WO2023007928A1 - 自動分析装置、データ処理装置、データ処理方法及びプログラム - Google Patents

自動分析装置、データ処理装置、データ処理方法及びプログラム Download PDF

Info

Publication number
WO2023007928A1
WO2023007928A1 PCT/JP2022/021289 JP2022021289W WO2023007928A1 WO 2023007928 A1 WO2023007928 A1 WO 2023007928A1 JP 2022021289 W JP2022021289 W JP 2022021289W WO 2023007928 A1 WO2023007928 A1 WO 2023007928A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction process
measurement
sample
process information
data
Prior art date
Application number
PCT/JP2022/021289
Other languages
English (en)
French (fr)
Inventor
真由子 後藤
晃弘 井口
千枝 藪谷
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to CN202280048342.3A priority Critical patent/CN117616284A/zh
Publication of WO2023007928A1 publication Critical patent/WO2023007928A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to an automatic analyzer.
  • a blood coagulation test is one of the tests that can be measured by an automatic analyzer.
  • a blood coagulation test measures a patient's blood coagulability, and the main items are PT (prothrombin time), APTT (activated partial thromboplastin), and Fbg (fibrinogen concentration).
  • the clotting reaction is initiated by mixing the patient sample and reagents.
  • the coagulation time is measured by monitoring the coagulation reaction process with the amount of change in scattered light or the amount of change in absorbance and detecting the coagulation point.
  • CWA coagulation waveform analysis
  • Patent Document 1 As a method of coagulation waveform analysis, in Patent Document 1, based on coagulation reaction rate curve data obtained from coagulation reaction waveform data, the peak width time at a predetermined height on this curve is calculated, and the concentration of components involved in coagulation is calculated. Alternatively, a technique for determining abnormal coagulation is disclosed.
  • CWA has a solidification waveform and parameters obtained from this, for example, the solidification velocity obtained by first-order differentiation of the solidification waveform, the solidification acceleration obtained by second-order differentiation, and the maximum value thereof, such as the maximum solidification velocity and the maximum solidification acceleration.
  • Devices capable of outputting these data are increasing, and in the future, CWA can be expected to predict diseases, severity of bleeding, and management of hemostasis.
  • An object of the present invention is to provide an automatic analyzer that allows an operator to easily link and confirm reaction processes and diseases, a data processor that processes the measurement data, a data processing method, and a program.
  • the automatic analyzer of the present invention comprises an analysis unit that analyzes a sample, an operation unit that receives operations from an operator, controls the analysis unit based on input from the operation unit, A control unit for calculating measurement data using the measurement values obtained from the analysis unit, and a display unit for displaying the measurement data calculated by the control unit, wherein the control unit calculates the measurement data of the sample to be analyzed
  • the display unit displays not only the measurement reaction process information based on the reference reaction process information, but also the reference reaction process information specified by the operation unit among the reference reaction process information pre-classified for each disease.
  • the present invention it becomes easy for the operator to find a reaction process similar to the reaction process of the sample to be analyzed and the reaction process classified according to the past disease, and the reaction process and the disease can be easily linked. It is possible to provide an automatic analyzer capable of confirming by attaching, a data processor for processing the measurement data, a data processing method, and a program.
  • FIG. 1 is a schematic diagram showing the configuration of an automatic analyzer according to an embodiment of the present invention
  • FIG. FIG. 2 is a functional block diagram of a controller provided in the automatic analyzer
  • 4 is a flow chart showing an example of confirmation of the coagulation reaction process of the target specimen.
  • FIG. 10 is a diagram showing an example of a screen displaying the coagulation reaction process of the measurement item APTT of the target sample and the coagulation reaction process of the past measurement item APTT classified as congenital hemophilia A side by side.
  • FIG. 10 is a diagram showing an example of a screen displaying the coagulation reaction process of a past measurement item APTT classified as APS side by side with the coagulation reaction process of the measurement item APTT of the target sample.
  • FIG. 6B is a diagram showing a state in which an overwrite button for superimposing and displaying a past coagulation reaction process on the coagulation reaction process of the target sample has been selected on the screen of FIG. 6a.
  • FIG. 7B is a view showing an example of an overwrite confirmation screen displayed after the screen of FIG. 7A;
  • FIG. 7B is a view showing an example of a screen after executing overwriting, which is displayed after the screen of FIG.
  • FIG. 7B The figure which shows an example of a screen when scrolling the reaction process display area which displays the overwritten reaction process in the screen of FIG. 7c.
  • FIG. 10 is a diagram showing another example of a screen prompting for classification selection and comment input displayed when saving the coagulation reaction process of the target sample.
  • the figure which shows the state which the reaction process list edit button of the past reaction process display area was selected in the screen of FIG. 6b.
  • FIG. 10 is a view showing an example of a reaction process deletion confirmation screen displayed when a delete button corresponding to one of the past reaction processes is selected on the screen transitioned from the screen of FIG. 9; FIG.
  • FIG. 10 is a view showing an example of a comment change screen displayed when a comment change button corresponding to one of the past reaction processes is selected on the screen transitioned from the screen of FIG. 9;
  • FIG. 10 is a view showing an example of a classification change screen displayed when a classification change button corresponding to one of the past reaction processes is selected on the screen transitioned from the screen of FIG. 9;
  • FIG. 10 is a diagram showing a primary differential curve and a secondary differential curve as another example of the list screen of the coagulation reaction process of the target sample;
  • FIG. 10 is a diagram showing an example of a screen when the coagulation reaction process of a past measurement item APTT classified as congenital hemophilia A is superimposed on the coagulation reaction process of the measurement item APTT of the target sample.
  • FIG. 13B is a view showing first derivative curves overlaid by scrolling the reaction process display area of the target sample in FIG. 13a.
  • FIG. 13B is a diagram showing the second derivative curve overlaid by further scrolling the reaction process display area of the target sample in FIG. 13B.
  • the basic configuration diagram of an analysis system provided with an automatic analysis device and a data processing device as another embodiment.
  • FIG. 1 is a schematic diagram showing the configuration of an automatic analyzer according to an embodiment of the present invention.
  • a composite automatic analyzer having functions of biochemical analysis, blood coagulation analysis (blood coagulation fibrinolysis marker, blood coagulation time measurement, etc.), and immunological analysis is exemplified as an application target.
  • the automatic analyzer 100 shown in FIG. A control device 3 (control section) that controls the analysis unit 1 based on and calculates measurement data using the measurement values acquired from the analysis unit 1, and a monitor 4 (display part) and A sample analyzed by the automatic analyzer 100 is a specimen such as a patient's blood or urine.
  • the analysis unit 1 includes a reaction disk 10, a sample disk 20, a first reagent disk 30A, a second reagent disk 30B, a sample dispensing mechanism 40, a first reagent dispensing mechanism 50A, a second reagent It includes a dispensing mechanism 50B, a first measurement unit 60A to a third measurement unit 60C, and a first reading device 70A to a third reading device 70C.
  • the reaction disk 10 is a disk-shaped unit rotatable about a vertical axis, and holds a large number of reaction containers (reaction cells) 11 made of translucent material.
  • the reaction container 11 is a container for mixing and reacting a sample and a reagent, and a plurality of reaction containers are provided in an annular shape on the reaction disk 10 .
  • the reaction vessel 11 is kept at a predetermined temperature (for example, about 37° C.) in the constant temperature bath 12 of the reaction disk 10 .
  • the reaction disk 10 also has a stirring mechanism 13 and a reaction container cleaning mechanism 14 .
  • the stirring mechanism 13 is a device for stirring the liquid contained in the reaction vessel 11 .
  • the reaction vessel cleaning mechanism 14 is a device for cleaning the inside of the used reaction vessel 11 .
  • sample disk 20 is a disk-shaped unit rotatable around a vertical axis and holds a large number of sample containers 21 containing samples.
  • FIG. 1 illustrates a configuration in which sample containers 21 can be arranged concentrically in two rows on a sample disk 20 .
  • the first reagent disk 30A is a disk-shaped unit rotatable around a vertical axis and holds a large number of first reagent bottles 31A.
  • a plurality of first reagent bottles 31A are arranged in a ring on the first reagent disk 30A.
  • the second reagent disk 30B is a disk-shaped unit rotatable around a vertical axis and holds a large number of second reagent bottles 31B.
  • a plurality of second reagent bottles 31B are annularly arranged on the second reagent disk 30B.
  • the first reagent bottle 31A and the second reagent bottle 31B contain reagent liquids corresponding to analysis items to be analyzed by the automatic analyzer 100 .
  • the individual first reagent bottles 31A of the first reagent disk 30A contain, for example, a first reagent or a clotting reagent used in biochemistry or scattering, and the individual second reagent bottles 31B of the second reagent disk 30B. contains a second reagent for biochemistry or scattering, for example.
  • the sample dispensing mechanism 40 has a pipette nozzle, and aspirates and discharges the sample with the pipette nozzle.
  • the sample pipetting mechanism 40 is positioned between the sample disk 20 and the reaction disk 10 .
  • the sample dispensing mechanism 40 aspirates a predetermined amount of sample from the inside of the sample container 21 at the dispensing position (suction position) 20 a of the sample disk 20 , and dispenses the aspirated sample at the dispensing position (discharging position) of the reaction disk 10 . ) into the reaction vessel 11 at 10a.
  • the first reagent dispensing mechanism 50A and the second reagent dispensing mechanism 50B each have a pipette nozzle, and the reagent is sucked and discharged by the pipette nozzle.
  • the first reagent dispensing mechanism 50A is located between the first reagent disk 30A and the reaction disk 10.
  • the second reagent dispensing mechanism 50B is located between the second reagent disk 30B and the reaction disk 10. As shown in FIG.
  • the first reagent dispensing mechanism 50A aspirates the reagent from the inside of the first reagent bottle 31A corresponding to the inspection item at the dispensing position (suction position) 30Aa of the first reagent disk 30A, and distributes the reaction disk 10.
  • the reagent is discharged (dispensed) into the target reaction vessel 11 at the injection position (discharge position) 10b.
  • the second reagent dispensing mechanism 50B aspirates the reagent from the inside of the second reagent bottle 31B corresponding to the inspection item at the dispensing position (suction position) 30Ba of the second reagent disk 30B,
  • the reagent is discharged (dispensed) into the target reaction container 11 at the dispensing position (dispensing position) 10c.
  • the reagent discharged into the reaction container 11 is stirred by the stirring mechanism 13 and mixed with the sample.
  • the first measurement unit 60A to the third measurement unit 60C are units for measuring a target item of a sample, and are respectively a light source for irradiating a mixture of the sample and the reagent inside the reaction container with light, and a mixture. a photometer for detecting transmitted light and outputting a measurement.
  • the first measurement unit 60A to the third measurement unit 60C measure the reaction of the sample and the reagent inside the reaction container, thereby measuring the target item of the sample.
  • the first measurement unit 60A and the second measurement unit 60B are measurement units used for biochemical analysis and immunological analysis.
  • the first measurement unit 60A includes a first light source 61A and a first photometer 62A.
  • the second measurement unit 60B includes a second light source 61B and a second photometer 62B.
  • the first light source 61A and the second light source 61B are arranged on the inner peripheral side of the reaction disk 10 and irradiate the reaction container 11 with light from the inner peripheral side of the reaction disk 10 .
  • the first photometer 62A and the second photometer 62B are arranged on the outer peripheral side of the reaction disk 10 and face the first light source 61A and the second light source 61B, respectively, with the annular array of the reaction containers 11 interposed therebetween.
  • the first photometer 62A and the second photometer 62B are positioned on the optical axis of the first light source 61A and the second light source 61B, respectively.
  • Light emitted from the first light source 61A passes through the reaction container 11 and is measured by the first photometer 62A.
  • light emitted from the second light source 61B passes through the reaction vessel 11 and is measured by the second photometer 62B.
  • Each reaction container 11 performs photometric measurement of the reaction liquid (mixture of sample and reagent) contained therein each time it passes through the first measurement unit 60A and the second measurement unit 60B as the reaction disk 10 rotates. be done.
  • the used reaction vessel 11 is cleaned by the reaction vessel cleaning mechanism 14 and used repeatedly.
  • the third measurement unit 60C is a blood coagulation time measurement unit.
  • the third measurement unit 60C includes a reaction container storage section 63, a reaction container transfer mechanism 64, a sample pipetting station 65, a reaction container temperature control block 66, a reagent pipetting mechanism 67, and a measurement channel 68. is composed of
  • a plurality of disposable reaction containers 60a are accommodated in the reaction container accommodating section 63. These reaction containers 60 a are transferred to the sample dispensing station 65 by the reaction container transfer mechanism 64 .
  • the sample pipetting station 65 is arranged with the sample pipetting mechanism 40 sandwiched between the sample pipetting station 65 and the sample disk 20 . It is discharged (dispensed) into the container 60a.
  • the reaction container 60a into which the sample has been dispensed in this way is transferred from the sample dispensing station 65 to the reaction container temperature control block 66 by the reaction container transfer mechanism 64, and the temperature is raised to about 37°C.
  • the reagent is kept cold in the first reagent disk 30A, and the reagent is sucked from the first reagent bottle 31A according to the test item by the first reagent dispensing mechanism 50A and placed on the reaction disk 10. It is discharged into a predetermined empty reaction container 11 and heated to about 37°C.
  • the reagent warmed inside the reaction container 11 is sucked by the reagent dispensing mechanism 67 with a reagent temperature raising function, and is further heated to about 40° C. by the reagent dispensing mechanism 67 .
  • the reaction container 60a in which the sample is kept at about 37° C. is transferred by the reaction container transfer mechanism 64 to an arbitrary measurement channel 68 of the third measurement unit 60C.
  • the third measurement unit 60C has a plurality of measurement channels 68 with light sources and photometers. After that, the warmed reagent is discharged (dispensed) into the reaction container 60a of the measurement channel 68 by the reagent pipetting mechanism 67, and the blood coagulation reaction between the sample and the reagent starts inside the reaction container 60a.
  • measurement data is output from the photometer at predetermined time intervals (for example, 0.1 second cycle). After the measurement is completed, the used reaction container 60 a is transferred by the reaction container transfer mechanism 64 and discarded in the reaction container disposal section 69 .
  • the photometer photoelectrically converts the scattered light, and the photometer outputs a measurement signal (analog signal) having a magnitude proportional to the intensity of the scattered light. be done.
  • measurement signals are digitized by the A/D converter 79 and input to the controller 3 .
  • the first reading device 70A to the third reading device 70C are devices for reading identification data attached to containers.
  • a bar code, RFID, or the like can be used as the identification data, but in this example, an example using a bar code will be described. That is, the first reading device 70A to the third reading device 70C are bar code readers.
  • the first reader 70A reads the barcode attached to the first reagent bottle 31A during reagent registration.
  • the reagent identification data read by the first reading device 70A is transmitted to the controller 3 together with the position data on the first reagent disk 30A of the first reagent bottle 31A to which this identification data is attached, and stored in the memory 6. remembered.
  • the second reader 70B reads the barcode attached to the second reagent bottle 31B during reagent registration. As with the first reader 70A, the reagent identification data read by the second reader 70B is also controlled together with the position data on the second reagent disk 30B of the second reagent bottle 31B to which this identification data is attached. It is sent to device 3 and stored in memory 6 .
  • the third reading device 70C reads the barcode attached to the sample container 21 during sample registration. Data such as sample ID, patient ID, and sample type are converted into the barcode. As with the first reader 70A and the second reader 70B, the identification data of the sample read by the third reader 70C is also read together with the position data on the sample disk 20 of the sample container 21 to which this identification data is attached. It is transmitted to the control device 3 and stored in the memory 6 .
  • the automatic analyzer 100 in FIG. 1 has a function to avoid the occurrence of carryover of samples and reagents, that is, a function to reduce or avoid carryover by inserting a washing operation between measurements.
  • a cleaning operation for avoiding carryover can be performed for each pipette nozzle of the first reagent pipetting mechanism 50A, the second reagent pipetting mechanism 50B, the sample pipetting mechanism 40, and the reaction vessel 11.
  • the operating device 2 is operated by an operator or the like when inputting measurement request data (to be described later) into the computer 7 or displaying various data on the monitor 4 .
  • the operating device 2 typically a keyboard or a mouse can be used, but a touch panel or other operating device can also be used.
  • the control device 3 includes an interface 5, a memory 6, a computer 7 (first computer), a control computer 8 (second computer), and a server 9 (third computer).
  • the interface 5 is a data input/output section of the computer 7 for the analysis unit 1 . Although the computer 7 and the interface 5 are shown separately in FIG. 1, the interface 5 may be integrated with the computer 7 in some cases.
  • Analysis item data sent from the computer 7 to the analysis unit 1 is input to the control computer 8 via the interface 5 . Further, the measurement data from the first measurement unit 60A to the third measurement unit 60C output from the analysis unit 1 via the A/D converter 79 are input to the computer 7 and the memory 6 via the interface 5. .
  • the identification data read by the first reading device 70A to the third reading device 70C are also input to the computer 7 and the memory 6 via the interface 5.
  • the memory 6 is a storage device such as HDD, SSD, etc.
  • an external storage device connected to the computer 7 via the interface 5 is exemplified, but a storage device built into the computer 7 is applied.
  • the memory 6 stores data such as reagent identification information, sample identification information, analysis parameters, measurement request data, calibration results, and measurement data.
  • the measurement request data includes at least sample IDs and measurement items, and may include other information such as patient IDs as necessary.
  • the computer 7 is a control device used by an operator or the like. This computer 7 creates measurement request data according to operations by an operator or the like and outputs it to the control computer 8, or displays a screen according to operations by the operator or the like based on measurement data or the like from the analysis unit 1. It has a function to display and output to
  • FIG. 1 exemplifies a configuration in which only one analysis unit 1 is connected to the computer 7
  • multiple analysis units 1 may be connected to one computer 7 via the interface 5 .
  • a network LAN or the like
  • a plurality of analysis units 1 may be connected to one computer 7 via the network.
  • the control computer 8 is a control device that outputs a command signal to the analysis unit 1 according to the measurement request data input from the computer 7 to command analysis. Although it is assumed that the control computer 8 is integrated with the analysis unit 1 (built into the body of the analysis unit 1), it is shown separately from the analysis unit 1 in FIG.
  • the control computer 8 instructs the sample disk 20, the first reagent disk 30A, the second reagent disk 30B, the sample pipetting mechanism 40, the first reagent pipetting mechanism 50A, and the second reagent pipetting mechanism 50B. , a reaction container transfer mechanism 64 and a reagent dispensing mechanism 67 (operating devices).
  • This embodiment is an example in which one control computer 8 drives the analysis unit 1 in an integrated manner. It can also be configured to drive a corresponding actuation device.
  • FIG. 1 shows a configuration in which the computer 7 and the server 9 are connected without passing through the interface 5, the server 9 may be connected to the computer 7 through the interface 5 in some cases. Also, the computer 7 and the server 9 may be connected via a network.
  • the monitor 4 is connected to the computer 7 and is a display device that displays and outputs a graphical user interface and various data when the computer 7 is operated.
  • the various data displayed and output by the monitor 4 include measurement data by the analysis unit 1, judgment results by the computer 7, patient data, etc., and are displayed by signals input from the computer 7 in response to the operation of the operation device 2 by the operator or the like. Desired data is displayed on the monitor 4 .
  • the operating parameters for the measurement items that can be analyzed by the automatic analyzer 100 are input by the operator or the like into the computer 7 and stored in the memory 6 in advance.
  • Measurement request data for each sample is input by an operator or the like.
  • the operating parameters corresponding to the measurement items of the measurement request data are read out from the memory 6 and input from the computer 7 to the control computer 8 .
  • the analysis unit 1 is then driven by the control computer 8 according to the operating parameters.
  • the reaction disk 10 and the sample disk 20 are first driven by an operation command from the control computer 8 to move the target reaction container 11 and sample container 21 to the dispensing positions 10a and 20a, respectively.
  • the sample pipetting mechanism 40 aspirates a predetermined amount of sample from the target sample container 21 at the pipetting position 20 a and pipets it into the target reaction container 11 at the pipetting position 10 a of the reaction disk 10 .
  • the reaction container 11 into which the sample has been dispensed is moved from the dispensing position 10a to the dispensing position 10b or 10c by the rotating reaction disk 10, and is moved by the first reagent dispensing mechanism 50A or the second reagent dispensing mechanism 50B.
  • a reagent is dispensed according to the measurement item.
  • the dispensing order of the sample and the reagent may be reversed (the reagent comes first than the sample).
  • the reaction container 11 crosses the first measurement unit 60A, the light transmitted through the sample is measured by the first photometer 62A, and the measured value by the first photometer 62A is digitalized by the A/D converter 79. It is converted into a signal and input to computer 7 via interface 5 .
  • the concentration of the mixed solution of the sample and the reagent is calculated as measurement data based on the calibration curve data and the measurement values corresponding to the measurement items.
  • the calibration curve data are pre-measured under the specified analytical method and stored in the memory 6 .
  • the measurement data calculated by the computer 7 is displayed on the monitor 4 according to the operation of the operator or automatically.
  • the measurement data can also be configured to be calculated by the control computer 8 instead of the computer 7 .
  • the analysis unit 1 of FIG. 1 by using the turntable type reaction disk 10, samples can be continuously dispensed by rotating the disk, which is characterized by excellent throughput.
  • reaction container 60 a housed in the reaction container housing section 63 in the third measurement unit 60 C is transferred to the sample dispensing station 65 by the reaction container transfer mechanism 64 .
  • the sample pipetting mechanism 40 pipettes the sample aspirated from the corresponding sample container 21 of the sample disk 20 into the reaction container 60 a of the sample pipetting station 65 .
  • the reaction container 60a into which the sample has been dispensed is transported by the reaction container transfer mechanism 64 to the reaction container temperature control block 66, where the temperature is raised to 37°C.
  • the first reagent dispensing mechanism 50A discharges the reagent sucked from the first reagent bottle 31A according to the measurement item into the predetermined empty reaction container 11 set on the reaction disk 10.
  • the temperature of the reagent kept cold by the first reagent disk 30A is raised to about 37° C. by the reaction disk 10 .
  • the reagent warmed in the reaction container 11 is sucked by the reagent dispensing mechanism 67 with a reagent temperature raising function, and the temperature inside the reagent dispensing mechanism 67 is further raised to, for example, 40°C.
  • the reaction container 60 a containing the sample is transferred from the reaction container temperature control block 66 to the predetermined measurement channel 68 by the reaction container transfer mechanism 64 .
  • the reagent dispensing mechanism 67 dispenses the heated reagent into the reaction container 60 a of the measurement channel 68 . This reagent dispensing initiates a blood coagulation reaction between the sample and the reagent inside the reaction container 60a.
  • the measured values of light are sequentially output in the measurement channel 68 at predetermined short measurement time intervals (for example, every 0.1 seconds).
  • the output measured value is digitized by the A/D converter 79 and input to the computer 7 via the interface 5 .
  • the used reaction container 60 a is transferred by the reaction container transfer mechanism 64 and discarded in the reaction container disposal section 69 .
  • the computer 7 obtains the blood coagulation time from the measured values input from the analysis unit 1 in this way. After that, based on the calibration curve data corresponding to the measurement item and the calculated blood coagulation time, the concentration of the mixture of the sample and the reagent is calculated as measurement data.
  • the measurement data and blood coagulation time calculated by the computer 7 are displayed on the monitor 4 according to the operation of the operator or automatically.
  • FIG. 1 illustrates a configuration having six measurement channels 68, when there are no available measurement channels 68, the next measurement of blood coagulation time is not accepted and a standby state is entered.
  • a configuration with many measurement channels 68 is advantageous from the viewpoint of suppressing the occurrence of such a standby state.
  • FIG. 2 is a functional block diagram of a controller provided in the automatic analyzer.
  • elements corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof will be omitted as appropriate.
  • the controller 3 has the functions of measurement order management F1, mechanism control F2, data calculation F3, and data management F4.
  • the program may be provided by being incorporated in the memory 6 in advance, or may be provided by being recorded in a computer-readable recording medium such as a CD-ROM as a file in an installable format or an executable format. Also good. Furthermore, the program can be downloaded from a computer connected via a network and installed in the memory 6.
  • these functions are shared and executed by a plurality of computers. Specifically, the functions of measurement order management F1 and mechanism control F2 are executed by the control computer 8, and the other two functions are The following description assumes that it is executed by the computer 7 . However, a configuration in which a single computer executes all functions is also possible.
  • the measurement order management F1 is a function of setting the measurement order of samples.
  • the function of this measurement order management F1 is supposed to be executed by the control computer 8, but it may be executed by the computer 7 as well.
  • the measurement request data set by the operation device 2 in the computer 7 is input from the computer 7 to the control computer 8 .
  • specific measurement request data will be referred to as measurement request data X
  • sample Y a sample whose ID is specified in the measurement request data X
  • the control computer 8 sets the measurement order for the sample Y, which sample is to be measured next.
  • the mechanism control F2 is a function for controlling the operation of the analysis unit 1.
  • FIG. The function of this mechanism control F2 is executed by the control computer 8.
  • FIG. The control computer 8 drives the analysis unit 1 to measure the sample Y when the measurement order of the sample Y set by the measurement order management F1 arrives. Specifically, the sample Y placed on the sample disk 20 is dispensed into the reaction container 11 or 60a according to the measurement item specified by the measurement request data X, and mixed with the reagent according to the measurement item as described above. to react.
  • the data calculation F3 is a function of calculating measurement data from measured values input from the analysis unit 1 .
  • the function of this data operation F3 is executed by the computer 7, for example.
  • photometric values of the sample Y are input via the A/D converter 79 from the first measurement unit 60A to the third measurement unit 60C.
  • Measurement data of the measurement item specified for the sample Y is calculated based on this measurement value.
  • the measurement data for the sample Y calculated here are stored in the memory 6 together with the measured values, reagent identification information, sample identification information, analysis parameters, measurement request data, calibration results, and the like.
  • the data management F4 is a function for managing measurement data.
  • the function of this data management F4 is executed by the computer 7, for example.
  • the computer 7 associates the data (measurement data, etc.) about the sample Y calculated in the data calculation F3 with the sample ID of the sample Y.
  • the sample ID of the sample Y is associated with the measurement data and the like of the sample Y stored in the memory 6 as well.
  • the computer 7 automatically or in response to an operation by an operator or the like, outputs the measurement data of the sample Y processed in the data management F4 and the like to the monitor 4 for display.
  • the measurement data and the like associated with the sample ID of sample Y are transmitted from the computer 7 to the server 9 and stored in the memory (storage unit) of the server 9 .
  • the memory of the server 9 serves as an examination information database that stores past measurement data.
  • the memory of the server 9 stores not only measurement data for each patient ID, but also electronic charts for each patient ID, and also serves as a patient information database in which various data relating to individual patients are collected.
  • the electronic medical record is a record of doctor's observations, patient's symptoms, medical history, medication history, family history, and the like.
  • FIG. 3 is a flow chart showing an example of confirmation of the coagulation reaction process of the target sample.
  • the measurement data of the target patient ID is output by the computer 7, and the confirmation processing of the reaction process shown in FIG. 3 is started. be done.
  • the computer 7 calculates the measurement data of the blood coagulation test (step S101), stores the measurement data file of the measurement data of the blood coagulation test in the memory 6 (step S102), and displays the measurement result on the monitor 4. (Step S103).
  • step S104 when a predetermined operation is performed on the screen of the monitor 4, the coagulation reaction process can be confirmed (step S104).
  • the computer 7 causes the monitor 4 to display the coagulation reaction process of the target sample (step S105).
  • a button for referring to the past coagulation reaction process stored in the memory of the automatic analyzer 100 and the database of the server 9 hereinafter referred to as a database, etc.
  • the A button for saving the coagulation reaction process in a database or the like is also displayed.
  • step S106 when a button for referring to past coagulation reaction processes is selected (step S106), the computer 7 displays a list of past coagulation reaction processes on the monitor 4 (step S107).
  • the past coagulation reaction processes are classified in advance by disease and stored in a database, etc.
  • a predetermined coagulation reaction process classified into a predetermined disease designated (step S108)
  • the computer 7 displays the graph of the coagulation reaction process of the target sample as follows:
  • the designated past coagulation reaction process graph is overwritten (step S110).
  • step S105 when the button for saving the coagulation reaction process of the target sample is selected (step S111), the computer 7 selects the classification of the coagulation reaction process to be saved (by disease), and adds a comment.
  • a screen prompting for input is displayed on the monitor 4 (step S112).
  • the computer 7 saves the coagulation reaction process of the target sample in a database or the like (step SS113).
  • FIG. 4 is a diagram showing an example of a list screen of measurement results by the automatic analyzer. Each screen described later in this specification, including the screen of FIG. 4, is displayed on the monitor 4 by the computer 7 according to the operation of the operator or the like. Operations including selection of tabs on the screen are performed by an operator or the like using the operation device 2 .
  • the screen of FIG. 4 is displayed by selecting (clicking) a tab 401 displaying "measurement results" on a predetermined screen displayed on the monitor 4.
  • the screen of FIG. 4 has a measurement status display area 400a for each sample, an item-by-item result display area 400b for displaying the results of each measurement item of the selected sample, and a button display area 400c for each function.
  • the result column of each sample in the measurement status display area 400a is provided with a reaction process details button 402 for viewing the reaction process of the analysis target.
  • the button display area 400c for each function has a reaction process reference button 403 for referring to past reaction processes.
  • FIG. 5 is a diagram showing an example of a list screen of the coagulation reaction process of the target sample.
  • the screen of FIG. 5 is displayed when the reaction process details button 402 corresponding to the topmost sample is selected on the screen of FIG.
  • a list of reaction processes is displayed.
  • a reaction process reference button 502 and a reaction process save button 503 are displayed on the right side of each reaction process.
  • the reaction process reference button 502 is selected in order to refer to and compare past reaction processes for APTT measurement items among the selected samples.
  • Fig. 6a is a diagram showing an example of a screen in which the coagulation reaction process of the measurement item APTT of the target sample and the coagulation reaction process of the past measurement item APTT classified as congenital hemophilia A are displayed side by side.
  • the screen of FIG. 6a is displayed when the screen of FIG. 5 is executed after the reaction process reference button 502 corresponding to the measurement item APTT is selected.
  • the reaction process display area 601 of the target sample and the past reaction process display area 602 are displayed side by side.
  • Past APTT reaction processes are stored in a database or the like for each disease.
  • FIG. 6b is a diagram showing an example of a screen displaying the coagulation reaction process of the past measurement item APTT classified as APS side by side with the coagulation reaction process of the measurement item APTT of the target sample.
  • the screen of FIG. 6b is displayed when the tab 606 is selected (clicked) on the screen of FIG. 6a.
  • the past reaction process display area 602 displays the coagulation reaction process of the past measurement item APTT classified as APS.
  • comments can be entered for all reaction processes stored in a database or the like, and the entered comments are displayed in the comment display field 610 .
  • FIG. 7a is a diagram showing a state in which an overwrite button for superimposing and displaying the past coagulation reaction process on the coagulation reaction process of the target sample is selected on the screen of FIG. 6a.
  • the past reaction process display area 702 since the tab 704, ie, congenital hemophilia A, is selected (clicked), the past reaction process saved as congenital hemophilia A is displayed.
  • a list is displayed, and in this state, the reaction process overwrite button 709 is selected (clicked).
  • FIG. 7b is a diagram showing an example of an overwriting confirmation screen displayed after the screen of FIG. 7a.
  • an overwrite confirmation box 710 is displayed, and an overwrite execution button 711 and overwrite cancel button 712 are also displayed as shown in FIG. 7b.
  • the overwrite execution button 711 is selected (clicked).
  • FIG. 7c is a diagram showing an example of a screen displayed after the screen of FIG. 7b after executing overwriting.
  • the overwrite execution button 711 is selected (clicked) on the screen of FIG. 7b
  • a coagulation reaction process 713 solid line
  • the coagulation reaction process 714 dotted line
  • the superimposed display makes it easier to compare with the pattern of the reaction process corresponding to the disease.
  • FIG. 7d is a diagram showing an example of the screen when scrolling the reaction process display area displaying the overwritten reaction processes on the screen of FIG. 7c.
  • a graph legend 715, date 716, sample ID 717, measurement item name 718, measurement value 719, unit 720, and classification 721 are displayed.
  • the past reaction process measurement results and classifications 721 are also displayed. It should be noted that a plurality of reaction processes can be overlaid, and the style of the line changes so that the reaction process can be easily seen, and the style is displayed in the legend 715 of the graph.
  • FIG. 8a is a diagram showing an example of a screen prompting for classification selection and comment input, which is displayed when saving the coagulation reaction process of the target sample.
  • the screen of FIG. 8a is displayed after the reaction process save button corresponding to the measurement item APTT is selected on the screen of FIG.
  • a disease classification to be saved can be selected (clicked), and in the comment input box 805, a comment can be entered as necessary.
  • the save execution button 807 is selected (clicked) out of the save cancel button 806 and the save execute button 807, the reaction process of the target sample is saved in a database or the like. If the disease classification of the target sample is already known, classify the reaction process of the target sample in this way and store the classification results in a database or the like to expand the data that can be referred to later as the past reaction process. be able to.
  • FIG. 8b is a diagram showing another example of a screen prompting for classification selection and comment input displayed when saving the coagulation reaction process of the target sample.
  • the screen of FIG. 8b is displayed after the save reaction process button in the reaction process display area 701 of the target sample is selected on the screen of FIG. 7a.
  • a disease classification selection box 804 allows selection (clicking) of a disease classification to be saved
  • a comment input box 805 allows a comment to be entered as necessary.
  • the save execution button 807 is selected (clicked) out of the save cancel button 806 and the save execute button 807, the reaction process of the target sample is saved in a database or the like. In this way, it is possible to classify the reaction process of the target sample while referring to the past reaction process, and store the classification result in a database or the like.
  • FIG. 9 is a diagram showing a state in which the reaction process list edit button in the past reaction process display area is selected on the screen of FIG. 6b.
  • the reaction process list edit button 907 is selected (clicked).
  • FIG. 10a is a diagram showing an example of a reaction process deletion confirmation screen displayed when the delete button corresponding to one of the past reaction processes is selected on the screen transitioned from the screen of FIG.
  • FIG. 9 when the APS tab is selected and the reaction process list edit button in the past reaction process display area is selected (clicked), each of the past reaction processes saved as APS will be displayed.
  • FIG. 10a only the past reaction process area 1001 and the previous past reaction process area 1002 are displayed, but by scrolling the screen, the past reaction process area can also be confirmed. is possible.
  • FIG. 10a only the past reaction process area 1001 and the previous past reaction process area 1002 are displayed, but by scrolling the screen, the past reaction process area can also be confirmed. is possible.
  • FIG. 10a only the past reaction process area 1001 and the previous past reaction process area 1002 are displayed
  • FIG. 10a shows a state in which a reaction process deletion confirmation box is displayed by selecting (clicking) the reaction process deletion button 1007 in the past reaction process area 1001 . Furthermore, in the example of FIG. 10a, since the deletion execution button 1010 is selected (clicked), the target reaction process is deleted.
  • FIG. 10b is a diagram showing an example of a comment change screen displayed when a comment change button corresponding to one of the past reaction processes is selected on the screen transitioned from the screen of FIG.
  • FIG. 9 when the APS tab is selected and the reaction process list edit button in the past reaction process display area is selected (clicked), each reaction process is edited for editing as described above. are displayed.
  • the example of FIG. 10b shows a state in which a comment change box is displayed by selecting (clicking) the comment change button 1008 in the past reaction process area 1001 .
  • the comment change is reflected.
  • FIG. 10c is a diagram showing an example of the classification change screen displayed when the classification change button corresponding to one of the past reaction processes is selected on the screen transitioned from the screen of FIG.
  • FIG. 9 when the APS tab is selected and the reaction process list edit button in the past reaction process display area is selected (clicked), each reaction process is edited for editing as described above. are displayed.
  • the example of FIG. 10c shows a state in which a disease classification change box is displayed by selecting (clicking) the disease classification change button 1009 in the past reaction process area 1001 .
  • the disease classification change is reflected.
  • FIG. 11 is a diagram showing an example of an operation screen when editing keys (tabs) assigned to each disease classification.
  • a disease classification selection area 1101a In the reaction process classification setting area 1101, a disease classification selection area 1101a, a setting button 1102, a cancel button 1103, and an arrangement selection area 1101b are displayed.
  • disease classifications 1105 registered in advance are listed together with comments 1106 input at the time of registration.
  • the operator or the like selects a desired disease classification in the disease classification selection area 1101a and selects one of the keys (for example, keys 1 to 10) to which the selected disease classification is assigned. is selected and the setting button 1102 is operated (clicked).
  • the disease classification selected in the disease classification selection area 1101a is input to the disease classification 1107 in the arrangement selection area 1101b, and the selected disease classification is assigned to the corresponding key of the check box 1104.
  • the setting button 1102 is operated (clicked) with congenital hemophilia B selected in the disease classification selection area 1101a and key 5 selected in the arrangement selection area 1101b.
  • FIG. 12 is a diagram that also displays a primary differential curve and a secondary differential curve as another example of the list screen of the coagulation reaction process of the target sample.
  • a solid line indicates a coagulation reaction process 1204
  • a dashed line indicates a first-order differential curve 1205 of the coagulation reaction process
  • a dotted line indicates a second-order differential curve 1206 of the coagulation reaction process.
  • a solid line indicates a coagulation reaction process 1207
  • a dashed line indicates a first-order differential curve 1208 of the coagulation reaction process
  • a dotted line indicates a second-order differential curve 1209 of the coagulation reaction process.
  • FIG. 13a is a diagram showing an example of a screen when the coagulation reaction process of the past measurement item APTT classified as congenital hemophilia A is overwritten on the coagulation reaction process of the measurement item APTT of the target sample.
  • a list of data classified as congenital hemophilia A can be displayed by scrolling. Its first derivative curve 1311 (dashed line) and second derivative curve 1312 (dotted line) are also displayed.
  • the reaction process overwrite button 1314 corresponding to the predetermined data is selected (clicked), so that in the reaction process display area 1301 of the target sample, the measurement of the target sample is displayed.
  • a coagulation reaction process 1303 (solid line) of the item APTT and a coagulation reaction process 1310 (broken line) of the selected past measurement item APTT are displayed in an overlapping manner.
  • FIG. 13b is a diagram showing the first derivative curve overlaid by scrolling the reaction process display area of the target sample in FIG. 13a.
  • a first derivative curve 1304 solid line
  • the reaction process display area 1301 of the target sample a first derivative curve 1304 (solid line) of the coagulation reaction process of the measurement item APTT of the target sample and the coagulation reaction process of the selected past measurement item APTT are displayed. , and are superimposed on each other.
  • Fig. 13c is a diagram showing the second derivative curve overlaid by further scrolling the reaction process display area of the target sample in Fig. 13b.
  • a secondary differential curve 1305 (solid line) of the coagulation reaction process of the measurement item APTT of the target sample and the coagulation reaction of the selected past measurement item APTT are displayed.
  • a second derivative curve 1312 (dashed line) of the process is superimposed on the display.
  • the disease of the patient sample is unknown.
  • the disease can be predicted to some extent from the coagulation reaction process, and if the disease in the patient sample is known, the disease can be reconfirmed from the coagulation reaction process.
  • the measurement reaction process information is linked to the selected disease and stored in a database or the like as reference reaction process information. By repeating such classification selection, the database is expanded, leading to improvement in the accuracy of disease prediction.
  • FIG. 14 is a basic configuration diagram of an analysis system including an automatic analysis device and a data processing device. As shown in FIG. 14, the automatic analyzer 100 and data processor 200 are connected via a network 300 . That is, the measurement data including the measurement reaction process information measured by the automatic analyzer 100 is transmitted to the data processor 200, and the past data including the reference reaction process information stored in the data processor 200 is sent to the automatic analyzer 100. sent.
  • Data transmission/reception between the automatic analyzer 100 and the data processing apparatus 200 may be performed directly by a wired or wireless communication line without going through the network 300, or may be performed using an external medium. Also good.
  • the data processing device 200 includes a data acquisition unit 201 that acquires measurement data from the automatic analyzer 100, a storage unit 202 that stores reference reaction process information classified in advance for each disease, and measurement reaction process information corresponding to the measurement data. , and reference reaction process information corresponding to the selected disease. Also, the data processing device 200 may be connected to a plurality of automatic analyzers 100 .
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • each of the embodiments described above has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Second reagent bottle 40 Sample dispensing mechanism 50A First reagent dispensing mechanism 50B Second reagent dispensing mechanism 60A First measurement unit 60B Second measurement unit 60C Third measurement unit 60a Reaction vessel 61A First light source 61B Second light source 62A First photometer 62B Second photometer 63 Reaction vessel accommodating section 64 Reaction container transfer mechanism 65 Sample dispensing station 66 Reaction container temperature control block 67 Reagent dispensing mechanism 68 Measurement channel 69 Reaction container disposal unit 70A First reader 70B Second reading device 70C Third reading device 79 A/D converter 100 Automatic analysis device 200 Data processing device 201 Data acquisition unit 202 Storage unit 203 Output unit 300... Network, 403, 502, 802, 1202...
  • Reaction process reference button 501, 801, 1201... Reaction process list display area, 503, 603, 703, 803, 1203, 1313... Reaction process save button, 601, 701, 901, 1301 ... Reaction process display area of target sample 602, 702, 902, 1302 ... Past reaction process display area 604, 704, 903, 1003, 1306 ... Congenital hemophilia A tab, 605, 705, 904 , 1004, 1307 ... VWF deficiency tab, 606, 706, 905, 1005, 1308 ... APS tab, 607, 707, 906, 1006, 1309 ... Acquired hemophilia A tab, 608, 708, 907, 1317 ... reaction process Edit list button, 609, 709, 1314...
  • Differential curve 1209 ...Secondary differential curve of the coagulation reaction process of the measurement item APTT of the target sample 1304...First order differential curve of the coagulation reaction process of the measurement item APTT of the target sample 1305...Coagulation reaction process of the measurement item APTT of the target sample the second derivative curve of

Abstract

本発明の目的は、操作者が簡便に反応過程と疾患を紐づけて確認できる自動分析装置を提供することにある。そのために、本発明は、サンプルを分析する分析部と、オペレータからの操作を受け付ける操作部と、前記操作部からの入力に基づいて前記分析部を制御し、前記分析部から取得した測定値を用いて測定データを演算する制御部と、前記制御部で演算した測定データを表示する表示部と、を備えた自動分析装置において、前記制御部は、分析対象のサンプルの測定データに基づく測定反応過程情報だけでなく、疾患ごとに予め分類された参照反応過程情報のうち前記操作部で指定された参照反応過程情報を、前記表示部に表示させる。

Description

自動分析装置、データ処理装置、データ処理方法及びプログラム
 本発明は、自動分析装置に関する。
 自動分析装置により測定可能な検査の1つに、血液凝固検査がある。血液凝固検査は、患者の血液凝固能を測定するもので、項目としては、主に、PT(プロトロンビン時間)、APTT(活性化部分トロンボプラスチン)、Fbg(フィブリノーゲン濃度)がある。患者サンプルと試薬が混合することで、凝固反応が開始する。その凝固反応過程を散乱光変化量または吸光度変化量でモニタリングして凝固点を検出することで、凝固時間が測定される。近年、特にPT、APTTの凝固反応過程の全過程を凝固波形として抽出して、凝固波形を解析する凝固波形解析(CWA)が進んでいる。
 凝固波形解析の一手法として、特許文献1では、凝固反応波形データから得られる凝固反応速度曲線データに基づいて、この曲線上の所定高さでのピーク幅時間を算出し、凝固関与成分の濃度または凝固異常を判定する技術について開示している。
特開2019―86517号公報
 CWAは、凝固波形と、これにより求められる、例えば、凝固波形を一次微分した凝固速度、二次微分した凝固加速度、その最大値である最大凝固速度や最大凝固加速度等のパラメータがある。これらを出力できる装置は増えつつあり、将来的にはCWAにより疾患の予測や出血の重症度予測や止血管理への予測が期待できる。
 しかしながら、現状では、一定の測定データ(測定結果及び凝固反応過程等)が蓄積されても自動的に削除されたり、データ取り違えリスクの回避等を目的として操作者によって毎日削除されたりしており、過去のデータが疾患の予測に有効活用されていない。すなわち、操作者にとっては、凝固反応過程のみを見ても、どの疾患に類似するものか判断するのが難しい。
 本発明の目的は、操作者が簡便に反応過程と疾患を紐づけて確認できる自動分析装置、その測定データを処理するデータ処理装置、データ処理方法およびプログラムを提供することにある。
 前記目的を達成するために、本発明の自動分析装置は、サンプルを分析する分析部と、オペレータからの操作を受け付ける操作部と、前記操作部からの入力に基づいて前記分析部を制御し、前記分析部から取得した測定値を用いて測定データを演算する制御部と、前記制御部で演算した測定データを表示する表示部と、を備え、前記制御部は、分析対象のサンプルの測定データに基づく測定反応過程情報だけでなく、疾患ごとに予め分類された参照反応過程情報のうち前記操作部で指定された参照反応過程情報を、前記表示部に表示させる。
 本発明によれば、分析対象のサンプルの反応過程と、過去の疾患別に分類された反応過程と、で類似しているものを操作者が見つけることが容易となり、簡便に反応過程と疾患を紐づけて確認できる自動分析装置、その測定データを処理するデータ処理装置、データ処理方法およびプログラムを提供することが可能となる。
本発明の実施形態に係る自動分析装置の構成を表す模式図。 自動分析装置が具備する制御装置の機能ブロック図。 対象検体の凝固反応過程の確認の一例を表すフローチャート。 自動分析装置による測定結果の一覧画面の一例を表す図。 対象サンプルの凝固反応過程の一覧画面の一例を表す図。 対象サンプルの測定項目APTTの凝固反応過程に、先天性血友病Aに分類された過去の測定項目APTTの凝固反応過程を並べて表示した画面の一例を表す図。 対象サンプルの測定項目APTTの凝固反応過程に、APSに分類された過去の測定項目APTTの凝固反応過程を並べて表示した画面の一例を表す図。 図6aの画面において、対象サンプルの凝固反応過程に、過去の凝固反応過程を重ねて表示するための重ね書きボタンが選択された状態を示す図。 図7aの画面の後に表示される、重ね書きの確認画面の一例を示す図。 図7bの画面の後に表示される、重ね書きを実行した後の画面の一例を示す図。 図7cの画面において、重ね書きした反応過程を表示する反応過程表示エリアをスクロールさせたときの画面の一例を示す図。 対象サンプルの凝固反応過程を保存するときに表示される、分類選択とコメント入力を促す画面の一例を示す図。 対象サンプルの凝固反応過程を保存するときに表示される、分類選択とコメント入力を促す画面の他の一例を示す図。 図6bの画面において、過去の反応過程表示エリアの反応過程一覧編集ボタンが選択された状態を示す図。 図9の画面より遷移した画面で過去の反応過程の1つに対応する削除ボタンが選択された場合に表示される、反応過程削除の確認画面の一例を示す図。 図9の画面より遷移した画面で過去の反応過程の1つに対応するコメント変更ボタンが選択された場合に表示される、コメント変更画面の一例を示す図。 図9の画面より遷移した画面で過去の反応過程の1つに対応する分類変更ボタンが選択された場合に表示される、分類変更画面の一例を示す図。 疾患分類ごとに割り当てるキー(タブ)を編集するときの操作画面の一例を示す図。 対象サンプルの凝固反応過程の一覧画面の他の一例として、一次微分曲線及び二次微分曲線も表示した図。 対象サンプルの測定項目APTTの凝固反応過程に、先天性血友病Aに分類された過去の測定項目APTTの凝固反応過程を重ね書きしたときの、画面の一例を示す図。 図13aの対象サンプルの反応過程表示エリアをスクロールさせ、重ね書きされた一次微分曲線を示す図。 図13bの対象サンプルの反応過程表示エリアをさらにスクロールさせ、重ね書きされた二次微分曲線を示す図。 他の実施形態として、自動分析装置とデータ処理装置を備える分析システムの基本構成図。
 以下に図面を用いて本発明の実施形態を説明する。
 (自動分析装置の構成)
  図1は本発明の実施形態に係る自動分析装置の構成を表す模式図である。本実施形態では、生化学分析、血液凝固分析(血液凝固線溶マーカー、血液凝固時間測定等)、及び免疫分析の機能を備えた複合型自動分析装置を適用対象として例示している。
 図1に示した自動分析装置100は、サンプルを分析する分析ユニット1(分析部)と、オペレータ等の操作者からの操作を受け付ける操作装置2(操作部)と、操作装置2からの入力に基づいて分析ユニット1を制御し、分析ユニット1から取得した測定値を用いて測定データを演算する制御装置3(制御部)と、制御装置3で演算した測定データを表示出力するモニタ4(表示部)と、を備えている。自動分析装置100で分析するサンプルは、患者の血液や尿等の検体である。
 <分析ユニット>
  分析ユニット1は、反応ディスク10と、サンプルディスク20と、第1の試薬ディスク30A,第2の試薬ディスク30Bと、サンプル分注機構40と、第1の試薬分注機構50A,第2の試薬分注機構50Bと、第1の測定ユニット60A~第3の測定ユニット60Cと、第1の読取装置70A~第3の読取装置70Cと、を含んで構成されている。
 -反応ディスク-
  反応ディスク10は、鉛直軸周りに回転可能なディスク状のユニットであり、透光性材料からなる多数の反応容器(反応セル)11を保持する。反応容器11は、試料と試薬とを混合し反応させるための容器であり、反応ディスク10上に環状に複数設置される。自動分析装置100の稼働時、反応容器11は、反応ディスク10の恒温槽12において所定温度(例えば37℃程度)に保温される。また、反応ディスク10には、攪拌機構13と反応容器洗浄機構14が備わっている。攪拌機構13は、反応容器11に収容された液体を攪拌する装置である。反応容器洗浄機構14は、使用済みの反応容器11の内部を洗浄する装置である。
 -サンプルディスク-
  サンプルディスク20は、鉛直軸周りに回転可能なディスク状のユニットであり、サンプルを収容した多数のサンプル容器21を保持する。図1では、サンプルディスク20にサンプル容器21を2列の同心円状に配置できる構成を例示している。
 -試薬ディスク-
  第1の試薬ディスク30Aは、鉛直軸周りに回転可能なディスク状のユニットであり、多数の第1の試薬ボトル31Aを保持する。第1の試薬ボトル31Aは、第1の試薬ディスク30Aに環状に複数配置される。同じく第2の試薬ディスク30Bは、鉛直軸周りに回転可能なディスク状のユニットであり、多数の第2の試薬ボトル31Bを保持する。第2の試薬ボトル31Bは、第2の試薬ディスク30Bに環状に複数配置される。これら第1の試薬ボトル31A,第2の試薬ボトル31Bには、自動分析装置100で分析される分析項目に対応する試薬液が収容されている。第1の試薬ディスク30Aの個々の第1の試薬ボトル31Aには、例えば生化学や散乱に用いる第1試薬又は凝固試薬が収容され、第2の試薬ディスク30Bの個々の第2の試薬ボトル31Bには、例えば生化学や散乱に用いる第2試薬が収容される。
 -サンプル分注機構-
  サンプル分注機構40は、ピペットノズルを有しており、ピペットノズルによりサンプルを吸引し吐出する。サンプル分注機構40は、サンプルディスク20と反応ディスク10との間に位置している。このサンプル分注機構40は、サンプルディスク20の分注位置(吸引位置)20aにあるサンプル容器21の内部から所定量のサンプルを吸引し、吸引したサンプルを反応ディスク10の分注位置(吐出位置)10aにある反応容器11の内部に吐出する。
 -試薬分注機構-
  第1の試薬分注機構50A,第2の試薬分注機構50Bは、それぞれピペットノズルを有しており、ピペットノズルにより試薬を吸引し吐出する。第1の試薬分注機構50Aは、第1の試薬ディスク30Aと反応ディスク10との間に位置している。第2の試薬分注機構50Bは、第2の試薬ディスク30Bと反応ディスク10との間に位置している。第1の試薬分注機構50Aは、第1の試薬ディスク30Aの分注位置(吸引位置)30Aaで検査項目に応じた第1の試薬ボトル31Aの内部から試薬を吸入し、反応ディスク10の分注位置(吐出位置)10bで目的の反応容器11の内部に試薬を吐出(分注)する。同じく第2の試薬分注機構50Bは、第2の試薬ディスク30Bの分注位置(吸引位置)30Baで検査項目に応じた第2の試薬ボトル31Bの内部から試薬を吸入し、反応ディスク10の分注位置(吐出位置)10cで目的の反応容器11の内部に試薬を吐出(分注)する。反応容器11に吐出された試薬は、攪拌機構13で攪拌されてサンプルと混合される。
 -測定ユニット-
  第1の測定ユニット60A~第3の測定ユニット60Cは、サンプルについて目的の項目を測定するユニットであり、それぞれ反応容器の内部のサンプル及び試薬の混合液に光を照射する光源と、混合液を透過した光を検出し測定値を出力する光度計と、を備えている。第1の測定ユニット60A~第3の測定ユニット60Cが、反応容器の内部のサンプル及び試薬の反応を測定することで、サンプルについて目的の項目が測定される。
 第1の測定ユニット60A及び第2の測定ユニット60Bは、生化学分析や免疫分析に用いる測定ユニットである。第1の測定ユニット60Aは、第1の光源61Aと、第1の光度計62Aと、を含んで構成されている。第2の測定ユニット60Bは、第2の光源61Bと、第2の光度計62Bと、を含んで構成されている。第1の光源61A及び第2の光源61Bは、反応ディスク10の内周側に配置され、反応ディスク10の内周側から反応容器11に光を照射する。第1の光度計62A及び第2の光度計62Bは、反応ディスク10の外周側に配置され、反応容器11の環状列を挟んでそれぞれ第1の光源61A及び第2の光源61Bと対向している。第1の光度計62A及び第2の光度計62Bは、それぞれ第1の光源61A及び第2の光源61Bの光軸上に位置している。第1の光源61Aから照射された光が、反応容器11を通って第1の光度計62Aで測定される。同じく第2の光源61Bから照射された光が、反応容器11を通って第2の光度計62Bで測定される。各反応容器11は、反応ディスク10の回転動作に伴って第1の測定ユニット60A及び第2の測定ユニット60Bを通過する度に内部に収容した反応液(サンプルと試薬との混合液)について測光される。使用済みの反応容器11は、反応容器洗浄機構14で洗浄されて繰り返し使用される。
 第3の測定ユニット60Cは、血液凝固時間測定ユニットである。第3の測定ユニット60Cは、反応容器収容部63と、反応容器移送機構64と、サンプル分注ステーション65と、反応容器温調ブロック66と、試薬分注機構67と、測定チャンネル68と、を含んで構成されている。
 第3の測定ユニット60Cにおいて、反応容器収容部63にはディスポーザブルな反応容器60aが複数収容されている。これら反応容器60aは、反応容器移送機構64によりサンプル分注ステーション65に移送される。サンプル分注ステーション65は、サンプルディスク20との間にサンプル分注機構40を挟むように配置されており、サンプル分注機構40によりサンプル容器21からサンプルが吸引され、サンプル分注ステーション65の反応容器60aに吐出(分注)される。
 こうしてサンプルが分注された反応容器60aは、反応容器移送機構64によりサンプル分注ステーション65から反応容器温調ブロック66へ移送され、37℃程度に昇温される。また、第1の試薬ディスク30Aでは試薬が保冷されており、第1の試薬分注機構50Aにより、検査項目に応じた第1の試薬ボトル31Aから試薬が吸入され、反応ディスク10に設置された所定の空の反応容器11に吐出されて37℃程度に昇温される。
 その後一定時間が経過したら、反応容器11の内部で保温された試薬は、試薬昇温機能付きの試薬分注機構67により吸引され、試薬分注機構67で40℃程度に更に昇温される。この間、サンプルが37℃程度で保温された反応容器60aが、反応容器移送機構64によって第3の測定ユニット60Cの任意の測定チャンネル68に移送される。第3の測定ユニット60Cには、光源と光度計を有する測定チャンネル68が複数備わっている。その後、試薬分注機構67により、温められた試薬が測定チャンネル68の反応容器60aに吐出(分注)され、反応容器60aの内部でサンプルと試薬との血液凝固反応が開始する。
 測定チャンネル68においては、反応容器60aに試薬が分注されて以降、所定の時間間隔(例えば0.1秒周期)で光度計から測定データが出力される。測定が終了したら、使用済の反応容器60aは、反応容器移送機構64により移送されて反応容器廃棄部69に廃棄される。
 以上の通り、第1の測定ユニット60A~第3の測定ユニット60Cにおいては、光度計で散乱光が光電変換され、散乱光強度に比例した大きさの測定信号(アナログ信号)が光度計から出力される。これら測定信号は、A/D変換器79でデジタル信号化されて制御装置3に入力される。
 -読取装置-
  第1の読取装置70A~第3の読取装置70Cは、容器に付された識別データを読み取る装置である。識別データにはバーコードやRFID等が採用できるが、本例ではバーコードを用いた例を説明する。つまり第1の読取装置70A~第3の読取装置70Cはバーコードリーダーである。
 第1の読取装置70Aは、試薬登録時に第1の試薬ボトル31Aに貼られたバーコードを読み取る。第1の読取装置70Aで読み取られた試薬の識別データは、この識別データが付された第1の試薬ボトル31Aの第1の試薬ディスク30Aにおけるポジションデータと共に制御装置3に送信され、メモリ6に記憶される。
 第2の読取装置70Bは、試薬登録時に第2の試薬ボトル31Bに貼られたバーコードを読み取る。第1の読取装置70Aと同様、第2の読取装置70Bで読み取られた試薬の識別データも、この識別データが付された第2の試薬ボトル31Bの第2の試薬ディスク30Bにおけるポジションデータと共に制御装置3に送信され、メモリ6に記憶される。
 第3の読取装置70Cは、サンプル登録時にサンプル容器21に貼られたバーコードを読み取る。バーコードには、サンプルID、患者ID、サンプル種等のデータが変換されている。第1の読取装置70A及び第2の読取装置70Bと同様、第3の読取装置70Cで読み取られたサンプルの識別データも、この識別データが付されたサンプル容器21のサンプルディスク20におけるポジションデータと共に制御装置3に送信され、メモリ6に記憶される。
 なお、図1の自動分析装置100は、サンプルや試薬のキャリーオーバーの発生を回避する機能、すなわち、測定の間に洗浄動作を入れてキャリーオーバーを低減又は回避する機能を搭載している。キャリーオーバーを回避するための洗浄動作は、第1の試薬分注機構50A,第2の試薬分注機構50Bやサンプル分注機構40の各ピペットノズル、反応容器11について実行可能である。
 <操作装置>
  操作装置2は、測定依頼データ(後述)をコンピュータ7に入力したり各種データをモニタ4に表示させたりする際に、オペレータ等が操作する装置である。操作装置2としては、典型的にはキーボードやマウスを使用することができるが、タッチパネルその他の操作装置を適用することもできる。
 <制御装置>
  制御装置3は、インターフェイス5と、メモリ6と、コンピュータ7(第1コンピュータ)と、制御用コンピュータ8(第2コンピュータ)と、サーバ9(第3コンピュータ)と、を含んで構成されている。
 -インターフェイス-
  インターフェイス5は、分析ユニット1に対するコンピュータ7のデータの入出力部である。図1ではコンピュータ7とインターフェイス5が別々に図示してあるが、インターフェイス5はコンピュータ7と一体に構成される場合もある。コンピュータ7から分析ユニット1へ送られる分析項目のデータは、インターフェイス5を介して制御用コンピュータ8に入力される。また、分析ユニット1からA/D変換器79を介して出力される第1の測定ユニット60A~第3の測定ユニット60Cによる測定データは、インターフェイス5を介してコンピュータ7やメモリ6に入力される。第1の読取装置70A~第3の読取装置70Cで読み取られた識別データも、インターフェイス5を介してコンピュータ7やメモリ6に入力される。
 -メモリ-
  メモリ6は、HDDやSSD等といった記憶装置であり、図1ではインターフェイス5を介してコンピュータ7に接続した外付けの記憶装置を例示しているが、コンピュータ7に内蔵された記憶装置を適用することもできる。メモリ6には、試薬の識別情報、サンプルの識別情報、分析パラメータ、測定依頼データ、キャリブレーション結果、測定データ等のデータが記憶される。測定依頼データには、少なくともサンプルIDや測定項目が含まれており、患者ID等の他の情報も必要に応じて含まれ得る。
 -コンピュータ-
  コンピュータ7は、オペレータ等が使用する制御装置である。このコンピュータ7は、オペレータ等の操作に応じて測定依頼データを作成して制御用コンピュータ8に出力したり、分析ユニット1からの測定データ等に基づいてオペレータ等の操作に応じた画面をモニタ4に表示出力したりする機能を持つ。
 なお、図1ではコンピュータ7に分析ユニット1が1つのみ接続された構成を例示しているが、複数の分析ユニット1がインターフェイス5を介して1つのコンピュータ7に接続される場合もある。施設内の分析ユニット1を複数接続する場合、インターフェイス5にネットワーク(LAN等)を接続し、ネットワークを介して1つのコンピュータ7に複数の分析ユニット1を接続する場合もある。
 -制御用コンピュータ-
  制御用コンピュータ8は、コンピュータ7から入力された測定依頼データに従って分析ユニット1に指令信号を出力し、分析を指令する制御装置である。制御用コンピュータ8は分析ユニット1と一体構成とする(分析ユニット1のボディの内部に組み込まれる)ことが想定されるが、図1では分析ユニット1と別々に図示してある。制御用コンピュータ8による指令対象は、サンプルディスク20、第1の試薬ディスク30A,第2の試薬ディスク30B、サンプル分注機構40、第1の試薬分注機構50A,第2の試薬分注機構50B、反応容器移送機構64、試薬分注機構67といった機構(作動機器)である。本実施形態は1つの制御用コンピュータ8が統括的に分析ユニット1を駆動する例であるが、各作動機器に専用の制御用コンピュータを備え、各制御用コンピュータがコンピュータ7からの入力に応じて対応する作動機器を駆動する構成とすることもできる。
 -サーバ-
  サーバ9は、コンピュータ7と接続されている。図1ではインターフェイス5を介さずにコンピュータ7とサーバ9とを接続した構成を表しているが、サーバ9はインターフェイス5を介してコンピュータ7に接続される場合もある。また、コンピュータ7とサーバ9とがネットワークを介して接続されていても良い。
 <モニタ>
  モニタ4は、コンピュータ7に接続されており、コンピュータ7の操作の際のグラフィカルユーザインターフェイスや各種データを表示出力する表示装置である。モニタ4が表示出力する各種データには、分析ユニット1による測定データ、コンピュータ7による判定結果、患者データ等が含まれ、オペレータ等による操作装置2の操作に応じてコンピュータ7から入力される信号により所望のデータがモニタ4に表示される。
 (基本動作-生化学検査)
  自動分析装置100を用いた基本動作の一例を説明する。ここでは、第1の光度計62Aを使用したサンプルの生化学検査及び血液凝固検査のうち、DダイマーやFDP等の血液凝固線溶マーカーに関する測定項目の分析動作について説明する。
 自動分析装置100により分析可能な測定項目についての動作パラメータは、予めオペレータ等によりコンピュータ7に入力されてメモリ6に記憶されている。各サンプルについての測定依頼データはオペレータ等により入力される。測定依頼データを入力したあるサンプルIDの測定順序が訪れると、該当する測定依頼データの測定項目に応じた動作パラメータがメモリ6から読み出され、コンピュータ7から制御用コンピュータ8に入力される。そして、制御用コンピュータ8によって動作パラメータに従って分析ユニット1が駆動される。
 具体的には、制御用コンピュータ8からの動作指令により、まず反応ディスク10及びサンプルディスク20が駆動されて目的の反応容器11及びサンプル容器21がそれぞれ分注位置10a,20aに移動する。するとサンプル分注機構40により、分注位置20aにある目的のサンプル容器21から所定量のサンプルが吸引され、反応ディスク10の分注位置10aにある目的の反応容器11に分注される。サンプルが分注された反応容器11は、回転する反応ディスク10によって分注位置10aから分注位置10b又は10cに移動し、第1の試薬分注機構50A又は第2の試薬分注機構50Bにより測定項目に応じた試薬を分注される。サンプルと試薬の分注順序は逆(サンプルより試薬が先)であっても良い。
 その後、反応容器11が第1の測定ユニット60Aを横切る際、第1の光度計62Aによりサンプルを透過した光が測定され、第1の光度計62Aによる測定値がA/D変換器79でデジタル信号に変換され、インターフェイス5を介してコンピュータ7に入力される。コンピュータ7においては、測定項目に応じた検量線データと測定値とを基に、サンプルと試薬との混合液の濃度が測定データとして演算される。検量線データは、指定された分析法の下で予め測定されてメモリ6に記憶されている。コンピュータ7で演算された測定データは、オペレータ等の操作に応じて又は自動的にモニタ4に表示出力される。
 なお、測定データは、コンピュータ7に代えて制御用コンピュータ8で演算される構成とすることも可能である。図1の分析ユニット1においては、ターンテーブル方式の反応ディスク10を用いることで、ディスクの回転動作により連続してサンプルを分注することができて処理能力に優れる特徴がある。
 (基本動作-血液凝固検査)
  自動分析装置100を用いた基本動作の他の例を説明する。ここでは、止血機能検査項目の測定、つまり血液凝固時間の測定に関する分析動作を説明する。血液凝固時間の測定においても、制御用コンピュータ8によって動作パラメータに従って分析ユニット1が駆動される。
 具体的には、第3の測定ユニット60Cにおいて反応容器収容部63に収容された反応容器60aが、反応容器移送機構64によりサンプル分注ステーション65に移送される。するとサンプル分注機構40により、サンプルディスク20の該当するサンプル容器21から吸引されたサンプルが、サンプル分注ステーション65の反応容器60aに分注される。サンプルが分注された反応容器60aは、反応容器移送機構64によって反応容器温調ブロック66へ搬送され、そこで37℃に昇温される。
 他方、第1の試薬分注機構50Aにより、測定項目に応じた第1の試薬ボトル31Aから吸引された試薬が、反応ディスク10に設置された所定の空の反応容器11部に吐出される。第1の試薬ディスク30Aで保冷されていた試薬は、反応ディスク10で約37℃に昇温される。
 一定時間経過後、反応容器11で保温された試薬は、試薬昇温機能付きの試薬分注機構67によって吸引され、試薬分注機構67の内部で例えば40℃まで更に昇温される。この間、サンプルを収容した反応容器60aは、反応容器移送機構64によって反応容器温調ブロック66から所定の測定チャンネル68に移送される。その後、試薬分注機構67により、昇温した試薬が測定チャンネル68の反応容器60aに分注される。この試薬分注により、反応容器60aの内部でサンプルと試薬との血液凝固反応が開始する。
 こうして試薬が吐出された後、測定チャンネル68において所定の短い測定時間間隔で(例えば0.1秒毎に)光の測定値が逐次出力される。出力された測定値は、A/D変換器79によりデジタル信号化され、インターフェイス5を介してコンピュータ7に入力される。測光終了後、使用済の反応容器60aは、反応容器移送機構64によって移送されて反応容器廃棄部69に廃棄される。
 コンピュータ7は、こうして分析ユニット1から入力された測定値から血液凝固時間を求める。その後、測定項目に応じた検量線データと演算した血液凝固時間とを基に、サンプルと試薬との混合液の濃度が測定データとして演算される。コンピュータ7で演算された測定データや血液凝固時間は、オペレータ等の操作に応じて又は自動的にモニタ4に表示出力される。
 なお、第3の測定ユニット60Cでは、測定値を一定時間収集しなければならないため、その間、1つの測定チャンネル68では1つの反応容器60aしか測定できない。図1では6つの測定チャンネル68を有する構成を例示したが、測定チャンネル68に空きがない時には、次の血液凝固時間の測定が受け付けられず待機状態となる。こうした待機状態の発生を抑制する観点では、測定チャンネル68が多い構成が有利である。
 (制御装置の機能)
  図2は、自動分析装置が具備する制御装置の機能ブロック図である。図2において図1に対応する要素には図1と同符号を付して適宜説明を省略する。図2に示したように、制御装置3には、測定順管理F1、機構制御F2、データ演算F3、データ管理F4、の機能が備わっている。
 これらの機能は、プログラムがコンピュータのプロセッサによって実行されることで、定められた処理を他のハードウェアと協働して実現される。そして、これらの機能を実現するためのプログラムは、メモリ6に格納されている。なお、プログラムは、予めメモリ6に組み込まれて提供されても良いが、インストール可能な形式または実行可能な形式のファイルでCD-ROM等のコンピュータで読み取り可能な記録媒体に記録して提供されても良い。さらに、プログラムは、ネットワークを介して接続されたコンピュータからダウンロードしてメモリ6にインストールすることも可能である。
 本実施形態では、これらの機能が複数のコンピュータで分担して実行される、具体的には、測定順管理F1と機構制御F2の機能が制御用コンピュータ8で実行され、他の2つの機能がコンピュータ7で実行される、ことを想定して、以下、説明する。ただし、単一のコンピュータで全ての機能を実行する構成としても構わない。
 -測定順管理-
  測定順管理F1は、サンプルの測定順序を設定する機能である。この測定順管理F1の機能は、制御用コンピュータ8により実行される想定であるが、コンピュータ7で実行されるようにしても良い。コンピュータ7において操作装置2で設定された測定依頼データは、コンピュータ7から制御用コンピュータ8に入力される。説明の便宜上、特定の測定依頼データを指して測定依頼データXと記載し、また測定依頼データXでIDが指定されたサンプルをサンプルYと記載する。コンピュータ7から測定依頼データXが入力されると、制御用コンピュータ8ではサンプルYについて、どのサンプルの次に測定を実行するかといった測定順序が設定される。
 -機構制御-
  機構制御F2は、分析ユニット1の動作を制御する機能である。この機構制御F2の機能は、制御用コンピュータ8により実行される。制御用コンピュータ8は、測定順管理F1で設定されたサンプルYの測定順序が到来すると、分析ユニット1を駆動してサンプルYについて測定を実行する。具体的には、サンプルディスク20に設置されたサンプルYを、測定依頼データXで指定された測定項目に応じて反応容器11又は60aに分注し、前記した通り測定項目に応じて試薬と混合して反応させる。
 -データ演算-
  データ演算F3は、分析ユニット1から入力される測定値から測定データを演算する機能である。このデータ演算F3の機能は、例えばコンピュータ7により実行される。機構制御F2によりサンプルYを試薬と反応させると、第1の測定ユニット60A~第3の測定ユニット60CからサンプルYについての測光値がA/D変換器79を介して入力される。この測定値を基にサンプルYについて指定された測定項目の測定データが演算される。ここで演算されたサンプルYについての測定データは、測定値、試薬識別情報、サンプル識別情報、分析パラメータ、測定依頼データ、キャリブレーション結果等と共にメモリ6に記憶される。
 -データ管理-
  データ管理F4は、測定データを管理する機能である。このデータ管理F4の機能は、例えばコンピュータ7により実行される。具体的には、コンピュータ7は、データ演算F3で演算したサンプルYについてのデータ(測定データ等)をサンプルYのサンプルIDと紐付ける。同時にメモリ6に記憶されたサンプルYについての測定データ等にも、サンプルYのサンプルIDが紐づけられる。そして、コンピュータ7は、自動的に又はオペレータ等による操作に応じて、データ管理F4で処理したサンプルYの測定データ等をモニタ4表示出力する。また、サンプルYのサンプルIDと紐付けられた測定データ等は、コンピュータ7からサーバ9に送信され、サーバ9のメモリ(記憶部)に蓄積される。このように、サーバ9のメモリは、過去の測定データを格納する検査情報データベースとなっている。また、サーバ9のメモリは、患者ID毎の測定データの他、患者ID毎の電子カルテが格納されており、患者個人に関する様々なデータが集合した患者情報データベースとしての役割もある。電子カルテは、診察での医師による所見、患者の症状、既往歴、投薬履歴、家族歴等を記録したものである。
 (対象サンプルの凝固反応過程確認の例)
  図3は、対象サンプルの凝固反応過程の確認の一例を表すフローチャートである。
 まず、測定依頼データで指定された血液凝固検査について、機構制御F2の処理を経て、対象の患者IDの測定データがコンピュータ7によって出力されると、図3に示す、反応過程の確認処理が開始される。すると、コンピュータ7は、血液凝固検査の測定データを演算し(ステップS101)、血液凝固検査の測定データの測定データファイルをメモリ6に格納する(ステップS102)とともに、測定結果をモニタ4に表示する(ステップS103)。
 このとき、モニタ4の画面上で、所定の操作をすると、凝固反応過程が確認できるようになっている(ステップS104)。ステップS104で所定の操作がされると、コンピュータ7は、対象サンプルの凝固反応過程をモニタ4に表示させる(ステップS105)。このとき、モニタ4の画面上には、さらに、自動分析装置100のメモリやサーバ9のデータベース(以下、データベース等)に格納された過去の凝固反応過程を参照するためのボタンと、対象サンプルの凝固反応過程をデータベース等に保存するためのボタンと、も併せて表示される。
 ここで、過去の凝固反応過程を参照するボタンが選択されると(ステップS106)、コンピュータ7は、過去の凝固反応過程の一覧をモニタ4に表示させる(ステップS107)。
 過去の凝固反応過程は、疾患ごとに予め分類されてデータベース等に格納されている。所定の疾患に分類された所定の凝固反応過程が指定された状態で(ステップS108)、重ね書きボタンが操作されると(ステップS109)、コンピュータ7は、対象サンプルの凝固反応過程のグラフに、指定された過去の凝固反応過程のグラフを、重ね書きする(ステップS110)。このように、分析対象のサンプルの測定データに基づく測定反応過程情報だけでなく、疾患ごとに予め分類された過去の参照反応過程情報のうち指定された参照反応過程情報が、併せて表示されるので、オペレータ等にとって、類似している反応過程が見つけ易く、疾患のパターンの対応付けが容易となる。
 一方、ステップS105の後、対象サンプルの凝固反応過程を保存するボタンが選択されると(ステップS111)、コンピュータ7は、保存する凝固反応過程の分類(疾患別)を選択し、かつ、コメントを入力するよう促す画面をモニタ4に表示させる(ステップS112)。そして、分類の選択とコメントの入力(省略可)が完了し、保存実行の確認操作がされると、コンピュータ7は、対象サンプルの凝固反応過程をデータベース等に保存する(ステップSS113)。
 (画面表示の例)
  図4は、自動分析装置による測定結果の一覧画面の一例を表す図である。図4の画面を含め、以降の本明細書において説明する各画面は、オペレータ等の操作に応じてコンピュータ7によりモニタ4に表示出力されるものである。また、画面上のタブの選択などを含む操作は、オペレータ等が操作装置2を用いることで行われる。
 図4の画面は、モニタ4に表示された所定の画面において「測定結果」と表示されたタブ401を選択(クリック)すると表示される。図4の画面は、サンプル毎の測定状況表示エリア400aと、選択したサンプルの測定項目毎の結果を表示する項目別結果表示エリア400bと、各機能のボタン表示エリア400cと、を有している。測定状況表示エリア400aの各サンプルの結果欄には、分析対象の反応過程を閲覧するための反応過程詳細ボタン402が備えられている。本実施形態では、血液凝固検査のみでなく、生化学・免疫検査の反応過程も保存および参照可能である。各機能のボタン表示エリア400cは、過去の反応過程を参照できる反応過程参照ボタン403を有している。
 図5は、対象サンプルの凝固反応過程の一覧画面の一例を表す図である。図5の画面は、図4の画面において、最上段のサンプルに対応する反応過程詳細ボタン402が選択されたときに表示されるものであり、反応過程一覧表示エリア501に、選択されたサンプルの反応過程の一覧が表示される。各反応過程の右側には、反応過程参照ボタン502と、反応過程保存ボタン503と、が表示されている。図5の例では、選択したサンプルのうち、APTTの測定項目について、過去の反応過程を参照して、比較するため反応過程参照ボタン502を選択している状態である。
 図6aは、対象サンプルの測定項目APTTの凝固反応過程に、先天性血友病Aに分類された過去の測定項目APTTの凝固反応過程を並べて表示した画面の一例を表す図である。図6aの画面は、図5の画面において、測定項目APTTに対応する反応過程参照ボタン502が選択された後に実行されたときに表示されるものである。図6の画面では、対象サンプルの反応過程表示エリア601と共に、過去の反応過程表示エリア602が、上下に並べて表示される。過去のAPTTの反応過程は疾患毎にデータベース等に保存されており、過去の反応過程表示エリア602でタブ604~607を選択(クリック)すると、疾患毎に保存された過去のAPTTの反応過程が表示される。なお、タブについては、後記するように、オペレータ等の操作によって、表示名の変更や追加をすることが可能となっている。また、過去の反応過程表示エリア602には、反応過程一覧編集ボタン608と、反応過程重ね書きボタン609と、も表示される。図6aの例では、タブ604が選択(クリック)されているため、過去の反応過程表示エリア602には、先天性血友病Aとして保存された過去の反応過程一覧が表示されている。
 なお、図4の画面において、過去の反応過程を参照できる反応過程参照ボタン403が選択(クリック)された場合は、どの測定項目の反応過程を確認するかを選択する画面が表示された後に、選択された測定項目の反応過程が表示される。
 図6bは、対象サンプルの測定項目APTTの凝固反応過程に、APSに分類された過去の測定項目APTTの凝固反応過程を並べて表示した画面の一例を表す図である。図6bの画面は、図6aの画面において、タブ606が選択(クリック)されたときに表示されるものである。図6bの画面では、過去の反応過程表示エリア602に、APSに分類された過去の測定項目APTTの凝固反応過程が表示される。また、データベース等に保存されるすべての反応過程にはコメントを入力することができ、入力したコメントはコメント表示欄610に表示される。
 図7aは、図6aの画面において、対象サンプルの凝固反応過程に、過去の凝固反応過程を重ねて表示するための重ね書きボタンが選択された状態を示す図である。図7aに示すように、過去の反応過程表示エリア702において、タブ704すなわち先天性血友病Aが選択(クリック)されているため、先天性血友病Aとして保存された過去の反応過程の一覧が表示されており、この状態で、反応過程重ね書きボタン709が選択(クリック)されている。
 図7bは、図7aの画面の後に表示される、重ね書きの確認画面の一例を示す図である。図7aにおいて反応過程重ね書きボタン709が選択(クリック)されると、図7bに示すように、重ね書き確認ボックス710が表示され、重ね書き実行ボタン711及び重ね書き取消ボタン712も表示される。図7bの例では、重ね書き実行ボタン711が選択(クリック)されている。
 図7cは、図7bの画面の後に表示される、重ね書きを実行した後の画面の一例を示す図である。図7bの画面において重ね書き実行ボタン711が選択(クリック)されると、図7cに示すように、対象サンプルの反応過程表示エリア701に、対象サンプルの測定項目APTTの凝固反応過程713(実線)と、先天性血友病Aに分類された過去の測定項目APTTの凝固反応過程714(点線)と、が重ねて表示される。このように、重ねて表示されるので、当該疾患に対応する反応過程のパターンとの対比がより容易となる。
 図7dは、図7cの画面において、重ね書きした反応過程を表示する反応過程表示エリアをスクロールさせたときの画面の一例を示す図である。対象サンプルの反応過程表示エリア701には、グラフの凡例715、日付716、サンプルID717、測定項目名718、測定値719、単位720、分類721が表示されている。図7dに示すように、反応過程表示エリア701をスクロールすると、重ね書きされた過去の反応過程の測定結果や分類721も表示されるようになっている。なお、反応過程の重ね書きは、複数重ねることができ、反応過程が見やすいよう線のスタイルが変わり、そのスタイルはグラフの凡例715に表示される。
 図8aは、対象サンプルの凝固反応過程を保存するときに表示される、分類選択とコメント入力を促す画面の一例を示す図である。図8aの画面は、図5の画面において、測定項目APTTに対応する反応過程保存ボタンが選択された後に表示されるものである。疾患分類選択ボックス804では、保存する疾患分類を選択(クリック)でき、コメント入力爛805では、必要に応じてコメントを入力できる。保存取消ボタン806と保存実行ボタン807のうち、保存実行ボタン807が選択(クリック)されると、対象サンプルの反応過程がデータベース等に保存される。対象サンプルの疾患分類が既に分かっている場合には、このように対象サンプルの反応過程を分類し、その分類結果をデータベース等に保存することで、過去の反応過程として後に参照できるデータを拡充することができる。
 図8bは、対象サンプルの凝固反応過程を保存するときに表示される、分類選択とコメント入力を促す画面の他の一例を示す図である。図8bの画面は、図7aの画面において、対象サンプルの反応過程表示エリア701の反応過程保存ボタンが選択された後に表示されるものである。図8aの場合と同様に、疾患分類選択ボックス804では、保存する疾患分類を選択(クリック)でき、コメント入力爛805では、必要に応じてコメントを入力できる。また、保存取消ボタン806と保存実行ボタン807のうち、保存実行ボタン807が選択(クリック)されると、対象サンプルの反応過程がデータベース等に保存される。このように、過去の反応過程を参照しながら、対象サンプルの反応過程を分類し、その分類結果をデータベース等に保存することができる。
 図9は、図6bの画面において、過去の反応過程表示エリアの反応過程一覧編集ボタンが選択された状態を示す図である。図9に示すように、過去の反応過程表示エリア902において、タブ905すなわちAPSが選択(クリック)されているため、APSとして保存された過去の反応過程の一覧が表示されており、この状態で、反応過程一覧編集ボタン907が選択(クリック)されている。
 図10aは、図9の画面より遷移した画面で過去の反応過程の1つに対応する削除ボタンが選択された場合に表示される、反応過程削除の確認画面の一例を示す図である。図9において、APSのタブが選択された状態で、過去の反応過程表示エリアにある反応過程一覧編集ボタンが選択(クリック)されると、APSとして保存された過去の反応過程のそれぞれについて、反応過程削除ボタン1007、コメント変更ボタン1008、疾患分類変更ボタン1009及び(コメント入力があれば)コメント表示欄1012が表示される。なお、図10aでは、過去の反応過程エリア1001と、その1つ前の過去の反応過程エリア1002のみが表示されているが、画面をスクロールさせるとで、さらに過去の反応過程エリアも確認することが可能である。また、図10aの例は、過去の反応過程エリア1001にある反応過程削除ボタン1007が選択(クリック)されたことにより、反応過程削除の確認ボックスが表示された状態を示している。さらに、図10aの例では、削除実行ボタン1010が選択(クリック)されているので、対象の反応過程が削除されることになる。
 図10bは、図9の画面より遷移した画面で過去の反応過程の1つに対応するコメント変更ボタンが選択された場合に表示される、コメント変更画面の一例を示す図である。図9において、APSのタブが選択された状態で、過去の反応過程表示エリアにある反応過程一覧編集ボタンが選択(クリック)されると、前記したように、各反応過程に対して編集のための複数のボタン等が表示される。図10bの例は、過去の反応過程エリア1001にあるコメント変更ボタン1008が選択(クリック)されたことにより、コメント変更ボックスが表示された状態を示している。ここで、コメント変更欄1013にコメントが入力され、コメント変更完了ボタン1015が選択(クリック)されると、コメント変更が反映されることになる。
 図10cは、図9の画面より遷移した画面で過去の反応過程の1つに対応する分類変更ボタンが選択された場合に表示される、分類変更画面の一例を示す図である。図9において、APSのタブが選択された状態で、過去の反応過程表示エリアにある反応過程一覧編集ボタンが選択(クリック)されると、前記したように、各反応過程に対して編集のための複数のボタン等が表示される。図10cの例は、過去の反応過程エリア1001にある疾患分類変更ボタン1009が選択(クリック)されたことにより、疾患分類変更ボックスが表示された状態を示している。ここで、変更したい疾患分類が選択(クリック)され、疾患分類変更完了ボタン1018が選択(クリック)されると、疾患分類変更が反映されることになる。
 図11は、疾患分類ごとに割り当てるキー(タブ)を編集するときの操作画面の一例を示す図である。反応過程分類設定エリア1101には、疾患分類選択エリア1101a、設定ボタン1102、解除ボタン1103及び配置選択エリア1101bが表示されている。疾患分類選択エリア1101aには、予め登録しておいた疾患分類1105が、登録時に入力したコメント1106と共にリスト表示されている。
 キーに疾患分類を割り当てる場合、オペレータ等は、疾患分類選択エリア1101aで所望の疾患分類を選択し、選択した疾患分類を割り当てるキー(例えばキー1~キー10)のうち1つを配置選択エリア1101bで選んで設定ボタン1102を操作(クリック)する。これにより、疾患分類選択エリア1101aで選択した疾患分類が配置選択エリア1101bの疾患分類1107に入力され、チェックボックス1104の対応するキーに選択した疾患分類が割り当てられる。図11では、疾患分類選択エリア1101aで先天性血友病Bが選択され、かつ、配置選択エリア1101bでキー5が選択された状態で、設定ボタン1102が操作(クリック)されたため、キー5に対応する疾患分類として先天性血友病Bが追加された状態を示している。また、既に疾患分類が割り当てられているキーの設定は、配置選択エリア1101bでキーを選んで解除ボタン1103を操作(クリック)することで、クリアすることができる。なお、コメントエリア1106は、自由にコメント入力可能である。
 図12は、対象サンプルの凝固反応過程の一覧画面の他の一例として、一次微分曲線及び二次微分曲線も表示した図である。前記した図5の例では、測定結果として、凝固反応過程のみを表示していたが、図12の例では、測定結果として、凝固反応過程だけでなく、その一次微分曲線及び二次微分曲線も表示している。例えば、測定項目PTに関しては、凝固反応過程1204を実線で示し、凝固反応過程の一次微分曲線1205を破線で示し、凝固反応過程の二次微分曲線1206を点線で示している。同様に、測定項目APTTに関しても、凝固反応過程1207を実線で示し、凝固反応過程の一次微分曲線1208を破線で示し、凝固反応過程の二次微分曲線1209を点線で示している。このように、反応過程だけでなく、その微分曲線も併せて表示することにより、対象サンプルの傾向を精度よく見極めることが可能となる。
 図13aは、対象サンプルの測定項目APTTの凝固反応過程に、先天性血友病Aに分類された過去の測定項目APTTの凝固反応過程を重ね書きしたときの、画面の一例を示す図である。過去の反応過程表示エリア1302には、先天性血友病Aに分類されたデータの一覧がスクロールによって表示できるようになっており、各データには、凝固反応過程1310(実線)だけでなく、その一次微分曲線1311(破線)及び二次微分曲線1312(点線)も表示される。図13aの例では、過去の反応過程表示エリア1302において、所定のデータに対応する反応過程重ね書きボタン1314が選択(クリック)されたため、対象サンプルの反応過程表示エリア1301には、対象サンプルの測定項目APTTの凝固反応過程1303(実線)と、選択された過去の測定項目APTTの凝固反応過程1310(破線)と、が重ねて表示されている。
 図13bは、図13aの対象サンプルの反応過程表示エリアをスクロールさせ、重ね書きされた一次微分曲線を示す図である。図13bに示すように、対象サンプルの反応過程表示エリア1301には、対象サンプルの測定項目APTTの凝固反応過程の一次微分曲線1304(実線)と、選択された過去の測定項目APTTの凝固反応過程の一次微分曲線1311(破線)と、が重ねて表示されている。
 図13cは、図13bの対象サンプルの反応過程表示エリアをさらにスクロールさせ、重ね書きされた二次微分曲線を示す図である。図13cに示すように、対象サンプルの反応過程表示エリア1301には、対象サンプルの測定項目APTTの凝固反応過程の二次微分曲線1305(実線)と、選択された過去の測定項目APTTの凝固反応過程の二次微分曲線1312(破線)と、が重ねて表示されている。
 このように、対象サンプルの凝固反応過程(測定反応過程情報)へ過去の凝固反応過程(参照反応過程情報)を重ね書きして比較できるようにすることで、患者サンプルの疾患が判明していない場合は、凝固反応過程より疾患の予測がある程度できるようになり、また患者サンプルの疾患が判明している場合は、凝固反応過程よりその疾患であることの再確認ができる。また、測定反応過程情報に対し、オペレータ等によって疾患の分類が選択された場合は、当該測定反応過程情報が、選択された疾患と紐づけて、参照反応過程情報としてデータベース等に記憶されるため、このような分類選択を繰り返すことで、データベースが拡充し、疾患予測の精度向上に繋がる。
 (他の実施形態)
  前記した機能(主に測定反応過程情報と参照反応過程情報を表示する機能)は、サンプルを分析する自動分析装置100の本体ではなく、自動分析装置100の測定データを処理するデータ処理装置200に搭載されても良い。図14は、自動分析装置とデータ処理装置を備える分析システムの基本構成図である。図14に示すように、自動分析装置100とデータ処理装置200とは、ネットワーク300を介して接続されている。すなわち、自動分析装置100で測定された測定反応過程情報を含む測定データがデータ処理装置200へ送信され、データ処理装置200に記憶された参照反応過程情報を含む過去のデータが自動分析装置100へ送信される。これにより、自動分析装置100から離れた場所にあるデータ処理装置200においても、前記した画面上の表示や操作が可能となっている。なお、自動分析装置100とデータ処理装置200との間のデータの送受信は、ネットワーク300を介さずに、有線または無線の通信回線によって直接行われても良いし、外部メディアを用いて行われても良い。
 データ処理装置200は、自動分析装置100から測定データを取得するデータ取得部201と、疾患ごとに予め分類された参照反応過程情報を記憶する記憶部202と、測定データに対応する測定反応過程情報、および、選択された疾患に対応する参照反応過程情報、を出力する出力部203と、を備えている。また、データ処理装置200は、複数の自動分析装置100と接続されていても良い。
 なお、本発明は、前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した各実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…分析ユニット、2…操作装置、3…制御装置、4…モニタ、6…メモリ、7…コンピュータ、8…制御用コンピュータ、9…サーバ、10…反応ディスク、11…反応容器、12…恒温槽、13…攪拌機構、14…反応容器洗浄機構、20…サンプルディスク、21…サンプル容器、30A…第1の試薬ディスク、30B…第2の試薬ディスク、31A…第1の試薬ボトル、31B…第2の試薬ボトル、40…サンプル分注機構、50A…第1の試薬分注機構、50B…第2の試薬分注機構、60A…第1の測定ユニット、60B…第2の測定ユニット、60C…第3の測定ユニット、60a…反応容器、61A…第1の光源、61B…第2の光源、62A…第1の光度計、62B…第2の光度計、63…反応容器収容部、64…反応容器移送機構、65…サンプル分注ステーション、66…反応容器温調ブロック、67…試薬分注機構、68…測定チャンネル、69…反応容器廃棄部、70A…第1の読取装置、70B…第2の読取装置、70C…第3の読取装置、79…A/D変換器、100…自動分析装置、200‥データ処理装置、201…データ取得部、202…記憶部、203…出力部、300…ネットワーク、403,502,802,1202…反応過程参照ボタン、501,801,1201…反応過程一覧表示エリア、503,603,703,803,1203,1313…反応過程保存ボタン、601,701,901,1301…対象サンプルの反応過程表示エリア、602,702,902,1302…過去の反応過程表示エリア、604,704,903,1003,1306…先天性血友病Aタブ、605,705,904,1004,1307…VWF欠乏症タブ、606,706,905,1005,1308…APSタブ、607,707,906,1006,1309…後天性血友病Aタブ、608,708,907,1317…反応過程一覧編集ボタン、609,709,1314…反応過程重ね書きボタン、610,1012…コメント表示爛、713,1207,1303…対象サンプルの測定項目APTTの凝固反応過程、714,1310…過去の測定項目APTTの凝固反応過程、715…凡例、716…日付、717…サンプルID、718…項目名、719…測定値、720…単位、721…分類、1204…対象サンプルの測定項目PTの凝固反応過程、1205…対象サンプルの測定項目PTの凝固反応過程の一次微分曲線、1206…対象サンプルの測定項目PTの凝固反応過程の二次微分曲線、1208…対象サンプルの測定項目APTTの凝固反応過程の一次微分曲線、1209…対象サンプルの測定項目APTTの凝固反応過程の二次微分曲線、1304…対象サンプルの測定項目APTTの凝固反応過程の一次微分曲線、1305…対象サンプルの測定項目APTTの凝固反応過程の二次微分曲線

Claims (7)

  1. サンプルを分析する分析部と、
    オペレータからの操作を受け付ける操作部と、
    前記操作部からの入力に基づいて前記分析部を制御し、前記分析部から取得した測定値を
    用いて測定データを演算する制御部と、
    前記制御部で演算した測定データを表示する表示部と、
    を備えた自動分析装置において、
    前記制御部は、分析対象のサンプルの測定データに基づく測定反応過程情報だけでなく、
    疾患ごとに予め分類された参照反応過程情報のうち前記操作部で指定された参照反応過程情報を、前記表示部に表示させることを特徴とする自動分析装置。
  2. 請求項1に記載の自動分析装置において、
    前記制御部は、前記測定反応過程情報と、前記参照反応過程情報と、を前記表示部に並べて又は重ねて表示させることを特徴とする自動分析装置。
  3. 請求項1に記載の自動分析装置において、
    前記測定反応過程情報に対し、前記操作部によって疾患の分類が選択された場合、当該測定反応過程情報が、選択された疾患と紐づけ、前記参照反応過程情報として記憶されることを特徴とする自動分析装置。
  4. 請求項1に記載の自動分析装置において、
    前記制御部は、前記参照反応過程情報を記憶するサーバと接続されていることを特徴とする自動分析装置。
  5. サンプルを分析する自動分析装置の測定データを処理するデータ処理装置であって、
    自動分析装置から測定データを取得するデータ取得部と、
    疾患ごとに予め分類された参照反応過程情報を記憶する記憶部と、
    前記測定データに対応する測定反応過程情報、および、指定された疾患に対応する参照反応過程情報、を出力する出力部と、を備えるデータ処理装置。
  6. サンプルを分析する自動分析装置の測定データを処理するデータ処理方法であって、
    分析対象のサンプルの測定データに基づく測定反応過程情報と、
    疾患ごとに予め分類された参照反応過程情報のうち指定された参照反応過程情報と、
    を出力するデータ処理方法。
  7. 自動分析装置が備えるコンピュータまたは自動分析装置に接続されたコンピュータに実行させるプログラムであって、
    分析対象のサンプルの測定データに基づく測定反応過程情報と、
    疾患ごとに予め分類された参照反応過程情報のうち指定された参照反応過程情報と、
    を出力する処理を実行させるプログラム。
PCT/JP2022/021289 2021-07-27 2022-05-24 自動分析装置、データ処理装置、データ処理方法及びプログラム WO2023007928A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280048342.3A CN117616284A (zh) 2021-07-27 2022-05-24 自动分析装置、数据处理装置、数据处理方法以及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021122570 2021-07-27
JP2021-122570 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023007928A1 true WO2023007928A1 (ja) 2023-02-02

Family

ID=85086526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021289 WO2023007928A1 (ja) 2021-07-27 2022-05-24 自動分析装置、データ処理装置、データ処理方法及びプログラム

Country Status (2)

Country Link
CN (1) CN117616284A (ja)
WO (1) WO2023007928A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187210A1 (ja) * 2012-06-11 2013-12-19 株式会社 日立ハイテクノロジーズ 自動分析装置
JP2019507345A (ja) * 2016-02-18 2019-03-14 ダイアグノスティカ スターゴ 静脈血栓塞栓症に対して特異的なdダイマーをアッセイするための方法、ならびに肺塞栓症および深部静脈血栓症を診断するためのその使用
JP2020060601A (ja) * 2020-01-24 2020-04-16 シスメックス株式会社 検体検査システム、情報処理装置、情報処理方法、およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187210A1 (ja) * 2012-06-11 2013-12-19 株式会社 日立ハイテクノロジーズ 自動分析装置
JP2019507345A (ja) * 2016-02-18 2019-03-14 ダイアグノスティカ スターゴ 静脈血栓塞栓症に対して特異的なdダイマーをアッセイするための方法、ならびに肺塞栓症および深部静脈血栓症を診断するためのその使用
JP2020060601A (ja) * 2020-01-24 2020-04-16 シスメックス株式会社 検体検査システム、情報処理装置、情報処理方法、およびプログラム

Also Published As

Publication number Publication date
CN117616284A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
EP2216654B1 (en) Sample analyzer
CN108700603B (zh) 自动分析装置
EP1873530B1 (en) Sample analyzer
JP3901587B2 (ja) 自動分析装置および自動分析装置におけるデータ管理方法
EP2040080B1 (en) Sample analyzer and method for analyzing samples
EP1887356B1 (en) Automatic analyzer
EP1873531A2 (en) Sample analyzer and sample analyzing method
JP7315749B2 (ja) 自動分析装置
EP3693744A1 (en) Automatic analyzer
EP2796882B1 (en) Automatic analysis device
JP2008058129A (ja) 自動分析装置
JPH09502021A (ja) 血栓および止血に関係する分析を自動的に実施する方法および装置
JP7219760B2 (ja) 自動分析装置
JP6954949B2 (ja) 自動分析装置
WO2023007928A1 (ja) 自動分析装置、データ処理装置、データ処理方法及びプログラム
CN109387648B (zh) 自动分析系统
JP2011153942A (ja) 自動分析装置
US20220011330A1 (en) Automated Analysis Device, and Analysis Method
EP3892999B1 (en) Automatic analysis device
JP7431709B2 (ja) 自動分析装置
US20190204347A1 (en) Automated analyzer and retesting instruction system
EP3961222A1 (en) Method for displaying calibration curve and analyzer
EP4180818A1 (en) Automated analyzer and automated analyzer maintenance method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849007

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2023538300

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022849007

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849007

Country of ref document: EP

Effective date: 20240227