WO2023010260A1 - 测量周期的确定方法、终端设备和网络设备 - Google Patents

测量周期的确定方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023010260A1
WO2023010260A1 PCT/CN2021/110157 CN2021110157W WO2023010260A1 WO 2023010260 A1 WO2023010260 A1 WO 2023010260A1 CN 2021110157 W CN2021110157 W CN 2021110157W WO 2023010260 A1 WO2023010260 A1 WO 2023010260A1
Authority
WO
WIPO (PCT)
Prior art keywords
mgps
mgp
terminal device
measurement
measurement time
Prior art date
Application number
PCT/CN2021/110157
Other languages
English (en)
French (fr)
Inventor
张晋瑜
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180097950.9A priority Critical patent/CN117280737A/zh
Priority to PCT/CN2021/110157 priority patent/WO2023010260A1/zh
Publication of WO2023010260A1 publication Critical patent/WO2023010260A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the communication field, and more specifically, relates to a method for determining a measurement period, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, a computer program and a communication system.
  • MG Measurement Gap
  • MGP measurement gap pattern
  • the per-FR gap is supported, one MGP can be configured on each of the frequency bands FR1 and FR2; if the per-terminal (UserEquipment, UE) gap is supported (per-UE gap), only one MGP can be configured.
  • synchronization signal block Synchronization Signal and PBCH Block, SSB
  • SSB Synchronization Signal and PBCH Block
  • an embodiment of the present application provides a method for determining a measurement period, a terminal device, a chip, a computer-readable storage medium, a computer program product, a computer program, and a communication system, which can be used to support the case where multiple MGPs are used by the terminal device Next, determine the measurement cycle of the measurement object (Measurement Object, MO).
  • MO Measurement Object
  • An embodiment of the present application provides a method for determining a measurement period, including:
  • the terminal device respectively determines the corresponding first measurement time for at least some of the multiple MGPs; wherein, the first measurement time is required for measuring the first measurement object MO based on the corresponding MGP measure time;
  • the terminal device determines the measurement period of the first MO according to the first measurement time.
  • the embodiment of the present application also provides a method for determining the measurement period, including:
  • the network device sends instruction information to the terminal device
  • the indication information is used to instruct the terminal device to determine the corresponding first measurement time for at least some of the MGPs in the plurality of MGPs in the case of supporting multiple MGPs;
  • the required measurement time, the first measurement time is used to determine the measurement period of the first MO.
  • the embodiment of the present application also provides a terminal device, including:
  • the measurement time determination module is configured to determine the corresponding first measurement time for at least some of the MGPs in the plurality of MGPs in the case of supporting multiple measurement interval patterns MGP; wherein, the first measurement time is based on the corresponding MGP measurement The measurement time required for the first measurement object MO;
  • the measurement period determination module is configured to determine the measurement period of the first MO according to the first measurement time.
  • the embodiment of the present application also provides a network device, including:
  • an indication information sending module configured to send indication information to the terminal device
  • the indication information is used to instruct the terminal device to determine the corresponding first measurement time for at least some of the MGPs in the plurality of MGPs in the case of supporting multiple MGPs;
  • the required measurement time, the first measurement time is used to determine the measurement period of the first MO.
  • the embodiment of the present application also provides a terminal device, including: a processor and a memory, the memory is used to store computer programs, the processor invokes and runs the computer programs stored in the memory, and executes the determination of the measurement period provided by any embodiment of the present application method.
  • the embodiment of the present application also provides a network device, including: a processor and a memory, the memory is used to store computer programs, the processor invokes and runs the computer programs stored in the memory, and executes the determination of the measurement period provided by any embodiment of the present application method.
  • An embodiment of the present application further provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a device equipped with the chip executes the method for determining a measurement period provided in any embodiment of the present application.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program, wherein the computer program causes a computer to execute the method for determining a measurement period provided in any embodiment of the present application.
  • An embodiment of the present application further provides a computer program product, including computer program instructions, wherein the computer program instructions cause a computer to execute the method for determining a measurement period provided in any embodiment of the present application.
  • An embodiment of the present application further provides a computer program, which enables a computer to execute the method for determining a measurement period provided in any embodiment of the present application.
  • the embodiment of the present application also provides a communication system, including a terminal device and a network device for performing the method provided in any embodiment of the present application.
  • the terminal device in the case of supporting multiple MGPs, first determines the measurement time required to measure the first MO based on the MGP for one or more of the MGPs, and then determines the second MO according to the determined measurement time corresponding to the MGP.
  • the measurement period of one MO can be used to accurately determine the measurement period of the first MO in a scenario where multiple MGPs are supported, which lays a foundation for using multiple MGPs for measurement, and is conducive to improving measurement accuracy.
  • FIG. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the overlapping situation between MGPs in the embodiment of the present application.
  • Fig. 3 is a schematic diagram of a method for determining a measurement period provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of determining the number of sampling points of an MGP in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of determining the number of activated MGP locations in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a method for determining a measurement period provided by another embodiment of the present application.
  • Fig. 7 is a schematic structural block diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural block diagram of a terminal device provided by another embodiment of the present application.
  • Fig. 9 is a schematic structural block diagram of a terminal device provided by another embodiment of the present application.
  • Fig. 10 is a schematic structural block diagram of a network device provided by an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • the technical scheme of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, Code Division Multiple Access (Code Division Multiple Access, CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, new wireless (New Radio, NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum, NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (CarrierAggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) network deployment Scenes.
  • CarrierAggregation, CA CarrierAggregation
  • DC Dual Connectivity
  • SA independent network deployment Scenes.
  • Embodiments of the present application describe various embodiments in conjunction with terminal equipment and network equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • user agent or user device wireless communication device
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future evolution Terminal equipment in the public land mobile network (Public LandMobile Network, PLMN) network, etc.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in selfdriving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in selfdriving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • Wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB network equipment
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a Low Earth Orbit (Low Earth Orbit, LEO) satellite, a Medium Earth Orbit (Medium Earth Orbit, MEO) satellite, a Geosynchronous Earth Orbit (Geostationary Earth Orbit, GEO) satellite, a High Elliptical Orbit (High Elliptical Orbit, HEO) satellite.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • Fig. 1 schematically shows a wireless communication system 1000 including a network device 1100 and two terminal devices 1200
  • the wireless communication system 1000 may include multiple network devices 1100, and the coverage of each network device 1100
  • Other numbers of terminal devices may be included in the scope, which is not limited in this embodiment of the present application.
  • the wireless communication system 1000 shown in FIG. 1 may also include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF), etc.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include network equipment and terminal equipment with communication functions. It may include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • the UE can only use one or two MGPs when performing RRM/positioning measurements. It depends on the UE capability. If per-FR gap is supported, one MGP can be configured on FR1 and FR2 respectively; if per-UE gap is supported, only one MGP can be configured.
  • SSB Measurement Timing Configuration SSB Measurement Timing Configuration
  • reference signals such as SSB, channel state information reference signal ( Channel State Information Reference Signal, CSI-RS), Positioning Reference Signal (Positioning Reference Signal, PRS, etc.
  • SSB channel state information reference signal
  • CSI-RS Channel State Information Reference Signal
  • PRS Positioning Reference Signal
  • FPO Fully-partial overlapped
  • the UE behavior when the interval positions of two MGs (hereinafter referred to as "positions") collide in the time domain may include: the UE can only select one of the conflicting MGs for measurement, but how to select an MG needs further discussion.
  • a possible situation is that even if there are multiple MGs at the same time, only one MG is actually activated. That is to say, according to the final activated MG, it can be considered as an FNO scenario.
  • the UE When the two MGs are overlapping MGs, the UE only measures at the position of one MG. Further, in the case of per-FR, different frequency bands are considered separately.
  • the usage rules of conflicting MG positions can refer to the following example:
  • An interval sharing scaling factor is introduced: for example, given a 50% interval sharing, measurements on one MG will be shared about 50% of the time, and other MGs the rest of the time.
  • the UE can only measure in the MG with high priority.
  • the network configures a specific MG for the measurement of which MO. If yes, please refer to the following example for specific implementation methods:
  • the network configures the MG used by each MO.
  • the NW configures the MO measured in each MG or a new MG.
  • CSSF can be divided into two categories: CSSF within_gap,i and CSSF outside_gap,i . Specifically, it may be calculated separately according to different terminal working scenarios, such as SA, EN-DC (EUTRA-NR Dual Connection, LTE and NR dual connection), NR-DC (NR dual connection), etc.
  • SA EN-DC
  • EN-DC EUTRA-NR Dual Connection
  • LTE and NR dual connection LTE and NR dual connection
  • NR-DC NR dual connection
  • the CSSF calculation of measurement outside the MG will take into account the number of different service carriers and the number of inter-frequency MOs;
  • the CSSF calculation of the measurement (Within gap) in the MG will consider the number of all MOs to be measured falling in the MG position.
  • the CSSF of the same-frequency MO and the different-frequency MO is further determined according to the gap sharing ratio indicated by the network.
  • the CSSF calculation of the Outside gap is mainly related to the number of carriers and the number of inter-frequency MOs.
  • the CSSF on the primary carrier (Primary Carrier Component, PCC) should be determined according to the number of PCCs
  • the CSSF on the secondary carrier (Secondary Carrier Component, SCC) should be It is determined according to the number of SCCs and the number of inter-frequency MOs. Specifically as shown in Table 1:
  • Table 1 CSSF outside_gap,i for UE in SA mode
  • the CSSF measured by Within gap is related to the number of MOs.
  • the number M intra,i,j of the same frequency measurement objects in each MG (denoted as j), the number M inter,i, j of different frequency measurement objects, and the number M tot of all measurement objects ,i,j , and the total number of NR PRS measurements, etc., determine the CSSF of the measurement object i, that is, CSSF within_gap,i .
  • M tot,i,j M intra,i,j +M inter,i,j .
  • the sharing ratios of the same-frequency and different-frequency MOs can be allocated.
  • CSSF within_gap, i is:
  • the MGRP is the period of the MG, that is, the measurement gap repetition period (Measurement Gap Repetition Period).
  • CSSF within_gap,i is the maximum of the following values:
  • CSSF within_gap,i is the maximum of the following values:
  • the detection time of Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (Secondary Synchronization Signal, SSS) in the process of cell identification (cell identification) measured in the FR1 frequency band is taken as an example to illustrate the measurement outside the MG and the Differences measured in MG in calculating the measurement time course.
  • the time required for other measurement processes is similar, and the calculation method is basically: number of sampling points ⁇ basic time unit ⁇ carrier measurement time scaling factor (Carrier Specific Scaling Factor, CSSF).
  • the basic time unit may be related to a signal period, a measurement window period, a discontinuous reception (Discontinuous Reception, DRX) period, an MG period, and the like.
  • the calculation process of the measurement time is similar to the measurement process of Layer 3 (Layer 3, L3) such as FR2 frequency band measurement, inter-frequency SSB measurement, and CSI-RS measurement, and will not be repeated here.
  • Layer 3 Layer 3, L3
  • FR2 frequency band measurement inter-frequency SSB measurement
  • CSI-RS measurement CSI-RS measurement
  • the basic time units measured outside the MG such as the above-mentioned SMTC period (SMTC cycle), DRX cycle (DRX cycle), max (SMTC period, DRX cycle), etc., are related to the SMTC cycle and the DRX cycle.
  • the CSSF intra of the same frequency measurement has the following two situations, sometimes based on the calculation outside the MG, and sometimes based on the calculation in the MG:
  • K p The value of K p is as follows:
  • K p 1/(1-(SMTC period/MGRP)), wherein, SMTC period ⁇ MGRP, and MGRP is the measurement gap repetition period (Measurement Gap Repetition Period).
  • K p takes the value of 1 under normal conditions, and only when the SMTC and MG are partially overlapped (in this case, it is measured outside the MG), the part of the SMTC that falls within the MG will be removed.
  • the basic time unit measured in MG is related to SMTC cycle, DRX cycle and MGRP.
  • the CSSF intra of intra-frequency measurement in Table 4 is a scale factor determined according to the CSSF within_gap,i in the protocol when the same-frequency SMTC completely overlaps with the MG when the measurement is performed in the MG.
  • the CSSF can only be calculated according to the CSSF within_gap,i corresponding to the measurement in the MG.
  • the basic time unit of the calculation period is according to the maximum value of SMTC and MGRP, so it is no longer necessary to introduce a scaling factor K p for partial overlap.
  • the calculation method of the L1 measurement period is explained. Similar to the above-mentioned L3 measurement process of measuring time, it is basically the number of sampling points ⁇ basic time unit, where the basic time unit may be related to the period of the signal, the period of the measurement window, and the DRX period.
  • the L1 measurement is performed outside the MG, and the L1 measurement cannot be performed on the reference signals falling within the MG, and this part of the reference signals needs to be discarded.
  • a scaling factor P is therefore introduced in the calculation of the measuring cycle. The method of determining the value of P will be described below.
  • T SSB is the period of SSB
  • T SMTCperiod is the period of SMTC.
  • T SMTCperiod MGRP and T SSB ⁇ 0.5*T SMTCperiod :
  • the SSB configured for L1-RSRP measurement outside the MG is:
  • the SSB-ToMeasure is the union of the SSB-ToMeasures from all configured measurement objects on the same serving carrier, which is not the same as the SSB symbol indicated by the SSB-ToMeasure, each consecutive SSB indicated by the SSB-ToMeasure 1 data symbol before the symbol overlaps with 1 data symbol after each consecutive symbol indicated by SSB-ToMeasure, and,
  • ss-RSSI-Measurement is configured, it is not related to the RSSI symbol indicated by SS-RSSI-Measurement, 1 data symbol before each RSSI symbol indicated by SS-RSSI-Measurement, and each RSSI indicated by SS-RSSI-Measurement 1 data symbol after the symbol overlaps,
  • Table 4 shows an example calculation of the measurement period
  • the measurement time required for the measurement object based on MG measurement is determined according to the minimum value among CSSF, SMTC period, and MGRP, and the like.
  • the measurement period may be different due to the priorities/sharing factors between MGs, or the measurement time may be shortened because MOs are simultaneously measured in multiple MGPs. How to determine the measurement period of the MO when supporting multiple coexisting MGs becomes an urgent problem to be solved.
  • Fig. 3 is a schematic flowchart of a method for determining a measurement period according to an embodiment of the present application. The method can optionally be applied to the system shown in Fig. 1, but is not limited thereto. As shown in Figure 3, the method includes at least some of the following:
  • the terminal device In the case of supporting multiple MGPs, the terminal device respectively determines corresponding first measurement times for at least some of the multiple MGPs; where the first measurement time is required for measuring the first MO based on the corresponding MGPs measure time;
  • the terminal device determines a measurement period of the first MO according to the first measurement time.
  • multiple MGPs supported by the terminal device may be configured by the network.
  • the measurement interval may include an interval that interrupts service data transmission and reception in the time domain and is used for MO measurement, such as an MG in an LTE system or a 5G system, and may also include a network-controllable small interval ( Network Control Small Gap, NCSG), the interval used for radio frequency link adjustment in the instant domain so that idle radio frequency resources can be used for measurement.
  • NCSG Network Control Small Gap
  • the MG includes multiple MG positions (MG occasion) that periodically appear in the time domain.
  • MGP is a measurement interval pattern, or MG configuration.
  • One MGP corresponds to one MG, and can characterize the distribution of MGs in the time domain, including attribute information such as the period of the MG and the length of each MG position.
  • the cycle of the MGP is the cycle of the MG.
  • the MGRP is the MGRP.
  • the cycle of the MG is the Visible Interruption Repetition Period (VIRP).
  • At least a part of the multiple MGPs supported by the terminal device may include each of the multiple MGPs supported by the terminal device, or may include a specific MGP among the multiple MGPs supported by the terminal device.
  • One or more MGPs may include each of the multiple MGPs supported by the terminal device, or may include a specific MGP among the multiple MGPs supported by the terminal device.
  • the MO may be a signal used for layer 3 measurement
  • the first MO may include the SSB, CSI-RS, etc. used for layer 3 measurement.
  • the first MO may be an MO used for layer 3 measurement and requiring the MG to perform measurement.
  • the terminal device may refer to the calculation method for measuring the measurement time of the MO in the MG in the related technique (3) above, and determine the measurement time required for measuring the first MO based on each MGP. For example, if there is no overlap between multiple MGPs, the terminal device determines the MGP based on the cycle of a certain MGP, the cycle of the measurement time window (such as SMTC) of the first MO, the DRX cycle, and the CSSF of the MGP. The measurement time required by the MGP to measure the first MO.
  • the cycle of the measurement time window such as SMTC
  • a scaling factor may be set in the calculation method of the first measurement time , is denoted as the interval-sharing scaling factor, which is used to amplify the measurement period to eliminate the influence of the overlap between MGPs on the measurement accuracy.
  • the terminal device can determine the first MGP based on the MGP measurement based on information such as the interval sharing scaling factor, the period of the above MGP, the period of the measurement time window (such as SMTC) of the first MO, the period of the DRX period, and the CSSF of the MGP. Measurement time required by MO.
  • the terminal device in the case of supporting multiple MGPs, first determines the measurement time required for the first MO based on the MGP measurement for one or more MGPs, and then according to The determined measurement time corresponding to the MGP determines the measurement period of the first MO, so that the measurement period of the first MO can be accurately determined in the scenario of supporting multiple MGPs, which lays the foundation for using multiple MGPs for measurement and is conducive to improving measurement accuracy.
  • At least some of the MGPs include the first MGP corresponding to the first MO.
  • each MO may be configured to perform measurement only based on a specific MGP, that is, configure the first MO to perform measurement only based on the first MGP. Even if the first MO has some resources or measurement time windows in other MGs, it is not allowed to measure in other MGs.
  • the terminal device determines the period of the first MO according to the measurement time corresponding to the first MGP.
  • the number of MOs is only counted based on the MOs corresponding to the MGPs. For example, when the number of MOs is counted to calculate the CSSF of the first MGP, the first MO will be included but other MOs not corresponding to the first MGP will not be included. Correspondingly, CSSFs of MGPs other than the first MGP among the multiple MGPs are not related to the first MO.
  • S32 The terminal device determines the measurement period of the first MO according to the first measurement time, including:
  • the terminal device determines the first measurement time corresponding to the first MGP as the measurement period of the first MO.
  • the first measurement time corresponding to the first MGP that is, the measurement cycle of the first MO is as shown in Table 5:
  • MGRP1 is the period of the first MGP.
  • SMTC period is the period of the measurement time window of the first MO.
  • Another example is that when there is overlap between multiple MGPs, such as partial or complete overlap, one MGP must be selected for activation at the same time, so the measurement period needs to be enlarged, and the above-mentioned interval sharing scaling factor is introduced, which is recorded as K gap .
  • a gap-sharing scaling factor K gap is introduced when calculating the measurement period based on the basic time unit and the CSSF.
  • the first measurement time corresponding to the first MGP (that is, the measurement period of the first MO) is shown in calculation mode 1 in Table 6 below.
  • the gap sharing scaling factor K gap is introduced when determining the basic time unit of the measurement time, then the first measurement time corresponding to the first MGP (that is, the measurement period of the first MO) is shown in Calculation Mode 2 in Table 6.
  • Table 6 The measurement cycle of the first MO (taking T PSS/SSS_sync_intra as an example, there is overlap between multiple MGPs)
  • the gap sharing scaling factor K gap is introduced, and then the measurement period is determined according to the manner exemplified in Table 5.
  • the method for determining the measurement period further includes a step of determining a first MGP corresponding to the first MO from multiple MGPs. Specifically, the method also includes:
  • the terminal device determines the first MGP among the multiple MGPs according to at least one of the first indication information of the network device, the related information of the multiple MGPs, and the related information of the first MO.
  • the first MGP is indicated by the first indication information of the network device, that is, the first indication information is used to configure the MGP corresponding to the first MO.
  • the network device can configure a corresponding MGP for each MO through the first indication information.
  • the network device can be configured to correspond to MGP 1 for MO1 measured by intra-frequency SSB (intra-frequency SSB), and correspond to MGP2 for MO2 measured by inter-frequency SSB (inter-frequency SSB), then MO1 can only be measured based on MGP1, and MO2 can only be measured based on MGP2 measurement.
  • the configuration of the network device needs to ensure that the SMTC of MO1 overlaps partially or completely with MGP1, and the SMTC of MO2 overlaps partially or completely with MGP2.
  • the first MGP may be determined according to the overlap between the resource/measurement time window of the first MO and each MGP.
  • the terminal device determines the first MGP among the multiple MGPs according to at least one of the first indication information of the network device, the related information of the multiple MGPs, and the related information of the first MO, including:
  • the terminal device determines the first MGP among the multiple MGPs according to the overlap between the multiple MGPs and the measurement time window of the first MO.
  • An exemplary manner is that the terminal device determines the first MGP among the multiple MGPs according to the overlap between the multiple MGPs and the measurement time window of the first MO, including:
  • the terminal device determines, among the multiple MGPs, the MGP that overlaps the most with the measurement time window of the first MO as the first MGP.
  • the MGP corresponding to MO1 is MGP1.
  • the terminal device determines the first MGP among the multiple MGPs according to the overlap between the multiple MGPs and the measurement time window of the first MO, including:
  • the terminal device determines the first MGP among the multiple MGPs according to the overlapping situation and the priorities of the multiple MGPs.
  • the terminal device may select an MGP with a higher priority and a larger overlap with the measurement time window of the first MO as the first MGP.
  • the terminal device determines the first MGP among the multiple MGPs according to the overlapping situation and the priorities of the multiple MGPs, including:
  • the terminal device determines the first MGP among the MGPs overlapping with the measurement time window of the first MO among the multiple MGPs according to the priorities of the multiple MGPs.
  • the terminal device may first determine all MGPs among the multiple MGPs that overlap with the measurement time window of the first MO, and then select the MGP with the highest priority among them.
  • the terminal device can also traverse each MGP from high to low according to the priority of the MGP, and when it traverses an MGP that overlaps with the measurement time window of the first MO, for example partially or completely overlaps, determine the MGP as the first MGP .
  • the priority of MGP used by MO1 is MGP1>MGP2, and the overlapping of SMTC and MGP is further judged according to the order of MGP1 and MGP2:
  • the SMTC does not overlap at all with MGP1, but partially or completely overlaps with MGP2, use MGP2 to measure MO1.
  • the MGP priority may be indicated through network signaling.
  • the first indication information is used to indicate the priorities of multiple MGPs.
  • the MGPs include each of the plurality of MGPs that overlaps with the measurement time window of the first MO. That is to say, when the measurement resource/measurement time window configuration of the first MO is located in multiple MGPs at the same time, the first MO can be measured based on multiple MGPs.
  • the terminal device determines the period of the first MO according to the first measurement time corresponding to each MGP available to the first MO. Compared with Example 1, the measurement configuration of this example is more flexible, and the MG competition will be more intense.
  • the network configuration etc. allows the first MO to use these MGP measurements as long as the first MO has part of the resource/measurement time window within certain MGPs.
  • the first MO needs to be considered, that is, the CSSF of each MGP is related to the first MO.
  • the terminal device supports or allows measurement in multiple MGs, and the specific MG selected at each opportunity depends on the implementation of the terminal device.
  • the terminal device determines the measurement period of the first MO according to the first measurement time, including:
  • the terminal device determines the maximum or minimum value in the first measurement time corresponding to each MGP as the period of the first MO.
  • the measurement time required by the first MO based on the MGP measurement is respectively determined, and the maximum or minimum value of the measurement time corresponding to each MGP is taken as the final measurement period T of the first MO.
  • the measurement time T1 of the first MO in MGP1 max(600ms, 5 ⁇ max(MGRP1, SMTC period)) ⁇ CSSF intra,MGP1 ;
  • the measurement time T2 of the first MO in MGP2 max(600ms, 5 ⁇ max(MGRP2, SMTC period)) ⁇ CSSF intra,MGP2 ;
  • MGRP1 is the period of MGP1
  • MGRP2 is the period of MGP2
  • SMTC period is the period of the measurement time window of the first MO.
  • the measurement time is calculated as follows:
  • the measurement time T1 of the first MO in MGP1 max(600ms, 5 ⁇ max(MGRP1 ⁇ K gap , SMTC period)) ⁇ CSSF intra, MGP1 ;
  • the measurement time T2 of the first MO in MGP2 max(600ms, 5 ⁇ max(MGRP2 ⁇ K gap ,SMTC period)) ⁇ CSSF intra, MGP2 ;
  • the terminal device determines the measurement period of the first MO according to the first measurement time, including:
  • the terminal device determines the measurement period of the first MO according to the first measurement time corresponding to each MGP and the offset information among multiple MGPs.
  • the terminal device may allocate the number N tot of sampling points required by the first MO to different MGPs. Then calculate the respective measurement time according to the number of sampling points assigned to each MGP. Finally, considering the offset between MGs, it is necessary to introduce additional time delay, that is, the above-mentioned offset information, and determine the measurement period of the first MO based on the measurement time corresponding to each MGP and the offset information.
  • the number of sampling points N tot required by the first MO is allocated to MGP1 and MGP2, wherein the number of sampling points corresponding to MGP1 is N 1 , the number of sampling points corresponding to MGP2 is N 2 , and the N 1 sampling points of the first MO are in MGP1
  • the measurement time required in MGP2 is T 11
  • the measurement time required for N 2 sampling points of the first MO in MGP2 is T 22 .
  • T delta is the above offset information.
  • the offset information is determined based on offsets between multiple MGPs or based on periods of multiple MGPs. For example, it is the maximum value of the offset between MGPs or the maximum value of MGRP.
  • the offset information is related to the number of sampling points corresponding to each MGP.
  • the offset information is the first preset value.
  • the first preset value is, for example, 0.
  • the offset information is the offset between multiple MGPs The maximum value of the volume or the maximum value in the period of multiple MGPs.
  • the above method may also include the step of allocating the number of sampling points. This step can be realized in many ways.
  • the above method also includes:
  • the number of sampling points corresponding to each MGP is determined; wherein, the number of sampling points is used to determine the first measurement time corresponding to each MGP.
  • the number of sampling points corresponding to the i-th MGP among the Z MGPs is:
  • MGRP i is the period of the i-th MGP
  • MGRP j is the period of the j-th MGP.
  • the measurement time window (SMTC) period of the first MO is 20ms
  • the periods of the two MGPs are respectively 80ms and 40ms
  • the number of sampling points N tot 5 required by the first MO
  • the measurement time required by the first MO in MGP1 T 11 max(600ms,N 1 ⁇ max(MGRP1,SMTC period)) ⁇ CSSF intra,MGP1
  • the measurement time T 22 required by the first MO in MGP2 max(600ms, N 2 ⁇ max(MGRP2, SMTC period)) ⁇ CSSF intra,MGP2 .
  • the terminal device may introduce a gap sharing scaling factor K gap when calculating the measurement time.
  • the above method also includes:
  • the period of each MGP and the CSSF of the first MO in each MGP determine the number of sampling points corresponding to each MGP; wherein, the number of sampling points is used to determine the number of sampling points corresponding to each MGP - Measure time.
  • MO1 As an example to perform measurements based on two MGPs (MGP1 and MGP2), then:
  • CSSF1 is the CSSF of MGP1
  • CSSF2 is the CSSF of MGP2.
  • the calculation of the measurement time corresponding to MGP1 based on N 1 and the calculation of the measurement time corresponding to MGP2 based on N 2 can be implemented with reference to the above examples.
  • an interval sharing scaling factor may be introduced to amplify the measurement time of the first MO in each MGP.
  • the terminal device respectively determines corresponding first measurement times for at least some MGPs among the multiple MGPs, including:
  • the terminal device determines the first measurement time corresponding to each MGP according to the interval sharing scaling factor of each MGP in at least some of the MGPs.
  • the interval sharing scaling factor of each MGP is a second preset value.
  • K gap 1.
  • the interval sharing scaling factor of each MGP is determined according to the first ratio corresponding to each MGP; wherein, the first ratio and the active MG of each MGP The number of positions is related.
  • the interval sharing scaling factor may be a first ratio, the first ratio being the ratio between the total number of MG locations and the number of active MG locations.
  • the first ratio can be obtained by counting the number of activated MG locations and the total number of MG locations, or can be determined based on an instruction from a network device.
  • the method for determining the measurement period may also include the method of obtaining the first ratio:
  • the terminal device determines the number of activated MG positions for each MGP within the first time period, and determines the number of activated MG positions for each MGP based on the total number of MG positions and the number of activated MG positions within the first time period for each MGP. corresponding to the first ratio.
  • the activated MG position of MGP2 may be determined by excluding the MG positions overlapping with MGP1, and then the number of activated MG positions may be counted to determine the first ratio.
  • the first duration is determined based on periods of multiple MGPs.
  • the first duration is a third preset value, such as 160ms.
  • the first ratio may also be determined based on an indication of the network device.
  • the first ratio corresponding to each MGP is determined based on the second indication information sent by the network device.
  • the second indication information is used to indicate the sharing ratio of the multiple MGPs, and the sharing ratio of the multiple MGPs is related to the first ratio.
  • the second indication information includes the first bit stream; the first ratio corresponding to each MGP is determined based on the total number of bits in the first bit stream and the number of first bits in the first bit stream; Wherein, the first bit is used to indicate the activation of MGP.
  • the first bit stream has 10 bits in total, 4 of which indicate activation of MGP1, and the interval sharing scaling factor of MGP1 is 10/4.
  • An implementation manner is that the network device sends a first bit stream, where each bit in the first bit stream is used to indicate an activated MGP among the multiple MGPs.
  • each bit in it takes a value of 1 to indicate that MGP1 is activated, and a value of 0 indicates that MGP2 is activated.
  • the network device sends multiple first bit streams, that is, the second indication information includes multiple first bit streams respectively corresponding to multiple MGPs, and each bit in the first bit stream is used to indicate that the first bit stream Whether the MGP corresponding to a bit stream is activated.
  • the terminal device supports multiple MGPs
  • a corresponding scaling factor can also be set to solve the partial measurement of the signal caused by multiple MGPs
  • the method also includes:
  • the terminal device determines the out-of-interval measurement scaling factor of the first signal measured outside the interval according to the relevant information of the K second MGPs; wherein, the second MGP is the same as the second MGP There are overlapping MGPs at the position of a signal, and K is an integer greater than or equal to 1.
  • the out-of-interval measurement scaling factor may be a fourth preset value, such as 1.
  • measuring outside the interval includes measuring outside the MG or measuring outside the NCSG.
  • the first signal measured outside the interval may include: the second MO and/or resources used for layer 1 measurement.
  • the second MO for layer 3 measurements, it is possible to measure outside the interval if certain conditions are met.
  • the second MO as the same-frequency SSB as an example, it can be measured outside the MG when the following conditions are met: UE supports same-frequency measurement using no-gap, or, the SSB is completely within the active BWP, or, the downlink active BWP is initial BWP. If the above conditions are met, if the SMTC window of the SSB does not overlap or partially overlaps with the MG, the SSB is measured outside the interval. The measurement of the second MO needs to be performed in the SMTC.
  • the second MO is measured outside the interval, and the SMTC of the second MO overlaps with one or more of multiple MGPs, it is necessary to calculate the out-of-interval based on the relevant information of multiple MGPs. Measure the scaling factor K p .
  • the out-of-interval measurement scaling factor P needs to be calculated according to the relevant information of the multiple MGPs.
  • the terminal device determines the Out-of-interval measurement scaling factors, including:
  • the terminal device determines the out-of-interval measurement scaling factor of the first signal according to K periods of the second MGP;
  • the terminal device determines the out-of-interval measurement scaling factor of the first signal according to the overlapping conditions and periods among the K second MGPs.
  • the first frequency band resources are resources of FR1.
  • the K second MGPs include N second MGPs that overlap each other and/or M second MGPs that do not overlap with other K second MGPs at all (that is, these The M second MGPs do not overlap with each other, and each of the M second MGPs does not overlap with other second MGPs); wherein, N is an integer greater than or equal to 2, and M is an integer greater than or equal to 1.
  • the terminal device determines the out-of-interval measurement scaling factor of the first signal according to the overlapping situation and period between the K second MGPs, including:
  • the terminal device determines the out-of-interval measurement scaling factor of the first signal according to the minimum value of periods of the N second MGPs, and/or, the period of each second MGP in the M second MGPs.
  • the out-of-interval measurement scaling factor Kp of the SSB is determined according to the period of this MGP. Specifically, Kp is determined according to the ratio between the period of the SMTC and the period of the MGP.
  • Kp is determined based on the minimum value of the periods of the multiple MGPs or based on the period of each MGP. For two or more MGPs overlapping each other, the minimum value of the periods of these MGPs should be considered when determining Kp . For MGPs that do not overlap with other MGPs, the period of each of these MGPs is taken into account when determining Kp . Specifically, K p is determined according to the ratio between the period of the SMTC and the above minimum value or the ratio between the period of the SMTC and the period of each MGP above.
  • the terminal device needs to be measured within the SMTC window, and the calculation process is related to the SMTC period. If the terminal device supports two MGPs, including MGP1 and MGP2, there are multiple situations to be handled as follows.
  • Case 1 SMTC partially overlaps with MGP1, but SMTC does not overlap at all with MGP2.
  • T SMTCperiod is the period of SMTC
  • MGRP1 is the period of MGP1.
  • Case 2 SMTC partially overlaps with MGP1 and SMTC partially overlaps with MGP2 (SMTC partially in MGP1 and partially in MGP2), and MGP1 does not overlap with MGP2, and:
  • the two MGRP periods are different and both are greater than the SMTC period, or
  • MGRP1 MGRP2
  • T SMTCperiod ⁇ 0.5*MGRP1 the two MGRP periods are the same, but the SMTC period is less than half of the MGRP period.
  • Case 3 SMTC partially overlaps with MGP1 and SMTC partially overlaps with MGP2 (SMTC partially in MGP1 and partially in MGP2), and MGP1 partially or completely overlaps with MGP2.
  • the out-of-interval measurement scaling factor P of the SSB is determined according to the period of the MGP. Specifically, P is determined according to the ratio between the period of the SSB resource and the period of the MGP.
  • the multiple MGPs and SSB resources overlap in time domain, according to whether the multiple MGPs overlap, determine whether to determine P based on the minimum value in the periods of multiple MGPs or based on the period of each MGP. For two or more MGPs that overlap each other, the minimum value of the periods of these MGPs should be considered when determining P. For MGPs that do not overlap with other MGPs, the period of each of these MGPs is taken into account when determining P. Specifically, P is determined according to the ratio between the period of the SSB resource and the above minimum value or the ratio between the period of the SSB resource and the period of each MGP above.
  • the calculation process is related to the period of the SSB resource. If the terminal device supports two MGPs, including MGP1 and MGP2, there are multiple situations to be handled as follows.
  • Case 1 There are MGPs configured for intra-frequency, inter-frequency or inter-RAT measurements in the monitored cell, and only one MGP (eg MGP1) overlaps with some but not all occasions of SSB.
  • MGPs configured for intra-frequency, inter-frequency or inter-RAT measurements in the monitored cell, and only one MGP (eg MGP1) overlaps with some but not all occasions of SSB.
  • T SSB is the period of the SSB resource.
  • Case 2 SSB partially overlaps with MGP1 and SSB partially overlaps with MGP2, and MGP1 and MGP2 do not overlap at all, and:
  • the two MGRP periods are different, or
  • MGRP1 MGRP2
  • T SSB ⁇ 0.5*MGRP1 the two MGRP periods are the same, but the period of the SSB signal is less than half of the MGRP period.
  • Case 3 SSB partially overlaps with MGP1 (T SSB ⁇ MGRP1 ), SSB partially overlaps with MGP2 (T SSB ⁇ MGRP2 ), and MGP1 partially or fully overlaps with MGP2.
  • the terminal device determines an out-of-interval measurement scaling factor of the first signal measured out-of-interval according to relevant information of K second MGPs, include:
  • the terminal device determines the out-of-interval measurement scaling factor of the first signal according to the overlapping condition and period between the K second MGPs and the measurement time window of the first signal.
  • the second frequency band resources are FR2 resources.
  • the K second MGPs include at least one of the following:
  • L is an integer greater than or equal to 2, and both P and Q are integers greater than or equal to 1;
  • the terminal device determines the out-of-interval measurement scaling factor of the first signal according to the overlapping situation and period between the K second MGPs and the measurement time window of the first signal, including:
  • the terminal device determines the out-of-interval measurement scaling factor of the first signal according to at least one of the following information:
  • the second frequency band resource is not an SSB resource used for radio link monitoring (Radio LinkMonitoring, RLM) measurement of layer 1, for example, the second frequency band resource is a CSI-RS resource, or the second resource is used for layer 1
  • the K second MGPs include the above-mentioned P measurement time windows with the first signal
  • the terminal device determines the out-of-interval measurement scaling factor of the first signal according to the minimum value among the periods of the P second MGPs and the period of the measurement time window of the first signal.
  • the terminal The device determines an out-of-interval measurement scaling factor for the first signal according to a period of each of the P second MGPs.
  • the K second MGPs In the case where there are K second MGPs whose time domain positions overlap with the SSB resources among the multiple MGPs, since the SSB resources must not only be measured outside the MG, but also need to be measured outside the SMTC as far as possible, it is necessary to base the K second MGP Whether the two MGPs overlap each other, whether each second MGP overlaps with the SMTC, determine whether to determine based on the minimum value of the period of part of the second MGP, the minimum value of the period of part of the second MGP and the period of SMTC, The scaling factor P is determined according to the period of each second MGP in the partial second MGP.
  • the minimum value of the periods of these MGPs should be considered when determining P.
  • the minimum of the period of these MGPs and the period of SMTC is taken into account when determining P.
  • the period of each of these MGPs is taken into account when determining P.
  • P is determined according to a ratio between the period of the SSB resource and the foregoing minimum value or a ratio between the period of the SSB resource and the foregoing period of each MGP.
  • the sharing factor P sharing factor needs to be considered if the SSB resources are all in the SMTC.
  • the SSB resource needs to be measured outside the SMTC window as much as possible, so the calculation process is related to the period of the SSB resource. If the terminal device supports two MGPs, including MGP1 and MGP2, there are multiple situations to be handled as follows.
  • Case 1 SSB does not overlap with any MGP and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ).
  • Case 3 SSB only overlaps with one MGP such as MGP1, and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ), and SMTC does not overlap with this MGP1, and:
  • T SMTCperiod MGRP1 while T SSB ⁇ 0.5*T SMTCperiod .
  • Case 4 SSB partially overlaps with both MGPs, and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ), and the SMTC window does not overlap with these two MGPs, and these two MGPs partially or completely overlap, and:
  • T SMTCperiod min(MGRP1, MGRP2) while T SSB ⁇ 0.5*T SMTCperiod .
  • Case 5 SSB partially overlaps with both MGPs, MGP1 does not overlap with MGP2, and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ), SMTC window does not overlap with MGP1 but partially overlaps with MGP2, and:
  • MGRP1 min(T SMTCperiod , MGRP2) while T SSB ⁇ 0.5*MGRP1.
  • Case 6 SSB partially overlaps with both MGPs, MGP1 does not overlap with MGP2, and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ), SMTC does not overlap with MGP2 but fully or partially overlaps with MGP1, and:
  • MGRP2 min(T SMTCperiod , MGRP1) while T SSB ⁇ 0.5*MGRP2.
  • Case 7 SSB partially overlaps with both MGPs, and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ), SMTC does not overlap with these two MGPs, these two MGPs do not overlap at all, and part of SSB overlaps with MGP or SMTCs do not overlap, and:
  • T SMTCperiod ⁇ MGRP1 ⁇ MGRP2 (the periods of SMTC, MGP1, and MGP2 are different), or
  • Case 9 SSB partially overlaps with one of the MGPs such as MGP1 (T SSB ⁇ MGRP1 ), and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ), and SMTC partially or completely overlaps with MGP1 .
  • Case 10 SSB partially overlaps with two MGPs (T SSB ⁇ MGRP1 and T SSB ⁇ MGRP2 ), and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ), and SMTC partially or completely overlaps with these two MGPs, and this Two MGPs partially or completely overlap and:
  • MGRP1 MGRP2 while T SSB ⁇ 0.5*MGRP1 .
  • MGRP1 MGRP2, and T SMTCperiod ⁇ 0.5*MGRP1, or
  • the SSB configured for L1-RSRP measurement outside the MG is:
  • the SSB-ToMeasure is the union of the SSB-ToMeasures from all configured measurement objects on the same serving carrier, which is not the same as the SSB symbol indicated by the SSB-ToMeasure, each consecutive SSB indicated by the SSB-ToMeasure 1 data symbol before the symbol overlaps with 1 data symbol after each consecutive symbol indicated by SSB-ToMeasure, and,
  • ss-RSSI-Measurement is configured, it is not related to the RSSI symbol indicated by SS-RSSI-Measurement, 1 data symbol before each RSSI symbol indicated by SS-RSSI-Measurement, and each RSSI indicated by SS-RSSI-Measurement 1 data symbol after the symbol overlaps,
  • the frequency band is the SSB resource used for layer 1 radio link monitoring (Radio LinkMonitoring, RLM) measurement of FR2
  • RLM Radio LinkMonitoring
  • Case 1 SSB does not overlap with any MGP and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ).
  • Case 3 SSB only overlaps with one MGP such as MGP1, and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ), and SMTC does not overlap with this MGP1, and:
  • T SMTCperiod MGRP1 while T SSB ⁇ 0.5*T SMTCperiod .
  • Case 4 SSB partially overlaps with both MGPs, and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ), and the SMTC window does not overlap with these two MGPs, and these two MGPs partially or completely overlap, and:
  • T SMTCperiod min(MGRP1, MGRP2) while T SSB ⁇ 0.5*T SMTCperiod .
  • Case 5 SSB partially overlaps with two MGPs and the two MGPs do not overlap, and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ),
  • the SSB at any moment is within the MGP or within the SMTC (that is, the combination of the SMTC and the two MGPs can contain all SSB signals), or
  • Case 6 The SSB partially overlaps with two MGPs and the two MGPs partially or completely overlap, and the SSB partially overlaps with the SMTC (T SSB ⁇ T SMTCperiod ), the SMTC window partially or completely overlaps with one or more of the MGPs, and
  • Case 7 SSB partially overlaps with both MGPs, and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ), SMTC does not overlap with these two MGPs, these two MGPs do not overlap at all, and part of SSB overlaps with MGP or SMTCs do not overlap, and:
  • T SMTCperiod ⁇ MGRP1 ⁇ MGRP2 (the periods of SMTC, MGP1, and MGP2 are different), or
  • Case 9 SSB partially overlaps with one of the MGPs such as MGP1 (T SSB ⁇ MGRP1 ), and SSB partially overlaps with SMTC (T SSB ⁇ T SMTCperiod ), and SMTC partially or completely overlaps with MGP1 .
  • MGRP1 MGRP2, and T SMTCperiod ⁇ 0.5*MGRP1, or
  • the SSB configured for L1-RSRP measurement outside the MG is:
  • the SSB-ToMeasure is the union of the SSB-ToMeasures from all configured measurement objects on the same serving carrier, which is not the same as the SSB symbol indicated by the SSB-ToMeasure, each consecutive SSB indicated by the SSB-ToMeasure 1 data symbol before the symbol overlaps with 1 data symbol after each consecutive symbol indicated by SSB-ToMeasure, and,
  • ss-RSSI-Measurement is configured, it is not related to the RSSI symbol indicated by SS-RSSI-Measurement, 1 data symbol before each RSSI symbol indicated by SS-RSSI-Measurement, and each RSSI indicated by SS-RSSI-Measurement 1 data symbol after the symbol overlaps,
  • the terminal device can select the first MGP corresponding to the first MO based on the configuration of the network device, or determine the interval sharing scaling factor of each MGP, so that the terminal device can support multiple MGPs.
  • the MGP respectively determines the corresponding measurement time for measuring the first MO.
  • the embodiment of the present application also provides a method for determining the measurement cycle, including:
  • the network device sends instruction information to the terminal device
  • the indication information is used to instruct the terminal device to determine the corresponding first measurement time for at least some of the MGPs in the plurality of MGPs in the case of supporting multiple MGPs;
  • the required measurement time, the first measurement time is used to determine the measurement period of the first MO.
  • the MGPs include a first MGP corresponding to the first MO; the indication information includes first indication information, and the first indication information is used to determine the first MGP among the multiple MGPs.
  • the first indication information is used to configure the MGP corresponding to the first MO.
  • the first indication information is used to indicate the priority of multiple MGPs; the priority is used to instruct the terminal device to determine the first MGP among the multiple MGPs that overlap with the measurement time window of the first MO.
  • the indication information includes second indication information, and the second indication information is used to instruct the terminal device to determine an interval sharing scaling factor of each MGP in at least some of the MGPs; the interval sharing scaling factor is used to determine the first measurement time.
  • the second indication information is used to indicate the first ratio corresponding to each MGP, and the first ratio is used to determine the interval sharing scaling factor.
  • the second indication information is used to indicate the sharing ratio of the multiple MGPs, and the sharing ratio of the multiple MGPs is related to the first ratio.
  • the second indication information includes the first bit stream; the first ratio corresponding to each MGP is determined based on the total number of bits in the first bit stream and the number of first bits in the first bit stream; wherein, The first bit is used to indicate that MGP is activated.
  • each bit in the first bit stream is used to indicate an activated MGP among the multiple MGPs.
  • the second indication information includes multiple first bit streams respectively corresponding to multiple MGPs, and each bit in the first bit stream is used to indicate whether the MGP corresponding to the first bit stream is activated.
  • the terminal device in the case of supporting multiple MGPs, first determines the measurement time required for measuring the first MO based on the MGP for one or more of the MGPs, and then determines according to the determined measurement time corresponding to the MGP
  • the measurement period of the first MO so as to accurately determine the measurement period of the first MO in a scenario supporting multiple MGPs, lays a foundation for using multiple MGPs for measurement, and is conducive to improving the accuracy of measurement.
  • this embodiment of the present application further provides a terminal device 100, referring to FIG. 7 , which includes:
  • the measurement time determination module 101 is configured to determine the corresponding first measurement time for at least some of the MGPs in the plurality of MGPs in the case of supporting multiple measurement interval patterns MGP; wherein, the first measurement time is based on the corresponding MGP the measurement time required to measure the first measurement object MO;
  • the measurement period determination module 102 is configured to determine the measurement period of the first MO according to the first measurement time.
  • the MGPs include the first MGP corresponding to the first MO.
  • the measurement cycle determination module includes:
  • the first determining unit 1021 is configured to determine the first measurement time corresponding to the first MGP as the measurement period of the first MO.
  • the terminal device further includes:
  • the MGP determining module 103 is configured to determine the first MGP among the multiple MGPs according to at least one of the first indication information of the network device, the related information of the multiple MGPs, and the related information of the first MO.
  • the first indication information is used to configure the MGP corresponding to the first MO.
  • the MGP determination module includes:
  • the MGP selection unit 1031 is configured to determine the first MGP among the multiple MGPs according to the overlap between the multiple MGPs and the measurement time window of the first MO.
  • the MGP selection unit is specifically used for:
  • the first MGP is determined among the multiple MGPs.
  • the MGP selection unit is specifically used to:
  • the first MGP is determined among the MGPs that overlap with the measurement time window of the first MO among the multiple MGPs.
  • the first indication information is used to indicate priorities of multiple MGPs.
  • the CSSFs of other MGPs except the first MGP are not related to the first MO.
  • At least some of the MGPs include each of the multiple MGPs that overlaps with the measurement time window of the first MO.
  • the measurement cycle determination module includes:
  • the second determining unit 1022 is configured to determine the maximum or minimum value in the first measurement time corresponding to each MGP as the period of the first MO.
  • the measurement cycle determination module also includes:
  • the third determining unit 1023 is configured to determine the measurement period of the first MO according to the first measurement time corresponding to each MGP and the offset information among multiple MGPs.
  • the terminal device further includes:
  • the number of sampling points determination module 104 is used to determine the number of sampling points corresponding to each MGP according to the number of sampling points required for measuring the first MO and the period of each MGP; wherein, the number of sampling points is used to determine the first measurement corresponding to each MGP time.
  • the module for determining the number of sampling points is specifically used for:
  • the period of each MGP and the CSSF of the first MO in each MGP determine the number of sampling points corresponding to each MGP; wherein, the number of sampling points is used to determine the number of sampling points corresponding to each MGP - Measure time.
  • the offset information is determined based on offsets between multiple MGPs or based on periods of multiple MGPs.
  • the offset information is a first preset value.
  • the offset information is the maximum value of the offset between the multiple MGPs or the maximum value of the multiple MGPs The maximum value in the period.
  • the measurement time determination module is specifically used to:
  • the first measurement time corresponding to each MGP is determined according to the interval sharing scaling factor of each MGP in at least some of the MGPs.
  • the interval sharing scaling factor of each MGP is a second preset value.
  • the interval sharing scaling factor of each MGP is determined according to a first ratio corresponding to each MGP; wherein, the first ratio Correlates with the number of active MG positions per MGP.
  • the measurement time determination module is also used for:
  • the first duration is determined based on periods of multiple MGPs.
  • the first duration is a least common multiple or a maximum value of cycles of multiple MGPs.
  • the first duration is the third preset value.
  • the first ratio corresponding to each MGP is determined based on the second indication information sent by the network device.
  • the second indication information is used to indicate a sharing ratio of multiple MGPs, and the sharing ratios of multiple MGPs are related to the first ratio.
  • the second indication information includes the first bit stream; the first ratio corresponding to each MGP is based on the total number of bits in the first bit stream and the first bit in the first bit stream The number is determined; among them, the first bit is used to indicate the activation of MGP.
  • each bit in the first bit stream is used to indicate the activated MGP among the multiple MGPs.
  • the second indication information includes multiple first bit streams respectively corresponding to multiple MGPs, and each bit in the first bit stream is used to indicate whether the MGP corresponding to the first bit stream Activated.
  • the terminal device further includes:
  • the scaling factor determination module 105 is configured to determine the out-of-interval measurement scaling factor of the first signal measured outside the interval according to the relevant information of the K second MGPs when the plurality of MGPs include K second MGPs; wherein, The second MGP is an MGP that overlaps with the position of the first signal, and K is an integer greater than or equal to 1.
  • the first signal includes the second MO and/or the first frequency band resource used for layer 1 measurement;
  • the scaling factor determination module 105 is specifically used to:
  • K 1
  • K periods of the second MGP determine an out-of-interval measurement scaling factor of the first signal
  • the out-of-interval measurement scaling factor of the first signal is determined according to the overlapping conditions and periods among the K second MGPs.
  • the K second MGPs include N second MGPs that overlap each other and/or M second MGPs that do not overlap with other K second MGPs at all; where N is An integer greater than or equal to 2, M is an integer greater than or equal to 1;
  • the scaling factor determination module 105 is specifically used for:
  • the out-of-interval measurement scaling factor for the first signal is determined based on the minimum value of the period of the N second MGPs, and/or the period of each of the M second MGPs.
  • the first signal includes a second frequency band resource used for Layer 1 measurement
  • the scaling factor determination module 105 is specifically used for:
  • the out-of-interval measurement scaling factor of the first signal is determined.
  • the K second MGPs include at least one of the following:
  • L is an integer greater than or equal to 2, and both P and Q are integers greater than or equal to 1;
  • the scaling factor determination module 105 is specifically used for:
  • the terminal device determines the out-of-interval measurement scaling factor of the first signal according to at least one of the following information:
  • the terminal device 100 in the embodiment of the present application can realize the corresponding functions of the terminal device in the foregoing method embodiments, and the corresponding processes, functions, implementation methods and benefits of each module (submodule, unit or component, etc.) in the terminal device 100
  • each module submodule, unit or component, etc.
  • the functions described by the various modules (submodules, units or components, etc.) in the terminal device 100 in the embodiment of the present application may be implemented by different modules (submodules, units or components, etc.), or may be implemented by the same A module (submodule, unit or component, etc.) is implemented.
  • the measurement time determination module and the measurement period determination module can be different modules, or the same module, which can realize the corresponding function.
  • the communication module in the embodiment of the present application may be implemented by a transceiver of the device, and part or all of the other modules may be implemented by a processor of the device.
  • this embodiment of the present application further provides a network device 200, referring to FIG. 10 , which includes:
  • An indication information sending module 201 configured to send indication information to the terminal device
  • the indication information is used to instruct the terminal device to determine the corresponding first measurement time for at least some of the MGPs in the plurality of MGPs in the case of supporting multiple MGPs;
  • the required measurement time, the first measurement time is used to determine the measurement period of the first MO.
  • the MGPs include a first MGP corresponding to the first MO; the indication information includes first indication information, and the first indication information is used to determine the first MGP among the multiple MGPs.
  • the first indication information is used to configure the MGP corresponding to the first MO.
  • the first indication information is used to indicate the priority of multiple MGPs; the priority is used to indicate that the terminal device is in the MGP that overlaps with the measurement time window of the first MO among the multiple MGPs Determine the first MGP.
  • the indication information includes second indication information, and the second indication information is used to instruct the terminal device to determine the interval sharing scaling factor of each MGP in at least some of the MGPs; the interval sharing scaling factor is used to determine First measurement time.
  • the second indication information is used to indicate the first ratio corresponding to each MGP, and the first ratio is used to determine the interval sharing scaling factor.
  • the second indication information is used to indicate a sharing ratio of multiple MGPs, and the sharing ratios of multiple MGPs are related to the first ratio.
  • the second indication information includes the first bit stream; the first ratio corresponding to each MGP is based on the total number of bits in the first bit stream and the first bit in the first bit stream The number is determined; among them, the first bit is used to indicate the activation of MGP.
  • each bit in the first bit stream is used to indicate an activated MGP among the multiple MGPs.
  • the second indication information includes multiple first bit streams respectively corresponding to multiple MGPs, and each bit in the first bit stream is used to indicate whether the MGP corresponding to the first bit stream Activated.
  • the network device 200 in the embodiment of the present application can realize the corresponding functions of the network device in the foregoing method embodiments, and the corresponding processes, functions, implementation methods and benefits of each module (submodule, unit or component, etc.) in the network device 200
  • each module submodule, unit or component, etc.
  • the functions described by the various modules (submodules, units or components, etc.) in the network device 200 in the embodiment of the present application may be implemented by different modules (submodules, units or components, etc.), or may be implemented by the same A module (submodule, unit or component, etc.) is implemented.
  • the location determination module and the demand determination module can be different modules, or they can be the same module, both of which can realize their corresponding functions in the embodiments of the present application .
  • the communication module in the embodiment of the present application may be implemented by a transceiver of the device, and part or all of the other modules may be implemented by a processor of the device.
  • Fig. 11 is a schematic structural diagram of a communication device 600 according to an embodiment of the application, wherein the communication device 600 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or to receive information or data sent by other devices .
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may be the terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal device in the methods of the embodiment of the present application.
  • the communication device 600 may implement the corresponding processes implemented by the terminal device in the methods of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the communication device 600 may be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the communication device 600 may implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • Fig. 12 is a schematic structural diagram of a chip 700 according to an embodiment of the present application, wherein the chip 700 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor mentioned above may be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or other available Program logic devices, transistor logic devices, discrete hardware components, and more.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • Program logic devices transistor logic devices, discrete hardware components, and more.
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the aforementioned memories may be volatile memories or nonvolatile memories, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • FIG. 13 is a schematic block diagram of a communication system 800 according to an embodiment of the present application, and the communication system 800 includes a terminal device 810 .
  • the terminal device 810 is configured to respectively determine the corresponding first measurement time for at least part of the multiple MGPs in the case of supporting multiple MGPs; and determine the measurement cycle of the first MO according to the first measurement time.
  • the first measurement time is the measurement time required to measure the first measurement object MO based on the corresponding MGP.
  • the communication system 800 may further include a network device 820 .
  • the network device 820 is configured to send indication information to the terminal device, where the indication information is used to instruct the terminal device to respectively determine corresponding first measurement times for at least some of the multiple MGPs in the case of supporting multiple MGPs.
  • the terminal device 810 can be used to realize the corresponding functions realized by the terminal device in the methods of the various embodiments of the present application
  • the network device 820 can be used to realize the corresponding functions realized by the network device in the methods of the various embodiments of the present application function.
  • details are not repeated here.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center by wire (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)).
  • SSD Solid State Disk
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种测量周期的确定方法、终端设备、芯片、计算机可读存储介质、计算机程序产品和计算机程序。该方法包括:在支持多个MGP的情况下,终端设备针对多个MGP中的至少部分MGP,分别确定对应的第一测量时间;其中,第一测量时间为基于对应的MGP测量第一测量对象MO所需的测量时间;终端设备根据第一测量时间,确定第一MO的测量周期。利用本申请实施例可以提高测量准确性。

Description

测量周期的确定方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种测量周期的确定方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序和通信系统。
背景技术
对无线移动通信系统来说,小区质量、波束质量的精准测量是有效执行无线资源管理、移动性管理的基础。目前,终端设备在执行RRM测量或定位测量时,只能采用一个或两个测量间隔(Measurement Gap,MG)配置,即测量间隔图样(MG Pattern,MGP)。具体取决于终端设备的能力,如果支持每频段(Frequency Range,FR)的间隔(per-FR gap),则频段FR1和FR2上可以各自配置一个MGP;如果支持每终端(UserEquipment,UE)的间隔(per-UE gap),则只能配置一个MGP。
当UE被配置进行多个频点的同步信号块(Synchronization Signal and PBCH Block,SSB)测量或多种不同的参考信号测量时,仅采用一个MGP可能无法将所有的信号都包含在MG中,从而造成有些信号无法准确测量。
发明内容
有鉴于此,本申请实施例提供一种测量周期的确定方法、终端设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序和通信系统,可用于在支持终端设备采用多个MGP的情况下,确定测量对象(Measurement Object,MO)的测量周期。
本申请实施例提供一种测量周期的确定方法,包括:
在支持多个MGP的情况下,终端设备针对多个MGP中的至少部分MGP,分别确定对应的第一测量时间;其中,第一测量时间为基于对应的MGP测量第一测量对象MO所需的测量时间;
终端设备根据第一测量时间,确定第一MO的测量周期。
本申请实施例还提供一种测量周期的确定方法,包括:
网络设备向终端设备发送指示信息;
其中,指示信息用于指示终端设备在支持多个MGP的情况下,针对多个MGP中的至少部分MGP分别确定对应的第一测量时间;第一测量时间为基于对应的MGP测量第一MO所需的测量时间,第一测量时间用于确定第一MO的测量周期。
本申请实施例还提供一种终端设备,包括:
测量时间确定模块,用于在支持多个测量间隔图样MGP的情况下,针对多个MGP中的至少部分MGP,分别确定对应的第一测量时间;其中,第一测量时间为基于对应的MGP测量第一测量对象MO所需的测量时间;
测量周期确定模块,用于根据第一测量时间,确定第一MO的测量周期。
本申请实施例还提供一种网络设备,包括:
指示信息发送模块,用于向终端设备发送指示信息;
其中,指示信息用于指示终端设备在支持多个MGP的情况下,针对多个MGP中的至少部分MGP分别确定对应的第一测量时间;第一测量时间为基于对应的MGP测量第一MO所需的测量时间,第一测量时间用于确定第一MO的测量周期。
本申请实施例还提供一种终端设备,包括:处理器和存储器,存储器用于存储计算机程序,处理器调用并运行存储器中存储的计算机程序,执行本申请任一实施例提供的测量周期的确定方法。
本申请实施例还提供一种网络设备,包括:处理器和存储器,存储器用于存储计算机程序,处理器调用并运行存储器中存储的计算机程序,执行本申请任一实施例提供的测量周期的确定方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行本申请任一实施例提供的测量周期的确定方法。
本申请实施例还提供一种计算机可读存储介质,用于存储计算机程序,其中,计算机程序使得计算机执行本申请任一实施例提供的测量周期的确定方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,其中,计算机程序指令使得计算机执行本申请任一实施例提供的测量周期的确定方法。
本申请实施例还提供一种计算机程序,计算机程序使得计算机执行本申请任一实施例提供的测量周期的确定方法。
本申请实施例还提供一种通信系统,包括用于执行本申请任一实施例提供的方法的终端设备和网络 设备。
根据本申请实施例,在支持多个MGP的情况下,终端设备先针对其中一个或多个MGP确定基于MGP测量第一MO所需的测量时间,再根据确定的与MGP对应的测量时间确定第一MO的测量周期,从而实现在支持多个MGP的场景下准确确定第一MO的测量周期,为采用多个MGP进行测量奠定了基础,有利于提高测量的准确性。
附图说明
图1是本申请实施例的通信系统架构的示意图。
图2是本申请实施例中MGP之间的重叠情况的示意图。
图3是本申请一个实施例提供的测量周期的确定方法的示意图。
图4是本申请一个实施例中确定MGP的采样点数的示意图。
图5是本申请一个实施例中确定激活MGP位置数量的示意图。
图6是本申请另一个实施例提供的测量周期的确定方法的示意图。
图7是本申请一个实施例提供的终端设备的示意性结构框图。
图8是本申请另一个实施例提供的终端设备的示意性结构框图。
图9是本申请又一个实施例提供的终端设备的示意性结构框图。
图10是本申请一个实施例提供的网络设备的示意性结构框图。
图11是本申请实施例的通信设备示意性框图。
图12是本申请实施例的芯片的示意性框图。
图13是本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System ofMobile communication,GSM)系统、码分多址(Code Division MultipleAccess,CDMA)系统、宽带码分多址(Wideband Code Division MultipleAccess,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-TerrestrialNetworks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(CarrierAggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal DigitalAssistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public LandMobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工 业控制(industrial control)中的无线终端设备、无人驾驶(selfdriving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(Low Earth Orbit,LEO)卫星、中地球轨道(Medium Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示意性地示出了一个包括网络设备1100和两个终端设备1200的无线通信系统1000,可选地,该无线通信系统1000可以包括多个网络设备1100,并且每个网络设备1100的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。可选地,图1所示的无线通信系统1000还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常可互换使用。本文中术语“和/或”用来描述关联对象的关联关系,例如表示前后关联对象可存在三种关系,举例说明,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况。本文中字符“/”一般表示前后关联对象是“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
(一)多个并存且独立的MG(也可以称为“gap”)配置(multiple concurrent and independent MG patterns)
UE在执行RRM/定位测量时只能采用一个或两个MGP。具体取决于UE能力,如果支持per-FR gap,则FR1和FR2上可以各自配置一个MGP;如果支持per-UE gap,则只能配置一个MGP。
当UE被配置进行多个频点SSB测量(不同的频点上对应不同的SSB测量时间配置(SSB Measurement Timing Configuration,SMTC))或多种不同的参考信号(如SSB、信道状态信息参考信号 (Channel State Information Reference Signal,CSI-RS)、定位参考信号(Positioning Reference Signal,PRS)等)测量时,仅采用一个MGP配置可能无法将所有的信号都包含在MG中,从而造成有些信号无法准确测量或者MG的浪费。
为了解决这一问题,5G增强版本中引入多个并存且独立的MGP,以便于在不同的SMTC配置,和/或不同的参考信号,和/或不同的无线接入类型(RadioAcess Type,RAT)如E-UTRA、NR等情况下,都能够较好地完成测量工作。
多个MGP之间的时域关系(即是否冲突)具有一定的灵活性,以下以2个MG(对应2个MGP)为例,参考图2,列举几种示例性的情况:
完全重叠(Fully-overlapped,FO):一个MG的每个间隔位置都被另一个相同周期的MG的每个间隔位置完全覆盖,分为测量间隔长度(Measurement Gap Length,MGL)相同和测量间隔长度不同两种情况。
完全不重叠(Fully non-overlapped,FNO):2个MG中所有间隔位置(或者说间隔时机,gap occasion)在时域上是不相交的。
部分重叠(Partially overlapped):分为三种情况:
(1)完全-部分重叠(Fully-partial overlapped,FPO):一个MG的每个间隔位置都被另一个相同周期的MG的每个间隔位置部分重叠。
(2)部分-完全重叠(Partially-fully overlapped,PFO):一个MG的每个间隔位置都被另一个不同周期的MG的间隔位置完全重叠。
(3)部分-部分重叠(Partially-partial overlapped,PPO):一个MG的每个间隔位置都被另一个不同周期的MG的间隔位置部分重叠。
两个MG的间隔位置(以下简称“位置”)在时域上冲突时的UE行为可以包括:UE只能在冲突的MG中选一个进行测量,但如何选择MG还需要进一步讨论。一种可能的情况是即使在同一时刻有多个MG,也只有一个MG是实际激活的,也就是说按照最终激活的MG来看,可认为属于FNO的场景。
如果FO、FPO、PFO和PPO情况中的至少一个在一般假设的基础上被允许进一步讨论,则可以参考如下示例处理:
当两个MG是重叠MG时,UE仅在一个MG的位置上测量。进一步地,如果是per-FR的情况,则不同的频段分开进行考虑。
冲突的MG位置的使用规则可以参考如下示例:
(1)共享间隔
引入间隔共享比例因子:例如,给定50%的间隔分享,一个MG上的测量将共享约50%的时间,其他MG共享剩余的时间。
(2)优先级
UE只能在优先级高的MG中测量。
(3)不排除其他选项。
进一步地,可以考虑是否把每个MG关联到特定的使用场景,如网络配置具体的某个MG用于哪个MO的测量。若是,则具体实现方式可参考如下示例处理:
(1)将MG关联到特定使用场景。
需要考虑关联所有的MG还是关联新的MG,以及应该关联哪些使用场景。
(2)网络(Network,NW)配置每个MO使用的MG。
(3)NW配置在每个MG或者新的MG中测量的MO。
(二)MG的载波测量时间缩放因子(Carrier Specific Scaling Factor,CSSF)计算
基于是否在MG中测量,CSSF可以分为CSSF within_gap,i和CSSF outside_gap,i两大类。具体地,可以根据不同的终端工作场景,例如SA、EN-DC(EUTRA-NR Dual Connection,LTE与NR双连接)、NR-DC(NR双连接)等分别计算。这里以简单的SA场景为例进行说明。
在MG外测量(Outside gap)的CSSF计算会考虑不同服务载波的个数和异频MO的个数;
在MG中测量(Within gap)的CSSF计算会考虑落在MG位置中所有待测MO的个数。可选地,进一步会根据网络指示的gap共享比例确定同频MO和异频MO的CSSF。
1、SA场景下,Outside gap的CSSF outside_gap,i计算
Outside gap的CSSF计算主要与载波个数和异频MO个数有关,主载波(Primary Carrier Component,PCC)上的CSSF要根据PCC个数确定,辅载波(Sencondary Carrier Component,SCC)上的CSSF要根据SCC个数和异频MO个数确定。具体如表1所示:
表1:SA模式下UE的CSSF outside_gap,i
Figure PCTCN2021110157-appb-000001
2、SA场景下,within gap的CSSF within_gap,i计算
Within gap测量的CSSF与MO个数有关。
进一步地,根据每个MG(记为j)中的同频测量对象的个数M intra,i,j、异频测量对象的个数M inter,i,j、所有测量对象的个数M tot,i,j、和NR PRS测量的总数等,确定测量对象i的CSSF,即CSSF within_gap,i。其中,M tot,i,j=M intra,i,j+M inter,i,j
进一步地,可根据网络指示的共享方案SharingScheme,分配同频和异频MO的共享比例。
具体而言,对长周期测量所用的每个MGj,M intra,i,j=M inter,i,j=M tot,i,j=0。
CSSF within_gap,i为:
(1)如果参数measGapSharingScheme指示平均共享MG,则:
CSSF within_gap,i=max(ceil(R i×M tot,i,j)),其中,j=0…(160/MGRP)-1。MGRP为MG的周期,即测量间隔重复周期(Measurement Gap Repetition Period)。
(2)如果参数measGapSharingScheme指示非平均共享MG,进一步地还指示同频比例K intra和异频比例K inter,则:
如果测量对象i为同频测量对象,则CSSF within_gap,i为以下数值中的最大值:
ceil(R i×K intra×M intra,i,j),其中,M inter,i,j≠0,j=0,1…,((160/MGRP)-1);
ceil(R i×M intra,i,j),其中,M inter,i,j=0,j=0…(160/MGRP)-1。
如果测量对象i为异频测量对象或inter-RAT或任一频率层的NR PRS,则CSSF within_gap,i为以下数值中的最大值:
ceil(R i×K inter×M inter,i,j),其中,M intra,i,j≠0,j=0…(160/MGRP)-1;
ceil(R i×M inter,i,j),其中,M intra,i,j=0,j=0…(160/MGRP)-1。
(三)计算测量周期:
这里以FR1频段同频测量在小区识别(cell identification)过程中的主同步信号(Primary  Synchronization Signal,PSS)/辅同步信号(Secondary Synchronization Signal,SSS)的检测时间为例,说明MG外测量和在MG中测量在计算测量时间过程的区别。其他测量过程所需的时间类似,计算方式基本都是:采样点数×基本时间单位×载波测量时间缩放因子(Carrier Specific Scaling Factor,CSSF)。其中,基本时间单位可能与信号的周期、测量窗口的周期、非连续接收(Discontinuous Reception,DRX)周期、MG周期等有关。
需要说明的是,FR2频段测量、异频SSB测量、CSI-RS测量等层3(Layer 3,L3)测量过程,测量时间的计算过程与之类似,在此不再进行赘述。
1、在MG外的同频测量
表2:PSS/SSS检测时间(频段范围为FR1)
Figure PCTCN2021110157-appb-000002
在MG外测量的基本时间单位例如上述SMTC period(SMTC周期)、DRX cycle(DRX周期)、max(SMTC period,DRX cycle)等,与SMTC周期和DRX周期相关。
同频测量的CSSF intra有以下两种情况,有时会基于MG外计算,有时会基于在MG中计算:
(1)它是在MG外进行测量时例如同频SMTC与MG完全不重叠或部分重叠时的根据协议中的CSSF outside_gap,i确定的比例因子;
(2)它是在MG中进行测量时例如同频SMTC与MG完全重叠时根据协议中的CSSF within_gap,i确定的比例因子。
K p的取值方式如下:
(1)当同频SMTC与MG完全不重叠或完全重叠时,K p=1;
(2)当同频SMTC与MG部分重叠时,K p=1/(1-(SMTC period/MGRP)),其中,SMTC period<MGRP,MGRP为测量间隔重复周期(Measurement Gap Repetition Period)。
也就是说,K p在正常情况下取值为1,只有当SMTC与MG属于部分重叠的情况下(此时是在MG外测量),会去掉其中落在MG内的那部分SMTC。
2、在MG中的同频测量
表3:PSS/SSS检测时间(频段范围为FR1)
Figure PCTCN2021110157-appb-000003
在MG中测量的基本时间单位与SMTC周期、DRX周期和MGRP相关。
表4中的同频测量的CSSF intra是在MG中进行测量时例如同频SMTC与MG完全重叠时根据协议中的CSSF within_gap,i确定的比例因子。
对于原本就需要MG才能测量的MO都只能在MG中测量,所以CSSF也只能都是按照与MG中测量对应的CSSF within_gap,i来计算。这里计算周期的基本时间单位是按照SMTC和MGRP的最大值,因此不再需要针对部分重叠的情况引入缩放因子K p
(四)层1(Layer 1,L1)测量周期
以L1参考信号接收功率(Reference signal receivedpower,RSRP)SSB测量为例,说明L1测量周期的计算方式。与上述测量时间的L3测量过程类似,基本都是采样点数×基本时间单位,其中,基 本时间单位可能与信号的周期、测量窗口的周期、DRX周期等有关。此外,L1测量是在MG外进行的,对于落在MG内的参考信号无法做L1测量,需要舍弃这部分参考信号。因此在测量周期的计算中引入缩放因子P。下面将说明P的取值方式。
1、对于FR1的资源
(1)当在被监测的小区中存在为同频、异频或异RAT测量配置的测量间隔,该测量间隔与SSB的一些但不是所有时机重叠时,
Figure PCTCN2021110157-appb-000004
(2)当在被监测的小区中没有测量间隔与SSB重叠时,P=1。
2、对于FR2的资源
(1)当SSB与MG不重叠且SSB与SMTC时机部分重叠(T SSB<T SMTC period)时,
Figure PCTCN2021110157-appb-000005
其中,T SSB为SSB的周期,T SMTCperiod为SMTC的周期。
(2)当SSB与MG不重叠且SSB与SMTC周期完全重叠(T SSB=T SMTC period)时,P=P sharing factor
(3)当SSB与MG部分重叠且SSB与SMTC时机部分重叠(T SSB<T SMTC period)且SMTC时机与MG不重叠,且:
T SMTCperiod≠MGRP,或,
T SMTCperiod=MGRP同时T SSB<0.5*T SMTCperiod时:
Figure PCTCN2021110157-appb-000006
(4)当SSB与MG部分重叠且SSB与SMTC时机部分重叠(T SSB<T SMTCperiod)且SMTC时机不与MG重叠且T SMTCperiod=MGRP,T SSB=0.5*T SMTCperiod时,
Figure PCTCN2021110157-appb-000007
(5)当SSB与MG部分重叠(T SSB<MGRP)且SSB与SMTC时机部分重叠(T SSB<T SMTC period)且SMTC时机与MG部分或完全重叠时,
Figure PCTCN2021110157-appb-000008
(6)当SSB与MG部分重叠,SSB与SMTC时机完全重叠(T SSB<T SMTC period)且SMTC时机与MG部分重叠(T SMTCperiod<MGRP)时,
Figure PCTCN2021110157-appb-000009
其中,如果为MG外的L1-RSRP测量配置的SSB是:
考虑到配置了SSB-ToMeasure,SSB-ToMeasure是来自同一服务载波上的所有配置的测量对象的SSB-ToMeasure的并集,不与SSB-ToMeasure指示的SSB符号、SSB-ToMeasure指示的每个连续SSB符号之前的1个数据符号以及SSB-ToMeasure指示的每个连续符号之后的1个数据符号重叠,且,
考虑到配置了ss-RSSI-Measurement,不与SS-RSSI-Measurement指示的RSSI符号、SS-RSSI-Measurement指示的每个RSSI符号之前的1个数据符号以及SS-RSSI-Measurement指示的每个RSSI符号之后的1个数据符号重叠,
则P sharing factor=1,否则,P sharing factor=3。
表4示出了一种示例的测量周期的计算方式:
表4:用于L1-RSRP测量的SSB的测量周期T L1-RSRP_Measurement_Period_SSB
Figure PCTCN2021110157-appb-000010
根据上述相关技术,基于MG测量的测量对象所需要的测量时间是根据CSSF、SMTC周期和MGRP 之间的最小值等确定的。当配置多个并存的MG时,测量周期可能会因为MG之间的优先级/共享因子等有所不同,也可能会因为MO在多个MGP中同时测量而缩短测量时间。如何在支持多个并存的MG时确定MO的测量周期成为亟待解决的问题。
本申请实施例提供的方案,主要用于解决上述问题中的至少一个。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
图3是根据本申请一实施例的测量周期的确定方法的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。如图3所示,该方法包括以下内容的至少部分内容:
S31:在支持多个MGP的情况下,终端设备针对多个MGP中的至少部分MGP,分别确定对应的第一测量时间;其中,第一测量时间为基于对应的MGP测量第一MO所需的测量时间;
S32:终端设备根据第一测量时间,确定第一MO的测量周期。
可选地,终端设备支持的多个MGP可以由网络配置。
可选地,本申请实施例中,测量间隔(MG)可以包括时域上中断业务数据收发并用于MO测量的间隔例如LTE系统、5G系统中的MG,也可以包括网络可控制的小间隔(Network Control Small Gap,NCSG),即时域上用于进行射频链路调整以使空闲的射频资源得以利用进行测量的间隔。MG包括在时域上周期性出现的多个MG位置(MG occasion)。
示例性地,MGP即测量间隔图样,或者说MG配置。一个MGP对应于一个MG,可以表征MG在时域上的分布,包含MG的周期、每个MG位置的长度等属性信息。可以理解,MGP的周期即MG的周期。在MG为时域上中断业务数据收发并用于MO测量的间隔的情况下,MGP的周期即MGRP。在MG为NCSG的情况下,MG的周期即可见中断的重复周期(Visible Interruption Repetition Period,VIRP)。
可选地,终端设备支持的多个MGP中的至少部分MGP即全部或部分MGP,可以包括终端设备支持的多个MGP中的每个MGP,也可以包括终端设备支持的多个MGP中特定的一个或多个MGP。
可选地,在本申请实施例中,MO可以是用于层3测量的信号,例如,第一MO可以包括用于层3测量的SSB、CSI-RS等。进一步地,第一MO可以是用于层3测量且需要MG进行测量的MO。
可选地,终端设备可以参考上述相关技术(三)中的在MG中测量MO的测量时间的计算方式,确定基于各个MGP测量第一MO所需的测量时间。例如,在多个MGP之间没有重叠的情况下,终端设备基于某个MGP的周期、第一MO的测量时间窗口(例如SMTC)的周期、DRX周期、该MGP的CSSF等信息,确定基于该MGP测量第一MO所需的测量时间。
可选地,在多个MGP之间有重叠的情况下,由于MGP之间的重叠可能导致某个MGP的部分MG位置不可用,因此,在第一测量时间的计算方式中可以设置一个缩放因子,记为间隔共享缩放因子,用于放大测量周期以消除MGP之间的重叠对测量准确性的影响。对于某个MGP,终端设备可以基于间隔共享缩放因子以及上述MGP的周期、第一MO的测量时间窗口(例如SMTC)的周期、DRX周期、该MGP的CSSF等信息,确定基于该MGP测量第一MO所需的测量时间。
可以看到,本申请实施例提供的测量周期的确定方法,在支持多个MGP的情况下,终端设备先针对其中一个或多个MGP确定基于MGP测量第一MO所需的测量时间,再根据确定的与MGP对应的测量时间确定第一MO的测量周期,从而实现在支持多个MGP的场景下准确确定第一MO的测量周期,为采用多个MGP进行测量奠定了基础,有利于提高测量的准确性。
在本申请实施例中,上述至少部分MGP的相关设置可以有多种方式实现。以下提供两种具体的示例。
示例一:
在本示例中,至少部分MGP包括与第一MO对应的第一MGP。
示例性地,在通信系统中,可以配置每个MO只能基于特定的一个MGP进行测量,即配置第一MO只能基于上述第一MGP进行测量。即使该第一MO有部分资源或测量时间窗口在其他的MG中,也不允许在其他MG中测量。相应地,终端设备根据第一MGP所对应的测量时间,确定第一MO的周期。
可选地,在计算各个MGP的CSSF时,仅基于与MGP对应的MO统计MO数量。例如,在统计MO数量以计算第一MGP的CSSF时,会将第一MO计入但不计入其他与第一MGP不对应的MO。相应地,多个MGP中除第一MGP以外的其他MGP的CSSF与第一MO不相关。
可选地,S32:终端设备根据第一测量时间,确定第一MO的测量周期,包括:
终端设备将第一MGP所对应的第一测量时间,确定为第一MO的测量周期。
一种示例是,在多个MGP之间完全没有重叠的情况下,第一MGP所对应的第一测量时间,即第 一MO的测量周期如表5所示:
表5:第一MO的测量周期(以T PSS/SSS_sync_intra为例,多个MGP之间不重叠)
DRXcycle T PSS/SSS_sync_intra
没有DRX max(600ms,5×max(MGRP1,SMTCperiod))×CSSF intra
DRXcycle≤320ms max(600ms,ceil(M2×5)×max(MGRP1,SMTCperiod,DRXcycle))×CSSF intra
DRXcycle>320ms 5×max(MGRP1,DRXcycle)×CSSF intra
其中,MGRP1为第一MGP的周期。SMTC period为第一MO的测量时间窗口的周期。
另一种示例是,在多个MGP之间有重叠例如部分重叠或完全重叠的情况下,同一时间要挑选一个MGP激活,因此需要对测量周期进行放大,引入上述间隔共享缩放因子,记为K gap
例如,在基于基本时间单位和CSSF计算测量周期时引入间隔共享缩放因子K gap。第一MGP所对应的第一测量时间(即第一MO的测量周期)如以下表6中计算方式1所示。
又如,在确定测量时间的基本时间单位时引入间隔共享缩放因子K gap,则第一MGP所对应的第一测量时间(即第一MO的测量周期)如表6中计算方式2所示。
表6:第一MO的测量周期(以T PSS/SSS_sync_intra为例,多个MGP之间有重叠)
Figure PCTCN2021110157-appb-000011
或者,在计算第一MGP的CSSF时引入间隔共享缩放因子K gap,再根据表5示例的方式确定测量周期。
可选地,测量周期的确定方法还包括从多个MGP中确定出与第一MO对应的第一MGP的步骤。具体地,该方法还包括:
终端设备根据网络设备的第一指示信息、多个MGP的相关信息和第一MO的相关信息中的至少一个,在多个MGP中确定出第一MGP。
可选地,第一MGP是网络设备的第一指示信息指示的,即第一指示信息用于配置与第一MO对应的MGP。
也就是说,网络设备可以通过第一指示信息为各个MO配置对应的MGP。例如,网络设备可以配置同频SSB(intra-frequency SSB)测量的MO1与MGP 1对应,异频SSB(inter-frequency SSB)测量MO2与MGP2对应,则MO1只能基于MGP1测量,MO2只能基于MGP2测量。这里,网络设备的配置需要保证MO1的SMTC与MGP1部分或完全重叠,MO2的SMTC与MGP2部分或完全重叠。
可选地,第一MGP可以根据第一MO的资源/测量时间窗口与各MGP的重叠情况确定。具体地,终端设备根据网络设备的第一指示信息、多个MGP的相关信息和第一MO的相关信息中的至少一个,在多个MGP中确定出第一MGP,包括:
终端设备根据多个MGP与第一MO的测量时间窗口的重叠情况,在多个MGP中确定出第一MGP。
一种示例的方式是,终端设备根据多个MGP与第一MO的测量时间窗口的重叠情况,在多个MGP中确定出第一MGP,包括:
终端设备将多个MGP中与第一MO的测量时间窗口重叠最多的MGP确定为第一MGP。
例如,intra-frequency SSB测量的MO1的SMTC窗口与MGP1完全重叠(即所有的SMTC都在MGP1中),但与MGP2部分重叠或完全不重叠,则MO1对应的MGP为MGP1。
另一种示例的方式是,终端设备根据多个MGP与第一MO的测量时间窗口的重叠情况,在多个MGP中确定出第一MGP,包括:
终端设备根据重叠情况和多个MGP的优先级,在多个MGP中确定出第一MGP。
例如,终端设备可以选择优先级较高的且与第一MO的测量时间窗口重叠较多的MGP作为第一MGP。
可选地,终端设备根据重叠情况和多个MGP的优先级,在多个MGP中确定出第一MGP,包括:
终端设备根据多个MGP的优先级,在多个MGP中的与第一MO的测量时间窗口重叠的MGP中确定出第一MGP。
实际应用中,终端设备可以先确定出多个MGP中与第一MO的测量时间窗口有重叠的所有MGP,再在其中选择优先级最高的MGP。终端设备也可以根据MGP的优先级,由高至低遍历每个MGP,当遍历到与第一MO的测量时间窗口有重叠例如部分重叠或完全重叠的MGP时,将该MGP确定为第一MGP。
例如,网络配置intra-frequency SSB测量的MO1使用MGP的优先级为MGP1>MGP2,并按照MGP1、MGP2的次序进一步判断SMTC与MGP的重叠情况:
若SMTC与MGP1部分或完全重叠,则使用MGP1测量MO1。
若SMTC与MGP1完全不重叠,但与MGP2部分或完全重叠,则使用MGP2测量MO1。
可选地,MGP的优先级可以通过网络信令指示。例如,第一指示信息用于指示多个MGP的优先级。
示例二:
在本示例中,至少部分MGP包括多个MGP中与第一MO的测量时间窗口重叠的每个MGP。也就是说,当第一MO的测量资源/测量时间窗口配置同时位于多个MGP内,则第一MO可以基于多个MGP测量。终端设备根据第一MO可用的每个MGP所对应的第一测量时间,确定第一MO的周期。相比示例一,本示例的测量配置更加灵活,同时MG竞争也会更加激烈。
根据本示例,只要第一MO有部分资源/测量时间窗口在某些MGP内,则网络配置等允许第一MO使用这些MGP测量。可选地,在计算每个MGP的CSSF时,都需要考虑第一MO,即每个MGP的CSSF均与第一MO相关。
可选地,终端设备支持或者说允许在多个MG内测量,具体在每个时机所选用的MG取决于终端设备实现。
可选地,终端设备根据第一测量时间,确定第一MO的测量周期,包括:
终端设备将每个MGP所对应的第一测量时间中的最大值或最小值,确定为第一MO的周期。
也就是说,针对各个MGP,分别确定第一MO基于MGP测量所需的测量时间,取各个MGP所对应的测量时间中的最大值或最小值作为第一MO最终的测量周期T。
以no-DRX,且第一MO所在的多个MGP(包括MGP1和MGP2)之间没有重叠为例:
第一MO在MGP1中的测量时间T1=max(600ms,5×max(MGRP1,SMTC period))×CSSF intra,MGP1
第一MO在MGP2中的测量时间T2=max(600ms,5×max(MGRP2,SMTC period))×CSSF intra,MGP2
则第一MO的测量周期T=min(T1,T2)或T=max(T1,T2)。需要说明的是,在本示例中,MGRP1为MGP1的周期,MGRP2为MGP2的周期,SMTC period为第一MO的测量时间窗口的周期。
以no-DRX,且第一MO所在的多个MGP(包括MGP1和MGP2)之间有重叠为例,需要在计算测量时间时考虑间隔共享缩放因子K gap,以采用表6所示的方式为例,测量时间的计算方式如下:
第一MO在MGP1中的测量时间T1=max(600ms,5×max(MGRP1×K gap,SMTC period))×CSSF intra, MGP1
第一MO在MGP2中的测量时间T2=max(600ms,5×max(MGRP2×K gap,SMTC period))×CSSF intra, MGP2
则第一MO的测量周期T=min(T1,T2)或T=max(T1,T2)。
可选地,终端设备根据第一测量时间,确定第一MO的测量周期,包括:
终端设备根据每个MGP所对应的第一测量时间以及多个MGP之间的偏移信息,确定第一MO的测量周期。
示例性地,终端设备可以将第一MO所需的采样点数N tot分配到不同的MGP中。然后根据每个MGP被分配到的采样点数计算各自的测量时间。最后考虑MG之间的偏移需要引入额外的时延即上述偏移信息,基于每个MGP所对应的测量时间以及偏移信息确定第一MO的测量周期。
例如,将第一MO所需的采样点数N tot分配到MGP1和MGP2中,其中MGP1对应的采样点数为N 1,MGP2对应的采样点数为N 2,第一MO的N 1个采样点在MGP1中所需的测量时间为T 11,第一MO的N 2个采样点在MGP2中所需的测量时间为T 22。则第一MO的周期T=min(T 11,T 22)+T delta或T=max(T 11,T 22)+T delta。其中,T delta为上述偏移信息。
可选地,偏移信息是基于多个MGP之间的偏移量或基于多个MGP的周期确定的。例如是MGP之间的偏移量的最大值或MGRP的最大值。
可选地,偏移信息与各MGP对应的采样点数相关。
例如,在多个MGP所对应的采样点数总和大于测量第一MO所需的采样点数的情况下(如N 1+N 2>N tot),偏移信息为第一预设值。第一预设值例如为0。
又如,在多个MGP所对应的采样点数总和小于等于测量第一MO所需的采样点数的情况下 (N 1+N 2≤N tot),偏移信息为多个MGP之间的偏移量的最大值或多个MGP的周期中的最大值。
可选地,上述方法还可以包括分配采样点数的步骤。该步骤可以有多种实现方式。
作为一种示例,上述方法还包括:
根据测量第一MO所需的采样点数以及每个MGP的周期,确定每个MGP所对应的采样点数;其中,采样点数用于确定每个MGP对应的第一测量时间。
示例性地,若终端设备支持的MGP中包含Z个可用于MO1测量的MGP,则Z个MGP中的第i个MGP对应的采样点数为:
Figure PCTCN2021110157-appb-000012
其中,MGRP i为第i个MGP的周期,MGRP j为第j个MGP的周期。
以MO1可以基于两个MGP(MGP1和MGP2)进行测量为例,则MGP1内需要完成的采样点数
Figure PCTCN2021110157-appb-000013
Figure PCTCN2021110157-appb-000014
MGP2内需要完成的采样点数
Figure PCTCN2021110157-appb-000015
例如,如图4所示,第一MO的测量时间窗口(SMTC)周期为20ms,两个MGP的周期分别为80ms和40ms,第一MO所需的采样点数N tot=5,则N 1=ceil(5*40/120)=2,N 2=ceil(5*80/120)=4,第一MO在MGP1所需的测量时间T 11=max(600ms,N 1×max(MGRP1,SMTC period))×CSSF intra,MGP1。第一MO在MGP2所需的测量时间T 22=max(600ms,N 2×max(MGRP2,SMTC period))×CSSF intra,MGP2。应理解,若多个MGP之间有重叠,则终端设备在计算测量时间时可以引入间隔共享缩放因子K gap
作为一种示例,上述方法还包括:
根据测量第一MO所需的采样点数、每个MGP的周期和第一MO在每个MGP的CSSF,确定每个MGP所对应的采样点数;其中,采样点数用于确定每个MGP对应的第一测量时间。
考虑到CSSF表示多个MO在MGP内的缩放因子,例如CSSF=2表示每两个MG occasion才会测量一个该MO,相当于对MGRP做放大。
以MO1可以基于两个MGP(MGP1和MGP2)进行测量为例,则:
MGP1内需要完成的采样点数
Figure PCTCN2021110157-appb-000016
MGP2内需要完成的采样点数
Figure PCTCN2021110157-appb-000017
其中,CSSF1为MGP1的CSSF,CSSF2为MGP2的CSSF。基于N 1计算MGP1对应的测量时间以及基于N 2计算MGP2对应的测量时间可以参考以上示例实现。
根据前述说明,考虑到多个MGP之间有重叠的情况下,某些MGP可能不会被激活,因此,可以引入间隔共享缩放因子,放大第一MO在每个MGP中的测量时间。相应地,终端设备针对多个MGP中的至少部分MGP,分别确定对应的第一测量时间,包括:
终端设备根据至少部分MGP中的每个MGP的间隔共享缩放因子,确定每个MGP所对应的第一测量时间。
可选地,在多个MGP之间不存在重叠的情况下,每个MGP的间隔共享缩放因子为第二预设值。例如K gap=1。
可选地,在多个MGP之间存在重叠的情况下,每个MGP的间隔共享缩放因子是根据每个MGP所对应的第一比值确定的;其中,第一比值与每个MGP的激活MG位置数量相关。
可选地,针对每个MGP,间隔共享缩放因子可以是第一比值,第一比值为MG位置总数和激活MG位置数量之间的比值。
第一比值可以通过对激活MG位置数量、MG位置总数进行统计得到,也可以基于网络设备的指示确定。
可选地,测量周期的确定方法还可以包括第一比值的获取方式:
终端设备基于每个MGP的优先级,确定每个MGP在第一时长内的激活MG位置数量,并基于每个MGP在第一时长内的MG位置总数与激活MG位置数量,确定每个MGP所对应的第一比值。
例如,最高优先级的MGP总是激活的,其在第一时长内的MG位置总数与激活MG位置数量之间的比值为1,因此最高优先级的MGP对应的间隔共享缩放因子K gap=1。对于优先级较低的MGP,则需确定第一时长内的激活MG位置数量。具体地,可以通过排除与MGP1重叠的MG位置,确定MGP2的激活MG位置,再统计激活MG位置数量并确定第一比值。
如图5所示,MGP1和MGP2的周期分别是20ms和40ms,第一时长X=40ms。MGP2的优先级更高,则MGP2的间隔共享缩放因子K gap,2=1。MGP1的优先级低,在40ms中共有2个MG1位置,但只有一个MG1位置是激活的,则MGP1的间隔共享缩放因子K gap,1=2/1。
可选地,第一时长是基于多个MGP的周期确定的。例如第一时长为多个MGP的周期的最小公倍数或最大值。即第一时长X=LCM(MGRP1,MGRP2),或X=max(MGRP1,MGRP2)。
可选地,第一时长为第三预设值,例如160ms。
如前述说明,第一比值也可以是基于网络设备的指示确定的。例如,每个MGP所对应的第一比值是基于网络设备发送的第二指示信息确定的。
作为一种示例,第二指示信息用于指示多个MGP的共享比例,多个MGP的共享比例与第一比值相关。
例如,第二指示信息指示MGP1和MGP2的共享比例为X1:X2,其中,X1+X2=100。则MGP1的间隔共享缩放因子K gap,1=100/X1,MGP2的间隔共享缩放因子K gap,2=100/X2。
作为另一种示例,第二指示信息包括第一比特流;每个MGP所对应的第一比值是基于第一比特流中的比特总数以及第一比特流中的第一比特的数量确定的;其中,第一比特用于指示激活MGP。例如第一比特流共有10个比特,其中4个指示激活MGP1,则MGP1的间隔共享缩放因子为10/4。
一种实现方式是,网络设备发送一个第一比特流,其中,第一比特流中的每个比特用于指示多个MGP中被激活的MGP。
例如,第一比特流bitmap=1000,其中的每个比特,取值为1表示激活MGP1,取值为0表示激活MGP2。MGP1的间隔共享缩放因子K gap,1=4/1,MGP2的间隔共享缩放因子K gap,2=4/3。
另一种实现方式是,网络设备发送多个第一比特流,即第二指示信息包括与多个MGP分别对应的多个第一比特流,第一比特流中的每个比特用于指示第一比特流对应的MGP是否被激活。
例如,网络配置MGP1对应的第一比特流bitmap=1000,其中的每个比特,取值为1表示激活MGP1,取值为0表示不激活或去激活MGP1,则MGP1的间隔共享缩放因子K gap,1=4/1。
又如,网络配置MGP2对应的第一比特流bitmap=0110,其中的每个比特,取值为1表示激活MGP2,取值为0表示不激活或去激活MGP2,则MGP2的间隔共享缩放因子K gap,2=4/2。
以上通过多个实施例从不同角度描述了本申请实施例对于第一MO的的具体设置和实现方式。实际应用中,在终端设备支持多个MGP的情况下,对于在MG外测量的信号(以下称第一信号),也可以设置相应的缩放因子,以解决因多个MGP导致该信号的部分测量时机不可用的问题,通高测量准确性。具体地,方法还包括:
在多个MGP包括K个第二MGP的情况下,终端设备根据K个第二MGP的相关信息,确定在间隔外测量的第一信号的间隔外测量缩放因子;其中,第二MGP为与第一信号的位置存在重叠的MGP,K为大于等于1的整数。
可选地,在多个MGP不包括第二MGP的情况下,间隔外测量缩放因子可以为第四预设值,例如1。
示例性地,在间隔外测量包括在MG外测量或在NCSG外测量。
示例性地,在间隔外测量的第一信号可以包括:第二MO和/或用于层1测量的资源。
对于用于层3测量的第二MO,如果满足一定条件则可以在间隔外测量。以第二MO是同频SSB为例,在满足以下条件的情况下可以在MG外测量:UE支持同频测量采用no-gap,或,SSB完全在激活BWP之内,或,下行激活BWP是初始BWP。在满足上述条件的情况下,如果该SSB的SMTC窗口与MG完全不重叠或部分重叠,则在间隔外测量该SSB。第二MO的测量需要在SMTC中进行,如果第二MO在间隔外测量,而第二MO的SMTC与多个MGP中的一个或多个重叠,则需要根据多个MGP的相关信息计算间隔外测量缩放因子K p
对于用于层1测量的资源,需要尽量在MG和测量时间窗口例如SMTC外测量。如果该资源都在SMTC内,则将一部分测量时间窗口用于L1测量。如果用于层1测量的资源的时域位置与多个MGP中的一个或多个重叠,则需要根据多个MGP的相关信息计算间隔外测量缩放因子P。
可选地,针对第一信号包括第二MO和/或用于层1测量的第一频段资源的情况,终端设备根据K个第二MGP的相关信息,确定在间隔外测量的第一信号的间隔外测量缩放因子,包括:
在K等于1的情况下,终端设备根据K个第二MGP的周期,确定第一信号的间隔外测量缩放因子;
和/或,
在K大于1的情况下,终端设备根据K个第二MGP之间的重叠情况和周期,确定第一信号的间隔外测量缩放因子。
示例性地,第一频段资源为FR1的资源。
示例性地,在K大于1的情况下,K个第二MGP包括互相重叠的N个第二MGP和/或M个与K个第二MGP中的其他完全不重叠的第二MGP(即这M个第二MGP不互相重叠,且这M个第二MGP中的每一个均不与其他第二MGP重叠);其中,N为大于等于2的整数,M为大于等于1的整数。
相应地,终端设备根据K个第二MGP之间的重叠情况和周期,确定第一信号的间隔外测量缩放因 子,包括:
终端设备根据N个第二MGP的周期的最小值,和/或,M个第二MGP中的每个第二MGP的周期,确定第一信号的间隔外测量缩放因子。
以下为针对用于层3测量的SSB的具体示例:
在只有1个MGP和SMTC重叠的情况下,根据该MGP的周期确定SSB的间隔外测量缩放因子K p。具体地,根据SMTC的周期和MGP的周期之间的比值确定K p
在有多个MGP和SMTC重叠的情况下,根据多个MGP之间是否重叠,确定是基于多个MGP的周期中的最小值还是基于每个MGP的周期确定K p。对于互相重叠的两个或两个以上的MGP,在确定K p时要考虑这些MGP的周期的最小值。对于不与其他MGP重叠的MGP,则在确定K p时要考虑这些MGP中的每个MGP的周期。具体地,根据SMTC的周期与上述最小值之间的比值或SMTC的周期与上述每个MGP的周期之间的比值确定K p
具体地,以用于层3测量的SSB为例,需要在SMTC窗口内进行测量,计算过程与SMTC周期有关。如果终端设备支持两个MGP,包括MGP1和MGP2,则存在以下多种情况的处理。
情况1:SMTC与MGP1部分重叠,但SMTC与MGP2完全不重叠。
这种情况下,
Figure PCTCN2021110157-appb-000018
其中,T SMTCperiod为SMTC的周期,MGRP1为MGP1的周期。
情况2:SMTC与MGP1部分重叠且SMTC与MGP2部分重叠(SMTC部分在MGP1中,部分在MGP2中),且MGP1与MGP2不重叠,且:
MGRP1≠MGRP2,两个MGRP周期不同,都大于SMTC周期,或
MGRP1=MGRP2,T SMTCperiod<0.5*MGRP1,两个MGRP周期相同,但SMTC的周期小于MGRP周期的一半。
这种情况下,
Figure PCTCN2021110157-appb-000019
情况3:SMTC与MGP1部分重叠且SMTC与MGP2部分重叠(SMTC部分在MGP1中,部分在MGP2中),且MGP1与MGP2部分或完全重叠。
这种情况下,
Figure PCTCN2021110157-appb-000020
情况4:SMTC与MGP1、MGP2均没有重叠。
这种情况下,K p=1。
以下为针对频段为FR1的用于层1测量的SSB资源的具体示例:
在只有1个MGP和SSB资源的时域位置重叠的情况下,根据该MGP的周期确定SSB的间隔外测量缩放因子P。具体地,根据SSB资源的周期和MGP的周期之间的比值确定P。
在有多个MGP和SSB资源的时域位置重叠的情况下,根据多个MGP之间是否重叠,确定是基于多个MGP的周期中的最小值还是基于每个MGP的周期确定P。对于互相重叠的两个或两个以上的MGP,在确定P时要考虑这些MGP的周期的最小值。对于不与其他MGP重叠的MGP,则在确定P时要考虑这些MGP中的每个MGP的周期。具体地,根据SSB资源的周期与上述最小值之间的比值或SSB资源的周期与上述每个MGP的周期之间的比值确定P。
具体地,以FR1的用于层1测量的SSB为例,需要尽量在SMTC窗口外进行测量,因此计算过程与SSB资源的周期有关。如果终端设备支持两个MGP,包括MGP1和MGP2,则存在以下多种情况的处理。
情况1:在被监测的小区中存在为同频、异频或异RAT测量配置的MGP,且只有一个MGP(例如MGP1)与SSB的一些但不是所有时机重叠。
这种情况下,
Figure PCTCN2021110157-appb-000021
其中,T SSB为SSB资源的周期。
情况2:SSB与MGP1部分重叠且SSB与MGP2部分重叠,且MGP1和MGP2完全不重叠,且:
MGRP1≠MGRP2,两个MGRP周期不同,或
MGRP1=MGRP2,T SSB<0.5*MGRP1,两个MGRP周期相同,但SSB信号的周期小于MGRP周期的一半。
这种情况下,
Figure PCTCN2021110157-appb-000022
情况3:SSB与MGP1部分重叠(T SSB<MGRP1),SSB与MGP2部分重叠(T SSB<MGRP2),且MGP1与MGP2部分或完全重叠。
这种情况下,
Figure PCTCN2021110157-appb-000023
情况4:被监测的小区中没有任何MGP与SSB重叠。
这种情况下,P=1。
可选地,针对第一信号包括用于层1测量的第二频段资源的情况,终端设备根据K个第二MGP的相关信息,确定在间隔外测量的第一信号的间隔外测量缩放因子,包括:
终端设备根据K个第二MGP与第一信号的测量时间窗口之间的重叠情况和周期,确定第一信号的间隔外测量缩放因子。
示例性地,第二频段资源为FR2的资源。
示例性地,K个第二MGP包括以下至少之一:
互相重叠的L个第二MGP;
P个与第一信号的测量时间窗口重叠的第二MGP;
Q个与K个第二MGP中的其他不重叠且与第一信号的测量时间窗口不重叠的第二MGP;
其中,L为大于等于2的整数,P和Q均为大于等于1的整数;
相应地,终端设备根据K个第二MGP与第一信号的测量时间窗口之间的重叠情况和周期,确定第一信号的间隔外测量缩放因子,包括:
终端设备根据以下信息中的至少一个,确定第一信号的间隔外测量缩放因子:
L个第二MGP的周期的最小值;
P个第二MGP的周期和第一信号的测量时间窗口的周期中的最小值或所述P个第二MGP中的每个MGP的周期;
Q个第二MGP中的每个MGP的周期。
示例性地,若第二频段资源不是用于层1的无线链路监测(Radio LinkMonitoring,RLM)测量的SSB资源,例如第二频段资源为CSI-RS资源,或者,第二资源为用于层1的波束故障检测(BeamFailure Detection,BFD)、候选波束识别(Candidate Beam Identification,CBD)或L1-RSRP测量的SSB资源,则在K个第二MGP包括上述P个与第一信号的测量时间窗口重叠的第二MGP的情况下,终端设备根据P个第二MGP的周期和第一信号的测量时间窗口的周期中的最小值确定第一信号的间隔外测量缩放因子。
示例性地,若第二频段资源为用于层1的RRM测量的SSB资源,则在K个第二MGP包括上述P个与第一信号的测量时间窗口重叠的第二MGP的情况下,终端设备根据P个第二MGP中的每个MGP的周期确定第一信号的间隔外测量缩放因子。
下面以频段为FR2的L1-RSRP SSB资源为例进行具体说明:
在多个MGP中存在K个与SSB资源的时域位置重叠的第二MGP的情况下,由于SSB资源不仅要在MG外测量,还需要尽量在SMTC外进行测量,因此,需要根据K个第二MGP两两之间是否重叠、每个第二MGP与SMTC之间是否重叠,确定是否要基于部分第二MGP的周期的最小值、部分第二MGP的周期和SMTC的周期中的最小值、部分第二MGP中的每个第二MGP的周期来确定缩放因子P。
具体地,对于互相重叠的两个或两个以上的MGP,在确定P时要考虑这些MGP的周期的最小值。对于与SMTC重叠的MGP,在确定P时要考虑这些MGP的周期和SMTC的周期的最小值。对于与其他MGP互不重叠且与SMTC不重叠的MGP,在确定P时要考虑这些MGP中的每个MGP的周期。
可选地,根据SSB资源的周期与上述最小值之间的比值或SSB资源的周期与上述每个MGP的周期之间的比值确定P。
可选地,如果SSB资源都在SMTC内,则将一部分测量时间窗口用于L1测量(包括L1-RSRP测量以及RLM/BFD/CBD等流程中的层1测量),需要考虑共享因子P sharing factor
具体地,SSB资源需要尽量在SMTC窗口外进行测量,因此计算过程与SSB资源的周期有关。如果终端设备支持两个MGP,包括MGP1和MGP2,则存在以下多种情况的处理。
情况1:SSB不与任何MGP重叠且SSB与SMTC部分重叠(T SSB<T SMTCperiod)。
这种情况下,
Figure PCTCN2021110157-appb-000024
情况2:SSB不与任何MGP重叠且SSB与SMTC完全重叠(T SSB=T SMTCperiod)。
这种情况下,P=P sharing factor
情况3:SSB只与一个MGP例如MGP1重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),且SMTC不与该MGP1重叠,且:
T SMTCperiod≠MGRP1,或,
T SMTCperiod=MGRP1同时T SSB<0.5*T SMTCperiod
这种情况下,
Figure PCTCN2021110157-appb-000025
情况4:SSB与两个MGP都部分重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),且SMTC窗口与这两个MGP都不重叠,且这两个MGP部分或完全重叠,且:
T SMTCperiod≠min(MGRP1,MGRP2),或,
T SMTCperiod=min(MGRP1,MGRP2)同时T SSB<0.5*T SMTCperiod
这种情况下,
Figure PCTCN2021110157-appb-000026
情况5:SSB与两个MGP都部分重叠,MGP1与MGP2不重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),SMTC窗口与MGP1不重叠但与MGP2部分重叠,且:
MGRP1≠min((T SMTCperiod,MGRP2),或,
MGRP1=min(T SMTCperiod,MGRP2)同时T SSB<0.5*MGRP1。
这种情况下,
Figure PCTCN2021110157-appb-000027
情况6:SSB与两个MGP都部分重叠,MGP1与MGP2不重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),SMTC与MGP2不重叠但与MGP1全部或部分重叠,且:
MGRP2≠min((T SMTCperiod,MGRP1),或,
MGRP2=min(T SMTCperiod,MGRP1)同时T SSB<0.5*MGRP2。
这种情况下,
Figure PCTCN2021110157-appb-000028
情况7:SSB与两个MGP都部分重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),SMTC不与这两个MGP重叠,这两个MGP之间完全不重叠,且部分SSB与MGP或SMTC不重叠,且:
T SMTCperiod≠MGRP1≠MGRP2(SMTC、MGP1、MGP2三者周期都不相同),或
其中两个周期相同,且另一个周期小于这个相同周期的一半,如T SMTCperiod<0.5*MGRP1,MGRP1=MGRP2,或,
其中两个周期相同,另一个周期等于这个周期的一半,但SSB周期小于较小的周期,例如T SMTCperiod=0.5*MGRP1,MGRP1=MGRP2,T SSB<T SMTCperiod,或,
T SMTCperiod=MGRP1=MGRP2同时T SSB<=0.25*T SMTCperiod
这种情况下,
Figure PCTCN2021110157-appb-000029
情况8:SSB只与一个MGP例如MGP1部分重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),且SMTC与MGP1不重叠,且T SSB=0.5*T SMTCperiod。即SSB的一半在某个SMTC内,另一半在MGP1内,SMTC和MGP1不重叠,则将SMTC内的一部分用于L1测量。
这种情况下,
Figure PCTCN2021110157-appb-000030
情况9:SSB与其中一个MGP例如MGP1部分重叠(T SSB<MGRP1),且SSB与SMTC部分重叠(T SSB<T SMTCperiod),且SMTC与MGP1部分或完全重叠。
这种情况下,
Figure PCTCN2021110157-appb-000031
情况10:SSB与两个MGP部分重叠(T SSB<MGRP1且T SSB<MGRP2),且SSB与SMTC部分重叠(T SSB<T SMTCperiod),且SMTC与这两个MGP部分或完全重叠,且这两个MGP部分或完全重叠,且:
MGRP1≠MGRP2,或,
MGRP1=MGRP2同时T SSB<0.5*MGRP1。
这种情况下,
Figure PCTCN2021110157-appb-000032
情况11:SSB与其中一个MGP例如MGP1部分重叠且SSB与SMTC完全重叠(T SSB=T SMTCperiod),且SMTC与MGP1部分重叠(T SMTCperiod<MGRP1)。
这种情况下,
Figure PCTCN2021110157-appb-000033
情况12:SSB与两个MGP部分重叠,且SSB与SMTC完全重叠(T SSB=T SMTCperiod),且SMTC与这两个MGP部分重叠(T SMTCperiod<MGRP1且T SMTCperiod<MGRP2),且两个MGP完全不重叠。
MGRP1=MGRP2,且T SMTCperiod<0.5*MGRP1,或
MGRP1≠MGRP2,这样能保证SMTC除去和两个MGP重叠的部分还有剩余。
这种情况下,
Figure PCTCN2021110157-appb-000034
情况13:SSB与两个MGP部分重叠,且SSB与SMTC完全重叠(T SSB=T SMTCperiod),且SMTC与这两个MGP部分重叠,且两个MGP部分重叠。
这种情况下,
Figure PCTCN2021110157-appb-000035
其中,如果为MG外的L1-RSRP测量配置的SSB是:
考虑到配置了SSB-ToMeasure,SSB-ToMeasure是来自同一服务载波上的所有配置的测量对象的SSB-ToMeasure的并集,不与SSB-ToMeasure指示的SSB符号、SSB-ToMeasure指示的每个连续SSB符号之前的1个数据符号以及SSB-ToMeasure指示的每个连续符号之后的1个数据符号重叠,且,
考虑到配置了ss-RSSI-Measurement,不与SS-RSSI-Measurement指示的RSSI符号、SS-RSSI-Measurement指示的每个RSSI符号之前的1个数据符号以及SS-RSSI-Measurement指示的每个RSSI符号之后的1个数据符号重叠,
则P sharing factor=1,否则,P sharing factor=3。
可选的,当频段为FR2的用于层1的无线链路监测(Radio LinkMonitoring,RLM)测量的SSB资源时,在终端设备支持两个MGP,包括MGP1和MGP2的情况下,间隔外测量缩放因子的确定方式包括以下多种情况的处理:
情况1:SSB不与任何MGP重叠且SSB与SMTC部分重叠(T SSB<T SMTCperiod)。
这种情况下,
Figure PCTCN2021110157-appb-000036
情况2:SSB不与任何MGP重叠且SSB与SMTC完全重叠(T SSB=T SMTCperiod)。
这种情况下,P=P sharing factor
情况3:SSB只与一个MGP例如MGP1重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),且SMTC不与该MGP1重叠,且:
T SMTCperiod≠MGRP1,或,
T SMTCperiod=MGRP1同时T SSB<0.5*T SMTCperiod
这种情况下,
Figure PCTCN2021110157-appb-000037
情况4:SSB与两个MGP都部分重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),且SMTC窗口与这两个MGP都不重叠,且这两个MGP部分或完全重叠,且:
T SMTCperiod≠min(MGRP1,MGRP2),或,
T SMTCperiod=min(MGRP1,MGRP2)同时T SSB<0.5*T SMTCperiod
这种情况下,
Figure PCTCN2021110157-appb-000038
情况5:SSB与两个MGP都部分重叠且这两个MGP不重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),
当SMTC窗口与两个MGP都不重叠,但任一时刻的SSB在MGP内或SMTC内(即SMTC和两个MGP合并起来能包含所有的SSB信号),或者
当SMTC窗口与其中一个或多个MGP部分或完全重叠,且MGRP1=MGRP2,且T SSB<0.5*MGRP1,或MGRP1≠MGRP2,
这种情况下,
Figure PCTCN2021110157-appb-000039
情况6:SSB与两个MGP都部分重叠且这两个MGP部分或完全重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),SMTC窗口与其中一个或多个MGP部分或完全重叠,且
这种情况下,
Figure PCTCN2021110157-appb-000040
情况7:SSB与两个MGP都部分重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),SMTC不与这两个MGP重叠,这两个MGP之间完全不重叠,且部分SSB与MGP或SMTC不重叠,且:
T SMTCperiod≠MGRP1≠MGRP2(SMTC、MGP1、MGP2三者周期都不相同),或
其中两个周期相同,且另一个周期小于这个相同周期的一半,如T SMTCperiod<0.5*MGRP1,MGRP1=MGRP2,或,
其中两个周期相同,另一个周期等于这个周期的一半,但SSB周期小于较小的周期,例如T SMTCperiod=0.5*MGRP1,MGRP1=MGRP2,T SSB<T SMTCperiod,或,
T SMTCperiod=MGRP1=MGRP2同时T SSB<=0.25*T SMTCperiod
(即除去与SMTC和MG重叠的部分,还有部分SSB信号既不在SMTC内,也不在MGP内)
这种情况下,
Figure PCTCN2021110157-appb-000041
情况8:SSB只与一个MGP例如MGP1部分重叠,且SSB与SMTC部分重叠(T SSB<T SMTCperiod),且SMTC与MGP1不重叠,且T SSB=0.5*T SMTCperiod。即SSB的一半在某个SMTC内,另一半在MGP1内,SMTC和MGP1不重叠,则将SMTC内的一部分用于L1测量。
这种情况下,
Figure PCTCN2021110157-appb-000042
情况9:SSB与其中一个MGP例如MGP1部分重叠(T SSB<MGRP1),且SSB与SMTC部分重叠(T SSB<T SMTCperiod),且SMTC与MGP1部分或完全重叠。
这种情况下,
Figure PCTCN2021110157-appb-000043
情况10:SSB与其中一个MGP例如MGP1部分重叠且SSB与SMTC完全重叠(T SSB=T SMTCperiod),且SMTC与MGP1部分重叠(T SMTCperiod<MGRP1)。
这种情况下,
Figure PCTCN2021110157-appb-000044
情况11:SSB与两个MGP部分重叠,且SSB与SMTC完全重叠(T SSB=T SMTCperiod),且SMTC与这两个MGP部分重叠(T SMTCperiod<MGRP1且T SMTCperiod<MGRP2),且两个MGP完全不重叠。
MGRP1=MGRP2,且T SMTCperiod<0.5*MGRP1,或
MGRP1≠MGRP2,这样能保证SMTC除去和两个MGP重叠的部分还有剩余。
这种情况下,
Figure PCTCN2021110157-appb-000045
情况12:SSB与两个MGP部分重叠,且SSB与SMTC完全重叠(T SSB=T SMTCperiod),且SMTC与这两个MGP部分重叠,且两个MGP部分重叠。
这种情况下,
Figure PCTCN2021110157-appb-000046
其中,如果为MG外的L1-RSRP测量配置的SSB是:
考虑到配置了SSB-ToMeasure,SSB-ToMeasure是来自同一服务载波上的所有配置的测量对象的SSB-ToMeasure的并集,不与SSB-ToMeasure指示的SSB符号、SSB-ToMeasure指示的每个连续SSB符号之前的1个数据符号以及SSB-ToMeasure指示的每个连续符号之后的1个数据符号重叠,且,
考虑到配置了ss-RSSI-Measurement,不与SS-RSSI-Measurement指示的RSSI符号、SS-RSSI-Measurement指示的每个RSSI符号之前的1个数据符号以及SS-RSSI-Measurement指示的每个RSSI符号之后的1个数据符号重叠,
则P sharing factor=1,否则,P sharing factor=3。
在上述方法中,终端设备可以基于网络设备的配置选取与第一MO对应的第一MGP,或者确定各MGP的间隔共享缩放因子,从而使终端设备能够在支持多个MGP的情况下,针对各MGP分别确定对应的测量第一MO的测量时间。相应地,如图6所示,本申请实施例还提供一种测量周期的确定方法,包括:
S61:网络设备向终端设备发送指示信息;
其中,指示信息用于指示终端设备在支持多个MGP的情况下,针对多个MGP中的至少部分MGP分别确定对应的第一测量时间;第一测量时间为基于对应的MGP测量第一MO所需的测量时间,第一测量时间用于确定第一MO的测量周期。
可选地,至少部分MGP包括与第一MO对应的第一MGP;指示信息包括第一指示信息,第一指示信息用于在多个MGP中确定出第一MGP。
可选地,第一指示信息用于配置与第一MO对应的MGP。
可选地,第一指示信息用于指示多个MGP的优先级;优先级用于指示终端设备在多个MGP中的 与第一MO的测量时间窗口重叠的MGP中确定出第一MGP。
可选地,指示信息包括第二指示信息,第二指示信息用于指示终端设备确定至少部分MGP中的每个MGP的间隔共享缩放因子;间隔共享缩放因子用于确定第一测量时间。
可选地,第二指示信息用于指示每个MGP所对应的第一比值,第一比值用于确定间隔共享缩放因子。
可选地,第二指示信息用于指示多个MGP的共享比例,多个MGP的共享比例与第一比值相关。
可选地,第二指示信息包括第一比特流;每个MGP所对应的第一比值是基于第一比特流中的比特总数以及第一比特流中的第一比特的数量确定的;其中,第一比特用于指示激活MGP。
可选地,第一比特流中的每个比特用于指示多个MGP中被激活的MGP。
可选地,第二指示信息包括与多个MGP分别对应的多个第一比特流,第一比特流中的每个比特用于指示第一比特流对应的MGP是否被激活。
以上通过多个实施例从不同角度描述了本申请实施例的具体设置和实现方式。利用上述至少一个实施例,在支持多个MGP的情况下,终端设备先针对其中一个或多个MGP确定基于MGP测量第一MO所需的测量时间,再根据确定的与MGP对应的测量时间确定第一MO的测量周期,从而实现在支持多个MGP的场景下准确确定第一MO的测量周期,为采用多个MGP进行测量奠定了基础,有利于提高测量的准确性。
与上述至少一个实施例的处理方法相对应地,本申请实施例还提供一种终端设备100,参考图7,其包括:
测量时间确定模块101,用于在支持多个测量间隔图样MGP的情况下,针对多个MGP中的至少部分MGP,分别确定对应的第一测量时间;其中,第一测量时间为基于对应的MGP测量第一测量对象MO所需的测量时间;
测量周期确定模块102,用于根据第一测量时间,确定第一MO的测量周期。
其中,至少部分MGP包括与第一MO对应的第一MGP。
可选地,在本申请实施例中,如图8所示,测量周期确定模块包括:
第一确定单元1021,用于将第一MGP所对应的第一测量时间,确定为第一MO的测量周期。
可选地,在本申请实施例中,终端设备还包括:
MGP确定模块103,用于根据网络设备的第一指示信息、多个MGP的相关信息和第一MO的相关信息中的至少一个,在多个MGP中确定出第一MGP。
其中,第一指示信息用于配置与第一MO对应的MGP。
可选地,在本申请实施例中,MGP确定模块包括:
MGP选取单元1031,用于根据多个MGP与第一MO的测量时间窗口的重叠情况,在多个MGP中确定出第一MGP。
其中,MGP选取单元具体用于:
将多个MGP中与第一MO的测量时间窗口重叠最多的MGP确定为第一MGP;
或者,
根据重叠情况和多个MGP的优先级,在多个MGP中确定出第一MGP。
可选地,在本申请实施例中,MGP选取单元具体用于:
根据多个MGP的优先级,在多个MGP中的与第一MO的测量时间窗口重叠的MGP中确定出第一MGP。
可选地,在本申请实施例中,第一指示信息用于指示多个MGP的优先级。
其中,多个MGP中除第一MGP以外的其他MGP的CSSF与第一MO不相关。
可选地,在本申请实施例中,至少部分MGP包括多个MGP中与第一MO的测量时间窗口重叠的每个MGP。
可选地,在本申请实施例中,如图9所示,测量周期确定模块包括:
第二确定单元1022,用于将每个MGP所对应的第一测量时间中的最大值或最小值,确定为第一MO的周期。
其中,测量周期确定模块还包括:
第三确定单元1023,用于根据每个MGP所对应的第一测量时间以及多个MGP之间的偏移信息,确定第一MO的测量周期。
可选地,在本申请实施例中,终端设备还包括:
采样点数确定模块104,用于根据测量第一MO所需的采样点数以及每个MGP的周期,确定每个MGP所对应的采样点数;其中,采样点数用于确定每个MGP对应的第一测量时间。
其中,采样点数确定模块具体用于:
根据测量第一MO所需的采样点数、每个MGP的周期和第一MO在每个MGP的CSSF,确定每个MGP所对应的采样点数;其中,采样点数用于确定每个MGP对应的第一测量时间。
其中,偏移信息是基于多个MGP之间的偏移量或基于多个MGP的周期确定的。
可选地,在多个MGP所对应的采样点数总和大于测量第一MO所需的采样点数的情况下,偏移信息为第一预设值。
可选地,在多个MGP所对应的采样点数总和小于等于测量第一MO所需的采样点数的情况下,偏移信息为多个MGP之间的偏移量的最大值或多个MGP的周期中的最大值。
可选地,在本申请实施例中,测量时间确定模块具体用于:
根据至少部分MGP中的每个MGP的间隔共享缩放因子,确定每个MGP所对应的第一测量时间。
可选地,在本申请实施例中,在多个MGP之间不存在重叠的情况下,每个MGP的间隔共享缩放因子为第二预设值。
可选地,在本申请实施例中,在多个MGP之间存在重叠的情况下,每个MGP的间隔共享缩放因子是根据每个MGP所对应的第一比值确定的;其中,第一比值与每个MGP的激活MG位置数量相关。
可选地,在本申请实施例中,测量时间确定模块还用于:
基于每个MGP的优先级,确定每个MGP在第一时长内的激活MG位置数量,并基于每个MGP在第一时长内的MG位置总数与激活MG位置数量,确定每个MGP所对应的第一比值。
可选地,在本申请实施例中,第一时长是基于多个MGP的周期确定的。
可选地,在本申请实施例中,第一时长是多个MGP的周期的最小公倍数或最大值。
其中,第一时长为第三预设值。
可选地,在本申请实施例中,每个MGP所对应的第一比值是基于网络设备发送的第二指示信息确定的。
可选地,在本申请实施例中,第二指示信息用于指示多个MGP的共享比例,多个MGP的共享比例与第一比值相关。
可选地,在本申请实施例中,第二指示信息包括第一比特流;每个MGP所对应的第一比值是基于第一比特流中的比特总数以及第一比特流中的第一比特的数量确定的;其中,第一比特用于指示激活MGP。
其中,第一比特流中的每个比特用于指示多个MGP中被激活的MGP。
可选地,在本申请实施例中,第二指示信息包括与多个MGP分别对应的多个第一比特流,第一比特流中的每个比特用于指示第一比特流对应的MGP是否被激活。
可选地,在本申请实施例中,终端设备还包括:
缩放因子确定模块105,用于在多个MGP包括K个第二MGP的情况下,根据K个第二MGP的相关信息,确定在间隔外测量的第一信号的间隔外测量缩放因子;其中,第二MGP为与第一信号的位置存在重叠的MGP,K为大于等于1的整数。
可选地,第一信号包括第二MO和/或用于层1测量的第一频段资源;
相应地,在本申请实施例中,缩放因子确定模块105具体用于:
在K等于1的情况下,根据K个第二MGP的周期,确定第一信号的间隔外测量缩放因子;
和/或,
在K大于1的情况下,根据K个第二MGP之间的重叠情况和周期,确定第一信号的间隔外测量缩放因子。
其中,在K大于1的情况下,K个第二MGP包括互相重叠的N个第二MGP和/或M个与K个第二MGP中的其他完全不重叠的第二MGP;其中,N为大于等于2的整数,M为大于等于1的整数;
相应地,缩放因子确定模块105具体用于:
根据N个第二MGP的周期的最小值,和/或,M个第二MGP中的每个第二MGP的周期,确定第一信号的间隔外测量缩放因子。
可选地,在本申请实施例中,第一信号包括用于层1测量的第二频段资源;
相应地,缩放因子确定模块105具体用于:
根据K个第二MGP与第一信号的测量时间窗口之间的重叠情况和周期,确定第一信号的间隔外测量缩放因子。
其中,K个第二MGP包括以下至少之一:
互相重叠的L个第二MGP;
P个与第一信号的测量时间窗口重叠的第二MGP;
Q个与K个第二MGP中的其他不重叠且与第一信号的测量时间窗口不重叠的第二MGP;
其中,L为大于等于2的整数,P和Q均为大于等于1的整数;
相应地,缩放因子确定模块105具体用于:
终端设备根据以下信息中的至少一个,确定第一信号的间隔外测量缩放因子:
L个第二MGP的周期的最小值;
P个第二MGP的周期和第一信号的测量时间窗口的周期中的最小值或所述P个第二MGP中的每个MGP的周期;
Q个第二MGP中的每个MGP的周期。
本申请实施例的终端设备100能够实现前述的方法实施例中的终端设备的对应功能,该终端设备100中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,此处不进行赘述。需要说明,关于本申请实施例的终端设备100中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,测量时间确定模块与测量周期确定模块可以是不同的模块,也可以是同一个模块,均能够实现其在本申请实施例中的相应功能。此外,本申请实施例中的通信模块,可通过设备的收发机实现,其余各模块中的部分或全部可通过设备的处理器实现。
与上述至少一个实施例的处理方法相对应地,本申请实施例还提供一种网络设备200,参考图10,其包括:
指示信息发送模块201,用于向终端设备发送指示信息;
其中,指示信息用于指示终端设备在支持多个MGP的情况下,针对多个MGP中的至少部分MGP分别确定对应的第一测量时间;第一测量时间为基于对应的MGP测量第一MO所需的测量时间,第一测量时间用于确定第一MO的测量周期。
可选地,在本申请实施例中,至少部分MGP包括与第一MO对应的第一MGP;指示信息包括第一指示信息,第一指示信息用于在多个MGP中确定出第一MGP。
可选地,在本申请实施例中,第一指示信息用于配置与第一MO对应的MGP。
可选地,在本申请实施例中,第一指示信息用于指示多个MGP的优先级;优先级用于指示终端设备在多个MGP中的与第一MO的测量时间窗口重叠的MGP中确定出第一MGP。
可选地,在本申请实施例中,指示信息包括第二指示信息,第二指示信息用于指示终端设备确定至少部分MGP中的每个MGP的间隔共享缩放因子;间隔共享缩放因子用于确定第一测量时间。
可选地,在本申请实施例中,第二指示信息用于指示每个MGP所对应的第一比值,第一比值用于确定间隔共享缩放因子。
可选地,在本申请实施例中,第二指示信息用于指示多个MGP的共享比例,多个MGP的共享比例与第一比值相关。
可选地,在本申请实施例中,第二指示信息包括第一比特流;每个MGP所对应的第一比值是基于第一比特流中的比特总数以及第一比特流中的第一比特的数量确定的;其中,第一比特用于指示激活MGP。
可选地,在本申请实施例中,第一比特流中的每个比特用于指示多个MGP中被激活的MGP。
可选地,在本申请实施例中,第二指示信息包括与多个MGP分别对应的多个第一比特流,第一比特流中的每个比特用于指示第一比特流对应的MGP是否被激活。
本申请实施例的网络设备200能够实现前述的方法实施例中的网络设备的对应功能,该网络设备200中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,此处不进行赘述。需要说明,关于本申请实施例的网络设备200中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,位置确定模块与需求确定模块可以是不同的模块,也可以是同一个模块,均能够实现其在本申请实施例中的相应功能。此外,本申请实施例中的通信模块,可通过设备的收发机实现,其余各模块中的部分或全部可通过设备的处理器实现。
图11是根据本申请实施例的通信设备600示意性结构图,其中通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图12是根据本申请实施例的芯片700的示意性结构图,其中芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,在本申请实施例中,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,在本申请实施例中,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,在本申请实施例中,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,在本申请实施例中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,在本申请实施例中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signalprocessor,DSP)、现成可编程门阵列(fieldprogrammable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图13是根据本申请实施例的通信系统800的示意性框图,该通信系统800包括终端设备810。
其中,终端设备810用于在支持多个MGP的情况下,针对多个MGP中的至少部分MGP,分别确定对应的第一测量时间;根据第一测量时间,确定第一MO的测量周期。其中,第一测量时间为基于对应的MGP测量第一测量对象MO所需的测量时间。
可选地,通信系统800还可以包括网络设备820。网络设备820用于向终端设备发送指示信息,指示信息用于指示终端设备在支持多个MGP的情况下,针对多个MGP中的至少部分MGP分别确定对应的第一测量时间。
其中,该终端设备810可以用于实现本申请各个实施例的方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现本申请各个实施例的方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户 线(Digital SubscriberLine,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如软盘、硬盘、磁带)、光介质(例如DVD)或半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (97)

  1. 一种测量周期的确定方法,包括:
    在支持多个测量间隔图样MGP的情况下,终端设备针对所述多个MGP中的至少部分MGP,分别确定对应的第一测量时间;其中,所述第一测量时间为基于对应的MGP测量第一测量对象MO所需的测量时间;
    所述终端设备根据所述第一测量时间,确定所述第一MO的测量周期。
  2. 根据权利要求1所述的方法,其中,所述至少部分MGP包括与所述第一MO对应的第一MGP。
  3. 根据权利要求2所述的方法,其中,所述终端设备根据所述第一测量时间,确定所述第一MO的测量周期,包括:
    所述终端设备将所述第一MGP所对应的第一测量时间,确定为所述第一MO的测量周期。
  4. 根据权利要求2或3所述的方法,其中,所述方法还包括:
    所述终端设备根据网络设备的第一指示信息、所述多个MGP的相关信息和所述第一MO的相关信息中的至少一个,在所述多个MGP中确定出所述第一MGP。
  5. 根据权利要求4所述的方法,其中,所述第一指示信息用于配置与所述第一MO对应的MGP。
  6. 根据权利要求4所述的方法,其中,所述终端设备根据网络设备的第一指示信息、所述多个MGP的相关信息和所述第一MO的相关信息中的至少一个,在所述多个MGP中确定出所述第一MGP,包括:
    所述终端设备根据所述多个MGP与所述第一MO的测量时间窗口的重叠情况,在所述多个MGP中确定出所述第一MGP。
  7. 根据权利要求6所述的方法,其中,所述终端设备根据所述多个MGP与所述第一MO的测量时间窗口的重叠情况,在所述多个MGP中确定出所述第一MGP,包括:
    所述终端设备将所述多个MGP中与所述第一MO的测量时间窗口重叠最多的MGP确定为所述第一MGP;
    或者,
    所述终端设备根据所述重叠情况和所述多个MGP的优先级,在所述多个MGP中确定出所述第一MGP。
  8. 根据权利要求7所述的方法,其中,所述终端设备根据所述重叠情况和所述多个MGP的优先级,在所述多个MGP中确定出所述第一MGP,包括:
    所述终端设备根据所述多个MGP的优先级,在所述多个MGP中的与所述第一MO的测量时间窗口重叠的MGP中确定出所述第一MGP。
  9. 根据权利要求7或8所述的方法,其中,所述第一指示信息用于指示所述多个MGP的优先级。
  10. 根据权利要求2-9中任一项所述的方法,其中,所述多个MGP中除所述第一MGP以外的其他MGP的CSSF与所述第一MO不相关。
  11. 根据权利要求1所述的方法,其中,所述至少部分MGP包括所述多个MGP中与所述第一MO的测量时间窗口重叠的每个MGP。
  12. 根据权利要求11所述的方法,其中,所述终端设备根据所述第一测量时间,确定所述第一MO的测量周期,包括:
    所述终端设备将所述每个MGP所对应的第一测量时间中的最大值或最小值,确定为所述第一MO的周期。
  13. 根据权利要求11所述的方法,其中,所述终端设备根据所述第一测量时间,确定所述第一MO的测量周期,包括:
    所述终端设备根据所述每个MGP所对应的第一测量时间以及所述多个MGP之间的偏移信息,确定所述第一MO的测量周期。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    根据测量所述第一MO所需的采样点数以及所述每个MGP的周期,确定所述每个MGP所对应的采样点数;其中,所述采样点数用于确定所述每个MGP对应的第一测量时间。
  15. 根据权利要求13所述的方法,其中,所述方法还包括:
    根据测量所述第一MO所需的采样点数、所述每个MGP的周期和所述第一MO在所述每个MGP的CSSF,确定所述每个MGP所对应的采样点数;其中,所述采样点数用于确定所述每个MGP对应的第一测量时间。
  16. 根据权利要求13-15中任一项所述的方法,其中,所述偏移信息是基于所述多个MGP之间的偏移量或基于所述多个MGP的周期确定的。
  17. 根据权利要求16所述的方法,其中,在所述多个MGP所对应的采样点数总和大于测量所述第一MO所需的采样点数的情况下,所述偏移信息为第一预设值。
  18. 根据权利要求17所述的方法,其中,在所述多个MGP所对应的采样点数总和小于等于测量所述第一MO所需的采样点数的情况下,所述偏移信息为所述多个MGP之间的偏移量的最大值或所述多个MGP的周期中的最大值。
  19. 根据权利要求1-18中任一项所述的方法,其中,所述终端设备针对所述多个MGP中的至少部分MGP,分别确定对应的第一测量时间,包括:
    所述终端设备根据所述至少部分MGP中的每个MGP的间隔共享缩放因子,确定所述每个MGP所对应的第一测量时间。
  20. 根据权利要求19所述的方法,其中,在所述多个MGP之间不存在重叠的情况下,所述每个MGP的间隔共享缩放因子为第二预设值。
  21. 根据权利要求20所述的方法,其中,在所述多个MGP之间存在重叠的情况下,所述每个MGP的间隔共享缩放因子是根据所述每个MGP所对应的第一比值确定的;其中,所述第一比值与所述每个MGP的激活MG位置数量相关。
  22. 根据权利要求21所述的方法,其中,所述方法还包括:
    所述终端设备基于所述每个MGP的优先级,确定所述每个MGP在第一时长内的激活MG位置数量,并基于所述每个MGP在所述第一时长内的MG位置总数与所述激活MG位置数量,确定所述每个MGP所对应的第一比值。
  23. 根据权利要求22所述的方法,其中,所述第一时长是基于所述多个MGP的周期确定的。
  24. 根据权利要求23所述的方法,其中,所述第一时长是所述多个MGP的周期的最小公倍数或最大值。
  25. 根据权利要求22所述的方法,其中,所述第一时长为第三预设值。
  26. 根据权利要求21所述的方法,其中,所述每个MGP所对应的第一比值是基于网络设备发送的第二指示信息确定的。
  27. 根据权利要求26所述的方法,其中,所述第二指示信息用于指示所述多个MGP的共享比例,所述多个MGP的共享比例与所述第一比值相关。
  28. 根据权利要求26所述的方法,其中,所述第二指示信息包括第一比特流;所述每个MGP所对应的第一比值是基于所述第一比特流中的比特总数以及所述第一比特流中的第一比特的数量确定的;其中,所述第一比特用于指示激活所述MGP。
  29. 根据权利要求28所述的方法,其中,所述第一比特流中的每个比特用于指示所述多个MGP中被激活的MGP。
  30. 根据权利要求28所述的方法,其中,所述第二指示信息包括与所述多个MGP分别对应的多个所述第一比特流,所述第一比特流中的每个比特用于指示所述第一比特流对应的MGP是否被激活。
  31. 根据权利要求1-30中任一项所述的方法,其中,所述方法还包括:
    在所述多个MGP包括K个第二MGP的情况下,所述终端设备根据所述K个第二MGP的相关信息,确定在间隔外测量的第一信号的间隔外测量缩放因子;其中,所述第二MGP为与所述第一信号的位置存在重叠的MGP,K为大于等于1的整数。
  32. 根据权利要求31所述的方法,其中,所述第一信号包括第二MO和/或用于层1测量的第一频段资源;
    相应地,所述终端设备根据所述K个第二MGP的相关信息,确定在间隔外测量的第一信号的间隔外测量缩放因子,包括:
    在K等于1的情况下,所述终端设备根据所述K个第二MGP的周期,确定所述第一信号的间隔外测量缩放因子;
    和/或,
    在K大于1的情况下,所述终端设备根据所述K个第二MGP之间的重叠情况和周期,确定所述第一信号的间隔外测量缩放因子。
  33. 根据权利要求32所述的方法,其中,在K大于1的情况下,所述K个第二MGP包括互相重叠的N个第二MGP和/或M个与所述K个第二MGP中的其他完全不重叠的第二MGP;其中,N为大于等于2的整数,M为大于等于1的整数;
    相应地,所述终端设备根据所述K个第二MGP之间的重叠情况和周期,确定所述第一信号的间隔 外测量缩放因子,包括:
    所述终端设备根据所述N个第二MGP的周期的最小值,和/或,所述M个第二MGP中的每个第二MGP的周期,确定所述第一信号的间隔外测量缩放因子。
  34. 根据权利要求31所述的方法,其中,所述第一信号包括用于层1测量的第二频段资源;
    相应地,所述终端设备根据所述K个第二MGP的相关信息,确定在间隔外测量的第一信号的间隔外测量缩放因子,包括:
    所述终端设备根据所述K个第二MGP与所述第一信号的测量时间窗口之间的重叠情况和周期,确定所述第一信号的间隔外测量缩放因子。
  35. 根据权利要求34所述的方法,其中,所述K个第二MGP包括以下至少之一:
    互相重叠的L个第二MGP;
    P个与所述第一信号的测量时间窗口重叠的第二MGP;
    Q个与所述K个第二MGP中的其他不重叠且与所述第一信号的测量时间窗口不重叠的第二MGP;
    其中,L为大于等于2的整数,P和Q均为大于等于1的整数;
    相应地,所述终端设备根据所述K个第二MGP与所述第一信号的测量时间窗口之间的重叠情况和周期,确定所述第一信号的间隔外测量缩放因子,包括:
    所述终端设备根据以下信息中的至少一个,确定所述第一信号的间隔外测量缩放因子:
    所述L个第二MGP的周期的最小值;
    所述P个第二MGP的周期和所述第一信号的测量时间窗口的周期中的最小值或所述P个第二MGP中的每个MGP的周期;
    所述Q个第二MGP中的每个MGP的周期。
  36. 一种测量周期的确定方法,包括:
    网络设备向终端设备发送指示信息;
    其中,所述指示信息用于指示所述终端设备在支持多个MGP的情况下,针对所述多个MGP中的至少部分MGP分别确定对应的第一测量时间;所述第一测量时间为基于对应的MGP测量第一MO所需的测量时间,所述第一测量时间用于确定所述第一MO的测量周期。
  37. 根据权利要求36所述的方法,其中,所述至少部分MGP包括与所述第一MO对应的第一MGP;所述指示信息包括第一指示信息,所述第一指示信息用于在多个MGP中确定出所述第一MGP。
  38. 根据权利要求37所述的方法,其中,所述第一指示信息用于配置与所述第一MO对应的MGP。
  39. 根据权利要求37所述的方法,其中,所述第一指示信息用于指示所述多个MGP的优先级;所述优先级用于指示所述终端设备在多个MGP中的与所述第一MO的测量时间窗口重叠的MGP中确定出所述第一MGP。
  40. 根据权利要求39所述的方法,其中,所述指示信息包括第二指示信息,所述第二指示信息用于指示所述终端设备确定所述至少部分MGP中的每个MGP的间隔共享缩放因子;所述间隔共享缩放因子用于确定所述第一测量时间。
  41. 根据权利要求40所述的方法,其中,所述第二指示信息用于指示所述每个MGP所对应的第一比值,所述第一比值用于确定所述间隔共享缩放因子。
  42. 根据权利要求41所述的方法,其中,所述第二指示信息用于指示所述多个MGP的共享比例,所述多个MGP的共享比例与所述第一比值相关。
  43. 根据权利要求41所述的方法,其中,所述第二指示信息包括第一比特流;所述每个MGP所对应的第一比值是基于所述第一比特流中的比特总数以及所述第一比特流中的第一比特的数量确定的;其中,所述第一比特用于指示激活所述MGP。
  44. 根据权利要求43所述的方法,其中,所述第一比特流中的每个比特用于指示所述多个MGP中被激活的MGP。
  45. 根据权利要求43所述的方法,其中,所述第二指示信息包括与所述多个MGP分别对应的多个所述第一比特流,所述第一比特流中的每个比特用于指示所述第一比特流对应的MGP是否被激活。
  46. 一种终端设备,包括:
    测量时间确定模块,用于在支持多个测量间隔图样MGP的情况下,针对所述多个MGP中的至少部分MGP,分别确定对应的第一测量时间;其中,所述第一测量时间为基于对应的MGP测量第一测量对象MO所需的测量时间;
    测量周期确定模块,用于根据所述第一测量时间,确定所述第一MO的测量周期。
  47. 根据权利要求46所述的终端设备,其中,所述至少部分MGP包括与所述第一MO对应的第一MGP。
  48. 根据权利要求47所述的终端设备,其中,所述测量周期确定模块包括:
    第一确定单元,用于将所述第一MGP所对应的第一测量时间,确定为所述第一MO的测量周期。
  49. 根据权利要求47或48所述的终端设备,其中,所述终端设备还包括:
    MGP确定模块,用于根据网络设备的第一指示信息、所述多个MGP的相关信息和所述第一MO的相关信息中的至少一个,在所述多个MGP中确定出所述第一MGP。
  50. 根据权利要求49所述的终端设备,其中,所述第一指示信息用于配置与所述第一MO对应的MGP。
  51. 根据权利要求49所述的终端设备,其中,所述MGP确定模块包括:
    MGP选取单元,用于根据所述多个MGP与所述第一MO的测量时间窗口的重叠情况,在所述多个MGP中确定出所述第一MGP。
  52. 根据权利要求51所述的终端设备,其中,所述MGP选取单元具体用于:
    将所述多个MGP中与所述第一MO的测量时间窗口重叠最多的MGP确定为所述第一MGP;
    或者,
    根据所述重叠情况和所述多个MGP的优先级,在所述多个MGP中确定出所述第一MGP。
  53. 根据权利要求52所述的终端设备,其中,所述MGP选取单元具体用于:
    根据所述多个MGP的优先级,在所述多个MGP中的与所述第一MO的测量时间窗口重叠的MGP中确定出所述第一MGP。
  54. 根据权利要求52或53所述的终端设备,其中,所述第一指示信息用于指示所述多个MGP的优先级。
  55. 根据权利要求47-54中任一项所述的终端设备,其中,所述多个MGP中除所述第一MGP以外的其他MGP的CSSF与所述第一MO不相关。
  56. 根据权利要求46所述的终端设备,其中,所述至少部分MGP包括所述多个MGP中与所述第一MO的测量时间窗口重叠的每个MGP。
  57. 根据权利要求56所述的终端设备,其中,所述周期确定模块包括:
    第二确定单元,用于将所述每个MGP所对应的第一测量时间中的最大值或最小值,确定为所述第一MO的周期。
  58. 根据权利要求56所述的终端设备,其中,所述周期确定模块还包括:
    第三确定单元,用于根据所述每个MGP所对应的第一测量时间以及所述多个MGP之间的偏移信息,确定所述第一MO的测量周期。
  59. 根据权利要求58所述的终端设备,其中,所述终端设备还包括:
    采样点数确定模块,用于根据测量所述第一MO所需的采样点数以及所述每个MGP的周期,确定所述每个MGP所对应的采样点数;其中,所述采样点数用于确定所述每个MGP对应的第一测量时间。
  60. 根据权利要求59所述的终端设备,其中,所述采样点数确定模块具体用于:
    根据测量所述第一MO所需的采样点数、所述每个MGP的周期和所述第一MO在所述每个MGP的CSSF,确定所述每个MGP所对应的采样点数;其中,所述采样点数用于确定所述每个MGP对应的第一测量时间。
  61. 根据权利要求58-60中任一项所述的终端设备,其中,所述偏移信息是基于所述多个MGP之间的偏移量或基于所述多个MGP的周期确定的。
  62. 根据权利要求61所述的终端设备,其中,在所述多个MGP所对应的采样点数总和大于测量所述第一MO所需的采样点数的情况下,所述偏移信息为第一预设值。
  63. 根据权利要求62所述的终端设备,其中,在所述多个MGP所对应的采样点数总和小于等于测量所述第一MO所需的采样点数的情况下,所述偏移信息为所述多个MGP之间的偏移量的最大值或所述多个MGP的周期中的最大值。
  64. 根据权利要求46-63中任一项所述的终端设备,其中,所述测量时间确定模块具体用于:
    根据所述至少部分MGP中的每个MGP的间隔共享缩放因子,确定所述每个MGP所对应的第一测量时间。
  65. 根据权利要求64所述的终端设备,其中,在所述多个MGP之间不存在重叠的情况下,所述每个MGP的间隔共享缩放因子为第二预设值。
  66. 根据权利要求65所述的终端设备,其中,在所述多个MGP之间存在重叠的情况下,所述每个MGP的间隔共享缩放因子是根据所述每个MGP所对应的第一比值确定的;其中,所述第一比值与所述每个MGP的激活MG位置数量相关。
  67. 根据权利要求66所述的终端设备,其中,所述测量时间确定模块还用于:
    基于所述每个MGP的优先级,确定所述每个MGP在第一时长内的激活MG位置数量,并基于所述每个MGP在所述第一时长内的MG位置总数与所述激活MG位置数量,确定所述每个MGP所对应的第一比值。
  68. 根据权利要求67所述的终端设备,其中,所述第一时长是基于所述多个MGP的周期确定的。
  69. 根据权利要求68所述的终端设备,其中,所述第一时长是所述多个MGP的周期的最小公倍数或最大值。
  70. 根据权利要求67所述的终端设备,其中,所述第一时长为第三预设值。
  71. 根据权利要求66所述的终端设备,其中,所述每个MGP所对应的第一比值是基于网络设备发送的第二指示信息确定的。
  72. 根据权利要求71所述的终端设备,其中,所述第二指示信息用于指示所述多个MGP的共享比例,所述多个MGP的共享比例与所述第一比值相关。
  73. 根据权利要求71所述的终端设备,其中,所述第二指示信息包括第一比特流;所述每个MGP所对应的第一比值是基于所述第一比特流中的比特总数以及所述第一比特流中的第一比特的数量确定的;其中,所述第一比特用于指示激活所述MGP。
  74. 根据权利要求73所述的终端设备,其中,所述第一比特流中的每个比特用于指示所述多个MGP中被激活的MGP。
  75. 根据权利要求73所述的终端设备,其中,所述第二指示信息包括与所述多个MGP分别对应的多个所述第一比特流,所述第一比特流中的每个比特用于指示所述第一比特流对应的MGP是否被激活。
  76. 根据权利要求46-75中任一项所述的终端设备,其中,所述终端设备还包括:
    缩放因子确定模块,用于在所述多个MGP包括K个第二MGP的情况下,根据所述K个第二MGP的相关信息,确定在间隔外测量的第一信号的间隔外测量缩放因子;其中,所述第二MGP为与所述第一信号的位置存在重叠的MGP,K为大于等于1的整数。
  77. 根据权利要求76所述的终端设备,其中,所述第一信号包括第二MO和/或用于层1测量的第一频段资源;
    相应地,所述缩放因子确定模块具体用于:
    在K等于1的情况下,根据所述K个第二MGP的周期,确定所述第一信号的间隔外测量缩放因子;
    和/或,
    在K大于1的情况下,根据所述K个第二MGP之间的重叠情况和周期,确定所述第一信号的间隔外测量缩放因子。
  78. 根据权利要求77所述的终端设备,其中,在K大于1的情况下,所述K个第二MGP包括互相重叠的N个第二MGP和/或与所述K个第二MGP中的其他完全不重叠的M个第二MGP;其中,N为大于等于2的整数,M为大于等于1的整数;
    相应地,所述缩放因子确定模块具体用于:
    根据所述N个第二MGP的周期的最小值,和/或,所述M个第二MGP中的每个第二MGP的周期,确定所述第一信号的间隔外测量缩放因子。
  79. 根据权利要求76所述的终端设备,其中,所述第一信号包括用于层1测量的第二频段资源;
    相应地,所述缩放因子确定模块具体用于:
    根据所述K个第二MGP与所述第一信号的测量时间窗口之间的重叠情况和周期,确定所述第一信号的间隔外测量缩放因子。
  80. 根据权利要求79所述的终端设备,其中,所述K个第二MGP包括以下至少之一:
    互相重叠的L个第二MGP;
    与所述第一信号的测量时间窗口重叠的P个第二MGP;
    与所述K个第二MGP中的其他不重叠且与所述第一信号的测量时间窗口不重叠的Q个第二MGP;
    其中,L为大于等于2的整数,P和Q均为大于等于1的整数;
    相应地,所述所述缩放因子确定模块具体用于:
    所述终端设备根据以下信息中的至少一个,确定所述第一信号的间隔外测量缩放因子:
    所述L个第二MGP的周期的最小值;
    所述P个第二MGP的周期和所述第一信号的测量时间窗口的周期中的最小值或所述P个第二MGP中的每个MGP的周期;
    所述Q个第二MGP中的每个MGP的周期。
  81. 一种网络设备,包括:
    指示信息发送模块,用于向终端设备发送指示信息;
    其中,所述指示信息用于指示所述终端设备在支持多个MGP的情况下,针对所述多个MGP中的至少部分MGP分别确定对应的第一测量时间;所述第一测量时间为基于对应的MGP测量第一MO所需的测量时间,所述第一测量时间用于确定所述第一MO的测量周期。
  82. 根据权利要求81所述的网络设备,其中,所述至少部分MGP包括与所述第一MO对应的第一MGP;所述指示信息包括第一指示信息,所述第一指示信息用于在多个MGP中确定出所述第一MGP。
  83. 根据权利要求82所述的网络设备,其中,所述第一指示信息用于配置与所述第一MO对应的MGP。
  84. 根据权利要求83所述的网络设备,其中,所述第一指示信息用于指示所述多个MGP的优先级;所述优先级用于指示所述终端设备在多个MGP中的与所述第一MO的测量时间窗口重叠的MGP中确定出所述第一MGP。
  85. 根据权利要求84所述的网络设备,其中,所述指示信息包括第二指示信息,所述第二指示信息用于指示所述终端设备确定所述至少部分MGP中的每个MGP的间隔共享缩放因子;所述间隔共享缩放因子用于确定所述第一测量时间。
  86. 根据权利要求85所述的网络设备,其中,所述第二指示信息用于指示所述每个MGP所对应的第一比值,所述第一比值用于确定所述间隔共享缩放因子。
  87. 根据权利要求86所述的网络设备,其中,所述第二指示信息用于指示所述多个MGP的共享比例,所述多个MGP的共享比例与所述第一比值相关。
  88. 根据权利要求86所述的网络设备,其中,所述第二指示信息包括第一比特流;所述每个MGP所对应的第一比值是基于所述第一比特流中的比特总数以及所述第一比特流中的第一比特的数量确定的;其中,所述第一比特用于指示激活所述MGP。
  89. 根据权利要求88所述的网络设备,其中,所述第一比特流中的每个比特用于指示所述多个MGP中被激活的MGP。
  90. 根据权利要求88所述的网络设备,其中,所述第二指示信息包括与所述多个MGP分别对应的多个所述第一比特流,所述第一比特流中的每个比特用于指示所述第一比特流对应的MGP是否被激活。
  91. 一种终端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求1至35中任一项所述的方法的步骤。
  92. 一种网络设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求36至45中任一项所述的方法的步骤。
  93. 一种芯片,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至35中任一项所述的方法的步骤。
  94. 一种计算机可读存储介质,用于存储计算机程序,其中,
    所述计算机程序使得计算机执行如权利要求1至45中任一项所述的方法的步骤。
  95. 一种计算机程序产品,包括计算机程序指令,其中,
    所述计算机程序指令使得计算机执行如权利要求1至45中任一项所述的方法的步骤。
  96. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至45中任一项所述的方法的步骤。
  97. 一种通信系统,包括:
    终端设备,用于执行如权利要求1至35中任一项所述的方法;
    网络设备,用于执行如权利要求36至45中任一项所述的方法。
PCT/CN2021/110157 2021-08-02 2021-08-02 测量周期的确定方法、终端设备和网络设备 WO2023010260A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180097950.9A CN117280737A (zh) 2021-08-02 2021-08-02 测量周期的确定方法、终端设备和网络设备
PCT/CN2021/110157 WO2023010260A1 (zh) 2021-08-02 2021-08-02 测量周期的确定方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110157 WO2023010260A1 (zh) 2021-08-02 2021-08-02 测量周期的确定方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023010260A1 true WO2023010260A1 (zh) 2023-02-09

Family

ID=85154912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110157 WO2023010260A1 (zh) 2021-08-02 2021-08-02 测量周期的确定方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN117280737A (zh)
WO (1) WO2023010260A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282794A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种测量方法、装置及系统
CN111294853A (zh) * 2019-04-30 2020-06-16 展讯半导体(南京)有限公司 测量间隙的配置方法及装置
CN111937430A (zh) * 2018-04-05 2020-11-13 瑞典爱立信有限公司 确定用于5g/nr中的测量间隙的测量周期缩放
WO2020248261A1 (zh) * 2019-06-14 2020-12-17 Oppo广东移动通信有限公司 一种测量间隔的确定方法及装置、终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282794A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种测量方法、装置及系统
CN111937430A (zh) * 2018-04-05 2020-11-13 瑞典爱立信有限公司 确定用于5g/nr中的测量间隙的测量周期缩放
CN111294853A (zh) * 2019-04-30 2020-06-16 展讯半导体(南京)有限公司 测量间隙的配置方法及装置
WO2020248261A1 (zh) * 2019-06-14 2020-12-17 Oppo广东移动通信有限公司 一种测量间隔的确定方法及装置、终端

Also Published As

Publication number Publication date
CN117280737A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
EP4192110A1 (en) Condition-based secondary node or primary-secondary cell change method and device
US11546044B2 (en) Wireless communication method, terminal device and network device
CA3065393C (en) Information determination method, terminal apparatus, and network apparatus
US11956658B2 (en) Wireless communication method, terminal device, and network device
US20230413147A1 (en) Method for determining frequency point and terminal device
US20230115662A1 (en) Method for neighboring cell measurement, terminal device and network device
US20230327731A1 (en) Measurement parameter determination method, terminal device, chip, and storage medium
US20230106995A1 (en) Wireless communication method and terminal device
CN115918133A (zh) 双连接架构下实现最小化路测的方法、终端设备和网络设备
CN110312284B (zh) 速率匹配方法、终端设备和网络设备
KR20220157937A (ko) 물리적 채널 모니터링 방법 및 단말 기기
WO2023010260A1 (zh) 测量周期的确定方法、终端设备和网络设备
WO2022261839A1 (zh) 测量方法、终端设备和网络设备
US20200359385A1 (en) Information transmission method, network device, and terminal device
WO2023010261A1 (zh) 测量位置的确定方法、终端设备、芯片和存储介质
WO2023130324A1 (zh) 测量周期的确定方法、终端设备、芯片和存储介质
WO2023205977A1 (zh) 通信方法、终端设备和网络设备
WO2022266966A1 (zh) 测量方法、测量配置方法、终端设备和网络设备
WO2024108526A1 (zh) 无线通信的方法, 终端设备和网络设备
WO2023283889A1 (zh) 无线通信的方法、终端设备和网络设备
US20230362872A1 (en) Wireless communication method, terminal device, and network device
WO2024000122A1 (zh) 无线通信的方法及设备
WO2022236511A1 (zh) 侦听方法、终端设备、网络设备、芯片和存储介质
WO2023115545A1 (zh) 信息传输方法、第一接入网设备、第二接入网设备和终端
WO2023108341A1 (zh) 频率信息的处理方法、第一通信单元和第二通信单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952170

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097950.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE