WO2023010297A1 - 一种制动系统、液压装置及车辆 - Google Patents

一种制动系统、液压装置及车辆 Download PDF

Info

Publication number
WO2023010297A1
WO2023010297A1 PCT/CN2021/110403 CN2021110403W WO2023010297A1 WO 2023010297 A1 WO2023010297 A1 WO 2023010297A1 CN 2021110403 W CN2021110403 W CN 2021110403W WO 2023010297 A1 WO2023010297 A1 WO 2023010297A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
valve
control unit
control
boost
Prior art date
Application number
PCT/CN2021/110403
Other languages
English (en)
French (fr)
Inventor
王雷
杨维妙
张永生
卢宇灏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21952206.7A priority Critical patent/EP4375150A1/en
Priority to CN202180101136.XA priority patent/CN117751062A/zh
Priority to KR1020247006407A priority patent/KR20240039008A/ko
Priority to PCT/CN2021/110403 priority patent/WO2023010297A1/zh
Publication of WO2023010297A1 publication Critical patent/WO2023010297A1/zh
Priority to US18/431,700 priority patent/US20240174206A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/13Failsafe arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/81Braking systems

Definitions

  • the present application relates to the field of vehicle braking, in particular to an electro-hydraulic braking system.
  • the braking system can provide functions such as automatic emergency braking (AEB), anti-lock braking (ABS), traction control (TCS) and stability control (ESC) during vehicle driving.
  • AEB automatic emergency braking
  • ABS anti-lock braking
  • TCS traction control
  • ESC stability control
  • the challenges faced by the braking system include: meeting the requirements for safety and reliability of the braking system while meeting miniaturization and low cost, and improving the redundancy of the system.
  • This application relates to a brake system that meets the redundant safety requirements of autonomous vehicles.
  • This application proposes a multiple redundant control electric Hydraulic brake system.
  • the braking system includes: a brake master cylinder (1), a supercharger (2), at least one first a control valve (11,12), at least one second control valve (21,22,23,24), at least one third control valve (31,32,33,34), at least one first port (4), A first control unit (91) and a second control unit (92).
  • the first end of at least one third control valve (31, 32, 33, 34) is respectively connected with at least one first interface (4), and at least one first interface (4) is used for respectively connecting with at least one brake wheel Cylinder (3) is connected.
  • a second end of at least one third control valve (31, 32, 33, 34) is connected to the brake master cylinder (1) via at least one first control valve (11, 12).
  • the second end of the at least one third control valve (31, 32, 33, 34) is also connected to the supercharger (2) through the at least one second control valve (21, 22, 23, 24).
  • At least one third control valve (31, 32, 33, 34) is configured to be controlled by the first control unit (91).
  • the at least one second control valve (21, 22, 23, 24) comprises at least one first booster branch control valve (21, 22) and at least one second booster branch control valve (23, 24), at least one A first booster branch control valve (21, 22) is configured to be controlled by a first control unit (91), and at least one second booster branch control valve (23, 24) is configured to be controlled by a second control unit ( 92) Control.
  • the booster (2) is configured to be controlled by a first control unit (91) and a second control unit (92), respectively.
  • the brake master cylinder may also include more brake master chambers. It should be noted that the second main chamber can be redundant with the first main chamber to improve the reliability of the braking system.
  • the number of the third control valves may be 4, or may be more.
  • the number of the third control valves can also be greater than four.
  • the interface can be a liquid inlet or a liquid outlet, or include both a liquid inlet and a liquid outlet, or have both the functions of a liquid inlet and a liquid outlet.
  • the booster (2) includes a booster driving device (201) and a booster hydraulic cylinder (202), the booster The drive device (201) is configured to be controlled by a first control unit (91) and a second control unit (92), respectively.
  • the supercharger driving device (201) is a six-phase motor, including a first winding and a second winding, and the first winding is configured To be controlled by the first control unit (91), the second winding is configured to be controlled by the second control unit (92).
  • the booster hydraulic cylinder (202) is a two-way booster hydraulic cylinder, and the booster hydraulic cylinder (202) It includes a first pressurization chamber and a second pressurization chamber, at least one first pressurization branch control valve (21, 22) is connected with the first pressurization chamber, at least one second pressurization branch control valve (23, 24 ) is connected to the second pressurized chamber.
  • the booster hydraulic cylinder (202) is a one-way booster hydraulic cylinder, and at least one first booster branch
  • the branch control valves (21, 22) and at least one second supercharging branch control valve (23, 24) are connected in parallel, and are respectively connected to the booster hydraulic cylinder (202).
  • the sixth possible implementation it further includes a liquid storage container (5) and a fifth control valve (51), the liquid storage container (5) Connect with brake master cylinder (1) and supercharger (2) respectively, the first end of fifth control valve (51) is connected with brake master cylinder (1), the second end of fifth control valve (51) For connection with the liquid reservoir (5).
  • the seventh possible implementation manner it further includes a pedal feeling simulator (6) and a sixth control valve (61), and the pedal feeling simulator (6) passes through the The six control valves (61) are connected with the brake master cylinder (1).
  • At least one fourth control valve (41, 42, 43, 44), at least one fourth control valve (41, 42, 43, 44) are respectively connected to at least one first interface (4), and the other end of at least one fourth control valve (41, 42, 43, 44) is used to connect with the liquid storage container (5) , at least one fourth control valve is configured to be controlled by the first control unit (91).
  • the at least one first pressure boost branch control valve (21, 22) is further configured to be controlled by the second control unit (92) Controlled, at least one second boost branch control valve (23, 24) is also configured to be controlled by the first control unit (91).
  • At least one third control valve (31, 32, 33, 34) and at least one fourth control valve ( 41, 42, 43, 44) are also configured to be controlled by a second control unit (92).
  • the braking system further includes: at least one first control valve (11, 12) is controlled by configured to be controlled by the first control unit (91) and the second control unit (92), respectively.
  • the fifth control valve (51) is configured to be controlled by the first control unit (91).
  • the sixth control valve (61) is configured to be controlled by the first control unit (91) and the second control unit (92), respectively.
  • the brake system further includes a third control unit (93).
  • a third control unit wherein at least one first control valve (11, 12) is configured to be controlled by a third control unit (93).
  • the fifth control valve (51) is configured to be controlled by the third control unit (93).
  • the sixth control valve (61) is configured to be controlled by the third control unit (93).
  • the brake system further includes at least one second interface and at least one third interface, wherein at least one first control The valves (11, 12) are respectively connected to at least one third control valve (31, 32, 33, 34) through at least one second interface, and at least one fourth control valve (41, 42, 43, 44) is connected through the third interface It is connected with the liquid storage container (5), and the supercharger (2) is connected with the liquid storage container (5) through at least one third interface.
  • the second aspect of the present application provides a hydraulic device.
  • the hydraulic device includes: a supercharger (2), at least one second control valve (21, 22, 23, 24), at least one third control valve (31, 32, 33, 34), at least one fourth control valve (41, 42, 43, 44), a first control unit (91) and a second control unit (92) , at least one first interface (4), at least one second interface, at least one third interface.
  • the first end of at least one third control valve (31, 32, 33, 34) is respectively connected with at least one first interface (4), and at least one first interface (4) is used for respectively connecting with at least one brake wheel Cylinder (3) is connected.
  • the second end of the at least one third control valve (31, 32, 33, 34) is connected with at least one second port, and the at least one second port is used for connecting with the brake master cylinder.
  • the second end of the at least one third control valve (31, 32, 33, 34) is also connected to the supercharger (2) through the at least one second control valve (21, 22, 23, 24).
  • the supercharger (2) is connected with at least one third interface, and the at least one third interface is used for connecting with the liquid storage container.
  • a first end of at least one fourth control valve (41, 42, 43, 44) is connected to at least one first interface, and a second end of at least one fourth control valve (41, 42, 43, 44) is connected to at least one first port.
  • At least one third control valve (31, 32, 33, 34) is configured to be controlled by the first control unit (91).
  • the at least one second control valve (21, 22, 23, 24) comprises at least one first booster branch control valve (21, 22) and at least one second booster branch control valve (23, 24), at least one A first booster branch control valve (21, 22) is configured to be controlled by a first control unit (91), and at least one second booster branch control valve (23, 24) is configured to be controlled by a second control unit ( 92) Control.
  • the booster (2) is configured to be controlled by a first control unit (91) and a second control unit (92), respectively.
  • the supercharger (2) includes a supercharger driving device (201) and a supercharger hydraulic cylinder (202), and the supercharger
  • the drive device (201) is configured to be controlled by a first control unit (91) and a second control unit (92), respectively.
  • the supercharger driving device (201) is a six-phase motor, including a first winding and a second winding, and the first winding is configured To be controlled by the first control unit (91), the second winding is configured to be controlled by the second control unit (92).
  • the booster hydraulic cylinder (202) is a two-way booster hydraulic cylinder, and the booster hydraulic cylinder (202) It includes a first pressurization chamber and a second pressurization chamber, at least one first pressurization branch control valve (21, 22) is connected with the first pressurization chamber, at least one second pressurization branch control valve (23, 24 ) is connected to the second pressurized chamber.
  • the booster hydraulic cylinder (202) is a one-way booster hydraulic cylinder, and at least one first booster branch
  • the branch control valves (21, 22) and at least one second supercharging branch control valve (23, 24) are connected in parallel, and are respectively connected to the booster hydraulic cylinder (202).
  • the at least one first pressure boost branch control valve (21, 22) is further configured to be controlled by the second Controlled by the unit (92), at least one second boost branch control valve (23, 24) is also configured to be controlled by the first control unit (91).
  • At least one third control valve (31, 32, 33, 34) and at least one fourth control valve (41, 42, 43,44) are also configured to be controlled by a second control unit (92).
  • the brake system includes a first hydraulic device and a second hydraulic device, wherein the first hydraulic device is as described in the first hydraulic device.
  • the second hydraulic device includes: a brake master cylinder (1), at least one first control valve (11, 12), a fluid storage container (5), a fifth Control valve (51), pedal feel simulator (6), sixth control valve (61), third control unit (93).
  • the brake master cylinder (1) is connected to at least one second interface through at least one first control valve (11, 12).
  • the liquid storage container (5) is respectively connected with the brake master cylinder (1) and at least one third interface.
  • the first end of the fifth control valve (51) is connected with the brake master cylinder (1), and the second end of the fifth control valve (51) is connected with the fluid storage container (5).
  • the pedal feeling simulator (6) is connected with the brake master cylinder (1) through the sixth control valve (61).
  • At least one first control valve (11, 12), fifth control valve (51) and sixth control valve (61) are respectively configured to be controlled by a third control unit (93).
  • the fourth aspect of the present application provides a control method.
  • the braking system is the braking system provided in the eleventh possible implementation manner of the eighth aspect, and the control method
  • the method includes: acquiring a first signal, where the first signal is used to indicate failure information of a braking system.
  • the first signal is used to indicate failure information of a braking system.
  • at least one first control valve (11, 12) is controlled to switch to the first state
  • at least one second control valve 21, 22, 23, 24
  • the first signal includes information indicating a failure of the first control unit (91).
  • the first state includes at least one first control valve (11, 12) being configured in an open state.
  • the second state includes at least one second boost branch control valve (23, 24) being configured in an on state.
  • the first signal includes information indicating a failure of the second control unit (92).
  • the first state includes at least one first control valve (11, 12) being configured in an open state.
  • the second state includes at least one first boost branch control valve (21, 22) being configured in an on state.
  • control method further includes: adjusting at least one third control valve (31, 32, 33, 34) and and/or the state of at least one fourth control valve (41, 42, 43, 44).
  • the fifth aspect of the present application provides a control method, which is applied to a braking system.
  • the braking system is the twelfth or thirteenth possible implementation of the first aspect.
  • the control method includes: acquiring a second signal, where the second signal is used to indicate failure information of the braking system. According to the second signal, at least one second control valve (21, 22, 23, 24) is controlled to switch to the third state.
  • the second signal includes fault information of the first control unit (91).
  • the third state includes at least one second boost branch control valve (23, 24) being configured in an on state.
  • the second signal includes information for indicating failure of the second control unit (92).
  • the third state includes: at least one first boost branch control valve (21, 22) being configured in an on state.
  • control method further includes: adjusting at least one third control valve (31, 32, 33 , 34) and/or the state of at least one fourth control valve (41, 42, 43, 44).
  • the sixth aspect of the present application provides a control method, which is applied to a braking system.
  • the braking system is the twelfth or thirteenth possible implementation of the first aspect.
  • the control method includes: acquiring a third signal, where the third signal is used to indicate failure information of the braking system. According to the third signal, at least one first control valve (11, 12) is controlled to switch to the fourth state.
  • the third signal includes information indicating a failure of the first control unit (91), or the third signal includes information indicating Information on failure of the second control unit (92).
  • the fourth state includes at least one first control valve (11, 12) being configured in an open state.
  • the seventh aspect of the present application provides a readable storage medium, and the readable storage medium stores program instructions, and when the program instructions are executed, the method provided in any possible implementation manner of the fourth aspect, the fifth aspect, or the sixth aspect is executed. method.
  • Embodiment 8 of the present application provides a vehicle, the vehicle includes the brake system provided in any possible implementation manner of the first aspect or the third aspect, or includes the hydraulic device provided in any possible implementation manner of the second aspect .
  • the braking system provided by the embodiment of the present application has multiple redundant designs, which can ensure that the braking system can meet the requirements of various braking functions of the vehicle when the controller or the key solenoid valve fails, and improve the safety of the braking system. Guarantee the driver's pedal feeling and bring a more stable and comfortable driving experience to the driver.
  • FIG. 1 is a schematic diagram of a vehicle system architecture provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the layout of a braking system in a vehicle provided by the embodiment of the present application;
  • Fig. 3-a is a schematic diagram of a brake system and its integration method provided by the embodiment of the present application.
  • Figure 3-b is a schematic diagram of a braking system and another integration method provided by the embodiment of the present application.
  • Fig. 4 is a schematic diagram of a working mode of a braking system provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of another working mode of a braking system provided by the embodiment of the present application.
  • Fig. 6 is a schematic diagram of another working mode of a braking system provided by the embodiment of the present application.
  • Fig. 7 is a schematic diagram of a working mode of another braking system provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of yet another working mode of another braking system provided by the embodiment of the present application.
  • Fig. 9 is a schematic diagram of yet another working mode of another braking system provided by the embodiment of the present application.
  • Fig. 10-a is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 10-b is a schematic diagram of an integration method of another braking system provided by the embodiment of the present application.
  • Fig. 11 is a schematic diagram of a working mode of another braking system provided by the embodiment of the present application.
  • Fig. 12 is a schematic diagram of yet another working mode of another braking system provided by the embodiment of the present application.
  • Fig. 13 is a schematic diagram of yet another working mode of another braking system provided by the embodiment of the present application.
  • Fig. 14 is a schematic diagram of yet another working mode of another braking system provided by the embodiment of the present application.
  • Fig. 15 is a schematic diagram of yet another working mode of another braking system provided by the embodiment of the present application.
  • Fig. 16 is a schematic diagram of yet another working mode of another braking system provided by the embodiment of the present application.
  • Fig. 17 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 18 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 19 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 20 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 21 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • Fig. 22 is a schematic diagram of another braking system provided by the embodiment of the present application.
  • ABS Antilock Brake System
  • the wheels tend to lock up when the vehicle brakes in an emergency or on icy and snowy roads. Wheel locks cause problems such as increased braking distance and loss of steering intention. According to the locking situation of the wheel, the ABS system appropriately reduces the braking force at the wheel tending to lock to realize the anti-lock function.
  • AEB Automatic emergency braking system
  • Electronic stability control system (electronic stability control system, ESC): the sensor collects vehicle information to judge the instability of the vehicle. When the vehicle tends to be unstable, the ESC system applies braking force to a single or part of the wheels to obtain the stability of the wheels. yaw moment, so as to achieve the purpose of stabilizing the vehicle.
  • Traction control system When driving on icy or snowy roads, or when a wheel sinks into muddy roads, the vehicle cannot run normally due to serious wheel slippage. According to the slipping condition of the wheels, the TCS system appropriately reduces the driving force or applies braking force to the slipping wheels to reduce the slipping of the wheels and ensure the normal driving of the vehicle.
  • Adaptive cruise control On the basis of the cruise control system at the set speed, a system that maintains a reasonable distance control function with the vehicle in front is added, and its sub-functions include constant speed cruise, following cruise, and curve Cruising, driving mode selection, intelligent cornering, intelligent speed limit, etc., mainly realize the cruise function by controlling the vehicle speed through the braking system and the driving system.
  • Integrated brake system integrated brake system, IBS: An electro-hydraulic brake-by-wire system composed of an electric linear pump, solenoid valve and valve body, etc., which can realize braking functions such as ABS/AEB/TCS/ESC of the vehicle.
  • Redundant brake unit An independent brake module that forms a backup for the main braking system. When the main braking system of the vehicle fails, the RBU module completes the braking of the vehicle and improves the safety of the vehicle.
  • oil tank level sensor (reservoir level sensor, RLS), test valve (test simulation valve, TSV), pedal travel sensor (pedal travel sensor, PTS), master cylinder pressure Sensor (master cylinder pressure sensor, MCPS), brake circuit pressure sensor (brake circuit pressure sensor, BCPS), electronic control unit (electronic control unit, ECU), basic brake function (basic brake function, BBF), etc.
  • Vehicles are undergoing electrification, networking, and intelligent transformation.
  • various systems including the braking system are also facing changes and upgrades.
  • the structural changes and functional upgrades of the braking system are closely related to the innovation of the vehicle architecture. Specifically, various systems of the vehicle are described below in conjunction with FIG. 1 .
  • FIG. 1 is a schematic diagram of a vehicle 100 provided by an embodiment of the present application.
  • Vehicle 100 may include various subsystems such as infotainment system 110 , perception system 120 , decision control system 130 , drive system 140 , and computing platform 150 .
  • vehicle 100 may include more or fewer subsystems, and each subsystem may include multiple components.
  • each subsystem and component of the vehicle 100 may be interconnected in a wired or wireless manner.
  • the braking system 135 is one of the most critical systems, which is directly related to the overall performance of the vehicle and the safety of life and property of the occupants.
  • the braking system 135 may be used to control the speed of the vehicle 100 .
  • the braking system 135 may slow the wheels 144 through friction.
  • the braking system 135 may also have a regenerative braking function. Additionally, the braking system 135 may also control the speed of the vehicle 100 in other ways.
  • the motor can convert part of the mechanical energy of the car into electrical energy and store it in the battery, and at the same time generate part of the braking force to realize the deceleration or braking of the car.
  • the electric motor converts the energy stored in the battery into kinetic energy for the car to drive again.
  • regenerative braking cannot meet the needs of all braking conditions. For this reason, the hydraulic braking system still has high application value in new energy vehicles.
  • the vehicle 100 provided by the embodiment of the present application may be configured in a fully or partially automatic driving mode.
  • the vehicle 100 can obtain its surrounding environment information through the perception system 120, and obtain an automatic driving strategy based on the analysis of the surrounding environment information to realize fully automatic driving, or present the analysis results to the user to realize partially automatic driving.
  • the vehicle 100 can adjust the speed of its own vehicle based on its perception of its surrounding environment.
  • the surrounding environment may include traffic participants such as other vehicles and/or pedestrians, and may also include roads, infrastructure or other objects.
  • the vehicle 100 can autonomously recognize the surrounding environment, and determine the vehicle speed of the own vehicle according to information of objects in the environment (such as speed, acceleration, distance from the own vehicle, etc.).
  • the computing platform 150 may control various functions of the vehicle 100 based on input received from various subsystems (eg, the drive system 140 , the perception system 120 , and the decision control system 130 ). Especially for the brake system 135 , the computing platform 150 can bring more possibilities for the function development of the brake system 135 . For example, computing platform 150 may control braking system 135 based on input from decision-making control system 130 to avoid collisions with obstacles detected by perception system 120 .
  • the computing platform 150 will be described below with reference to FIG. 1 .
  • Computing platform 150 may include at least one processor 151 that may execute instructions 153 stored in a non-transitory computer-readable medium such as memory 152 .
  • computing platform 150 may also be a plurality of computing devices that control individual components or subsystems of vehicle 100 in a distributed manner.
  • the processor 151 therein may be any conventional processor, such as a central processing unit (central process unit, CPU).
  • the processor 151 may also include, for example, an image processor (graphic process unit, GPU), a field programmable gate array (field programmable gate array, FPGA), a system on chip (system on chip, SOC), an application specific integrated chip ( application specific integrated circuit, ASIC) or their combination.
  • FIG. 1 functionally illustrates a processor, memory, and other elements, those of ordinary skill in the art will understand that the processor, computer, or memory may actually include multiple components that may or may not be stored in the same physical housing. processor, computer, or memory.
  • memory may be a hard drive or other storage medium located in a different housing than the computer.
  • references to a processor or computer are to be understood to include references to collections of processors or computers or memories that may or may not operate in parallel.
  • some components such as steering and braking components, may each have their own processor that performs only the functions associated with the component-specific calculate.
  • the processor may be located remotely from the vehicle and be in wireless communication with the vehicle.
  • some of the processes described herein are executed on a processor disposed within the vehicle while others are executed by a remote processor, including taking the necessary steps to perform a single maneuver.
  • memory 152 may contain instructions 153, eg, program logic. Instructions 153 are executable by processor 151 to perform various functions of vehicle 100 . Memory 152 may also contain additional instructions, including sending data to, receiving data from, interacting with, and/or controlling one or more of infotainment system 110 , perception system 120 , decision control system 130 , drive system 140 instructions. In some embodiments, in addition to instructions 153, memory 152 may store data such as road maps, route information, the vehicle's position, direction, speed, and other such vehicle data, among other information. This information may be used by vehicle 100 and computing platform 150 during operation of vehicle 100 in autonomous, semi-autonomous, and/or manual modes.
  • Fig. 1 should not be interpreted as limiting the embodiment of the present application.
  • one or more of these components described above may be installed separately from or associated with the vehicle 100 .
  • memory 152 may exist partially or completely separate from vehicle 100 .
  • the components described above may be communicatively coupled together in a wired and/or wireless manner.
  • the above-mentioned components are just an example, and in actual applications, the components in the above-mentioned modules may be added or deleted or re-divided according to actual needs.
  • the above-mentioned vehicle 100 may be a passenger car, a commercial vehicle, a motorcycle, a special vehicle (such as a fire engine, an ambulance, a mining vehicle, a road construction vehicle, etc.), a rail vehicle, a ship, an aircraft, etc., and the embodiment of the present application does not Make a special limit.
  • a special vehicle such as a fire engine, an ambulance, a mining vehicle, a road construction vehicle, etc.
  • a rail vehicle a ship, an aircraft, etc.
  • the description of this application also provides a schematic diagram of the layout of the braking system in the vehicle.
  • the arrangement of the braking system 135 in the vehicle may be as shown in FIG. 2 .
  • the braking system 135 may include components such as a brake pedal, a brake master cylinder, a supercharger, a brake pipeline, and a brake wheel cylinder.
  • the brake master cylinder or booster provides brake pressure to the brake wheel cylinder, and further drives the brake actuator to brake the vehicle.
  • the brake system can also adopt other arrangements in the vehicle.
  • the wheels on the rear axle can be mechanically braked; as another example, when the vehicle includes a larger number of wheels, for example, when the vehicle includes 6 wheels, the braking system can also include more brake lines and more brakes. Wheel cylinder. Therefore, it should be noted that FIG. 2 is only used as a possible arrangement of the braking system provided by the embodiment of the present application, and should not be construed as a limitation to the embodiment of the present application.
  • the braking system provided by the embodiment of the present application can ensure that the vehicle can still realize the vehicle braking function through the redundant controller in the event of failure of the main braking system controller or the key solenoid valve. And in some embodiments, it can also meet the brake function requirements of the vehicle such as ABS/AEB/TCS/ESC, and greatly improve the safety and reliability of the vehicle.
  • control valves in the brake system do not represent the type of the control valves, but only the functions they have.
  • the "isolation valve”, “boosting valve”, “pressure reducing valve”, “solenoid valve jointly driven by dual controllers” and “solenoid valve independently driven by single controller” that may appear in the embodiment of this application etc. are not limitations on the type of control valve involved.
  • the control valve used to control the connection or disconnection of the liquid inlet line can be called “inlet valve” or “booster valve”; the controller used to control the connection or disconnection of the liquid return line can be called “outlet valve”.
  • control valve or "relief valve”
  • the control valve used to isolate the two-stage brake subsystem may be referred to as an "isolation valve”.
  • the above-mentioned control valve may be a valve commonly used in an existing braking system, for example, a solenoid valve and the like. It should be understood that the application does not limit the types of control valves.
  • the brake pipelines appearing in the specification of this application may only be “liquid outlet pipelines” or “liquid inlet pipelines”, or the brake pipelines may also be “liquid outlet pipelines” and “Inlet pipeline”.
  • the brake pipeline in the brake system is used to deliver the brake fluid in the brake wheel cylinders to the fluid storage device.
  • the brake The line may be referred to as a "fluid line”.
  • the brake line is used to provide brake fluid for the wheels of the car to provide braking force for the wheels of the car.
  • the brake line can be called "Inlet pipeline”.
  • connection forms can be adopted between the braking system provided in the embodiment of the present application and the brake wheel cylinder, for example, an X-shaped arrangement, an H-shaped arrangement, an I-shaped arrangement, etc. can be adopted.
  • the X-type arrangement can connect one brake circuit to the brake wheel cylinder of the left front wheel (front left, FL) and the brake wheel cylinder of the right rear wheel (rear right, RR), and the other brake circuit to connect the brake wheel cylinder of the right front wheel ( front right (FR) brake wheel cylinder and left rear wheel (rear left, RL) brake wheel cylinder.
  • the H-type arrangement can connect the brake wheel cylinder FL of the left front wheel and the brake wheel cylinder of the left rear wheel RL for one brake circuit, and the other brake circuit connects the brake wheel cylinder of the right front wheel FR and the right rear wheel RR brake wheel cylinder.
  • the layout of the work type can be that one brake circuit connects the brake wheel cylinder of the left front wheel FL and the brake wheel cylinder of the right front wheel FR, and the other brake circuit connects the brake wheel cylinder of the left rear wheel RL and the right rear wheel RR brake wheel cylinder. It should be understood that although some embodiments provided by the present application take an X-type braking circuit as an example, the embodiments of the present application do not limit the type of the braking circuit.
  • the description of the present application does not show the generation process of the motor control signal, and the connection relationship between the control unit and the supercharger driving device only represents the control relationship.
  • the first control unit 91 is also referred to as ECU1 in some embodiments
  • the second control unit 92 is also referred to as ECU2 in some embodiments
  • the third control unit 93 also referred to as ECU3 in some embodiments.
  • control unit can be a controller or can be integrated in the controller, and the controller at least includes various solenoid valve drives, motor drives and various signal processing And control output interface.
  • the controller receives measurement or detection signals from various sensors, such as environmental conditions, driver input, braking system status, etc., and controls the braking characteristics of the braking system through calculation and judgment.
  • the normally open valve in the description of this application can be understood as a control valve that is in a conduction state under the initial condition of no power on or action. Switch from the open state to the closed state; the normally closed valve that appears in this application manual can be understood as a control valve that is closed under the initial condition of not being powered on or inactive, and the normally closed valve is switched to the closed state when it is powered on or in action. conduction state.
  • FIG. 3 is a schematic diagram of a braking system provided in Embodiment 1 of the present application.
  • the braking system provided by Embodiment 1 of the present application includes: a brake master cylinder 1, a supercharger 2, a first control valve (11, 12), a second control valve (21, 22, 23, 24), third control valves (31, 32, 33, 34), fourth control valves (41, 42, 43, 44), first control unit 91, second control unit 92.
  • the first control valves (11, 12) appearing in the specification of this application can also be called master cylinder isolation valves; the second control valves (21, 22, 23, 24) can also be called It is a supercharging branch control valve; the third control valve (31, 32, 33, 34) can also be called a supercharging valve or a wheel cylinder supercharging valve; the fourth control valve (41, 42, 43, 44) can also be called It may be called a pressure reducing valve, a wheel cylinder pressure reducing valve or a pressure relief valve; the fifth control valve (51) may also be called a test valve (test simulation valve, TSV); the sixth control valve (61) may also be called Called the pedal simulation valve (pedal simulation valve, PSV). It should be understood that the description of the function of the control valve should not be interpreted as a limitation on the type of control valve.
  • the brake master cylinder 1 includes two hydraulic chambers capable of outputting pressure to the outside, which are respectively denoted as a first master chamber and a second master chamber.
  • the first master chamber and the second master chamber are respectively connected to the wheel cylinder brake pipeline through the first master cylinder isolation valve 11 and the second master cylinder isolation valve 12 .
  • the brake master cylinder 1 may also include a master cylinder push rod.
  • the master cylinder push rod is used to connect with the brake pedal. When pedal force is received, the master cylinder push rod can push the piston of the brake master cylinder to increase the oil pressure in the brake master cylinder.
  • the braking system may further include a pedal stroke sensor PTS.
  • the pedal travel sensor PTS can be used to collect the travel signal of the brake pedal.
  • the brake system may further include a brake pedal 7 .
  • the brake pedal 7 is connected with the master cylinder push rod of the brake system.
  • the target braking force can be obtained according to the pedal travel signal collected by the pedal travel sensor PTS.
  • the braking system provides corresponding braking pressure to the brake wheel cylinder by controlling the relevant control valve.
  • the connection relationship between the brake master cylinder and the brake wheel cylinder can be described as follows: the first master chamber of the brake master cylinder 1 is connected to the first wheel through the first master cylinder isolation valve 11 respectively.
  • the cylinder boost valve 31 is connected to the second wheel cylinder boost valve 32, the first wheel cylinder boost valve 31 is connected to the first wheel cylinder 3a, and the second boost valve 32 is connected to the second wheel cylinder 3b; the brake master cylinder
  • the second master chamber of 1 is respectively connected to the third wheel cylinder boost valve 33 and the fourth wheel cylinder boost valve 34 through the second master cylinder isolation valve 12, and the third wheel cylinder boost valve 33 is connected to the third wheel cylinder 3c , the fourth wheel cylinder boost valve 34 is connected to the fourth wheel cylinder 3d.
  • the master cylinder isolation valve 11 and the master cylinder isolation valve 12 are normally open valves.
  • the supercharger 2 includes a six-phase motor 201 .
  • the six-phase motor 201 can also be replaced by other types of motors, such as a three-phase permanent magnet synchronous motor.
  • Embodiment 1 Using a six-phase motor 201 can help improve the control redundancy of the system.
  • the six-phase motor 201 may further include a motor position sensor (motor position sensor, MPS).
  • the motor position sensor MPS is used to obtain the motor position signal to realize the motor control or improve the motor control precision.
  • the six-phase motor 201 includes a first winding and a second winding, the first winding is configured to be controlled by the first control unit 91 , and the second winding is configured to be controlled by the second control unit 92 .
  • the six-phase motor 201 can also adopt other redundant control methods, for example, the first control unit 91 and the second control unit 92 simultaneously control all windings of the six-phase motor 201, and the first control unit 91 and the second control unit 92 Can be mutual redundant backup;
  • the first control unit 91 and the second control unit 92 can respectively provide a certain percentage of control drive signals, for example, the first control unit 91 generates 50% of the control signals, and the second control unit 92 generates 50% of the control signal, so as to ensure that the six-phase motor 201 can still perform a specific action when any controller fails.
  • the booster 2 includes a dual apply plunger 202 (dual apply plunger, DAP), wherein the dual apply plunger 202 includes a first boost chamber and a second boost chamber.
  • the first pressurization chamber is connected with the first pressurization branch
  • the second pressurization chamber is connected with the second pressurization branch.
  • the two-way boosting cylinder 202 can make the boosting process continuous and stable, and bring good boosting characteristics to the braking system.
  • the connection relationship between the two-way boost cylinder and the brake wheel cylinder of the supercharger 2 can be described as follows: the first boost chamber is controlled by the first boost on the first boost branch
  • the valve 21 is respectively connected with the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32, the first wheel cylinder boost valve 31 is connected with the first wheel cylinder 3a, the second wheel cylinder boost valve 32 is connected with the second wheel cylinder
  • the wheel cylinder 3b is connected; at the same time, the first boost chamber is connected to the third wheel cylinder boost valve 33 and the fourth wheel cylinder boost valve 34 through the second boost control valve 22 on the first boost branch, and the third wheel cylinder boost valve 34
  • the wheel cylinder boost valve 33 is connected to the third wheel cylinder 3c, and the fourth wheel cylinder boost valve 34 is connected to the fourth wheel cylinder 3d.
  • the second boost chamber is respectively connected to the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 through the third boost control valve 23 on the second boost branch, and the first wheel cylinder boost pressure
  • the valve 31 is connected with the first wheel cylinder 3a
  • the second booster valve 32 is connected with the second wheel cylinder 3b; at the same time, the second booster chamber is respectively connected with the third booster chamber through the fourth booster control valve 24 on the second booster branch.
  • the wheel cylinder boost valve 33 is connected to the fourth wheel cylinder boost valve 34
  • the third wheel cylinder boost valve 33 is connected to the third wheel cylinder 3c
  • the fourth wheel cylinder boost valve 34 is connected to the fourth wheel cylinder 3d.
  • the first boost control valve 21 , the second boost control valve 22 , the third boost control valve 23 and the fourth boost control valve 24 are normally closed valves.
  • the brake system may further include a fluid storage container 5 .
  • the first main cavity of the brake master cylinder 1 is connected to the liquid storage container 5 through the first liquid storage pipeline, and the second main cavity of the brake master cylinder 1 is connected to the liquid storage container 5 through the test valve 51
  • the first pressurization chamber of the supercharger 2 is connected with the liquid storage device 5 through the second liquid storage pipeline, and the second pressurization chamber of the supercharger 2 is connected with the liquid storage container 5 by a one-way valve;
  • the decompression valve ( 41, 42, 43, 44) are connected to the liquid storage container 5 through the third liquid storage pipeline, and the second ends of the pressure reducing valves (41, 42, 43, 44) are used to respectively connect with the brake wheel cylinder 4 connections.
  • the brake system may further include a reservoir level sensor (reservoir level sensor, RLS).
  • a reservoir level sensor reservoir level sensor, RLS
  • the oil level sensor RLS can be arranged in the liquid storage container 5 for detecting the liquid level of the hydraulic oil in the liquid storage container.
  • the brake system may further include a pedal feeling simulator 6 and a pedal simulation valve 61 .
  • the pedal feeling simulator 6 is connected to the second master chamber of the brake master cylinder 1 through a pedal simulation valve 61 .
  • the pedal simulation valve 61 is also connected with the second master chamber of the brake master cylinder 1 through a check valve. Between the pedal feeling simulator 6 and the second main chamber, the pedal simulation valve 61 and the one-way valve are connected in parallel.
  • the brake system may further include a master cylinder pressure sensor (master cylinder pressure sensor, MCPS).
  • master cylinder pressure sensor MCPS is connected with the second master chamber of the brake master cylinder.
  • the brake system may further include a brake circuit pressure sensor (brake circuit pressure sensor, BCPS).
  • BCPS brake circuit pressure sensor
  • the connection point between the brake circuit pressure sensor BCPS and the brake circuit is located on the pipeline between the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 .
  • the access position of the brake circuit pressure sensor BCPS in the brake circuit is not limited to the access position shown in Figure 3, and its access position can also be set at the third wheel cylinder pressurized On the pipeline between the valve 33 and the fourth wheel cylinder boost valve 34, the application does not limit its specific access position.
  • the brake circuit pressure sensor BCPS when the brake circuit pressure sensor BCPS is set on the pipeline between the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32, or is set on the third wheel cylinder boost valve When the pipeline between the valve 33 and the fourth wheel cylinder boost valve 34 is connected, the brake pressure sensor BCPS can obtain the oil pressure of the first boost chamber and the second boost chamber.
  • a one-way valve may also be included.
  • the two ends of the wheel cylinder boost valves (31, 32, 33, 34) can be connected in parallel with one-way valves, and each of the wheel cylinder boost valves (31, 32, 33 , 34)
  • the one-way valves at both ends are configured to allow the brake fluid to flow from the brake wheel cylinder through the one-way valve and to the brake circuit.
  • a check valve may be connected in parallel at both ends of the test valve (51), and the check valve connected in parallel at both ends of the test valve (51) is configured to allow the brake fluid to flow from the fluid storage container 5 through the The non-return valve flows to master cylinder 1.
  • a one-way valve may also be connected in parallel at both ends of the pedal simulation valve 61 , and the one-way valve connected in parallel at both ends of the pedal simulation valve 61 is configured to allow the brake fluid to flow from the pedal simulator to the master cylinder 1 through the one-way valve.
  • the supercharger 2 is connected to the fluid storage container 5 through a one-way valve, and the one-way valve is configured to allow the brake fluid to flow from the fluid storage container 5 to the supercharger 2 through the one-way valve.
  • the brake master cylinder 1 or the supercharger 2 may leak, and when the solenoid valve is stuck or other failures, the brake master cylinder 1 or the supercharger 2 can be supplemented with liquid through the one-way valve.
  • the above-mentioned one-way valve may be a solenoid valve similar to a wheel cylinder boost valve.
  • the brake system may further include a filter.
  • the filter can filter the impurities in the hydraulic circuit.
  • the objects controlled by the first control unit 91 and the second control unit 92 are as follows:
  • the objects controlled by the first control unit 91 include: the six-phase motor 201, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the first boost control valve 21, the second boost control valve 22, The third boost control valve 23, the fourth boost control valve 24, the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32, the third wheel cylinder boost valve 33, the fourth wheel cylinder boost valve 34.
  • the objects controlled by the second control unit 92 include: the six-phase motor 201, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the first boost control valve 21, the second boost control valve 22, The third boost control valve 23 , the fourth boost control valve 24 , and the pedal simulation valve 61 .
  • the first control unit 91 and the second control unit may be integrated into the same controller, or may be independent of each other.
  • the controller of the brake-by-wire system includes a first control unit 91 and a second control unit 92, and the controller also includes at least various solenoid valve drives, motor drives, and various signal processing and control Output Interface.
  • the controller receives measurement or detection signals from various sensors, such as environmental conditions, driver input, braking system status, etc., and controls the braking characteristics of the braking system through calculation and judgment.
  • Embodiment 1 of the present application has multiple integration methods. The following describes various integration modes of the braking system provided by Embodiment 1 of the present application in conjunction with FIG. 3 :
  • the braking system includes components within the range indicated by the dashed box, specifically including: a first control unit 91, a second control unit 92, a brake master cylinder 1, Six-phase motor 201, two-way booster cylinder 202, liquid storage container 5, pedal feel simulator 6, first master cylinder isolation valve 11, second master cylinder isolation valve 12, first booster control valve 21, second booster Control valve 22, third boost control valve 23, fourth boost control valve 24, first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve Cylinder booster valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44, test valve 51, pedal simulation valve 61 , Pedal stroke sensor PTS, master cylinder pressure sensor MCPS, brake circuit pressure sensor BCPS.
  • the integration scheme 1 may also include one or more components such as a check valve, a filter, and a master cylinder push rod. All the components included in the integration scheme 1 can be integrated into one, and the connection relationship of each component and pipeline is shown in Figure 3-a. The control relationship of each component is as described in Embodiment 1 above.
  • the braking system provided by the integration solution 1 does not include the brake pedal 7, but may include a master cylinder push rod.
  • the brake system of integrated solution 1 When the brake system of integrated solution 1 is selected, different types of brake pedals 7 can be matched to adapt to more vehicle models and provide more possibilities for personalized matching.
  • the brake system when the sales form of the brake system is integrated scheme 1, the brake system does not include wheel cylinders, but at least one wheel cylinder interface 4 is left, and at least one wheel cylinder interface 4 is used to connect with at least one wheel cylinder, and can be Wheel cylinders provide brake pressure.
  • the braking system shown in FIG. 3 includes four wheel cylinder interfaces, and each wheel cylinder interface can be connected to the four wheel cylinders in one-to-one correspondence.
  • the brake system includes components within the range shown by the dashed box, specifically including: a first control unit 91, a second control unit 92, a brake master cylinder 1, Six-phase motor 201, two-way boost cylinder 202, pedal feel simulator 6, first master cylinder isolation valve 11, second master cylinder isolation valve 12, first boost control valve 21, second boost control valve 22, second boost control valve Three boost control valve 23, fourth boost control valve 24, first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34 , first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44, test valve 51, pedal simulation valve 61, pedal stroke sensor PTS , Master cylinder pressure sensor MCPS, brake circuit pressure sensor BCPS.
  • the difference of the integration scheme 2 is that the liquid storage container 5 is not included.
  • at least one interface 8 for connecting with the liquid storage container 5 is added to the braking system of the second integration scheme, as shown in the interface 8a, interface 8b, interface 8c, and interface 8d in Fig. 3-b.
  • the number of interfaces 8 can be adjusted according to actual needs. For example, in a possible implementation manner, the interface 8a and the interface 8b can be combined into one interface in the brake device.
  • Embodiment 1 The system composition, connection relationship, control relationship, integration method, etc. of the braking system provided by Embodiment 1 have been introduced above with reference to FIG. 3 .
  • the various working modes of the braking system provided by Embodiment 1 will be described below with reference to FIGS. 4 to 6 .
  • the braking system provided by Embodiment 1 of the present application includes at least three working modes: (1) ECU1 and ECU2 work together; (2) ECU1 works alone; (3) ECU2 works alone.
  • FIG. 4 is a schematic diagram of a working mode of the braking system provided in Embodiment 1 of the present application.
  • a state of ECU1 and ECU2 working together is shown in Figure 4.
  • ECU1 controls the three-phase drive of the six-phase motor M
  • ECU2 controls the other three-phase drive of the six-phase motor M
  • ECU1 and ECU2 jointly drive the motor M to push the electric cylinder DAP to realize rapid system pressure build-up.
  • ECU1 controls all the solenoid valves, and calculates the control signals of the motor and solenoid valves according to the sensor signals, and sends the control signals of the motor M to ECU2.
  • the double ECUs work together to realize the pressure control of the wheels, thereby realizing ABS/TCS/ESC/ BBF/AEB/ACC and other functions.
  • FIG. 5 is a schematic diagram of yet another working mode of the braking system provided in Embodiment 1 of the present application.
  • ECU2 fails, a state of ECU1 working alone is shown in Figure 5.
  • ECU1 controls the three-phase drive of the six-phase motor M to drive the electric cylinder DAP to realize system pressure building.
  • ECU1 controls all the solenoid valves, and calculates the control signals of the motor and solenoid valves according to the sensor signals to realize the pressure control of the wheels, thereby realizing vehicle control functions such as ABS/TCS/ESC/BBF/AEB/ACC.
  • FIG. 6 is a schematic diagram of yet another working mode of the braking system provided in Embodiment 1 of the present application.
  • ECU1 fails, a state of ECU2 working alone is shown in Figure 6.
  • ECU2 controls the three-phase drive of the six-phase motor M to drive the electric cylinder DAP to realize system pressure building.
  • ECU2 controls the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the first boost control valve 21, the second boost control valve 22, the third boost control valve 23, the fourth boost control valve 24, Pedal simulation valve 61, and according to the sensor signal, calculate the control signal of the motor M and the above-mentioned solenoid valve to realize the pressure control of the wheel.
  • the ECU2 cannot control the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32, the second wheel cylinder boost valve Three wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve Valve 44, so only vehicle control functions such as BBF/AEB/ACC can be realized in this working mode.
  • Embodiment 2 of the present application also provides a braking system.
  • 7 to 9 are schematic diagrams of different working states of yet another braking system provided in Embodiment 2 of the present application.
  • the braking system provided by Embodiment 2 of the present application may refer to the description of Embodiment 1 in terms of system composition, connection relationship, and integration method, and will not be repeated here.
  • the difference between the braking system provided in Embodiment 2 of the present application and the braking system provided in Embodiment 1 of the present application lies in the redundant design of the control unit.
  • the objects controlled by the first control unit 91 and the second control unit 92 are as follows:
  • the objects controlled by the first control unit 91 include: the six-phase motor 201, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the first boost control valve 21, the second boost control valve 22, The third boost control valve 23, the fourth boost control valve 24, the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32, the third wheel cylinder boost valve 33, the fourth wheel cylinder boost valve 34.
  • the objects controlled by the second control unit 92 include: the six-phase motor 201, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the first boost control valve 21, the second boost control valve 22, The third boost control valve 23, the fourth boost control valve 24, the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32, the third wheel cylinder boost valve 33, the fourth wheel cylinder boost valve 34.
  • the second control unit 91 can also control the first wheel cylinder boost valve 31, the second wheel Cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43 , The fourth wheel cylinder decompression valve 44.
  • the second control unit 92 in addition to the fifth control valve (51), the second control unit 92 also performs redundant backup for other control valves controlled by the first control unit 91, which improves braking performance. The system controls the degree of redundancy.
  • Embodiment 2 of the present application The composition, connection relationship, control relationship, and integration method of the braking system provided by Embodiment 2 of the present application have been introduced above.
  • the various working modes of the braking system provided by Embodiment 2 of the present application will be described below with reference to FIGS. 7 to 9 .
  • the braking system provided by Embodiment 2 of the present application includes at least three working modes: (1) ECU1 and ECU2 work together; (2) ECU1 works alone; (3) ECU2 works alone.
  • FIG. 7 is a schematic diagram of a working mode of the braking system provided in Embodiment 2 of the present application.
  • a state of ECU1 and ECU2 working together is shown in Figure 7.
  • ECU1 controls the three-phase drive of the six-phase motor M
  • ECU2 controls the other three-phase drive of the six-phase motor M
  • ECU1 and ECU2 jointly drive the motor M to push the electric cylinder DAP to realize rapid system pressure build-up.
  • ECU1 controls all solenoid valves, and calculates the control signals of the motor and solenoid valves according to the sensor signals, and sends the control signals of the motor M to ECU2, and ECU1 and ECU2 work together to realize wheel pressure control, thereby realizing ABS/TCS/ESC /BBF/AEB/ACC and other functions.
  • FIG. 8 is a schematic diagram of yet another working mode of the braking system provided in Embodiment 2 of the present application.
  • ECU2 fails, a state of ECU1 working alone is shown in Figure 8.
  • ECU1 controls the three-phase drive of the six-phase motor M to drive the electric cylinder DAP to realize system pressure building.
  • ECU1 controls all the solenoid valves, and calculates the control signals of the motor and solenoid valves according to the sensor signals to realize wheel pressure control, thereby realizing vehicle control functions such as ABS/TCS/ESC/BBF/AEB/ACC.
  • FIG. 9 is a schematic diagram of yet another working mode of the braking system provided in Embodiment 2 of the present application.
  • ECU1 fails, a state of ECU2 working alone is shown in Fig. 9 .
  • ECU2 controls the three-phase drive of the six-phase motor M to drive the electric cylinder DAP to realize system pressure building.
  • ECU2 controls all solenoid valves except the test valve TSV, and calculates the control signals of the motor and solenoid valves according to the sensor signals to realize wheel pressure control, thereby realizing vehicle control functions such as ABS/TCS/ESC/BBF/AEB/ACC.
  • Fig. 10 is a braking system provided by Embodiment 3 of the present application.
  • 11 to 13 are schematic diagrams of different working states of yet another braking system provided by Embodiment 3 of the present application.
  • Embodiment 3 of the present application will be introduced below with reference to FIGS. 10 to 13 .
  • the brake system provided by Embodiment 3 of the present application is different from Embodiment 1 in terms of system composition, connection relationship, control relationship, and integration method.
  • the differences compared with the braking system provided in Embodiment 1 or Embodiment 2 include: the braking system provided in Embodiment 3 of this application
  • the supercharger 2 adopts a one-way supercharging cylinder.
  • the one-way booster cylinder is respectively connected with the first booster branch and the second booster branch; and, the one-way booster cylinder of the supercharger 2 is connected with the liquid storage device 5 through a one-way valve.
  • the position setting of the brake circuit pressure sensor BCPS is also different.
  • the connection relationship between the one-way boost cylinder and the brake wheel cylinder of the supercharger 2 can be described as: the one-way boost cylinder passes the first boost pressure on the first boost branch
  • the control valve 21 is respectively connected with the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32, the first wheel cylinder boost valve 31 is connected with the first wheel cylinder 3a, and the second boost valve 32 is connected with the second wheel cylinder Cylinder 3b is connected; at the same time, the one-way boost cylinder is respectively connected with the third wheel cylinder boost valve 33 and the fourth wheel cylinder boost valve 34 through the second boost control valve 22 on the first boost branch, and the third wheel cylinder
  • the cylinder boost valve 33 is connected to the third wheel cylinder 3c, and the fourth wheel cylinder boost valve 34 is connected to the fourth wheel cylinder 3d.
  • the one-way boost cylinder is respectively connected to the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 through the third boost control valve 23 on the second boost branch, and the first wheel cylinder boost pressure
  • the valve 31 is connected with the first wheel cylinder 3a
  • the second boost valve 32 is connected with the second wheel cylinder 3b
  • the one-way boost cylinder is respectively connected with the third boost control valve 24 through the fourth boost control valve 24 on the second boost branch.
  • the wheel cylinder boost valve 33 is connected to the fourth wheel cylinder boost valve 34
  • the third wheel cylinder boost valve 33 is connected to the third wheel cylinder 3c
  • the fourth wheel cylinder boost valve 34 is connected to the fourth wheel cylinder 3d.
  • the brake circuit pressure sensor BCPS of the supercharger 2 is arranged between the second control valve (21, 22, 23, 24) and the one-way boost cylinder of the supercharger 2: For example, it may be provided between the first boost control valve 21 and the one-way boost cylinder 202 .
  • the brake circuit pressure sensor BCPS can obtain the oil pressure output to the brake circuit by the one-way booster cylinder of the supercharger 2 in different working modes.
  • the objects controlled by the first control unit 91 and the second control unit 92 are as follows:
  • the objects controlled by the first control unit 91 include: the six-phase motor 201, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the first boost control valve 21, the second boost control valve 22, First wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve Pressure valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44, test valve 51, pedal simulation valve 61.
  • the objects controlled by the second control unit 92 include: the six-phase motor 201 , the first master cylinder isolation valve 11 , the second master cylinder isolation valve 12 , the third boost control valve 23 , the fourth boost control valve 24 , Pedal simulation valve 61.
  • the third boost control valve 23 and the fourth boost control valve 24 are independently controlled by the second control unit 92, as indicated by the dashed box in Figure 10-a As shown in the covered range; the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, and the pedal simulation valve 61 are controlled cooperatively by the first control unit 91 and the second control unit 92, as shown in the solid line box in Figure 10-a The range covered is shown.
  • the integration method of the braking system provided by Embodiment 3 is different from that of Embodiment 1, which is mainly because the supercharger 2 of the braking system provided by Embodiment 3 uses a one-way booster cylinder, and Adaptive adjustments have been made to the system composition and connection relationship.
  • the following describes various integration methods of the brake system provided by Embodiment 3 of the present application in conjunction with FIGS. 10 to 13 :
  • the braking system includes components within the range indicated by the dashed box, specifically including: a first control unit 91, a second control unit 92, a brake master cylinder 1, Six-phase motor 201, one-way boost cylinder 202, liquid storage container 5, pedal feeling simulator 6, first master cylinder isolation valve 11, second master cylinder isolation valve 12, first boost control valve 21, second booster Pressure control valve 22, third boost control valve 23, fourth boost control valve 24, first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve Wheel cylinder booster valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44, test valve 51, pedal simulation valve 61.
  • Pedal travel sensor PTS master cylinder pressure sensor MCPS, brake circuit pressure sensor BCPS.
  • the third integration scheme may also include one or more components such as a check valve, a filter, and a master cylinder push rod. All the components included in the third integration scheme can be integrated into one, and the connection relationship of each component and pipeline is shown in Figure 3-a. The control relationship of each component is as described in the third embodiment.
  • the braking system provided by the third integration scheme does not include the brake pedal 7, but may include the master cylinder push rod.
  • the brake system of the integrated solution 3 When the brake system of the integrated solution 3 is selected, different types of brake pedals 7 can be matched to adapt to more models and provide more possibilities for personalized matching.
  • the brake system may not include a wheel cylinder, but at least one wheel cylinder interface 4 is left, at least one wheel cylinder interface 4 is used to connect with at least one wheel cylinder, and Brake pressure can be supplied to the wheel cylinders.
  • the braking system shown in FIG. 10 includes four wheel cylinder interfaces, and each wheel cylinder interface can be connected to the four wheel cylinders in one-to-one correspondence.
  • the braking system may include: a first control unit 91, a second control unit 92, a brake master cylinder 1, a six-phase motor 201, a two-way booster cylinder 202, a pedal feeling simulator 6, a first Master cylinder isolation valve 11, second master cylinder isolation valve 12, first boost control valve 21, second boost control valve 22, third boost control valve 23, fourth boost control valve 24, first wheel cylinder Boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, The third wheel cylinder pressure reducing valve 43, the fourth wheel cylinder pressure reducing valve 44, the fifth control valve 51, the sixth control valve 61, the pedal travel sensor PTS, the master cylinder pressure sensor MCPS, and the brake circuit pressure sensor BCPS.
  • the difference of the integration scheme four is that the liquid storage container 5 is not included.
  • at least one interface 8 for connecting with the fluid storage container 5 is added to the brake system of the integration scheme IV. It should be noted that the number of interfaces 8 can be adjusted according to actual needs.
  • the braking system provided by Embodiment 3 of the present application includes at least three working modes: (1) ECU1 and ECU2 work together; (2) ECU1 works alone; (3) ECU2 works alone.
  • FIG. 11 is a schematic diagram of a working mode of the braking system provided by Embodiment 3 of the present application.
  • a state of ECU1 and ECU2 working together is shown in Figure 11.
  • ECU1 controls the three-phase drive of the motor M
  • ECU2 controls the other three-phase drive of the motor M
  • ECU1 and ECU2 jointly drive the motor M to drive the electric cylinder DAP to realize rapid system pressure build-up.
  • ECU1 controls all solenoid valves except the third boost control valve 23 and the fourth boost control valve 24, and calculates the control signals of the motor and solenoid valves according to the sensor signals, and sends the control signals of the motor M to ECU2, ECU1 Work with ECU2 to realize wheel pressure control, so as to realize ABS/TCS/ESC/BBF/AEB/ACC and other functions.
  • FIG. 12 is a schematic diagram of yet another working mode of the braking system provided by Embodiment 3 of the present application.
  • ECU2 fails, a state of ECU1 working alone is shown in Figure 11.
  • ECU1 controls the three-phase drive of the motor M to push the electric cylinder DAP to realize system pressure building.
  • ECU1 controls all the solenoid valves except the third boost control valve 23 and the fourth boost control valve 24, and calculates the control signals of the motor and solenoid valves according to the sensor signals to realize wheel pressure control, thereby realizing ABS/TCS/ ESC/BBF/AEB/ACC and other vehicle control functions.
  • FIG. 13 is a schematic diagram of yet another working mode of the braking system provided by Embodiment 3 of the present application.
  • ECU1 fails, a state of ECU2 working alone is shown in Figure 12.
  • ECU2 controls the three-phase drive of the motor M to push the electric cylinder DAP to realize system pressure building.
  • ECU2 controls the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the third boost control valve 23, the fourth boost control valve 24, and the pedal simulation valve 61, and calculates the motor M and the above electromagnetic The control signal of the valve realizes the pressure control of the wheels.
  • the ECU2 cannot control the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32, the third wheel cylinder boost valve 33, and the fourth wheel cylinder boost valve 34 , the first wheel cylinder pressure reducing valve 41, the second wheel cylinder pressure reducing valve 42, the third wheel cylinder pressure reducing valve 43, and the fourth wheel cylinder pressure reducing valve 44, so only BBF/AEB/ACC can be realized in this working mode Vehicle control functions.
  • Embodiment 4 of the present application also provides a braking system.
  • FIG. 14 to FIG. 16 are schematic diagrams of different working states of the braking system provided in Embodiment 4 of the present application.
  • the description of Embodiment 3 may be referred to in terms of system composition, connection relationship, and integration method, and details will not be repeated here.
  • the difference between the braking system provided in the fourth embodiment of the present application and the braking system provided in the third embodiment of the present application lies in the redundant design of the control unit.
  • the objects controlled by the first control unit 91 and the second control unit 92 are as follows:
  • the objects controlled by the first control unit 91 include: the six-phase motor 201, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the first boost control valve 21, the second boost control valve 22, First wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve Pressure valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44, test valve 51, pedal simulation valve 61.
  • the objects controlled by the second controllable unit 92 include: the six-phase motor 201 , the first master cylinder isolation valve 11 , the second master cylinder isolation valve 12 , the third boost control valve 23 , and the fourth boost control valve 24 , first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder Pressure reducing valve 42 , third wheel cylinder pressure reducing valve 43 , fourth wheel cylinder pressure reducing valve 44 , pedal simulation valve 61 .
  • the second control unit 91 can also control the first wheel cylinder boost valve 31, the second wheel Cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43 , The fourth wheel cylinder decompression valve 44.
  • the degree of redundancy of brake system control is higher.
  • Embodiment 4 of the present application The composition, connection relationship, control relationship, and integration method of the braking system provided by Embodiment 4 of the present application are described above. The various working modes of the braking system provided by Embodiment 4 of the present application will be described below with reference to FIGS. 14 to 16 .
  • the braking system provided by Embodiment 4 of the present application includes at least three working modes: (1) ECU1 and ECU2 work together; (2) ECU1 works alone; (3) ECU2 works alone.
  • FIG. 14 is a schematic diagram of a working mode of the braking system provided by Embodiment 4 of the present application.
  • ECU1 controls the three-phase drive of the motor M
  • ECU2 controls the other three-phase drive of the motor M
  • the two ECUs jointly drive the motor M to push the electric cylinder DAP to realize rapid system pressure build-up.
  • ECU1 controls all solenoid valves except the third boost control valve 23 and the fourth boost control valve 24, and calculates the control signals of the motor and the solenoid valves according to the sensor signals, and sends the control signals of the motor M to ECU2.
  • the ECUs work together to realize the pressure control of the wheels, thereby realizing functions such as ABS/TCS/ESC/BBF/AEB/ACC.
  • FIG. 15 is a schematic diagram of yet another working mode of the braking system provided by Embodiment 4 of the present application.
  • ECU2 fails, a state of ECU1 working alone is shown in Figure 14.
  • ECU1 controls the three-phase drive of the motor M to push the electric cylinder DAP to realize system pressure building.
  • ECU1 controls all solenoid valves except the third boost control valve 23 and the fourth boost control valve 24, and calculates the control signals of the motor and solenoid valves according to the sensor signals to realize wheel pressure control, thereby realizing ABS/TCS /ESC/BBF/AEB/ACC and other vehicle control functions.
  • Fig. 16 is a schematic diagram of another working mode of the braking system provided by the embodiment of the present application.
  • ECU1 fails, a state of ECU2 working alone is shown in Figure 15.
  • ECU2 controls the three-phase drive of the motor M to push the electric cylinder DAP to realize system pressure building.
  • ECU2 controls the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the third boost control valve 23, the fourth boost control valve 24, the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32.
  • Embodiment 1 to Embodiment 4 are the braking systems respectively provided in Embodiment 1 to Embodiment 4.
  • the braking systems provided in the above four embodiments can be implemented by integrating various parts and components as an integrated solution. Another type of implementation of the braking system provided by the embodiments of the present application will be described below in conjunction with the fifth to eighth embodiments.
  • FIG. 17 is a schematic diagram of yet another braking system provided by Embodiment 5 of the present application.
  • the system composition, connection relationship, integration method and other aspects of the braking system provided by the fifth embodiment will be introduced below with reference to FIG. 17 .
  • the braking system provided by Embodiment 5 of the present application includes two subsystems:
  • the first subsystem includes: a first control unit 91, a second control unit 92, a six-phase motor 201, a two-way boost cylinder 202, a first boost control valve 21, a second boost control valve 22, a third Boost control valve 23, fourth boost control valve 24, first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, First wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44, brake circuit pressure sensor BCPS, check valve;
  • the second subsystem includes: the third control unit 93, the brake master cylinder 1, the liquid storage container 5, the pedal feeling simulator 6, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the test valve 51.
  • the first subsystem further includes a first interface (4a, 4b, 4c, 4d), a second interface (8f, 8g), and a third interface (8e).
  • the first interfaces (4a, 4b, 4c, 4d) are respectively used to connect with the brake wheel cylinders (3a, 3b, 3c, 3d) of the wheels
  • the second interfaces (8f, 8g) are used to connect with the brake master cylinder 1 connection
  • the third interface (8e) is used to connect with the liquid storage container 5.
  • the second subsystem also includes interfaces (8E, 8F, 8G) corresponding to the first subsystem.
  • the first subsystem and the second subsystem communicate with the interfaces 8E, 8F, and 8G of the second subsystem through the interfaces 8e, 8f, and 8g of the first subsystem, respectively. connected to form a braking system.
  • the connection relationship between the brake master cylinder 1 and the brake wheel cylinder can be described as follows: the first master chamber of the brake master cylinder 1 is connected to the interface 8F through the first master cylinder isolation valve 11, and through The interface 8f is respectively connected with the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32, the first wheel cylinder boost valve 31 is connected with the first wheel cylinder 3a through the interface 4a, and the second boost valve 32 is connected with the interface 4b is connected to the second wheel cylinder 3b; the second master chamber of the brake master cylinder 1 is connected to the interface 8G through the second master cylinder isolation valve 12, and is connected to the third wheel cylinder boost valve 33 and the fourth wheel cylinder through the interface 8g respectively.
  • the cylinder boost valve 34 is connected, the third wheel cylinder boost valve 33 is connected to the third wheel cylinder 3c through the interface 4c, and the fourth wheel cylinder boost valve 34 is connected to the fourth wheel cylinder 3d through the interface 4d.
  • the connection relationship between the booster 2 and the brake wheel cylinder can be described as follows: the first booster chamber is connected to the first wheel cylinder through the first booster control valve 21 on the first booster branch.
  • the boost valve 31 is connected to the second wheel cylinder boost valve 32, the first wheel cylinder boost valve 31 is connected to the first wheel cylinder 3a through the interface 4a, and the second wheel cylinder boost valve 32 is connected to the second wheel cylinder through the interface 4b 3b; at the same time, the first boost chamber is connected to the third wheel cylinder boost valve 33 and the fourth wheel cylinder boost valve 34 through the second boost control valve 22 on the first boost branch, and the third wheel cylinder
  • the boost valve 33 is connected to the third wheel cylinder 3c through the interface 4c, and the fourth wheel cylinder boost valve 34 is connected to the fourth wheel cylinder 3d through the interface 4d.
  • the second boost chamber is respectively connected to the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 through the third boost control valve 23 on the second boost branch, and the first wheel cylinder boost pressure
  • the valve 31 is connected to the first wheel cylinder 3a through the interface 4a
  • the second boost valve 32 is connected to the second wheel cylinder 3b through the interface 4b; at the same time, the second boost chamber is controlled by the fourth boost on the second boost branch.
  • the valve 24 is respectively connected with the third wheel cylinder boost valve 33 and the fourth wheel cylinder boost valve 34, the third wheel cylinder boost valve 33 is connected with the third wheel cylinder 3c through the interface 4c, and the fourth wheel cylinder boost valve 34 It is connected to the fourth wheel cylinder 3d via the interface 4d.
  • the first master cylinder hydraulic chamber of the brake master cylinder 1 is connected to the liquid storage container 5 through the first liquid storage pipeline; the second master cylinder hydraulic chamber of the brake master cylinder 1 is connected to the storage container 5 through the test valve 51
  • the liquid container 5 is connected;
  • the first pressurization chamber of the supercharger 2 is connected with the interface 8e, and is connected with the liquid storage device 5 through the interface 8E;
  • the second pressurization chamber of the supercharger 2 is connected with the interface 8e through a one-way valve, And be connected with liquid storage container 5 by interface 8E;
  • the first end of pressure reducing valve (41,42,43,44) is connected with interface 8e, and is connected with liquid storage container 5 by interface 8E;
  • Pressure reducing valve (41,42 , 43, 44) are respectively connected to the first interface (4a, 4b, 4c, 4d), and respectively connected to the brake wheel cylinder (3a, 3b, 4d) through the first interface (4a, 4b, 4c, 4d). 3c,
  • the pedal feeling simulator 6 is connected to the second master chamber of the brake master cylinder 1 through a pedal simulation valve 61 .
  • the pedal simulation valve 61 is also connected with the second master chamber of the brake master cylinder 1 through a check valve. Between the pedal feeling simulator 6 and the second main chamber, the pedal simulation valve 61 and the one-way valve are connected in parallel.
  • Embodiment 1 For other components shown in FIG. 17 , such as master cylinder pressure sensor MCPS, brake circuit pressure sensor BCPS, oil tank level sensor RLS, pedal travel sensor PTS, check valve, filter, etc., refer to the description of Embodiment 1.
  • the integration method of the braking system provided by Embodiment 5 is different from the integration method of the braking system provided by Embodiment 1 to Embodiment 4.
  • the braking system provided by Embodiment 5 is combined with FIG. 17 The integration method is described.
  • the brake system may include a first subsystem and a second subsystem, the composition and connection relationship of the first subsystem and the second subsystem are as described above.
  • the first subsystem and the second subsystem are respectively connected through the interfaces 8e, 8f, 8g of the first subsystem and 8E, 8F, 8G of the second subsystem to form a braking system, and the first subsystem is also connected through the interface 4a, interface 4b, the interface 4c, and the interface 4d are respectively connected with the brake wheel cylinder 3a, the brake wheel cylinder 3b, the brake wheel cylinder 3c, and the brake wheel cylinder 3d.
  • the first subsystem and the second subsystem can be integrated into a first module and a second module respectively, and corresponding interfaces are reserved, so as to adapt to different vehicle layout requirements.
  • the brake system may include a first subsystem and a second subsystem, wherein, the second subsystem in integration scheme six is the same as the second subsystem in integration scheme five; The difference between them is that the second subsystem in the sixth integration method does not include the liquid storage container 5, and the second subsystem in the sixth integration method has at least one interface for connecting with the liquid storage container 5.
  • the second subsystem in the sixth integration method does not include the liquid storage container 5
  • the second subsystem in the sixth integration method has at least one interface for connecting with the liquid storage container 5.
  • the objects controlled by the first control unit 91 include: the six-phase motor 201, the first boost control valve 21, the second boost control valve 22, the third boost control valve 23, the fourth boost control valve 24, First wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve Pressure valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44;
  • the objects controlled by the second control unit 92 include: the six-phase motor 201, the first boost control valve 21, the second boost control valve 22, the third boost control valve 23, and the fourth boost control valve 24;
  • the objects controlled by the third control unit 93 include: the first master cylinder isolation valve 11 , the second master cylinder isolation valve 12 , the test valve 51 , and the pedal simulation valve 61 .
  • the braking system provided by the fifth embodiment has a third control unit 93 added, and the solenoid valves controlled by each control unit are different, and the braking system provided by the fifth embodiment has a higher degree of control redundancy.
  • FIG. 19 is a schematic diagram of a braking system provided in Embodiment 6 of the present application.
  • the description of Embodiment 5 may be referred to in terms of system composition, connection relationship, and integration method, and details will not be repeated here.
  • the difference between the braking system provided in the sixth embodiment of the present application and the braking system provided in the fifth embodiment of the present application lies in the redundant design of the control unit.
  • the objects controlled by the first control unit 91 include: the six-phase motor 201, the first boost control valve 21, the second boost control valve 22, the third boost control valve 23, the fourth boost control valve 24, First wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve Pressure valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44;
  • the objects controlled by the second control unit 92 include: the six-phase motor 201, the first boost control valve 21, the second boost control valve 22, the third boost control valve 23, the fourth boost control valve 24, First wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve Pressure valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44;
  • the objects controlled by the third control unit 93 include: the first master cylinder isolation valve 11 , the second master cylinder isolation valve 12 , the test valve 51 , and the pedal simulation valve 61 .
  • the second control unit 91 can also control the first wheel cylinder boost valve 31, the second wheel Cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34, first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43 , The fourth wheel cylinder decompression valve 44.
  • the degree of redundancy in the control of the braking system is higher.
  • the braking system provided by the sixth embodiment has a third control unit 93 added, and the solenoid valves controlled by each control unit are different, and the braking system provided by the sixth embodiment has a higher degree of control redundancy.
  • FIG. 20 is a schematic diagram of a braking system provided by Embodiment 7 of the present application.
  • the braking system provided in Embodiment 7 is different from the braking system provided in Embodiment 5 or 6 in terms of system composition, connection relationship, integration mode, control relationship, and the like.
  • the braking system provided by Embodiment 7 of the present application includes two subsystems:
  • the first subsystem includes: a first control unit 91, a second control unit 92, a six-phase motor 201, a one-way boost cylinder 202, a first boost control valve 21, a second boost control valve 22, a Three boost control valve 23, fourth boost control valve 24, first wheel cylinder boost valve 31, second wheel cylinder boost valve 32, third wheel cylinder boost valve 33, fourth wheel cylinder boost valve 34 , first wheel cylinder pressure reducing valve 41, second wheel cylinder pressure reducing valve 42, third wheel cylinder pressure reducing valve 43, fourth wheel cylinder pressure reducing valve 44, brake circuit pressure sensor BCPS, check valve;
  • the second subsystem includes: the third control unit 93, the brake master cylinder 1, the liquid storage container 5, the pedal feeling simulator 6, the first master cylinder isolation valve 11, the second master cylinder isolation valve 12, the test valve 51.
  • the first subsystem further includes a first interface (4a, 4b, 4c, 4d), a second interface (8f, 8g), and a third interface (8e).
  • the first interfaces (4a, 4b, 4c, 4d) are respectively used to connect with the brake wheel cylinders (3a, 3b, 3c, 3d) of the wheels
  • the second interfaces (8f, 8g) are used to connect with the brake master cylinder 1 connection
  • the third interface (8e) is used to connect with the liquid storage container 5.
  • the second subsystem also includes interfaces (8E, 8F, 8G) corresponding to the first subsystem.
  • the first subsystem and the second subsystem communicate with the interfaces 8E, 8F, and 8G of the second subsystem through the interfaces 8e, 8f, and 8g of the first subsystem, respectively. connected to form a braking system.
  • the difference between the brake system provided by Embodiment 7 and the brake system provided by Embodiment 5 or Embodiment 6 includes: the supercharger 2 of the brake system provided by Embodiment 7 adopts one-way supercharging cylinder. Therefore, in terms of connection relationship, the braking system provided by the seventh embodiment is also different from the braking system provided by the fifth embodiment or the sixth embodiment.
  • the connection relationship between the one-way booster cylinder of the supercharger 2 and the brake wheel cylinder in the first subsystem can be described as: the one-way booster cylinder passes through the first booster branch
  • the first boost control valve 21 is connected to the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 respectively, the first wheel cylinder boost valve 31 is connected to the first wheel cylinder 3a through the interface 4a, and the second wheel cylinder boost valve 31 is connected to the first wheel cylinder
  • the boost valve 32 is connected with the second wheel cylinder 3b through the interface 4b; at the same time, the one-way boost cylinder is respectively connected with the third wheel cylinder boost valve 33 and the fourth boost valve 33 through the second boost control valve 22 on the first boost branch.
  • the wheel cylinder boost valve 34 is connected, the third wheel cylinder boost valve 33 is connected to the third wheel cylinder 3c through the interface 4c, and the fourth wheel cylinder boost valve 34 is connected to the fourth wheel cylinder 3d through the interface 4d.
  • the one-way boost cylinder is respectively connected to the first wheel cylinder boost valve 31 and the second wheel cylinder boost valve 32 through the third boost control valve 23 on the second boost branch, and the first wheel cylinder boost pressure
  • the valve 31 is connected to the first wheel cylinder 3a through the interface 4a
  • the second boost valve 32 is connected to the second wheel cylinder 3b through the interface 4b; at the same time, the one-way boost cylinder is controlled by the fourth boost on the second boost branch.
  • the valve 24 is respectively connected with the third wheel cylinder boost valve 33 and the fourth wheel cylinder boost valve 34, the third wheel cylinder boost valve 33 is connected with the third wheel cylinder 3c through the interface 4c, and the fourth wheel cylinder boost valve 34 It is connected to the fourth wheel cylinder 3d via the interface 4d.
  • the brake circuit pressure sensor BCPS of the supercharger 2 is set between the second control valve (21, 22, 23, 24) and the one-way boost cylinder of the supercharger 2 Between: For example, it may be arranged between the first boost control valve 21 and the one-way boost cylinder 202 . By selecting a suitable location, the brake circuit pressure sensor BCPS can obtain the oil pressure output to the brake circuit by the one-way booster cylinder of the supercharger 2 in different working modes.
  • the integration method of the braking system provided by the seventh embodiment is different from the integration method of the braking system provided by the fifth embodiment or the sixth embodiment, which will be described in detail below with reference to FIG. 20 .
  • Integration scheme seven as shown in Figure 20, the braking system provided by embodiment seven can also be divided into two subsystems for integration: the first subsystem: the first subsystem in embodiment seven and embodiment five or
  • the main difference between the first subsystems in the sixth embodiment is that the first subsystem in the seventh embodiment uses a one-way pressurized cylinder 202, and as mentioned above, the connection relationship in the first subsystem Changes have taken place, and the position of the brake circuit pressure sensor BCPS has also been adjusted; the second subsystem: the second subsystem in the seventh embodiment is the same as the second subsystem in the fifth or sixth embodiment.
  • the brake system may include a first subsystem and a second subsystem, wherein, the second subsystem in the integration scheme eight is the same as the second subsystem in the integration scheme seven; The difference between them is that the second subsystem in the eighth integration mode does not include the liquid storage container 5, and the second subsystem in the eighth integration mode has at least one interface for connecting with the liquid storage container 5.
  • the second subsystem in the eighth integration mode does not include the liquid storage container 5
  • the second subsystem in the eighth integration mode has at least one interface for connecting with the liquid storage container 5.
  • the objects controlled by the first control unit 91 include: the six-phase motor 201, the first boost control valve 21, the second boost control valve 22, the first wheel cylinder boost valve 31, and the second wheel cylinder boost valve 32.
  • the objects controlled by the second control unit 92 include: the six-phase motor 201 , the third boost control valve 23 , and the fourth boost control valve 24 .
  • the second control unit 92 controls the third boost control valve 23 and the fourth boost control valve 24 independently, as shown in the range covered by the gray-bottomed dotted line box in FIG. 21 .
  • the objects controlled by the third control unit 93 include: the first master cylinder isolation valve 11 , the second master cylinder isolation valve 12 , the test valve 51 , and the pedal simulation valve 61 .
  • the braking system provided by the seventh embodiment has a third control unit 93 added, and the solenoid valves controlled by each control unit are different, and the braking system provided by the seventh embodiment has a higher degree of control redundancy.
  • FIG. 22 is a schematic diagram of yet another braking system provided by Embodiment 8 of the present application.
  • the brake system provided by the eighth embodiment is basically the same as the brake system provided by the seventh embodiment in terms of system composition, connection relationship, and integration method, but there are differences in the control relationship.
  • the objects controlled by the first control unit 91, the second control unit 92, and the third control unit 93 are as follows:
  • the objects controlled by the first control unit 91 include: the six-phase motor 201, the first boost control valve 21, the second boost control valve 22, the first wheel cylinder boost valve 31, and the second wheel cylinder boost valve 32.
  • the objects controlled by the second control unit 92 include: six-phase motor 201, third boost control valve 23, fourth boost control valve 24, first wheel cylinder boost valve 31, second wheel cylinder boost valve 32.
  • the objects controlled by the third control unit 93 include: the first master cylinder isolation valve 11 , the second master cylinder isolation valve 12 , the test valve 51 , and the pedal simulation valve 61 .
  • the second control unit 92 controls the third boost control valve 23 and the fourth boost control valve 24 independently, as shown in the range covered by the gray-bottomed dotted line box in FIG. 22 ;
  • the second control unit 92 and the first control unit 91 jointly control the first wheel cylinder boost valve 31, the second wheel cylinder boost valve 32, the third wheel cylinder boost valve 33, the fourth wheel cylinder boost valve 34, the first wheel cylinder boost valve
  • the wheel cylinder pressure reducing valve 41 , the second wheel cylinder pressure reducing valve 42 , the third wheel cylinder pressure reducing valve 43 , and the fourth wheel cylinder pressure reducing valve 44 are shown in the area covered by the gray bottom solid line frame in FIG. 22 .
  • the braking system provided by the seventh embodiment has a third control unit 93 added, and the solenoid valves controlled by each control unit are different, and the braking system provided by the seventh embodiment has a higher degree of control redundancy.
  • the brake system provided by the present application may be a mechanical hydraulic device integrated with a hydraulic valve plate, a solenoid valve, and a motor, which can be used for a hydraulic regulator of a brake system of an automatic driving vehicle.
  • the mechanical hydraulic device can be composed of two modules, the first brake module and the second brake module. The connection between the two modules is realized through the hydraulic pipeline, and the brake pedal, the vehicle brake wheel cylinder and other signal interfaces are connected. , forming a vehicle braking system.
  • Embodiment 1 to Embodiment 8 of the present application has the advantages of high redundancy, high integration, small size, flexible module division, low cost, high reliability and high safety, and meets the requirements of vehicle ABS/BBF/TCS/ESC/AEB /ACC and other integrated braking function requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

一种制动系统及控制方法,其适用于智能汽车、新能源汽车等。该制动控制系统包括:制动主缸(1)、增压器(2)、至少一个第一控制阀(11,12)、至少一个第二控制阀(21,22,23,24)、至少一个第三控制阀(31,32,33,34)、至少一个第一接口(4)、第一控制单元(91)和第二控制单元(92)。该制动系统具有多重冗余设计,能够保证制动系统在控制器或者关键电磁阀失效的情况下还能够满足车辆多种制动功能需求,提高制动系统的安全性,保证驾驶员的踏板感受,给驾驶员带来更加稳定舒适的驾驶体验。

Description

一种制动系统、液压装置及车辆 技术领域
本申请涉及车辆制动领域,尤其涉及一种电液制动系统。
背景技术
制动系统在车辆行驶过程中能够提供自动紧急制动(AEB)、制动防抱死(ABS)、牵引力控制(TCS)和稳定性控制(ESC)等功能。然而随着自动驾驶技术的发展,制动系统面临的挑战包括:在满足小型化、低成本的同时兼顾对制动系统安全性、可靠性的要求,提高系统的冗余程度。不仅如此,在对制动系统进行冗余备份时,还需关注如何在兼顾成本和系统复杂度的前提下,提供更丰富的制动功能,以配合驾驶辅助功能或者自动驾驶等功能。
发明内容
本申请涉及一种满足自动驾驶汽车冗余安全需求的制动系统,本申请针对当前制动系统面临的冗余备份、成本控制以及多种功能支持等挑战,提出一种多重冗余控制的电液制动系统。
本申请第一方面提供一种制动系统,在第一方面的第一种可能的实施方式中,该制动系统包括:制动主缸(1)、增压器(2)、至少一个第一控制阀(11,12)、至少一个第二控制阀(21,22,23,24)、至少一个第三控制阀(31,32,33,34)、至少一个第一接口(4)、第一控制单元(91)和第二控制单元(92)。其中,至少一个第三控制阀(31,32,33,34)的第一端分别与至少一个第一接口(4)连接,至少一个第一接口(4)用于分别与至少一个制动轮缸(3)连接。至少一个第三控制阀(31,32,33,34)的第二端通过至少一个第一控制阀(11,12)与制动主缸(1)连接。至少一个第三控制阀(31,32,33,34)的第二端还通过至少一个第二控制阀(21,22,23,24)与增压器(2)连接。至少一个第三控制阀(31,32,33,34)被配置为受第一控制单元(91)控制。至少一个第二控制阀(21,22,23,24)包括至少一个第一增压支路控制阀(21,22)和至少一个第二增压支路控制阀(23,24),至少一个第一增压支路控制阀(21,22)被配置为受第一控制单元(91)控制,至少一个第二增压支路控制阀(23,24)被配置为受第二控制单元(92)控制。增压器(2)被配置为分别受第一控制单元(91)和第二控制单元(92)控制。
可选的,制动主缸还可以包括更多制动主腔。需要说明的是,第二主腔可以与第一主腔互为冗余,提高制动系统的可靠性。
可选的,第三控制阀的数量可以为4个,或者可以为更多。车辆包括4个以上制动轮缸时,第三控制阀的数量也可以大于4个。
可选的,接口可以是进液口或出液口或者同时包括进液口和出液口,或者兼具进液口和出液口的功能。
根据第一方面的第一种可能的实施方式,在第二种可能的实施方式中,增压器(2)包括增压器驱动装置(201)和增压器液压缸(202),增压器驱动装置(201)被配置为分别受第一控制单元(91)和第二控制单元(92)控制。
根据第一方面的第二种可能的实施方式,在第三种可能的实施方式中,增压器驱动装置(201)为六相电机,包括第一绕组和第二绕组,第一绕组被配置为受第一控制单元(91)控制,第二绕组被配置为受第二控制单元(92)控制。
根据第一方面的第二种或第三种可能的实施方式,在第四种可能的实施方式中,增压器液压缸(202)为双向增压液压缸,增压器液压缸(202)包括第一增压腔和第二增压腔,至少一个第一增压支路控制阀(21,22)与第一增压腔连接,至少一个第二增压支路控制阀(23,24)与第二增压腔连接。
根据第一方面的第二种或者第三种可能的实施方式,在第五种可能的实施方式中,增压器液压缸(202)为单向增压液压缸,至少一个第一增压支路控制阀(21,22)和至少一个第二增压支路控制阀(23,24)并联,并分别与增压器液压缸(202)连接。
根据第一方面的第四种或者第五种可能的实施方式,在第六种可能的实施方式中,还包括储液容器(5)和第五控制阀(51),储液容器(5)分别与制动主缸(1)和增压器(2)连接,第五控制阀(51)的第一端与制动主缸(1)连接,第五控制阀(51)的第二端用于与储液容器(5)连接。
根据第一方面的第六种可能的实施方式,在第七种可能的实施方式中,还包括踏板感觉模拟器(6)和第六控制阀(61),踏板感觉模拟器(6)通过第六控制阀(61)与制动主缸(1)连接。
根据第一方面的第七种可能的实施方式,在第八种可能的实施方式中,还包括至少一个第四控制阀(41,42,43,44),至少一个第四控制阀(41,42,43,44)的第一端分别与至少一个第一接口(4)连接,至少一个第四控制阀(41,42,43,44)的另一端用于与储液容器(5)连接,至少一个第四控制阀被配置为受第一控制单元(91)控制。
根据第一方面的第八种可能的实施方式,在第九种可能的实施方式中,至少一个第一增压支路控制阀(21,22)还被配置为受第二控制单元(92)控制,至少一个第二增压支路控制阀(23,24)还被配置为受第一控制单元(91)控制。
根据第一方面的第八种或者第九种可能的实施方式,在第十种可能的实施方式中,至少一个第三控制阀(31,32,33,34)和至少一个第四控制阀(41,42,43,44)还被配置为受第二控制单元(92)控制。
根据第一方面的第八种至第十种任意一种可能的实施方式,在第十一种可能的实施方式中,该制动系统还包括:至少一个第一控制阀(11,12)被配置为分别受第一控制单元(91)和第二控制单元(92)控制。第五控制阀(51)被配置为受第一控制单元(91)控制。第六控制阀(61)被配置为分别受第一控制单元(91)和第二控制单元(92)控制。
根据第一方面的第八种至第十种任意一种可能的实施方式,在第十二种可能的实施方式中,该制动系统还包括第三控制单元(93)。其中,至少一个第一控制阀(11,12)被配置为受第三控制单元(93)控制。第五控制阀(51)被配置为受第三控制单元(93)控制。第六控制阀(61)被配置为受第三控制单元(93)控制。
根据第一方面的第十二种可能的实施方式,在第十三种可能的实施方式中,该制动系统还包括至少一个第二接口和至少一个第三接口,其中,至少一个第一控制阀(11,12)通过至少一个第二接口分别与至少一个第三控制阀(31,32,33,34)连接,至少一个第四控制阀(41,42,43,44)通过第三接口与储液容器(5)连接,增压器(2)通过至少一个第三接口与储液容器(5)连接。
本申请第二方面提供一种液压装置,在第二方面的第一种可能的实施方式中,该液压装置包括:增压器(2)、至少一个第二控制阀(21,22,23,24)、至少一个第三控制阀(31,32,33,34)、至少一个第四控制阀(41,42,43,44)、第一控制单元(91)和第二控制单元(92)、至少一个第一接口(4)、至少一个第二接口、至少一个第三接口。其中,至少一个第三控制 阀(31,32,33,34)的第一端分别与至少一个第一接口(4)连接,至少一个第一接口(4)用于分别与至少一个制动轮缸(3)连接。至少一个第三控制阀(31,32,33,34)的第二端与至少一个第二接口连接,至少一个第二接口用于与制动主缸连接。至少一个第三控制阀(31,32,33,34)的第二端还通过至少一个第二控制阀(21,22,23,24)与增压器(2)连接。增压器(2)与至少一个第三接口连接,至少一个第三接口用于与储液容器连接。至少一个第四控制阀(41,42,43,44)的第一端与至少一个第一接口连接,至少一个第四控制阀(41,42,43,44)的第二端与至少一个第三接口连接。至少一个第三控制阀(31,32,33,34)被配置为受第一控制单元(91)控制。至少一个第二控制阀(21,22,23,24)包括至少一个第一增压支路控制阀(21,22)和至少一个第二增压支路控制阀(23,24),至少一个第一增压支路控制阀(21,22)被配置为受第一控制单元(91)控制,至少一个第二增压支路控制阀(23,24)被配置为受第二控制单元(92)控制。增压器(2)被配置为分别受第一控制单元(91)和第二控制单元(92)控制。
根据第二方面的第一种可能的实施方式,在第二种可能的实施方式中,增压器(2)包括增压器驱动装置(201)和增压器液压缸(202),增压器驱动装置(201)被配置为分别受第一控制单元(91)和第二控制单元(92)控制。
根据第二方面的第二种可能的实施方式,在第三种可能的实施方式中,增压器驱动装置(201)为六相电机,包括第一绕组和第二绕组,第一绕组被配置为受第一控制单元(91)控制,第二绕组被配置为受第二控制单元(92)控制。
根据第二方面的第二种或第三种可能的实施方式,在第四种可能的实施方式中,增压器液压缸(202)为双向增压液压缸,增压器液压缸(202)包括第一增压腔和第二增压腔,至少一个第一增压支路控制阀(21,22)与第一增压腔连接,至少一个第二增压支路控制阀(23,24)与第二增压腔连接。
根据第二方面的第二种或第三种可能的实施方式,在第五种可能的实施方式中,增压器液压缸(202)为单向增压液压缸,至少一个第一增压支路控制阀(21,22)和至少一个第二增压支路控制阀(23,24)并联,并分别与增压器液压缸(202)连接。
根据第二方面的第四种或第五种可能的实施方式,在第六种可能的实施方式中,至少一个第一增压支路控制阀(21,22)还被配置为受第二控制单元(92)控制,至少一个第二增压支路控制阀(23,24)还被配置为受第一控制单元(91)控制。
根据第二方面的第六种可能的实施方式,在第七种可能的实施方式中,至少一个第三控制阀(31,32,33,34)和至少一个第四控制阀(41,42,43,44)还被配置为受第二控制单元(92)控制。
本申请第三方面提供一种制动系统,在第三方面的第一种可能的实施方式中,该制动系统包括第一液压装置和第二液压装置,其中,第一液压装置为如第二方面任意一种可能的实施方式中提供的液压装置,第二液压装置包括:制动主缸(1)、至少一个第一控制阀(11,12)、储液容器(5)、第五控制阀(51)、踏板感觉模拟器(6)、第六控制阀(61)、第三控制单元(93)。其中,制动主缸(1)通过至少一个第一控制阀(11,12)与至少一个第二接口连接。储液容器(5)分别与制动主缸(1)和至少一个第三接口连接。第五控制阀(51)的第一端与制动主缸(1)连接,第五控制阀(51)的第二端与储液容器(5)连接。踏板感觉模拟器(6)通过第六控制阀(61)与制动主缸(1)连接。至少一个第一控制阀(11,12)、第五控制阀(51)和第六控制阀(61)分别被配置为受第三控制单元(93)控制。
本申请第四方面提供一种控制方法,在第四方面第一种可能的实施方式中,该制动系统 为如第八方面第十一种可能的实施方式提供的的制动系统,控制方法包括:获取第一信号,第一信号用于指示制动系统的故障信息。根据第一信号,控制至少一个第一控制阀(11,12)切换到第一状态,控制至少一个第二控制阀(21,22,23,24)切换到第二状态。
根据第四方面的第一种可能的实施方式,在第二种可能的实施方式中,第一信号包括用于指示第一控制单元(91)故障的信息。第一状态包括:至少一个第一控制阀(11,12)被配置为断开状态。第二状态包括:至少一个第二增压支路控制阀(23,24)被配置为接通状态。
根据第四方面的第一种可能的实施方式,在第三种可能的实施方式中,第一信号包括用于指示第二控制单元(92)故障的信息。第一状态包括:至少一个第一控制阀(11,12)被配置为断开状态。第二状态包括:至少一个第一增压支路控制阀(21,22)被配置为接通状态。
根据第四方面的第三种可能的实施方式,在第四种可能的实施方式中,控制方法还包括:根据目标制动压力调整至少一个第三控制阀(31,32,33,34)和/或至少一个第四控制阀(41,42,43,44)的状态。
本申请第五方面提供一种控制方法,应用于制动系统,在第五方面的第一种可能的实施方式中,制动系统为如第一方面的第十二种或第十三种可能的实施方式提供的制动系统,控制方法包括:获取第二信号,第二信号用于指示制动系统的故障信息。根据第二信号,控制至少一个第二控制阀(21,22,23,24)切换到第三状态。
根据第五方面的第一种可能的实施方式,在第二种可能的实施方式中,第二信号包括第一控制单元(91)的故障信息。第三状态包括:至少一个第二增压支路控制阀(23,24)被配置为接通状态。
根据第五方面的第一种可能的实施方式,在第三种可能的实施方式中,第二信号包括用于指示第二控制单元(92)故障的信息。第三状态包括:至少一个第一增压支路控制阀(21,22)被配置为接通状态。
根据第五方面的第二种或第三种可能的实施方式,在第四种可能的实施方式中,控制方法还包括:根据目标制动压力调整至少一个第三控制阀(31,32,33,34)和/或至少一个第四控制阀(41,42,43,44)的状态。
本申请第六方面提供一种控制方法,应用于制动系统,在第六方面的第一种可能的实施方式中,制动系统为如第一方面的第十二种或第十三种可能的实施方式,该控制方法包括:获取第三信号,第三信号用于指示制动系统的故障信息。根据第三信号,控制至少一个第一控制阀(11,12)切换到第四状态。
根据第六方面的第一种可能的实施方式,在第二种可能的实施方式中,第三信号包括用于指示第一控制单元(91)故障的信息,或者,第三信号包括用于指示第二控制单元(92)故障的信息。第四状态包括:至少一个第一控制阀(11,12)被配置为断开状态。
本申请第七方面提供一种可读存储介质,可读存储介质存储有程序指令,当程序指令被执行时执行如第四方面、第五方面或第六方面任意一种可能的实施方式提供的方法。
本申请实施例八提供一种车辆,该车辆包括如第一方面或第三方面任意一种可能的实施方式提供的制动系统,或者包括第二方面任意一种可能的实施方式提供的液压装置。
本申请实施例提供的制动系统具有多重冗余设计,能够保证制动系统在控制器或者关键电磁阀失效的情况下还能够满足车辆多种制动功能需求,提高制动系统的安全性,保证驾驶员的踏板感受,给驾驶员带来更加稳定舒适的驾驶体验。
附图说明
图1为本申请实施例提供的一种整车系统架构示意图;
图2为本申请实施例提供的一种制动系统在车辆中的布置形式示意图;
图3-a为本申请实施例提供的一种制动系统及其一种集成方式的示意图;
图3-b为本申请实施例提供的一种制动系统及其另一种集成方式的示意图;
图4为本申请实施例提供的一种制动系统的一种工作模式示意图;
图5为本申请实施例提供的一种制动系统的又一种工作模式示意图;
图6为本申请实施例提供的一种制动系统的又一种工作模式示意图;
图7为本申请实施例提供的又一种制动系统的一种工作模式示意图;
图8为本申请实施例提供的又一种制动系统的又一种工作模式示意图;
图9为本申请实施例提供的又一种制动系统的又一种工作模式示意图;
图10-a为本申请实施例提供的又一种制动系统的示意图;
图10-b为本申请实施例提供的又一种制动系统的一种集成方式示意图;
图11为本申请实施例提供的又一种制动系统的一种工作模式示意图;
图12为本申请实施例提供的又一种制动系统的又一种工作模式示意图;
图13为本申请实施例提供的又一种制动系统的又一种工作模式示意图;
图14为本申请实施例提供的又一种制动系统的又一种工作模式示意图;
图15为本申请实施例提供的又一种制动系统的又一种工作模式示意图;
图16为本申请实施例提供的又一种制动系统的又一种工作模式示意图;
图17为本申请实施例提供的又一种制动系统示意图;
图18为本申请实施例提供的又一种制动系统示意图;
图19为本申请实施例提供的又一种制动系统示意图;
图20为本申请实施例提供的又一种制动系统示意图;
图21为本申请实施例提供的又一种制动系统示意图;
图22为本申请实施例提供的又一种制动系统示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。显然,所描述的实施例仅仅是本申请提供的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了便于理解,本申请说明书先对本申请实施例可能涉及的相关术语和概念进行介绍。
制动防抱死系统(antilock brake system,ABS):一般车辆在紧急制动或在冰雪路面制动,车轮会趋于抱死。车轮抱死带来使制动距离增加、失去转向意图等问题。ABS系统根据车轮的抱死情况,适当的减小趋于抱死车轮处的制动力,以实现防抱死功能。
自动紧急制动系统(autonomous emergency braking,AEB):在车辆遇到突发危险情况或与前车及行人距离小于安全距离时主动进行刹车,以避免或减少追尾等碰撞事故的发生。
电子稳定性控制系统(electronic stability control system,ESC):传感器收集车辆信息来判断车辆失稳情况,当车辆趋于失稳,ESC系统通过对单个或部分车轮施加制动力,以获取使车轮稳定的横摆力矩,从而实现稳定车辆的目的。
牵引力控制系统(traction control system,TCS):当在冰雪路面行驶,或某一车轮陷入泥泞路面等情况发生时,由于车轮打滑严重,车辆无法正常行驶。TCS系统根据车轮打滑情况,适当减小驱动力或对打滑车轮施加制动力,减弱车轮打滑情况,保证车辆正常行驶。
自适应巡航控制(adaptive cruise control,ACC):在按设定车速进行巡航控制的系统上,增加了与前方车辆保持合理间距控制功能的系统,其子功能有定速巡航、跟随巡航、弯道巡航、驾驶模式选择、智慧过弯、智能限速等,主要通过制动系统和驱动系统控制车辆速度实现巡航功能。
集成制动系统(integrated brake system,IBS):由电动线性泵及电磁阀和阀体等组成的电液线控制动系统,可以实现车辆的ABS/AEB/TCS/ESC等制动功能。
冗余制动模块(redundant brake unit,RBU):对主制动系统形成备份的独立制动模块,当车辆主制动系统失效时,RBU模块完成车辆的制动,提高车辆的安全性。
本申请说明书中涉及的其他术语或概念还包括:油壶液位传感器(reservoir level sensor,RLS)、测试阀(test simulation valve,TSV)、踏板行程传感器(pedal travel sensor,PTS)、主缸压力传感器(master cylinder pressure sensor,MCPS)、制动回路压力传感器(brake circuit pressure sensor,BCPS)、电子控制单元(electronic control unit,ECU)、基础制动功能(basic brake function,BBF)等。
需要说明的是,上述术语和概念的介绍仅为帮助理解使用,不应理解为对本申请实施例的限定。
以下,本申请说明书将结合图1至图20对本申请实施例提供的制动系统进行说明。
车辆正在经历着电动化、网联化、智能化的变革。对于车辆而言,包括制动系统在内的各个系统也面临着改变和升级。制动系统的结构改变和功能升级与整车架构的革新紧密相关。具体地,下面结合图1对整车的各个系统进行描述。
图1为本申请实施例提供的一种车辆100的一个示意图。车辆100可包括各种子系统,例如信息娱乐系统110、感知系统120、决策控制系统130、驱动系统140以及计算平台150。可选地,车辆100可包括更多或更少的子系统,并且每个子系统都可包括多个部件。另外,车辆100的每个子系统和部件可以通过有线或者无线的方式实现互连。
对于车辆而言,制动系统135是其最为关键的系统之一,直接关系到车辆综合性能表现及乘员的生命财产安全。制动系统135可用于控制车辆100的速度。制动系统135可通过摩擦力来减慢车轮144转速。在一些实施例中,制动系统135还可以具有能量再生制动功能。此外,制动系统135也可通过其他方式控制车辆100的速度。
对于再生制动功能而言,车辆在减速或制动时,可通过电机将汽车的一部分机械能转化为电能并储存在电池中,同时产生一部分制动力实现汽车的减速或制动。当汽车再次加速时,电机将储存于电池中的能量再次转换为汽车行驶的动能。但是,由于再生制动面临制动强度限制等挑战,并不能满足全部制动工况的需求。为此,液压制动系统在新能源汽车中仍有较高应用价值。
车辆在智能化方面的发展为制动系统的功能开发提供了更多可能。如图1所示,本申请实施例提供的车辆100可以被配置为完全或部分自动驾驶模式。例如:车辆100可以通过感知系统120获取其周围的环境信息,并基于对周边环境信息的分析得到自动驾驶策略以实现完全自动驾驶,或者将分析结果呈现给用户以实现部分自动驾驶。在一些实施例中,车辆100可以通过对其周边环境的感知来调整自车的车速。周边环境可以包括其它车辆和/或行人等交通参与者,也可以包括道路、基础设施或或者其它物体。在一些示例中,车辆100可以自主识别周边环境,并且根据环境中物体的信息(如速度、加速度、与自车的距离等)确定自车的车速。
车辆在计算和控制资源方面的提升为制动系统控制方法的设计提供了更多选择。如图1 所示,本申请实施例提供的车辆100的部分或所有功能受计算平台150控制。计算平台150可基于从各种子系统(例如,驱动系统140、感知系统120和决策控制系统130)接收的输入来控制车辆100的各项功能。尤其对于制动系统135而言,计算平台150能够为制动系统135的功能开发带来更多可能。例如,计算平台150可以根据来自决策控制系统130的输入控制制动系统135来避免与由感知系统120检测到的障碍物发生碰撞。
下面结合图1对计算平台150进行描述。
计算平台150可包括至少一个处理器151,处理器151可以执行存储在例如存储器152这样的非暂态计算机可读介质中的指令153。在一些实施例中,计算平台150还可以是采用分布式方式控制车辆100的个体组件或子系统的多个计算设备。
对于如图1中所示的计算平台150,其中的处理器151可以是任何常规的处理器,如中央处理单元(central process unit,CPU)。替选地,处理器151还可以包括诸如图像处理器(graphic process unit,GPU),现场可编程门阵列(field programmable gate array,FPGA)、片上系统(sysem on chip,SOC)、专用集成芯片(application specific integrated circuit,ASIC)或它们的组合。尽管图1功能性地图示了处理器、存储器和其它元件,但是本领域的普通技术人员应该理解该处理器、计算机、或存储器实际上可以包括可以或者可以不存储在相同的物理外壳内的多个处理器、计算机、或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机的外壳内的其它存储介质。因此,对处理器或计算机的引用将被理解为包括对可以或者可以不并行操作的处理器或计算机或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和制动组件的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。在此处所描述的各个方面中,处理器可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行,包括采取执行单一操纵的必要步骤。在一些实施例中,存储器152可包含指令153,例如,程序逻辑。指令153可被处理器151执行来执行车辆100的各种功能。存储器152也可包含额外的指令,包括向信息娱乐系统110、感知系统120、决策控制系统130驱动系统140中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。在一些实施例中,除了指令153以外,存储器152还可存储数据,例如道路地图、路线信息,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息。这些信息可在车辆100在自主、半自主和/或手动模式操作期间被车辆100和计算平台150使用。
需要说明的是,图1不应理解为对本申请实施例的限制。可选地,上述这些组件中的一个或多个可与车辆100分开安装或关联。例如,存储器152可以部分或完全地与车辆100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除或者重新划分。另外,上述车辆100可以为乘用车、商用车、摩托车、专用车辆(如消防车、救护车、矿用车、道路施工车辆等)、轨道车辆、船舶、飞行器等,本申请实施例不做特别的限定。
为便于理解制动系统在整车布置中的形式,如图2所示,本申请说明书还提供一种制动系统在车辆中布置的示意图。在一些实施例中,制动系统135在车辆中的布置形式可以如图2所示。在一些实施例中,制动系统135可以包括制动踏板、制动主缸、增压器、制动管路、制动轮缸等组件。当驾驶员踩下制动踏板,或当接收到制动信号时,制动主缸或增压器向制动轮缸提供制动压力,并进一步驱动制动执行器对车辆进行制动。
当然,除了图2提供的一种可能的布置形式之外,制动系统在车辆中还可以采用其他的 布置方式。例如,后轴的车轮可以采用机械制动;又如,当车辆包括更多数量的车轮时,例如当车辆包括6个车轮时,制动系统还可以包括更多制动管路和更多制动轮缸。因此需要说明的是,图2仅作为本申请实施例提供的一种制动系统可能的布置方式,不应理解为对本申请实施例的限制。
由此,通过以上描述可以理解:电动化、网联化、智能化的发展趋势对车辆制动系统的可靠性、安全性提出了更高的要求,也同时为制动系统功能的开发带来更多可能。
面对这些全新的挑战和机遇,本申请实施例提供的制动系统能够保证车辆在主制动系统控制器或者关键电磁阀失效的情况下,依然能够通过冗余控制器实现车辆制动功能,并且在一些实施例中还可以满足车辆的ABS/AEB/TCS/ESC等制动功能需求,大幅提高车辆的安全性和可靠性。
以下结合具体实施例对本申请提供的制动系统进行详细说明。
首先,需要说明的是,本申请说明书中出现的制动系统中控制阀的名称不代表控制阀的类型,仅表示其具有的功能。例如,对于在本申请实施例中可能出现的“隔离阀”、“增压阀”、“减压阀”、“双控制器共同驱动的电磁阀”、“单控制器独立驱动的电磁阀”等均不是对所涉及控制阀的类型的限定。例如,用于控制进液管路连通或者断开的控制阀可以称为“进液阀”或者“增压阀”;用于控制回液管路连通或者断开的控制器可以称为“出液阀”或者“减压阀”;用于隔离两级制动子系统的控制阀可以称为“隔离阀”。其中,上述控制阀可以是现有的制动系统中常用的阀,例如,电磁阀等。应理解,本申请不对控制阀的种类进行限定。
同时,需要说明的是,本申请说明书中出现的制动管路可以仅为“出液管路”或者“进液管路”,或者,制动管路还可以为“出液管路”和“进液管路”。例如,在为汽车的车轮的制动轮缸减压的过程中,制动系统中的制动管路用于将制动轮缸中的制动液输送至储液装置,此时,制动管路可以称为“出液管路”。在为汽车的车轮的制动轮缸增压的过程中,该制动管路用于为汽车的车轮提供制动液,以为汽车的车轮提供制动力,此时,制动管路可以称为“进液管路”。
接着,需要说明的是,本申请实施例提供的制动系统与制动轮缸之间可以采用多种连接形式,例如,可以呈X型布置、H型布置、工型布置等。X型布置可以为一路制动回路连接左前轮(front left,FL)的制动轮缸和右后轮(rear right,RR)的制动轮缸,另一路制动回路连接右前轮(front right,FR)的制动轮缸和左后轮(rear left,RL)的制动轮缸。H型布置可以为一路制动回路连接左前轮的制动轮缸FL和左后轮RL的制动轮缸,另一路制动回路连接右前轮FR的制动轮缸和右后轮RR的制动轮缸。工型布置可以为一路制动回路连接左前轮FL的制动轮缸和右前轮FR的制动轮缸,另一路制动回路连接左后轮RL的制动轮缸和右后轮RR的制动轮缸。应理解,尽管本申请提供的一些实施例以X型制动回路为例,但是本申请实施例对制动回路的类型不作限制。
其次,需要说明的是,在本申请提供的一些实施例中,本申请说明书并未示电机控制信号的生成过程,控制单元与增压器驱动装置之间的连接关系仅表示控制关系。
同时,需要说明的是,在本申请说明书中,第一控制单元91在一些实施例中也被称作ECU1,第二控制单元92在一些实施例中也被称作ECU2,第三控制单元93在一些实施例中也被称作ECU3。
另外,需要说明的是,本申请提供的一些实施例中,控制单元可以为控制器或者可以被集成在控制器中,控制器中至少还包括各种电磁阀驱动、电机驱动以及各种信号处理及控制的输出接口。控制器接收各种传感器的测量或检测信号,如环境条件、驾驶员输入、制动系统状态等,通过计算和判断来控制制动系统的制动特性。
此外,需要说明的是,在本申请说明书中出现的常开阀可以理解为在不上电或不动作的初始条件下处于导通状态的控制阀,常开阀在上电或者动作时由导通状态切换为关闭状态;在本申请说明书中出现的常闭阀可以理解为在不上电或不动作的初始条件下为关闭的控制阀,常闭阀上电或者动作时有关闭状态切换为导通状态。
基于上述说明,本申请说明书将结合附图3至附图20对本申请实施例进行详细介绍。
实施例一
图3为本申请实施例一提供的一种制动系统示意图。如图3所示,本申请实施例一提供的制动系统包括:制动主缸1、增压器2、第一控制阀(11,12)、第二控制阀(21,22,23,24)、第三控制阀(31,32,33,34)、第四控制阀(41,42,43,44)、第一控制单元91、第二控制单元92。
本处需要说明的是,在本申请说明书中出现的第一控制阀(11,12)也可以被称为主缸隔离阀;第二控制阀(21,22,23,24)也可被称为增压支路控制阀;第三控制阀(31,32,33,34)也可被称为增压阀或者轮缸增压阀;第四控制阀(41,42,43,44)也可被称为减压阀、轮缸减压阀或者泄压阀;第五控制阀(51)也可以被称为测试阀(test simulation valve,TSV);第六控制阀(61)也可以被称为踏板模拟阀(pedal simulation valve,PSV)。应理解,对控制阀功能的描述不应理解为对控制阀类型的限定。
可选地,在实施例一中,制动主缸1包括两个可对外输出压力的液压腔,分别记为第一主腔和第二主腔。第一主腔和第二主腔分别通过第一主缸隔离阀11和第二主缸隔离阀12与轮缸制动管路连接。
可选地,在实施例一中,制动主缸1还可以包括主缸推杆。主缸推杆用于与制动踏板连接。当接收到踏板力时,主缸推杆可以推动制动主缸的活塞,以提高制动主缸中的油压。
可选地,在实施例一中,制动系统还可以包括踏板行程传感器PTS。踏板行程传感器PTS可用于采集的制动踏板的行程信号。
可选地,在实施例一中,制动系统还可以包括制动踏板7。制动踏板7与制动系统的主缸推杆连接。如图3所示,在一种可能的实施方式中,驾驶员踩下制动踏板7后,可以根据踏板行程传感器PTS采集的踏板行程信号获得目标制动力。根据该目标制动力,制动系统通过控制相关控制阀以向制动轮缸提供相应的制动压力。
具体地,如图3所示,制动主缸与制动轮缸之间的连接关系可以描述如下:制动主缸1的第一主腔通过第一主缸隔离阀11分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31与第一轮缸3a连接,第二增压阀32与第二轮缸3b连接;制动主缸1的第二主腔通过第二主缸隔离阀12分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33与第三轮缸3c连接,第四轮缸增压阀34与第四轮缸3d连接。
可选地,在实施例一中,主缸隔离阀11和主缸隔离阀12为常开阀。
可选地,在实施例一中,增压器2包括六相电机201。
需要说明的是,在本申请一些实施例提供的制动系统中,六相电机201也可以被替换成其他类型的电机,例如三相永磁同步电机。实施例一采用六相电机201可以帮助提高系统的控制冗余程度。
可选地,在实施例一中,六相电机201还可以包括电机位置传感器(motor position sensor,MPS)。电机位置传感器MPS用于获取电机位置信号以实现电机控制或提高电机控制精度。
具体地,如图3所示,六相电机201包括第一绕组和第二绕组,第一绕组被配置为受第一控制单元91控制,第二绕组被配置为受第二控制单元92控制。应理解,六相电机201还 可以采用其他冗余控制方式,例如第一控制单元91和第二控制单元92同时控制六相电机201的所有绕组,并且第一控制单元91和第二控制单元92可以互为冗余备份;又如,第一控制单元91和第二控制单元92可以分别提供一定百分比的控制驱动信号,例如第一控制单元91生成50%的控制信号,第二控制单元92生成50%的控制信号,以保证六相电机201能够在任意一个控制器发生故障的情况下依旧能够执行特定的动作。
可选地,在实施例一中,增压器2包括双向增压缸202(dual apply plunger,DAP),其中,双向增压缸202包括第一增压腔和第二增压腔。第一增压腔与第一增压支路连接,第二增压腔与第二增压支路连接。
需要说明的是,双向增压缸202能够使增压过程连续稳定,为制动系统带来良好的增压特性。
具体地,如图3所示,增压器2的双向增压缸与制动轮缸之间的连接关系可以描述如下:第一增压腔通过第一增压支路上的第一增压控制阀21分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31与第一轮缸3a连接,第二轮缸增压阀32与第二轮缸3b连接;同时,第一增压腔通过第一增压支路上的第二增压控制阀22分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33与第三轮缸3c连接,第四轮缸增压阀34与第四轮缸3d连接。类似地,第二增压腔通过第二增压支路上的第三增压控制阀23分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31与第一轮缸3a连接,第二增压阀32与第二轮缸3b连接;同时,第二增压腔通过第二增压支路上的第四增压控制阀24分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33与第三轮缸3c连接,第四轮缸增压阀34与第四轮缸3d连接。
可选地,第一增压控制阀21、第二增压控制阀22、第三增压控制阀23和第四增压控制阀24为常闭阀。
可选地,在实施例一中,制动系统还可以包括储液容器5。
如图3所示,制动主缸1的第一主腔与储液容器5通过第一储液管路连接,制动主缸1的第二主腔通过测试阀51与储液容器5连接;增压器2的第一增压腔与储液装置5通过第二储液管路连接,增压器2的第二增压腔通过单向阀与储液容器5连接;减压阀(41,42,43,44)的第一端通过第三储液管路与储液容器5连接,减压阀(41,42,43,44)的第二端用于分别与制动轮缸4连接。
可选地,在实施例一中,制动系统还可以包括油壶液位传感器(reservoir level sensor,RLS)。如图3所示,油壶液位传感器RLS可以设置在储液容器5中,用于检测储液容器中液压油的液位。
可选地,在实施例一中,制动系统还可以包括踏板感觉模拟器6和踏板模拟阀61。
如图3所示,踏板感觉模拟器6通过踏板模拟阀61与制动主缸1的第二主腔连接。踏板模拟阀61还通过单向阀与制动主缸1的第二主腔连接。在踏板感觉模拟器6和第二主腔之间,踏板模拟阀61与单向阀为并联关系。
可选地,在实施例一中,制动系统还可以包括主缸压力传感器(master cylinder pressure sensor,MCPS)。如图3所示,主缸压力传感器MCPS与制动主缸的第二主腔连接。
可选地,在实施例一中,制动系统还可以包括制动回路压力传感器(brake circuit pressure sensor,BCPS)。一种可能的实施方式,如图3所示,制动回路压力传感器BCPS与制动回路的连接点位于第一轮缸增压阀31与第二轮缸增压阀32之间的管路上。本处可以理解的是,制动回路压力传感器BCPS的在制动回路中的接入位置并不限于如图3所示的接入位置,其 接入位置还可以设置在第三轮缸增压阀33与第四轮缸增压阀34之间的管路上,本申请不对其具体的接入位置进行限定。
需要说明的是,当制动回路压力传感器BCPS被设置在第一轮缸增压阀31与第二轮缸增压阀32之间的管路上时,或者,被设置在第三轮缸增压阀33与第四轮缸增压阀34之间的管路上时,制动压力传感器BCPS能够获取第一增压腔和第二增压腔的油液压力。
可选地,在实施例一中,还可以包括单向阀。
可选地,如图3所示,轮缸增压阀(31,32,33,34)的两端可以并联单向阀,并且,每一个并联在轮缸增压阀(31,32,33,34)两端的单向阀被配置为允许制动液从制动轮缸经单向阀并流向制动回路。可选地,如图3所示,测试阀(51)两端可以并联单向阀,并且,并联在测试阀(51)两端的单向阀被配置为允许制动液由储液容器5经单向阀流向制动主缸1。踏板模拟阀61两端也可并联单向阀,并且并联在踏板模拟阀61两端的单向阀被配置为允许制动液由踏板模拟器经单向阀流向制动主缸1。增压器2通过单向阀与储液容器5连接,该单向阀被配置为允许制动液由储液容器5经单向阀流向增压器2。
需要说明的是,制动主缸1或增压器2可能存在泄漏,当电磁阀卡滞或其他故障时,可以通过单向阀对制动主缸1或增压器2进行补液。一种可能的实施方式,上述单向阀可以选用类似轮缸增压阀类型的电磁阀。
可选地,在实施例一中,如图3所示,制动系统还可以包括过滤器。过滤器可以过滤液压回路中的杂质。
在实施例一中,第一控制单元91和第二控制单元92所控制的对象分别如下:
(1)第一控制单元91控制的对象包括:六相电机201、第一主缸隔离阀11、第二主缸隔离阀12、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、测试阀51、踏板模拟阀61。
(2)第二控制单元92控制的对象包括:六相电机201、第一主缸隔离阀11、第二主缸隔离阀12、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、踏板模拟阀61。
可选地,在实施例一中,第一控制单元91和第二控制单元可以集成在同一个控制器内,也可以各自独立。一种可能的实施方式,线控制动系统的控制器包括第一控制单元91和第二控制单元92,并且,控制器中至少还包括各种电磁阀驱动、电机驱动以及各种信号处理及控制输出接口。控制器接收各种传感器的测量或检测信号,如环境条件、驾驶员输入、制动系统状态等,通过计算和判断来控制制动系统的制动特性。
需要说明的是,本申请实施例一提供的制动系统存在多种集成方式。以下结合图3对本申请实施例一提供制动系统的多种集成方式进行描述:
(1)集成方案一:如图3-a所示,制动系统包括如虚线框所示范围内的组件,具体包括:第一控制单元91、第二控制单元92、制动主缸1、六相电机201、双向增压缸202、储液容器5、踏板感觉模拟器6、第一主缸隔离阀11、第二主缸隔离阀12、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、测试阀51、踏板模拟阀61、踏板行程传感器PTS、主缸压力传感器MCPS、制动回路压力传感器BCPS。
需要说明的是,集成方案一中还可以包括单向阀、过滤器、主缸推杆等组件之中的一个或多个。集成方案一中包括的所有组件可集成为一体,各个组件以及管路的连接关系如图3-a所示。各组件的控制关系如上文实施例一所述。
值得注意的是,集成方案一提供的制动系统不包括制动踏板7,但可以包括主缸推杆。选用集成方案一制动系统时,可以搭配不同种类的制动踏板7,以适配更多车型并提供更多个性化搭配的可能。另外,当制动系统的销售形态为集成方案一时,制动系统不包括轮缸,但是留有至少一个轮缸接口4,至少一个轮缸接口4用于与至少一个轮缸连接,并可以为轮缸提供制动压力。如图3所示的制动系统包括4个轮缸接口,并且各轮缸接口可以与4个轮缸一一对应连接。
(2)集成方案二:如图3-b所示,制动系统包括如虚线框所示范围内的组件,具体包括:第一控制单元91、第二控制单元92、制动主缸1、六相电机201、双向增压缸202、踏板感觉模拟器6、第一主缸隔离阀11、第二主缸隔离阀12、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、测试阀51、踏板模拟阀61、踏板行程传感器PTS、主缸压力传感器MCPS、制动回路压力传感器BCPS。
与集成方案一相比,集成方案二的区别在于不包括储液容器5。与此对应的是,集成方案二的制动系统增加了至少一个用于与储液容器5连接的接口8,如图3-b中的接口8a、接口8b、接口8c、接口8d所示。需要说明的是,接口8的数量可以依据实际需求进行调整,例如一种可能的实施方式,接口8a与接口8b可以在制动装置中合并为同一个接口。
以上结合图3对实施例一提供制动系统的系统组成、连接关系、控制关系、集成方式等进行了介绍。下面结合图4至图6对实施例一提供的制动系统的多种工作模式进行描述。
本申请实施例一提供的制动系统至少包括三种工作模式:(1)ECU1和ECU2协同工作;(2)ECU1单独工作;(3)ECU2单独工作。
工作模式1:ECU1和ECU2协同工作
图4为本申请实施例一提供的制动系统的一种工作模式示意图。制动系统无任何故障时,ECU1和ECU2协同工作的一个状态如图4所示。此时,ECU1控制六相电机M的三相驱动,ECU2控制六相电机M的另外三相驱动,ECU1和ECU2共同驱动电机M推动电缸DAP,实现系统快速建压。ECU1控制所有电磁阀,并且根据传感器信号,计算电机及电磁阀的控制信号,并将电机M的控制信号发送至ECU2,双ECU协同工作,实现车轮的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式2:ECU1单独工作
图5为本申请实施例一提供的制动系统的又一种工作模式示意图。ECU2出现故障时,ECU1单独工作的一个状态如图5所示。此时,ECU1控制六相电机M的三相驱动,推动电缸DAP,实现系统建压。ECU1控制所有电磁阀,并且根据传感器信号,计算电机及电磁阀的控制信号,实现车轮的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等车辆控制功能。
工作模式3:ECU2单独工作
图6为本申请实施例一提供的制动系统的又一种工作模式示意图。ECU1出现故障时,ECU2单独工作的一个状态如图6所示。此时,ECU2控制六相电机M的三相驱动,推动电缸DAP,实现系统建压。ECU2控制第一主缸隔离阀11、第二主缸隔离阀12、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、踏板模拟阀61,并且 根据传感器信号,计算电机M及上述电磁阀的控制信号,实现车轮的压力控制,由于ECU2无法控制第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44,故此工作模式下只能实现BBF/AEB/ACC等车辆控制功能。
实施例二
本申请实施例二也提供一种制动系统。图7至图9分别为本申请实施例二提供的又一种制动系统的不同工作状态示意图。如图7至图9所示,本申请实施例二提供的制动系统在系统组成、连接关系、集成方式等方面可参考实施例一的描述,本处不再赘述。本申请实施例二提供的制动系统与本申请实施例一提供的制动系统的不同之处在于控制单元的冗余设计。
具体地,在实施例二中,第一控制单元91和第二控制单元92所控制的对象分别如下:
(1)第一控制单元91控制的对象包括:六相电机201、第一主缸隔离阀11、第二主缸隔离阀12、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、测试阀51、踏板模拟阀61。
(2)第二控制单元92控制的对象包括:六相电机201、第一主缸隔离阀11、第二主缸隔离阀12、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、踏板模拟阀61。
需要指出的是,相比于实施例一提供的制动系统,在本申请实施例二提供的制动系统中,第二控制单元91还可控制第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。在本申请实施例二提供的制动系统中,除了第五控制阀(51)外,第二控制单元92还对第一控制单元91控制的其他控制阀进行了冗余备份,提高了制动系统控制冗余的程度。
以上介绍了本申请实施例二提供的制动系统的组成、连接关系、控制关系、集成方式。下面结合图7至图9对本申请实施例二提供的制动系统的多种工作模式进行描述。
本申请实施例二提供的制动系统至少包括三种工作模式:(1)ECU1和ECU2协同工作;(2)ECU1单独工作;(3)ECU2单独工作。
工作模式1:ECU1和ECU2协同工作
图7为本申请实施例二提供的制动系统的一种工作模式示意图。系统无任何故障时,ECU1和ECU2协同工作的一个状态如图7所示。此时,ECU1控制六相电机M的三相驱动,ECU2控制六相电机M的另外三相驱动,ECU1和ECU2共同驱动电机M推动电缸DAP,实现系统快速建压。ECU1控制所有电磁阀,并且根据传感器信号,计算电机及电磁阀的控制信号,并将电机M的控制信号发送至ECU2,ECU1和ECU2协同工作,实现车轮的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式2:ECU1单独工作
图8为本申请实施例二提供的制动系统的又一种工作模式示意图。ECU2出现故障时,ECU1单独工作的一个状态如图8所示。此时,ECU1控制六相电机M的三相驱动,推动电缸DAP,实现系统建压。ECU1控制所有电磁阀,并且根据传感器信号,计算电机及电磁阀的控制信号,实现车轮的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等车辆控 制功能。
工作模式3:ECU2单独工作
图9为本申请实施例二提供的制动系统的又一种工作模式示意图。ECU1出现故障时,ECU2单独工作的一个状态如图9所示。此时,ECU2控制六相电机M的三相驱动,推动电缸DAP,实现系统建压。ECU2控制除测试阀TSV外的所有电磁阀,并且根据传感器信号,计算电机及电磁阀的控制信号,实现车轮的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等车辆控制功能。
实施例三
图10为本申请实施例三提供的一种制动系统。图11至图13分别为本申请实施例三提供的又一种制动系统的不同工作状态示意图。
以下结合图10至图13对本申请实施例三提供的制动系统进行介绍。
如图10至图13所示,本申请实施例三提供的制动系统的系统组成、连接关系、控制关系、集成方式等方面与实施例一存在区别。
首先,在系统组成和连接关系方面,如图10至图13所示,与实施例一或实施例二提供的制动系统相比的不同之处包括:在本申请实施例三提供的制动系统中,增压器2的采用的是单向增压缸。单向增压缸分别与第一增压支路和第二增压支路连接;并且,增压器2的单向增压缸通过单向阀与储液装置5连接。此外,制动回路压力传感器BCPS的位置设置也存在不同。
具体地,在实施例三中,增压器2的单向增压缸与制动轮缸之间的连接关系可以描述为:单向增压缸通过第一增压支路上的第一增压控制阀21分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31与第一轮缸3a连接,第二增压阀32与第二轮缸3b连接;同时,单向增压缸通过第一增压支路上的第二增压控制阀22分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33与第三轮缸3c连接,第四轮缸增压阀34与第四轮缸3d连接。类似地,单向增压缸通过第二增压支路上的第三增压控制阀23分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31与第一轮缸3a连接,第二增压阀32与第二轮缸3b连接;同时,单向增压缸通过第二增压支路上的第四增压控制阀24分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33与第三轮缸3c连接,第四轮缸增压阀34与第四轮缸3d连接。
具体地,在实施例三中,增压器2的制动回路压力传感器BCPS被设置在第二控制阀(21,22,23,24)与增压器2的单向增压缸之间:例如,可以设置在第一增压控制阀21与单向增压缸202之间。通过选取合适的位置,制动回路压力传感器BCPS可以获取增压器2的单向增压缸在不同工作模式下向制动回路输出的油液压力。
第二,在控制关系方面,在实施例三中,第一控制单元91和第二控制单元92所控制的对象分别如下:
(1)第一控制单元91控制的对象包括:六相电机201、第一主缸隔离阀11、第二主缸隔离阀12、第一增压控制阀21、第二增压控制阀22、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、测试阀51、踏板模拟阀61。
(2)第二控制单元92控制的对象包括:六相电机201、第一主缸隔离阀11、第二主缸隔离阀12、第三增压控制阀23、第四增压控制阀24、踏板模拟阀61。
其中,对于实施例三提供制动系统中的控制阀来说,第三增压控制阀23、第四增压控制 阀24由第二控制单元92单独控制,如图10-a中虚线框所覆盖的范围所示;第一主缸隔离阀11、第二主缸隔离阀12、踏板模拟阀61受第一控制单元91和第二控制单元92协同控制,如图10-a中实线框所覆盖的范围所示。
第三,在集成方式方面,实施例三提供制动系统的集成方式与实施例一存在区别,这主要是由于实施例三提供制动系统的增压器2采用了单向增压缸,并对系统组成和连接关系做了适应性调整。以下结合图10至图13对本申请实施例三提供制动系统的多种集成方式进行描述:
(1)集成方案三:如图10-b所示,制动系统包括如虚线框所示范围内的组件,具体包括:第一控制单元91、第二控制单元92、制动主缸1、六相电机201、单向增压缸202、储液容器5、踏板感觉模拟器6、第一主缸隔离阀11、第二主缸隔离阀12、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、测试阀51、踏板模拟阀61、踏板行程传感器PTS、主缸压力传感器MCPS、制动回路压力传感器BCPS。
需要说明的是,集成方案三中还可以包括单向阀、过滤器、主缸推杆等组件之中的一个或多个。集成方案三中包括的所有组件可集成为一体,各个组件以及管路的连接关系如图3-a所示。各组件的控制关系如实施例三所述。
值得注意的是,集成方案三提供的制动系统不包括制动踏板7,但可以包括主缸推杆。选用集成方案三制动系统时,可以搭配不同种类的制动踏板7,以适配更多车型并提供更多个性化搭配的可能。另外,当制动系统的销售形态为集成方案三时,制动系统可以不包括轮缸,但是留有至少一个轮缸接口4,至少一个轮缸接口4用于与至少一个轮缸连接,并可以为轮缸提供制动压力。如图10所示的制动系统包括4个轮缸接口,并且各轮缸接口可以与4个轮缸一一对应连接。
(2)集成方案四:制动系统可以包括:第一控制单元91、第二控制单元92、制动主缸1、六相电机201、双向增压缸202、踏板感觉模拟器6、第一主缸隔离阀11、第二主缸隔离阀12、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、第五控制阀51、第六控制阀61、踏板行程传感器PTS、主缸压力传感器MCPS、制动回路压力传感器BCPS。
与集成方案三相比,集成方案四的区别在于不包括储液容器5。与此对应的是,集成方案四的制动系统增加了至少一个用于与储液容器5连接的接口8。需要说明的是,接口8的数量可以依据实际需求进行调整。
以上结合图10对实施例三提供制动系统的系统组成、连接关系、控制关系、集成方式等进行了介绍。下面结合图11至图13对实施例三提供的制动系统的多种工作模式进行描述。
本申请实施例三提供的制动系统至少包括三种工作模式:(1)ECU1和ECU2协同工作;(2)ECU1单独工作;(3)ECU2单独工作。
工作模式1:ECU1和ECU2协同工作
图11为本申请实施例三提供的制动系统的一种工作模式示意图。系统无任何故障时,ECU1和ECU2协同工作的一个状态如图11所示。此时,ECU1控制电机M的三相驱动,ECU2控制电机M的另外三相驱动,ECU1和ECU2共同驱动电机M推动电缸DAP,实现系统快速建压。ECU1控制除第三增压控制阀23、第四增压控制阀24外的所有电磁阀,并且根据传 感器信号,计算电机及电磁阀的控制信号,并将电机M的控制信号发送至ECU2,ECU1和ECU2协同工作,实现车轮的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式2:ECU1单独工作
图12为本申请实施例三提供的制动系统的又一种工作模式示意图。ECU2出现故障时,ECU1单独工作的一个状态如图11所示。此时,ECU1控制电机M的三相驱动,推动电缸DAP,实现系统建压。ECU1控制除第三增压控制阀23、第四增压控制阀24外的所有电磁阀,并且根据传感器信号,计算电机及电磁阀的控制信号,实现车轮的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等车辆控制功能。
工作模式3:ECU2单独工作
图13为本申请实施例三提供的制动系统的又一种工作模式示意图。ECU1出现故障时,ECU2单独工作的一个状态如图12所示。此时,ECU2控制电机M的三相驱动,推动电缸DAP,实现系统建压。ECU2控制第一主缸隔离阀11、第二主缸隔离阀12、第三增压控制阀23、第四增压控制阀24、踏板模拟阀61,并且根据传感器信号,计算电机M及上述电磁阀的控制信号,实现车轮的压力控制,由于ECU2无法控制第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44,故此工作模式下只能实现BBF/AEB/ACC等车辆控制功能。
实施例四
本申请实施例四也提供一种制动系统,图14至图16为本申请实施例四提供的制动系统的不同工作状态示意图。本申请实施例四提供的制动系统在系统组成、连接关系、集成方式等方面可参考实施例三的描述,本处不再赘述。本申请实施例四提供的制动系统与本申请实施例三提供的制动系统的不同之处在于控制单元的冗余设计。
具体地,在实施例四中,第一控制单元91和第二控制单元92所控制的对象分别如下:
(1)第一控制单元91控制的对象包括:六相电机201、第一主缸隔离阀11、第二主缸隔离阀12、第一增压控制阀21、第二增压控制阀22、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、测试阀51、踏板模拟阀61。
(2)第二可控制单元92控制的对象包括:六相电机201、第一主缸隔离阀11、第二主缸隔离阀12、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、踏板模拟阀61。
需要指出的是,相比于实施例三提供的制动系统,在本申请实施例四提供的制动系统中,第二控制单元91还可控制第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。在本申请实施例四提供的制动系统中,制动系统控制冗余的程度更高。
以上介绍了本申请实施例四提供的制动系统的组成、连接关系、控制关系、集成方式。下面结合图14至图16对本申请实施例四提供的制动系统的多种工作模式进行描述。
本申请实施例四提供的制动系统至少包括三种工作模式:(1)ECU1和ECU2协同工作;(2)ECU1单独工作;(3)ECU2单独工作。
工作模式1:ECU1和ECU2协同工作
图14为本申请实施例四提供的制动系统的一种工作模式示意图。系统无任何故障时,ECU1和ECU2协同工作的一个状态如图14所示。此时,ECU1控制电机M的三相驱动,ECU2控制电机M的另外三相驱动,双ECU共同驱动电机M推动电缸DAP,实现系统快速建压。ECU1控制除第三增压控制阀23、第四增压控制阀24外的所有电磁阀,并且根据传感器信号,计算电机及电磁阀的控制信号,并将电机M的控制信号发送至ECU2,双ECU协同工作,实现车轮的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等功能。
工作模式2:ECU1单独工作
图15为本申请实施例四提供的制动系统的又一种工作模式示意图。ECU2出现故障时,ECU1单独工作的一个状态如图14所示。此时,ECU1控制电机M的三相驱动,推动电缸DAP,实现系统建压。ECU1控制除第三增压控制阀23、第四增压控制阀24外的所有所有电磁阀,并且根据传感器信号,计算电机及电磁阀的控制信号,实现车轮的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等车辆控制功能。
工作模式3:ECU2单独工作
图16为本申请实施例提供的制动系统的又一种工作模式示意图。ECU1出现故障时,ECU2单独工作的一个状态如图15所示。此时,ECU2控制电机M的三相驱动,推动电缸DAP,实现系统建压。ECU2控制第一主缸隔离阀11、第二主缸隔离阀12、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、踏板模拟阀61,并且根据传感器信号,计算电机及电磁阀的控制信号,实现车轮的压力控制,从而实现ABS/TCS/ESC/BBF/AEB/ACC等车辆控制功能。
上述为实施例一至实施例四分别提供的制动系统,以上四个实施例所提供的制动系统在具体实施中可以集成多种零部件并作为一体化方案。以下结合实施例五至实施例八介绍本申请实施例提供的制动系统的另一类实施方式。
实施例五
图17为本申请实施例五提供的又一种制动系统示意图。以下结合图17对实施例五提供的制动系统的系统组成、连接关系、集成方式等方面进行介绍。
如图17所示,本申请实施例五提供的制动系统包括两个子系统:
(1)第一子系统包括:第一控制单元91、第二控制单元92、六相电机201、双向增压缸202、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS、单向阀;
(2)第二子系统包括:第三控制单元93、制动主缸1、储液容器5、踏板感觉模拟器6、第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、踏板模拟阀61、踏板行程传感器PTS、主缸压力传感器MCPS、油壶液位传感器RLS、单向阀。
如图17所示,第一子系统还包括第一接口(4a,4b,4c,4d)、第二接口(8f,8g)、第三接口(8e)。其中,第一接口(4a,4b,4c,4d)分别用于与车轮的制动轮缸(3a,3b,3c,3d)连接,第二接口(8f,8g)用于与制动主缸1连接,第三接口(8e)用于与储液容器5连接。同时,第二子系统还包括与第一子系统对应的接口(8E,8F,8G)。
在实施例五中,如图17所示,第一子系统和第二子系统分别通过第一子系统的接口8e、接口8f、接口8g与第二子系统的接口8E、接口8F、接口8G连接,形成制动系统。
具体地,以下结合图17对本申请实施例五提供的制动系统的连接关系进行描述。
如图17所示,制动主缸1与制动轮缸之间的连接关系可以描述如下:制动主缸1的第一主腔通过第一主缸隔离阀11与接口8F连接,并通过接口8f分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31通过接口4a与第一轮缸3a连接,第二增压阀32通过接口4b与第二轮缸3b连接;制动主缸1的第二主腔通过第二主缸隔离阀12与接口8G连接,并通过接口8g分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33通过接口4c与第三轮缸3c连接,第四轮缸增压阀34通过接口4d与第四轮缸3d连接。
如图17所示,增压器2与制动轮缸之间的连接关系可以描述如下:第一增压腔通过第一增压支路上的第一增压控制阀21分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31通过接口4a与第一轮缸3a连接,第二轮缸增压阀32通过接口4b与第二轮缸3b连接;同时,第一增压腔通过第一增压支路上的第二增压控制阀22分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33通过接口4c与第三轮缸3c连接,第四轮缸增压阀34通过接口4d与第四轮缸3d连接。类似地,第二增压腔通过第二增压支路上的第三增压控制阀23分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31通过接口4a与第一轮缸3a连接,第二增压阀32通过接口4b与第二轮缸3b连接;同时,第二增压腔通过第二增压支路上的第四增压控制阀24分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33通过接口4c与第三轮缸3c连接,第四轮缸增压阀34通过接口4d与第四轮缸3d连接。
如图17所示,制动主缸1的第一主缸液压腔与储液容器5通过第一储液管路连接;制动主缸1的第二主缸液压腔通过测试阀51与储液容器5连接;增压器2的第一增压腔与接口8e连接,并通过接口8E与储液装置5连接;增压器2的第二增压腔通过单向阀与接口8e连接,并通过接口8E与储液容器5连接;减压阀(41,42,43,44)的第一端与接口8e连接,并通过接口8E与储液容器5连接;减压阀(41,42,43,44)的第二端分别与第一接口(4a,4b,4c,4d)连接,并通过第一接口(4a,4b,4c,4d)分别与制动轮缸(3a,3b,3c,3d)连接。
如图17所示,踏板感觉模拟器6通过踏板模拟阀61与制动主缸1的第二主腔连接。踏板模拟阀61还通过单向阀与制动主缸1的第二主腔连接。在踏板感觉模拟器6和第二主腔之间,踏板模拟阀61与单向阀为并联关系。
如图17所示的其他组件,例如主缸压力传感器MCPS、制动回路压力传感器BCPS、油壶液位传感器RLS、踏板行程传感器PTS、单向阀、过滤器等可以参考实施例一的描述。
此外,在集成方式方面,实施例五提供的制动系统的集成方式与实施例一至实施例四提供的制动系统的集成方式存在区别,本处结合图17对实施例五提供的制动系统的集成方式进行描述。
(1)集成方案五:制动系统可以包括第一子系统和第二子系统,第一子系统和第二子系统的组成以及各自的连接关系如前所述。第一子系统和第二子系统分别通过第一子系统的接口8e、8f、8g和第二子系统的8E、8F、8G连接并组成制动系统,第一子系统还通过接口4a、接口4b、接口4c、接口4d分别与制动轮缸3a、制动轮缸3b、制动轮缸3c、制动轮缸3d连接。第一子系统和第二子系统可以分别集成为第一模块、第二模块,并留有相应的接口,以便适应不同车辆布置要求。
(2)集成方案六:制动系统可以包括第一子系统和第二子系统,其中,集成方案六中的第二子系统与集成方案五中的第二子系统相同;与集成方式五之间的区别在于,集成方式六中的第二子系统不包括储液容器5,集成方式六中的第二子系统留有至少一个接口用于与储 液容器5连接。具体描述或原理可参考实施例一提供制动系统的集成方案二的描述。
以上结合图17对实施例五提供的制动系统的系统组成、连接关系和集成方式进行了介绍,下面结合图18对实施例五提供的制动系统的控制关系进行描述:
(1)第一控制单元91控制的对象包括:六相电机201、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44;
(2)第二控制单元92控制的对象包括:六相电机201、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24;
(3)第三控制单元93控制的对象包括:第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、踏板模拟阀61。
实施例五提供的制动系统的不同工作模式可以参考实施例一的描述,本处不再赘述。与实施例一的区别在于,实施例五提供的制动系统增加了第三控制单元93,并且各控制单元控制的电磁阀不同,实施例五提供的制动系统的控制冗余程度更高。
实施例六
图19为本申请实施例六提供的一种制动系统示意图。本申请实施例六提供的制动系统在系统组成、连接关系、集成方式等方面可以参考实施例五的描述,本处不再赘述。本申请实施例六提供的制动系统与本申请实施例五提供的制动系统的不同之处在于控制单元的冗余设计。
具体地,结合图19对实施例六提供的制动系统的控制关系进行描述:
(1)第一控制单元91控制的对象包括:六相电机201、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44;
(2)第二控制单元92控制的对象包括:六相电机201、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44;
(3)第三控制单元93控制的对象包括:第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、踏板模拟阀61。
需要指出的是,相比于实施例五提供的制动系统,在本申请实施例六提供的制动系统中,第二控制单元91还可控制第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。在本申请实施例六提供的制动系统中,制动系统控制冗余的程度更高。
实施例六提供的制动系统的不同工作模式可以参考实施例二的描述,本处不再赘述。与实施例二的区别在于,实施例六提供的制动系统增加了第三控制单元93,并且各控制单元控制的电磁阀不同,实施例六提供的制动系统的控制冗余程度更高。
实施例七
图20为本申请实施例七提供的一种制动系统示意图。实施例七提供的制动系统与实施例五或实施例六提供的制动系统在系统组成、连接关系、集成方式、控制关系等方面存在区别。
第一,在系统组成和连接关系方面,如图20所示,本申请实施例七提供的制动系统包括 两个子系统:
(1)第一子系统包括:第一控制单元91、第二控制单元92、六相电机201、单向增压缸202、第一增压控制阀21、第二增压控制阀22、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44、制动回路压力传感器BCPS、单向阀;
(2)第二子系统包括:第三控制单元93、制动主缸1、储液容器5、踏板感觉模拟器6、第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、踏板模拟阀61、踏板行程传感器PTS、主缸压力传感器MCPS、油壶液位传感器RLS、单向阀。
如图20所示,第一子系统还包括第一接口(4a,4b,4c,4d)、第二接口(8f,8g)、第三接口(8e)。其中,第一接口(4a,4b,4c,4d)分别用于与车轮的制动轮缸(3a,3b,3c,3d)连接,第二接口(8f,8g)用于与制动主缸1连接,第三接口(8e)用于与储液容器5连接。同时,第二子系统还包括与第一子系统对应的接口(8E,8F,8G)。
在实施例七中,如图20所示,第一子系统和第二子系统分别通过第一子系统的接口8e、接口8f、接口8g与第二子系统的接口8E、接口8F、接口8G连接,形成制动系统。
在系统组成上,实施例七提供的制动系统与实施例五或实施例六提供的制动系统之间的区别包括:实施例七提供的制动系统的增压器2采用单向增压缸。由此,在连接关系方面,实施例七提供的制动系统与实施例五或实施例六提供的制动系统也存在区别。
具体地,在实施例七中,第一子系统中增压器2的单向增压缸与制动轮缸之间的连接关系可以描述为:单向增压缸通过第一增压支路上的第一增压控制阀21分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31通过接口4a与第一轮缸3a连接,第二增压阀32通过接口4b与第二轮缸3b连接;同时,单向增压缸通过第一增压支路上的第二增压控制阀22分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33通过接口4c与第三轮缸3c连接,第四轮缸增压阀34通过接口4d与第四轮缸3d连接。类似地,单向增压缸通过第二增压支路上的第三增压控制阀23分别与第一轮缸增压阀31和第二轮缸增压阀32连接,第一轮缸增压阀31通过接口4a与第一轮缸3a连接,第二增压阀32通过接口4b与第二轮缸3b连接;同时,单向增压缸通过第二增压支路上的第四增压控制阀24分别与第三轮缸增压阀33和第四轮缸增压阀34连接,第三轮缸增压阀33通过接口4c与第三轮缸3c连接,第四轮缸增压阀34通过接口4d与第四轮缸3d连接。
如图20所示,在实施例七中,增压器2的制动回路压力传感器BCPS被设置在第二控制阀(21,22,23,24)与增压器2的单向增压缸之间:例如,可以设置在第一增压控制阀21与单向增压缸202之间。通过选取合适的位置,制动回路压力传感器BCPS可以获取增压器2的单向增压缸在不同工作模式下向制动回路输出的油液压力。
在集成方式方面,实施例七提供的制动系统的集成方式与实施例五或实施例六提供的制动系统的集成方式存在区别,以下结合图20进行具体描述。
(1)集成方案七:如图20所示,实施例七提供的制动系统也可以分为两个子系统进行集成:第一子系统:实施例七中的第一子系统与实施例五或实施例六中的第一子系统之间的主要不同之处在于:实施例七中的第一子系统采用了单向增压缸202,并且如上文所述,第一子系统内的连接关系发生了改变,且制动回路压力传感器BCPS的位置也发生了调整;第二子系统:实施例七中的第二子系统与实施例五或实施例六中的第二子系统相同。
(2)集成方案八:制动系统可以包括第一子系统和第二子系统,其中,集成方案八中的 第二子系统与集成方案七中的第二子系统相同;与集成方式七之间的区别在于,集成方式八中的第二子系统不包括储液容器5,集成方式八中的第二子系统留有至少一个接口用于与储液容器5连接。具体描述或原理可参考实施例一提供制动系统的集成方案二的描述。
第三,在控制关系方面,如图21所示,在实施例七提供的制动系统中,第一控制单元91、第二控制单元92、第三控制单元93所控制的对象分别如下:
(1)第一控制单元91控制的对象包括:六相电机201、第一增压控制阀21、第二增压控制阀22、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
(2)第二控制单元92控制的对象包括:六相电机201、第三增压控制阀23、第四增压控制阀24。在实施例七提供的制动系统中,第二控制单元92单独控制第三增压控制阀23和第四增压控制阀24,如图21中的灰底虚线框覆盖的范围所示。
(3)第三控制单元93控制的对象包括:第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、踏板模拟阀61。
实施例七提供的制动系统的不同工作模式可以参考实施例三的描述,本处不再赘述。与实施例三的区别在于,实施例七提供的制动系统增加了第三控制单元93,并且各控制单元控制的电磁阀不同,实施例七提供的制动系统的控制冗余程度更高。
实施例八
图22为本申请实施例八提供的又一种制动系统示意图。实施例八提供的制动系统与实施例七提供的制动系统在系统组成、连接关系、集成方式方面基本相同,在控制关系方面存在区别。
在控制关系方面,如图22所示,在实施例八提供的制动系统中,第一控制单元91、第二控制单元92、第三控制单元93所控制的对象分别如下:
(1)第一控制单元91控制的对象包括:六相电机201、第一增压控制阀21、第二增压控制阀22、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
(2)第二控制单元92控制的对象包括:六相电机201、第三增压控制阀23、第四增压控制阀24、第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44。
(3)第三控制单元93控制的对象包括:第一主缸隔离阀11、第二主缸隔离阀12、测试阀51、踏板模拟阀61。
在实施例八提供的制动系统中,第二控制单元92单独控制第三增压控制阀23和第四增压控制阀24,如图22中的灰底虚线框覆盖的范围所示;第二控制单元92和第一控制单元91共同控制第一轮缸增压阀31、第二轮缸增压阀32、第三轮缸增压阀33、第四轮缸增压阀34、第一轮缸减压阀41、第二轮缸减压阀42、第三轮缸减压阀43、第四轮缸减压阀44,如图22中灰底实线框覆盖的范围所示。
实施例八提供的制动系统的不同工作模式可以参考实施例四的描述,本处不再赘述。与实施例三的区别在于,实施例七提供的制动系统增加了第三控制单元93,并且各控制单元控制的电磁阀不同,实施例七提供的制动系统的控制冗余程度更高。
如实施例五至实施例八,本申请提供的制动系统可以为可用于自动驾驶汽车制动系统液压调节器的由液压阀板、电磁阀和电机等集成一体的机械液压装置。该机械液压装置可以由第一制动模块和第二制动模块两个模块构成,通过液压管路实现两个模块的连接,并通过与 制动踏板、车辆制动轮缸及其他信号接口相连,形成整车制动系统。
本申请实施例一至实施例八提供的制动系统具有冗余程度高、集成度高体积小、模块划分灵活成本低、可靠性高安全性高等优点,满足车辆ABS/BBF/TCS/ESC/AEB/ACC等集成制动功能需求。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请披露的基础上可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (33)

  1. 一种制动系统,其特征在于,所述制动系统包括:制动主缸(1)、增压器(2)、至少一个第一控制阀(11,12)、至少一个第二控制阀(21,22,23,24)、至少一个第三控制阀(31,32,33,34)、至少一个第一接口(4)、第一控制单元(91)和第二控制单元(92);
    其中,所述至少一个第三控制阀(31,32,33,34)的第一端分别与所述至少一个第一接口(4)连接;
    所述至少一个第三控制阀(31,32,33,34)的第二端通过所述至少一个第一控制阀(11,12)与所述制动主缸(1)连接;
    所述至少一个第三控制阀(31,32,33,34)的第二端还通过所述至少一个第二控制阀(21,22,23,24)与所述增压器(2)连接;
    所述至少一个第三控制阀(31,32,33,34)被配置为受所述第一控制单元(91)控制;
    所述至少一个第二控制阀(21,22,23,24)包括至少一个第一增压支路控制阀(21,22)和至少一个第二增压支路控制阀(23,24),所述至少一个第一增压支路控制阀(21,22)被配置为受所述第一控制单元(91)控制,所述至少一个第二增压支路控制阀(23,24)被配置为受所述第二控制单元(92)控制;
    所述增压器(2)被配置为分别受所述第一控制单元(91)和所述第二控制单元(92)控制。
  2. 根据权利要求1所述的制动系统,其特征在于,所述增压器(2)包括增压器驱动装置(201)和增压器液压缸(202),所述增压器驱动装置(201)被配置为分别受所述第一控制单元(91)和所述第二控制单元(92)控制。
  3. 根据权利要求2所述的制动系统,其特征在于,所述增压器驱动装置(201)为六相电机,包括第一绕组和第二绕组,所述第一绕组被配置为受所述第一控制单元(91)控制,所述第二绕组被配置为受所述第二控制单元(92)控制。
  4. 根据权利要求2或3所述的制动系统,其特征在于,所述增压器液压缸(202)为双向增压液压缸,所述增压器液压缸(202)包括第一增压腔和第二增压腔,所述至少一个第一增压支路控制阀(21,22)与所述第一增压腔连接,所述至少一个第二增压支路控制阀(23,24)与所述第二增压腔连接。
  5. 根据权利要求2或3所述的制动系统,其特征在于,所述增压器液压缸(202)为单向增压液压缸,所述至少一个第一增压支路控制阀(21,22)和所述至少一个第二增压支路控制阀(23,24)并联,并分别与所述增压器液压缸(202)连接。
  6. 根据权利要求4或5所述的制动系统,其特征在于,还包括储液容器(5)和第五控制阀(51),所述储液容器(5)分别与所述制动主缸(1)和所述增压器(2)连接,所述第五控制阀(51)的第一端与所述制动主缸(1)连接,所述第五控制阀(51)的第二端用于与所述储液容器(5)连接。
  7. 根据权利要求6所述的制动系统,其特征在于,还包括踏板感觉模拟器(6)和第六控制阀(61),所述踏板感觉模拟器(6)通过所述第六控制阀(61)与所述制动主缸(1)连接。
  8. 根据权利要求7所述的制动系统,其特征在于,还包括至少一个第四控制阀(41,42,43,44),所述至少一个第四控制阀(41,42,43,44)的第一端分别与至少一个第一接口(4)连接,所述至少一个第四控制阀(41,42,43,44)的另一端用于与所述储液容器(5)连接,所 述至少一个第四控制阀被配置为受所述第一控制单元(91)控制。
  9. 根据权利要求8所述的制动系统,其特征在于,所述至少一个第一增压支路控制阀(21,22)还被配置为受所述第二控制单元(92)控制,所述至少一个第二增压支路控制阀(23,24)还被配置为受所述第一控制单元(91)控制。
  10. 根据权利要求8或9所述的制动系统,其特征在于,所述至少一个第三控制阀(31,32,33,34)和所述至少一个第四控制阀(41,42,43,44)还被配置为受所述第二控制单元(92)控制。
  11. 根据权利要求8至10任一项所述的制动系统,其特征在于,
    所述至少一个第一控制阀(11,12)被配置为分别受所述第一控制单元(91)和所述第二控制单元(92)控制;
    所述第五控制阀(51)被配置为受所述第一控制单元(91)控制;
    所述第六控制阀(61)被配置为分别受所述第一控制单元(91)和所述第二控制单元(92)控制。
  12. 根据权利要求8至10任一项所述的制动系统,其特征在于,还包括第三控制单元(93);
    其中,所述至少一个第一控制阀(11,12)被配置为受所述第三控制单元(93)控制;
    所述第五控制阀(51)被配置为受所述第三控制单元(93)控制;
    所述第六控制阀(61)被配置为受所述第三控制单元(93)控制。
  13. 根据权利要求12所述的制动系统,其特征在于,还包括至少一个第二接口和至少一个第三接口,其中,所述至少一个第一控制阀(11,12)通过所述至少一个第二接口分别与所述至少一个第三控制阀(31,32,33,34)连接,所述至少一个第四控制阀(41,42,43,44)通过所述第三接口与所述储液容器(5)连接,所述增压器(2)通过所述至少一个第三接口与所述储液容器(5)连接。
  14. 一种液压装置,其特征在于,所述液压装置包括:增压器(2)、至少一个第二控制阀(21,22,23,24)、至少一个第三控制阀(31,32,33,34)、至少一个第四控制阀(41,42,43,44)、第一控制单元(91)和第二控制单元(92)、至少一个第一接口(4)、至少一个第二接口、至少一个第三接口;
    其中,所述至少一个第三控制阀(31,32,33,34)的第一端分别与所述至少一个第一接口(4)连接;
    所述至少一个第三控制阀(31,32,33,34)的第二端与所述至少一个第二接口连接,所述至少一个第二接口用于与制动主缸连接;
    所述至少一个第三控制阀(31,32,33,34)的第二端还通过所述至少一个第二控制阀(21,22,23,24)与所述增压器(2)连接;
    所述增压器(2)与所述至少一个第三接口连接,所述至少一个第三接口用于与储液容器连接;
    所述至少一个第四控制阀(41,42,43,44)的第一端与所述至少一个第一接口连接,所述至少一个第四控制阀(41,42,43,44)的第二端与所述至少一个第三接口连接;
    所述至少一个第三控制阀(31,32,33,34)被配置为受所述第一控制单元(91)控制;
    所述至少一个第二控制阀(21,22,23,24)包括至少一个第一增压支路控制阀(21,22)和至少一个第二增压支路控制阀(23,24),所述至少一个第一增压支路控制阀(21,22)被配置为受所述第一控制单元(91)控制,所述至少一个第二增压支路控制阀(23,24)被配置 为受所述第二控制单元(92)控制;
    所述增压器(2)被配置为分别受所述第一控制单元(91)和所述第二控制单元(92)控制。
  15. 根据权利要求14所述的液压装置,其特征在于,所述增压器(2)包括增压器驱动装置(201)和增压器液压缸(202),所述增压器驱动装置(201)被配置为分别受所述第一控制单元(91)和所述第二控制单元(92)控制。
  16. 根据权利要求15所述的液压装置,其特征在于,所述增压器驱动装置(201)为六相电机,包括第一绕组和第二绕组,所述第一绕组被配置为受所述第一控制单元(91)控制,所述第二绕组被配置为受所述第二控制单元(92)控制。
  17. 根据权利要求15或16所述的液压装置,其特征在于,所述增压器液压缸(202)为双向增压液压缸,所述增压器液压缸(202)包括第一增压腔和第二增压腔,所述至少一个第一增压支路控制阀(21,22)与所述第一增压腔连接,所述至少一个第二增压支路控制阀(23,24)与所述第二增压腔连接。
  18. 根据权利要求15或16所述的液压装置,其特征在于,所述增压器液压缸(202)为单向增压液压缸,所述至少一个第一增压支路控制阀(21,22)和所述至少一个第二增压支路控制阀(23,24)并联,并分别与所述增压器液压缸(202)连接。
  19. 根据权利要求17或18所述的液压装置,其特征在于,所述至少一个第一增压支路控制阀(21,22)还被配置为受所述第二控制单元(92)控制,所述至少一个第二增压支路控制阀(23,24)还被配置为受所述第一控制单元(91)控制。
  20. 根据权利要求19所述的液压装置,其特征在于,所述至少一个第三控制阀(31,32,33,34)和所述至少一个第四控制阀(41,42,43,44)还被配置为受所述第二控制单元(92)控制。
  21. 一种制动系统,其特征在于,所述制动系统包括第一液压装置和第二液压装置,其中,所述第一液压装置为如权利要求14至20任一项所述的液压装置,所述第二液压装置包括:所述制动主缸(1)、至少一个第一控制阀(11,12)、所述储液容器(5)、第五控制阀(51)、踏板感觉模拟器(6)、第六控制阀(61)、第三控制单元(93);
    其中,所述制动主缸(1)通过所述至少一个第一控制阀(11,12)与所述至少一个第二接口连接;
    所述储液容器(5)分别与所述制动主缸(1)和所述至少一个第三接口连接;
    所述第五控制阀(51)的第一端与所述制动主缸(1)连接,所述第五控制阀(51)的第二端与所述储液容器(5)连接;
    所述踏板感觉模拟器(6)通过所述第六控制阀(61)与所述制动主缸(1)连接;
    所述至少一个第一控制阀(11,12)、所述第五控制阀(51)和所述第六控制阀(61)分别被配置为受所述第三控制单元(93)控制。
  22. 一种控制方法,应用于制动系统,其特征在于,所述制动系统为如权利要求11所述的制动系统,所述控制方法包括:
    获取第一信号,所述第一信号用于指示所述制动系统的故障信息;
    根据所述第一信号,控制所述至少一个第一控制阀(11,12)切换到第一状态,控制所述至少一个第二控制阀(21,22,23,24)切换到第二状态。
  23. 根据权利要求22所述的控制方法,其特征在于,
    所述第一信号包括用于指示所述第一控制单元(91)故障的信息;
    所述第一状态包括:所述至少一个第一控制阀(11,12)被配置为断开状态;
    所述第二状态包括:所述至少一个第二增压支路控制阀(23,24)被配置为接通状态。
  24. 根据权利要求22所述的控制方法,其特征在于,
    所述第一信号包括用于指示所述第二控制单元(92)故障的信息;
    所述第一状态包括:所述至少一个第一控制阀(11,12)被配置为断开状态;
    所述第二状态包括:所述至少一个第一增压支路控制阀(21,22)被配置为接通状态。
  25. 根据权利要求23或24所述的控制方法,其特征在于,所述控制方法还包括:根据目标制动压力调整所述至少一个第三控制阀(31,32,33,34)和/或所述至少一个第四控制阀(41,42,43,44)的状态。
  26. 一种控制方法,应用于制动系统,其特征在于,所述制动系统为如权利要求12或13所述的制动系统,所述控制方法包括:
    获取第二信号,所述第二信号用于指示所述制动系统的故障信息;
    根据所述第二信号,控制所述至少一个第二控制阀(21,22,23,24)切换到第三状态。
  27. 根据权利要求26所述的控制方法,其特征在于,
    所述第二信号包括所述第一控制单元(91)的故障信息;
    所述第三状态包括:所述至少一个第二增压支路控制阀(23,24)被配置为接通状态。
  28. 根据权利要求26所述的控制方法,其特征在于,
    所述第二信号包括用于指示所述第二控制单元(92)故障的信息;
    所述第三状态包括:所述至少一个第一增压支路控制阀(21,22)被配置为接通状态。
  29. 根据权利要求27或28所述的控制方法,其特征在于,所述控制方法还包括:根据目标制动压力调整所述至少一个第三控制阀(31,32,33,34)和/或所述至少一个第四控制阀(41,42,43,44)的状态。
  30. 一种控制方法,应用于制动系统,其特征在于,所述制动系统为如权利要求12或13所述的制动系统,所述控制方法包括:
    获取第三信号,所述第三信号用于指示所述制动系统的故障信息;
    根据所述第三信号,控制所述至少一个第一控制阀(11,12)切换到第四状态。
  31. 根据权利要求30所述的控制方法,其特征在于,
    所述第三信号包括用于指示所述第一控制单元(91)故障的信息,或者,所述第三信号包括用于指示所述第二控制单元(92)故障的信息;
    所述第四状态包括:所述至少一个第一控制阀(11,12)被配置为断开状态。
  32. 一种可读存储介质,其特征在于,所述可读存储介质存储有程序指令,当所述程序指令被执行时执行如权利要求22至31任一项所述的方法。
  33. 一种车辆,其特征在于,所述车辆包括如权利要求1至13任一项所述的制动系统,或者所述车辆包括如权利要求14至20任一项所述的液压装置,或者所述车辆包括如权利要求21所述的制动系统。
PCT/CN2021/110403 2021-08-03 2021-08-03 一种制动系统、液压装置及车辆 WO2023010297A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21952206.7A EP4375150A1 (en) 2021-08-03 2021-08-03 Braking system, hydraulic device and vehicle
CN202180101136.XA CN117751062A (zh) 2021-08-03 2021-08-03 一种制动系统、液压装置及车辆
KR1020247006407A KR20240039008A (ko) 2021-08-03 2021-08-03 제동 시스템, 유압 디바이스 및 차량
PCT/CN2021/110403 WO2023010297A1 (zh) 2021-08-03 2021-08-03 一种制动系统、液压装置及车辆
US18/431,700 US20240174206A1 (en) 2021-08-03 2024-02-02 Brake system, hydraulic apparatus, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110403 WO2023010297A1 (zh) 2021-08-03 2021-08-03 一种制动系统、液压装置及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/431,700 Continuation US20240174206A1 (en) 2021-08-03 2024-02-02 Brake system, hydraulic apparatus, and vehicle

Publications (1)

Publication Number Publication Date
WO2023010297A1 true WO2023010297A1 (zh) 2023-02-09

Family

ID=85155010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110403 WO2023010297A1 (zh) 2021-08-03 2021-08-03 一种制动系统、液压装置及车辆

Country Status (5)

Country Link
US (1) US20240174206A1 (zh)
EP (1) EP4375150A1 (zh)
KR (1) KR20240039008A (zh)
CN (1) CN117751062A (zh)
WO (1) WO2023010297A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080223675A1 (en) * 2007-03-12 2008-09-18 Honda Motor Co., Ltd. Brake system
DE102011122776A1 (de) * 2011-07-21 2013-01-24 Daimler Ag Bremsanlage für ein Kraftfahrzeug
US20180162341A1 (en) * 2016-12-08 2018-06-14 Robert Bosch Gmbh Brake system and method of operating
CN109070862A (zh) * 2016-03-04 2018-12-21 大陆-特韦斯股份有限公司 制动系统及用于操作制动系统的方法
CN110962815A (zh) * 2019-12-26 2020-04-07 吉林大学 面向自动驾驶的线控液压制动控制系统及其控制方法
CN112188976A (zh) * 2018-05-24 2021-01-05 大陆-特韦斯贸易合伙股份公司及两合公司 具有两个压力源的制动系统及其运行方法
CN112638730A (zh) * 2020-12-03 2021-04-09 华为技术有限公司 液压调节单元、线控制动系统及控制方法
CN112689581A (zh) * 2020-06-11 2021-04-20 华为技术有限公司 踏板感觉模拟系统、液压调节单元及控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080223675A1 (en) * 2007-03-12 2008-09-18 Honda Motor Co., Ltd. Brake system
DE102011122776A1 (de) * 2011-07-21 2013-01-24 Daimler Ag Bremsanlage für ein Kraftfahrzeug
CN109070862A (zh) * 2016-03-04 2018-12-21 大陆-特韦斯股份有限公司 制动系统及用于操作制动系统的方法
US20180162341A1 (en) * 2016-12-08 2018-06-14 Robert Bosch Gmbh Brake system and method of operating
CN112188976A (zh) * 2018-05-24 2021-01-05 大陆-特韦斯贸易合伙股份公司及两合公司 具有两个压力源的制动系统及其运行方法
CN110962815A (zh) * 2019-12-26 2020-04-07 吉林大学 面向自动驾驶的线控液压制动控制系统及其控制方法
CN112689581A (zh) * 2020-06-11 2021-04-20 华为技术有限公司 踏板感觉模拟系统、液压调节单元及控制方法
CN112638730A (zh) * 2020-12-03 2021-04-09 华为技术有限公司 液压调节单元、线控制动系统及控制方法

Also Published As

Publication number Publication date
EP4375150A1 (en) 2024-05-29
KR20240039008A (ko) 2024-03-26
US20240174206A1 (en) 2024-05-30
CN117751062A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN110962815B (zh) 面向自动驾驶的线控液压制动控制系统及其控制方法
CN105150858B (zh) 一种基于esc硬件的再生制动系统及其控制方法
CN204567653U (zh) 一种电子液压制动系统
CN109952240A (zh) 包括用于电子驻车制动器的致动单元的独立控制单元的系统
CN109455174A (zh) 一种采用高压蓄能器的线控液压制动系统及其制动控制方法
CN103253146A (zh) 集成踏板位移测量的踏板解耦式电液复合制动系统
CN103950443A (zh) 踏板感觉主动控制式电子液压制动系统
CN112543720B (zh) 一种踏板感觉调节装置、控制方法
CN111284465A (zh) 一种适用于自动驾驶的制动系统及控制方法
WO2022133899A1 (zh) 一种液压装置、制动装置、制动系统及制动控制方法
CN209241052U (zh) 一种采用高压蓄能器的线控液压制动系统
CN212637472U (zh) 一种冗余设计的制动系统
US20230001905A1 (en) Braking system, braking method, and vehicle
CN103786703A (zh) 一体式制动主缸的电液复合制动系统分层控制架构及方法
CN103231704A (zh) 基于液压控制单元和一体式制动主缸的电液复合制动系统
US20210268997A1 (en) Hydraulic Braking System for a Vehicle having at least Two Axles
WO2023010297A1 (zh) 一种制动系统、液压装置及车辆
CN113561954A (zh) 汽车中制动系统的液压调节单元、制动系统及控制方法
WO2024000524A1 (zh) 制动方法、装置、电子设备、车辆和介质
CN207631211U (zh) 一种带有解耦功能的集成式电液制动系统
WO2023010296A1 (zh) 一种液压装置、制动系统及车辆
CN112519739A (zh) 一种分体式电子液压制动系统及方法
WO2023272667A1 (zh) 线控制动系统及控制方法
CN212637464U (zh) 一种适用于自动驾驶的制动系统
CN219821405U (zh) 一种新型全解耦电子液压与机械混合制动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101136.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2024506605

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021952206

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021952206

Country of ref document: EP

Effective date: 20240208

ENP Entry into the national phase

Ref document number: 20247006407

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247006407

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE