入端连接。
  33. 根据权利要求29所述的液压装置,其特征在于,所述第二增压器还包括第五控制阀(211),所述第五控制阀(211)的第一端接入所述第一增压泵(203)的输出端与所述第一输出接口(8F)之间的管路,所述第五控制阀(211)的第二端接入所述第一增压泵(203)的输入端与所述第一单向阀(203v)的第二端之间的管路。
  34. 根据权利要求33所述的液压装置,其特征在于,所述第二增压器还包括第六控制阀(213),所述储液容器(5)通过所述第六控制阀(213)与所述第一输出接口(8F)连接。
  35. 根据权利要求28所述的液压装置,其特征在于,所述第二增压器还包括第五控制阀(211)和第六控制阀(213),其中,所述储液容器(5)还依次通过所述第六控制阀(213)、所述第五控制阀(211)与所述第一输出接口(8F)连接。
  36. 根据权利要求35所述的液压装置,其特征在于,所述储液容器(5)还通过所述第六控制阀(213)与所述第一增压泵(203)的输入端连接。
  37. 根据权利要求36所述的液压装置,其特征在于,所述制动主缸(1)还包括第二主腔(1j),所述第二主腔(1j)通过第七控制阀(12)与所述第二输出接口(8G)连接;
    所述第二增压器还包括第二增压泵(204)、第九控制阀(212),其中,所述储液容器(5)通过所述第六控制阀(213)与所述第二增压泵(204)的输入端连接,所述储液容器(5)依次通过所述第六控制阀(213)、所述第九控制阀(212)与所述第二输出接口(8G)连接。
  38. 根据权利要求27所述的液压装置,其特征在于,所述第二增压器还包括第六控制阀(213),所述第六控制阀(213)的第一端接入所述第四控制阀(11)与所述第一主腔(1i)之间的管路,所述第六控制阀(213)的第二端与所述第一增压泵(203)的输入端连接。
  39. 一种液压装置,其特征在于,所述液压装置包括:第一增压器、至少一个第一控制阀(31,32,33,34)、至少一个第二控制阀(13,14)、至少一个第三控制阀(41,42,43,44)、至少一个第四接口(8f,8g)、第五接口(8e)、至少一个第一接口;
    其中,所述至少一个第四接口(8f,8g)通过所述至少一个第二控制阀(13,14)与所述至少一个第一控制阀(31,32,33,34)的第一端连接,所述第五接口(8e)与所述第一增压器(2)连接,所述第一增压器(2)与所述至少一个第一控制阀(31,32,33,34)的第一端连接,所述至少一个第一控制阀(31,32,33,34)的第二端与所述至少一个第一接口连接,所述至少一个第一接口用于与至少一个制动轮缸连接;
    所述至少一个第一接口通过所述至少一个第三控制阀(41,42,43,44)与所述第五接口(8e)连接。
  40. 根据权利要求39所述的液压装置,其特征在于,所述第一增压器包括第一增压腔(202i),所述第一增压腔(202i)分别与第一增压控制阀(21)的第一端以及第二增压控制阀(22)的第一端连接,所述第一增压控制阀(21)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;所述第二增压控制阀(22)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  41. 根据权利要求40所述的液压装置,其特征在于,所述第一增压器还包括第三增压控制阀(23)和第四增压控制阀(24),所述第一增压腔(202i)分别与所述第三增压控制阀(23)的第一端以及所述第四增压控制阀(24)的第一端连接,所述第三增压控制阀(23)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;所述 第四增压控制阀(24)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  42. 根据权利要求40所述的液压装置,其特征在于,所述第一增压器还包括第二增压腔(202j)、第三增压控制阀(23)和第四增压控制阀(24),所述第二增压腔(202j)分别与所述第三增压控制阀(23)的第一端以及所述第四增压控制阀(24)的第一端连接,所述第三增压控制阀(23)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;所述第四增压控制阀(24)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  43. 根据权利要求40所述的液压装置,其特征在于,所述第一增压器还包括第二增压腔(202j)和第五增压控制阀(25),所述第一增压腔(202i)与所述第五增压控制阀(25)的第一端连接,所述第五增压控制阀(25)的第二端分别与所述第一增压控制阀(21)的第一端以及所述第二增压控制阀(22)的第一端连接;
    所述第二增压腔(202j)分别与所述第一增压控制阀(21)的第一端以及所述第二增压控制阀(22)的第一端连接;
    所述第一增压控制阀(21)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;所述第二增压控制阀(22)的第二端通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接。
  44. 根据权利要求41所述的液压装置,其特征在于,还包括第一控制单元(92)和第二控制单元(93),所述第二控制阀(13)被配置为受所述第一控制单元(92)和所述第二控制单元(93)共同控制,所述第一增压控制阀(21)和所述第二增压控制阀(22)被配置为受所述第一控制单元(92)控制,所述第三增压控制阀(23)和所述第四增压控制阀(24)被配置为受所述第二控制单元(93)控制。
  45. 根据权利要求42所述的液压装置,其特征在于,还包括第一控制单元(92)和第二控制单元(93),所述第二控制阀(13)、所述第一增压控制阀(21)、所述第二增压控制阀(22)、所述第三增压控制阀(23)、所述第四增压控制阀(24)被配置为受所述第一控制单元(92)和所述第二控制单元(93)共同控制。
  46. 根据权利要求43所述的液压装置,其特征在于,还包括第一控制单元(92)和第二控制单元(93),所述第一增压控制阀(21)、所述第二增压控制阀(22)、所述第五增压控制阀(25)、所述第二控制阀(13)被配置为受所述第一控制单元(92)控制,所述至少一个第一控制阀(31,32,33,34)、所述至少一个第三控制阀(41,42,43,44)被配置为受所述第一控制单元(92)和所述第二控制单元(93)共同控制。
  47. 根据权利要求39至46任一项所述的液压装置,其特征在于,所述第一增压器被配置为受所述第一控制单元(92)和所述第二控制单元(93)共同控制。
  48. 一种制动系统的控制方法,其特征在于,所述制动系统包括:制动主缸、第一增压器、第二增压器、至少一个第一接口;所述第一增压器通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;所述制动主缸包括第一主腔(1i),所述第一主腔(1i)通过所述第二增压器与第二控制阀(13)连接,所述第二控制阀(13)通过所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;
    所述方法包括:
    获取第一制动需求;
    当所述制动系统处于第一状态时,控制所述第二增压器工作;
    所述第一状态包括以下至少一种:所述第一增压器故障、所述第二控制阀(13)故障、所述至少一个第一控制阀(31,32,33,34)故障。
  49. 根据权利要求48所述的方法,其特征在于,所述制动系统包括第一增压泵(203)、第四控制阀(11),其中,所述第一主腔(1i)依次通过所述第四控制阀(11)、所述第二控制阀(13)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;所述第一增压泵(203)的输出端接入所述第四控制阀(11)与所述第二控制阀(13)之间的管路,并依次通过所述第二控制阀(13)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;
    所述方法包括:
    所述控制所述第二增压器工作包括:控制所述第四控制阀(11)处于断开状态。
  50. 根据权利要求49所述的方法,其特征在于,所述制动系统还包括第六控制阀(213),所述第六控制阀(213)的第一端与所述第一主腔(1i)连接,所述第六控制阀(213)的第二端与所述第一增压泵(203)的输入端连接;
    所述方法包括:
    所述控制所述第二增压器工作包括:控制所述第六控制阀(213)处于接通状态。
  51. 根据权利要求49所述的方法,其特征在于,所述制动系统包括储液容器(5)、第五控制阀(211),其中,所述储液容器(5)与所述第一增压泵(203)的输入端连接,所述储液容器(5)通过所述第五控制阀(211)、所述第二控制阀(13)、所述至少一个第一控制阀(31,32,33,34)与所述至少一个第一接口连接;
    所述方法包括:
    获取第二制动需求;
    控制所述第五控制阀(211)处于接通状态。
  52. 根据权利要求51所述的方法,其特征在于,所述方法包括:根据所述第二制动需求,控制所述第五控制阀(211)的开度或开关频率。
  53. 根据权利要求49所述的方法,其特征在于,所述制动系统包括第一控制单元(91)、第二控制单元(92),所述第二增压器被配置为受所述第一控制单元(91)控制,所述第二控制阀(13)和所述第一增压器被配置为受所述第二控制单元控制(92);
    所述方法包括:
    所述第一状态还包括:所述第二控制单元故障。
  54. 一种可读存储介质,其特征在于,所述可读存储介质存储有程序指令,当所述程序指令被执行时执行如权利要求48至53任一项所述的方法。
  55. 一种车辆,其特征在于,所述车辆包括如权利要求1至22任一项所述的制动系统,或者所述车辆包括如权利要求25至47任一项所述的液压装置。
PCT/CN2021/110401 2021-08-03 2021-08-03 一种液压装置、制动系统及车辆 WO2023010296A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21952205.9A EP4375149A1 (en) 2021-08-03 2021-08-03 Hydraulic apparatus, braking system, and vehicle
PCT/CN2021/110401 WO2023010296A1 (zh) 2021-08-03 2021-08-03 一种液压装置、制动系统及车辆
CN202180006482.XA CN115943099A (zh) 2021-08-03 2021-08-03 一种液压装置、制动系统及车辆
KR1020247007066A KR20240041370A (ko) 2021-08-03 2021-08-03 유압 장치, 브레이크 시스템, 및 차량
US18/431,430 US20240174207A1 (en) 2021-08-03 2024-02-02 Hydraulic Apparatus, Brake System, and Vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110401 WO2023010296A1 (zh) 2021-08-03 2021-08-03 一种液压装置、制动系统及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/431,430 Continuation US20240174207A1 (en) 2021-08-03 2024-02-02 Hydraulic Apparatus, Brake System, and Vehicle

Publications (1)

Publication Number Publication Date
WO2023010296A1 true WO2023010296A1 (zh) 2023-02-09

Family

ID=85155007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110401 WO2023010296A1 (zh) 2021-08-03 2021-08-03 一种液压装置、制动系统及车辆

Country Status (5)

Country Link
US (1) US20240174207A1 (zh)
EP (1) EP4375149A1 (zh)
KR (1) KR20240041370A (zh)
CN (1) CN115943099A (zh)
WO (1) WO2023010296A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211386A (ja) * 2001-01-16 2002-07-31 Toyota Motor Corp ブレーキ装置
CN102211571A (zh) * 2010-04-05 2011-10-12 本田技研工业株式会社 车辆用制动装置及车辆用制动装置的控制方法
CN106458192A (zh) * 2014-05-15 2017-02-22 大陆-特韦斯贸易合伙股份公司及两合公司 用于机动车的制动系统
CN111284465A (zh) * 2020-04-22 2020-06-16 芜湖伯特利电子控制系统有限公司 一种适用于自动驾驶的制动系统及控制方法
CN111376884A (zh) * 2018-12-28 2020-07-07 Zf主动安全有限公司 机动车辆液压制动系统及其操作方法
CN112776769A (zh) * 2019-11-08 2021-05-11 比亚迪股份有限公司 车辆制动系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211386A (ja) * 2001-01-16 2002-07-31 Toyota Motor Corp ブレーキ装置
CN102211571A (zh) * 2010-04-05 2011-10-12 本田技研工业株式会社 车辆用制动装置及车辆用制动装置的控制方法
CN106458192A (zh) * 2014-05-15 2017-02-22 大陆-特韦斯贸易合伙股份公司及两合公司 用于机动车的制动系统
CN111376884A (zh) * 2018-12-28 2020-07-07 Zf主动安全有限公司 机动车辆液压制动系统及其操作方法
CN112776769A (zh) * 2019-11-08 2021-05-11 比亚迪股份有限公司 车辆制动系统及其控制方法
CN111284465A (zh) * 2020-04-22 2020-06-16 芜湖伯特利电子控制系统有限公司 一种适用于自动驾驶的制动系统及控制方法

Also Published As

Publication number Publication date
CN115943099A (zh) 2023-04-07
EP4375149A1 (en) 2024-05-29
KR20240041370A (ko) 2024-03-29
US20240174207A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
CN110962815B (zh) 面向自动驾驶的线控液压制动控制系统及其控制方法
CN108501921B (zh) 一种具有双压力源的液压线控制动系统及其制动控制方法
CN109952240A (zh) 包括用于电子驻车制动器的致动单元的独立控制单元的系统
KR20160108349A (ko) 차량들용의 브레이크 시스템
CN109455174A (zh) 一种采用高压蓄能器的线控液压制动系统及其制动控制方法
KR20110079681A (ko) 유압식 및 전기기계식으로 작동 가능한 휠 브레이크를 갖는 조합된 차량 브레이크 시스템
CN111284465A (zh) 一种适用于自动驾驶的制动系统及控制方法
CN103950443A (zh) 踏板感觉主动控制式电子液压制动系统
CN115427270A (zh) 行驶动力系统和中央控制电动汽车
CN209241052U (zh) 一种采用高压蓄能器的线控液压制动系统
US20230001905A1 (en) Braking system, braking method, and vehicle
CN103231704A (zh) 基于液压控制单元和一体式制动主缸的电液复合制动系统
CN112739929A (zh) 一种液压装置、制动装置、制动系统及制动控制方法
CN207374368U (zh) 车辆稳定控制与线控驻车制动集成装置
CN113561954B (zh) 汽车中制动系统的液压调节单元、制动系统及控制方法
CN108495773B (zh) 用于运行车辆的制动系统的方法和设备以及制动系统
WO2023010296A1 (zh) 一种液压装置、制动系统及车辆
WO2023010297A1 (zh) 一种制动系统、液压装置及车辆
CN114291062B (zh) 线控制动系统、线控制动方法及包括线控制动系统的车辆
CN115476832A (zh) 一种基于线控制动的冗余安全控制系统
CN112519739A (zh) 一种分体式电子液压制动系统及方法
WO2023272667A1 (zh) 线控制动系统及控制方法
CN114523945B (zh) 制动系统、制动方法、可读存储介质、车辆
CN214215755U (zh) 一种制动系统
WO2023272668A1 (zh) 制动系统及制动系统的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024506627

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021952205

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021952205

Country of ref document: EP

Effective date: 20240209

ENP Entry into the national phase

Ref document number: 20247007066

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE