WO2023007615A9 - アンプ選定装置、及びコンピュータが読み取り可能な記憶媒体 - Google Patents

アンプ選定装置、及びコンピュータが読み取り可能な記憶媒体 Download PDF

Info

Publication number
WO2023007615A9
WO2023007615A9 PCT/JP2021/027902 JP2021027902W WO2023007615A9 WO 2023007615 A9 WO2023007615 A9 WO 2023007615A9 JP 2021027902 W JP2021027902 W JP 2021027902W WO 2023007615 A9 WO2023007615 A9 WO 2023007615A9
Authority
WO
WIPO (PCT)
Prior art keywords
motor
amplifier
program
output
common power
Prior art date
Application number
PCT/JP2021/027902
Other languages
English (en)
French (fr)
Other versions
WO2023007615A1 (ja
Inventor
遠東 尹
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to CN202180100777.3A priority Critical patent/CN117677953A/zh
Priority to JP2021560678A priority patent/JP7015419B1/ja
Priority to PCT/JP2021/027902 priority patent/WO2023007615A1/ja
Priority to DE112021007696.5T priority patent/DE112021007696T5/de
Publication of WO2023007615A1 publication Critical patent/WO2023007615A1/ja
Publication of WO2023007615A9 publication Critical patent/WO2023007615A9/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to an amplifier selection device and a computer readable storage medium.
  • Patent Document 1 describes, ⁇ An amplifier group allocation unit that allocates each of a plurality of motors to one of a plurality of amplifier groups based on an amplifier group number input from an input unit; , a total rated output calculation unit that calculates the total rated output of the motors assigned to the amplifier group, and a total rated output calculation unit that calculates the total rated output of the motors assigned to the amplifier group; a common power source selection unit that determines whether a condition that the total value of each of the amplifier groups is equal to or greater is satisfied, and selects one or more common power sources that satisfy the condition; and a display control unit that causes the display unit to display the power source in a distinguishable manner for each of the plurality of amplifier groups.”
  • the motor is selected based on input such as the drive mechanism of the industrial machine, motor characteristics, and operation pattern, and then the amplifier is selected. Generally, a common power source is selected.
  • amplifiers and common power supplies are selected using motor specification values, so amplifiers and common power supplies with excessive capacity may be selected.
  • all operating conditions are manually input for operation settings during selection, and it is desirable to avoid the complexity of manual input, especially when the operation is complex.
  • An amplifier selection device that is an aspect of the present disclosure is an amplifier selection device that selects an amplifier for a motor of an industrial machine, and includes a program acquisition unit that acquires a program for the industrial machine, a program analysis unit that analyzes the program, and an industrial machine.
  • a motor selection section that selects a motor for a machine, an amplifier selection section that selects an amplifier that is compatible with the motor of an industrial machine, and an output calculation section that calculates the motor's output per hour when the motor is controlled according to program commands.
  • a common power source selection unit that determines the maximum value of the output of the motor for each time and selects a common power source that supplies power to the amplifier based on the maximum value.
  • a storage medium storing computer-readable instructions which is an aspect of the present disclosure, is executed by one or more processors to obtain a program for an industrial machine, analyze the program, and run a motor of the industrial machine. Select an amplifier that matches the motor of the industrial machine, calculate the motor's output per hour when the motor is controlled according to the commands of the program, determine the maximum value of the motor's output per hour, and calculate the maximum value. Based on this, select a common power supply that will supply power to the amplifier.
  • an appropriate model can be selected in the field of amplifier selection. Furthermore, the operation settings at the time of selection can also be simplified.
  • FIG. 2 is a block diagram of an amplifier selection device.
  • This is a machine condition setting screen. This is a setting screen for acceleration/deceleration control. It is a table showing analysis results of a machining program. It is a graph showing a change in the position of a tool based on a machining program. It is a graph showing changes in tool speed based on a machining program. This is an example of a processing program.
  • FIG. 3 is a diagram showing specification values of a motor and an amplifier.
  • FIG. 3 is a diagram showing the relationship between amplifier groups and amplifiers.
  • FIG. 3 is a diagram showing the relationship between output for each time and selection of a common power source.
  • FIG. 2 is a diagram illustrating a conventional common power source selection method. 3 is a flowchart showing the operation of the amplifier selection device.
  • FIG. 3 is a diagram showing calculated motor current values and amplifier specification values.
  • FIG. 1 is a hardware configuration diagram of an amplifier selection device according to the present disclosure.
  • the amplifier selection device 100 of the first disclosure will be described below.
  • the amplifier selection device 100 of the first disclosure is implemented, for example, in an information processing device such as a PC (personal computer).
  • Dedicated software for selecting an amplifier for industrial machinery is installed in the amplifier selection device 100.
  • the user operates the software to select the motor, amplifier, and common power source.
  • a motor, an amplifier, and a common power source for a machine tool are selected based on a machining program.
  • a common power source may be selected.
  • Operation programs, not machining programs are used to select motors, amplifiers, and common power supplies for industrial machines other than machine tools.
  • FIG. 1 is a block diagram of an amplifier selection device 100.
  • the amplifier selection device 100 includes a condition acquisition section 11, a program acquisition section 12, a program analysis section 13, a data storage section 14, a load calculation section 15, a motor selection section 16, an amplifier selection section 17, an output calculation section 18, and a common power supply selection section. 19.
  • the condition acquisition unit 11 acquires conditions necessary for motor selection, such as the drive mechanism of the machine driven by the motor, mechanical specifications of the drive mechanism, and motor acceleration/deceleration control settings.
  • the drive mechanism of the machine includes a ball screw mechanism, an index mechanism, a pulley mechanism, etc.
  • the mechanical specifications are physical property values such as the weight of the drive mechanism.
  • FIG. 2 is a machine specification setting screen when a ball screw is selected as the drive mechanism. As machine conditions, machine efficiency, weight of moving object, counterbalance, ball screw diameter, ball screw lead, ball screw length, reduction ratio, etc. can be set. The setting contents are not limited to these and differ depending on the drive mechanism.
  • the motor acceleration/deceleration control information is setting information such as a time constant. On the setting screen of FIG. 3, acceleration/deceleration control information such as acceleration/deceleration type, acceleration/deceleration time constant during rapid feed, acceleration/deceleration time constant during cutting feed, position loop gain, rapid feed speed, positioning distance, etc. can be
  • the program acquisition unit 12 acquires a machining program for a machine tool.
  • the machining program may be read from the outside or input by the user.
  • the program acquisition unit 12 may also accept changes or additions to the acquired machining program.
  • the program analysis section 13 analyzes the machining program and displays the position, speed, load, etc. of each axis of the machine tool.
  • the table in FIG. 4 displays the line number (line) of the machining program, the operating method (mode) of the drive mechanism, time, position, speed, cutting load, and cutting time as the analysis results of the machining program.
  • the graph in FIG. 5 shows changes in the position of the tool of the machine tool based on the machining program, and the graph in FIG.
  • the first line "G90G94" of the machining program in FIG. 7 is "coordinate system setting". This line has nothing to do with driving the motor, so the analysis results are not reflected in the table or graph.
  • the second line of the machining program, "G04X0.5”, is a command to "stop the X-axis motor for 0.5 seconds”.
  • the program analysis unit 13 analyzes this machining program and displays the analysis result of mode "stop time”, time "0.5 seconds", and position "0" in the first line of the table in FIG.
  • the third line of the machining program is a command to "move the X-axis 100 mm at a speed of 30,000 mm/min.”
  • the program analysis unit 13 displays the mode "fast forward”, time “-”, position "100", and speed "30000" on the second line of the table in FIG. In this way, the program analysis unit 13 creates tables and graphs while analyzing the machining program.
  • the data storage unit 14 stores data necessary for selecting the motor, amplifier, and common power source.
  • the data stored in the data storage unit 14 includes, but is not limited to, rated output, rated torque, rated rotational speed, rotor inertia moment, magnetic saturation coefficient, etc.
  • the load calculation unit 15 calculates a value related to the load of the motor based on the drive mechanism of the machine, machine specifications, acceleration/deceleration information of the motor, and analysis results of the machining program.
  • a value related to motor load is calculated based on a machining program. Therefore, it is possible to obtain values close to actual control.
  • Values related to the motor load include moment of inertia, load torque, acceleration torque, deceleration torque, required torque, root mean square torque (effective load torque), and the like.
  • (Formula 1) is a formula for calculating the required torque
  • (Formula 2) is a formula for calculating the root mean square torque.
  • the motor selection unit 16 has sufficient margin for the calculated required torque, can be started and stopped at a desired pulse speed with respect to the moment of inertia applied to the output shaft of the motor, and has a sufficient margin for the moment of inertia applied to the output shaft of the motor.
  • a motor that can secure the desired acceleration time constant and deceleration time constant is tentatively selected.
  • the motor selection unit 16 checks the effective torque value, acceleration/deceleration time constant, overload characteristics, motor heating tolerance, etc. of the tentatively selected motor, and selects a motor that satisfies the intended use of the machine tool.
  • the amplifier selection unit 17 acquires the specification values of the maximum current and continuous current of the motor from the data storage unit 14, and selects an amplifier having a maximum current and continuous current exceeding the maximum current and continuous current of the motor.
  • maximum current is the maximum current that can be passed in a short period of time to produce maximum torque
  • continuous current is the maximum current that can be passed continuously without overheating the motor. It is a value.
  • the maximum current and continuous current are predetermined by the motor specifications. A method for selecting an amplifier will be explained with reference to FIG. It is assumed that the machine tool has a plurality of motors, and that the X-axis motor has already been selected from among the plurality of motors. Once the motor is selected, amplifier candidates are determined.
  • selection candidates "amplifier 1" and “amplifier 2" are determined.
  • the maximum current specification value is “48Ap” and the continuous current specification value is “12Ap”.
  • the maximum current of "amplifier 1” is “40Ap” and the continuous current is “11.5Ap”.
  • the maximum current of "Amplifier 2” is "80Ap” and the continuous current is “22.5Ap”.
  • the amplifier selection unit 17 selects an amplifier whose maximum current and continuous current exceed the maximum current and continuous current of the X-axis motor. In the example of FIG. 8, "Amplifier 2" is selected.
  • FIG. 9 is a list of amplifiers belonging to a common group.
  • the group with the amplifier group name "AmpGroup1" includes motors with axis names "X", "Y", "Z", and "main shaft”.
  • the table of FIG. 9 displays the model name of the selected amplifier.
  • the output calculation unit 18 calculates the motor output from the rotational speed and torque. Calculate the output from the motor output and motor loss. The output is the output that needs to be supplied from the power source during motor operation. Calculation of motor output and motor loss is an existing technique, so a description thereof will be omitted. (Formula 3) is a calculation formula for the rotation speed.
  • the output calculation unit 18 uses the analysis results of the machining program in calculating the time-series rotational speed. By referring to the analysis results of the data storage unit 14, the load calculation unit 15, and the machining program, it is possible to calculate the time-series outputs on the machining program of all the motors connected to the common power source.
  • FIG. 10 is a table in which the outputs are arranged in chronological order.
  • the outputs of four motors “X-axis”, “Y-axis”, “Z-axis”, and "main axis” are displayed in a list every minute.
  • the output calculation unit 18 arranges the outputs of the four motors in chronological order when the machine tool is controlled according to the machining program.
  • the common power source selection unit 19 calculates the total value of the output for each time calculated by the output calculation unit 18, and determines the maximum value of the total value.
  • the total output for "1 min” is “14 kW”
  • the total output for "2 min” is “25 kW”
  • ... the total output for "30 min” is “7 kW”
  • the maximum value of the total output is It can be seen that it is “25 kW” for "2 min”.
  • the common power supply selection unit 19 selects a common power supply with the minimum output from among the common power supplies having a capacity exceeding the maximum output value, based on the calculated maximum output value and the specifications of the common power supply.
  • the table below in FIG. 10 shows the specification values of the common power supply.
  • the maximum outputs of the two "common power supplies 1" and “common power supplies 2" are “27 kW” and “40 kW", respectively.
  • the maximum output of "common power supply 1", "27 kW" exceeds the maximum value of the total output, "25 kW”.
  • the common power source selection unit 19 selects "common power source 1" as the common power source for the "X-axis", “Y-axis", “Z-axis", and "main shaft” motors.
  • the total specification value of the maximum output of the four motors is "30 kW.”
  • "common power source 2" having a maximum output exceeding the total specification value of "30 kW” is selected.
  • a common power source is selected based on the maximum output of each motor, which may result in excessive selection. According to the present disclosure, such excessive selection can be prevented.
  • FIG. 12 is a flowchart showing the operation of the amplifier selection device 100 of the present disclosure.
  • the amplifier selection device 100 acquires a drive mechanism and mechanical specifications as information for selecting a motor (step S1), acquires acceleration/deceleration control information (step S2), and acquires a machining program (step S3). .
  • the amplifier selection device 100 analyzes the processing program and arranges the analysis results in chronological order (step S4).
  • the amplifier selection device 100 calculates a value related to the motor load based on the drive mechanism of the industrial machine, machine specifications, motor acceleration/deceleration information, and analysis results of the machining program. Values related to the motor load include moment of inertia, load torque, acceleration torque or deceleration torque, required torque, root mean square torque, etc. (step S5).
  • the amplifier selection device 100 selects a motor based on the value related to the motor load (step S6).
  • the method for selecting a motor is an existing technology, so the explanation will be omitted.
  • the amplifier selection device 100 obtains the maximum current and continuous current specification values based on the selected motor (step S7).
  • the amplifier selection device 100 selects an amplifier based on the obtained motor maximum current and continuous current specification values (step S8).
  • the amplifier selection device 100 calculates the output of each motor in time series according to the analysis result of the processing program for the motors supplied with power from the common power source (step S9).
  • the amplifier selection device 100 calculates the total value of the motor output for each time (step S10).
  • the amplifier selection device 100 determines the maximum value of the total value of the motor outputs (step S11).
  • the amplifier selection device 100 selects a common power supply whose maximum output is larger than the maximum value determined in step S11 (step S12).
  • the amplifier selection device 100 of the second disclosure has the same configuration as the amplifier selection device 100 of the first disclosure.
  • the difference between the amplifier selection device 100 of the first disclosure and the amplifier selection device 100 of the second disclosure is the amplifier selection method in the amplifier selection section 17.
  • the amplifier selection unit 17 of the second disclosure calculates the maximum current and the root mean square current, and selects an amplifier using the calculated required current and root mean square current.
  • Maximum current is the maximum current required.
  • the maximum current is calculated from the required torque.
  • (Formula 4) is a calculation formula for the required current and the root mean square current. In a synchronous motor, up to a certain level of current, torque and current are in a proportional relationship using the torque constant as a coefficient, but when the current is further increased, a phenomenon called magnetic saturation occurs, and the torque generated per current increases due to the influence of magnetic saturation. descend. Therefore, the required current is calculated by taking magnetic saturation into account.
  • the magnetic saturation coefficient varies depending on the torque range even for the same motor.
  • the magnetic saturation coefficient is stored in the data storage unit 14 in advance.
  • FIG. 13 shows an example of the maximum current and the root mean square current calculated according to the machining program.
  • the amplifier selection unit 17 calculates the required current from the required torque and the root mean square current from the root mean square torque.
  • the calculated maximum current of the X-axis motor is "40Ap" and the root mean square current is "9Ap".
  • the amplifier selection unit 17 selects "amplifier 1" having a maximum output that exceeds the calculated maximum current "40Ap” and the root mean square current "9Ap".
  • the maximum current and continuous current determined by the specifications of the X-axis motor were used.
  • the maximum current and continuous current determined by the specifications often have a margin, so an amplifier with excessive capacity may be selected.
  • the amplifier selection device 100 of the second disclosure selects an amplifier based on the maximum current and root mean square current calculated according to the machining program, rather than the maximum current and continuous current of the specification values, so that excessive selection can be prevented. can.
  • the third disclosed amplifier selection device 100 selects a linear motor.
  • the configuration of the amplifier selection device 100 of the third disclosure is the same as that of the amplifier selection device 100 of the first disclosure, so the description will be omitted.
  • the calculation formulas of the load calculation section 15 and the output calculation section 18 are different.
  • the required thrust is calculated instead of the required torque
  • the root mean square thrust is calculated instead of the root mean square torque.
  • (Formula 5) is a calculation formula for the required thrust
  • (Formula 6) is a calculation formula for the root mean square thrust
  • (Formula 7) is a calculation formula for the required current and the root mean square current.
  • the output calculation unit 18 calculates the output of the linear motor from the speed and thrust. Calculate the output from the linear motor output and linear motor loss. The output is the output that needs to be supplied from the power source during linear motor operation. Calculation of linear motor output and linear motor loss is an existing technique, so a description thereof will be omitted.
  • the output calculation unit 18 obtains the speed using the analysis result of the machining program. The speed is output using the data storage section 14, the load calculation section 15, and the analysis results of the machining program. By referring to the analysis results of the data storage unit 14, the load calculation unit 15, and the machining program, it is possible to calculate in time series the outputs required for the actual operation of all linear motors connected to the common power source.
  • the common power source selection unit 19 calculates the total value of the output for each time calculated by the output calculation unit 18, and determines the maximum value of the total value.
  • the common power supply selection unit 19 selects a common power supply having a capacity exceeding the calculated maximum output value.
  • the amplifier selection device 100 of the present disclosure can also be applied to linear motor selection.
  • the amplifier selection device 100 in the first to third disclosures has a hardware configuration as shown in FIG. 14.
  • the hardware configuration of the amplifier selection device 100 will be described with reference to FIG. 14.
  • the CPU 111 included in the amplifier selection device 100 is a processor that controls the amplifier selection device 100 as a whole.
  • the CPU 111 reads out a system program stored in the ROM 112 via the bus, and controls the entire amplifier selection device 100 in accordance with the system program.
  • the RAM 113 temporarily stores temporary calculation data, display data, various data input by the user via the input unit 71, and the like.
  • the display unit 70 is a monitor attached to the amplifier selection device 100 or the like.
  • the display unit 70 displays an operation screen of software for amplifier selection and the like.
  • the input unit 71 is a keyboard, touch panel, etc. that is integrated with the display unit 70 or separate from the display unit 70. The user operates the input section 71 to select an amplifier and a common power source.
  • the nonvolatile memory 114 is, for example, a memory that is backed up by a battery (not shown) and retains its stored state even when the amplifier selection device 100 is powered off.
  • the nonvolatile memory 114 stores programs read from external equipment via an interface (not shown), programs input via the input unit 71, and various data acquired from each part of the amplifier selection device 100, machine tools, etc. , setting parameters acquired from the machine tool, etc.) are stored.
  • the programs and various data stored in the non-volatile memory 114 may be expanded to the RAM 113 at the time of execution/use. Furthermore, various system programs are written in the ROM 112 in advance.
  • the amplifier selection device 100 of the present disclosure can select a motor based on a machining program using values close to actual control. Furthermore, the amplifier selection device 100 of the present disclosure calculates the output of each motor in time series based on the processing program. The output of the motor changes over time, but by summing the output of multiple motors that change over time, it is possible to obtain a total output close to the actual control, allowing for efficient settings that match the actual torque. is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

産業機械のモータのアンプを選定するアンプ選定装置であって、産業機械のプログラムを取得し、取得したプログラムを解析し、モータの駆動機構及び機械諸元を取得し、産業機械のモータを選定し、産業機械のモータに適合するアンプを選定し、プログラムの指令に従いモータを制御したときのモータの時間ごとの出力を算出し、モータの時間ごとの出力の最大値を判定し、最大値を基にアンプに電力を供給する共通電源を選定する。

Description

アンプ選定装置、及びコンピュータが読み取り可能な記憶媒体
 本発明は、アンプ選定装置、及びコンピュータが読み取り可能な記憶媒体に関する。
 特許文献1には、『入力部から入力されたアンプグループの番号に基づいて、複数のモータのそれぞれを複数のアンプグループのいずれかに割り当てるアンプグループ割り当て部と、前記複数のアンプグループのそれぞれについて、当該アンプグループに割り当てられた前記モータの定格出力の合計値を算出する合計定格出力算出部と、所定の電源容量を有する複数の共通電源のそれぞれについて、前記電源容量の大きさが前記複数のアンプグループのそれぞれの前記合計値以上となる条件を満たすか否かを判断し、前記条件を満たす1つまたは複数の共通電源を選定する共通電源選定部と、選定した前記1つまたは複数の共通電源を前記複数のアンプグループ毎に表示部に識別可能に表示させる表示制御部と、を有する』と記載されている。
 工作機械やプロセス射出成形機などの産業機械のアンプの選定では、産業機械の駆動機構、モータの特性、運転パターンなどの入力を基に、モータを選定し、アンプを選定し、最後に、アンプの共通電源を選定するのが一般的である。
特開2020-54104号公報
 従来、アンプ及び共通電源の選定には、モータの仕様値を用いて選定しているため、過剰な能力のアンプ及び共通電源を選定することがある。アンプ及び共通電源の選定には、過不足ない能力の機種の選定が望ましい。また、選定の際の動作設定は、すべての動作条件を手入力で対応するものが多く、特に、動作が複雑な場合は、手入力の煩雑さを避けることも望ましい。
 モータ、アンプ、及び共通電源等の選定の分野では、適切な機種の選定や、選定の設定の簡素化が望まれている。
[規則91に基づく訂正 14.08.2023]
 本開示の一態様であるアンプ選定装置は、産業機械のモータのアンプを選定するアンプ選定装置であって、産業機械のプログラムを取得するプログラム取得部と、プログラムを解析するプログラム解析部と、産業機械のモータを選定するモータ選定部と、産業機械のモータに適合するアンプを選定するアンプ選定部と、プログラムの指令に従いモータを制御したときのモータの時間ごとの出力を算出する出力算出部と、モータの時間ごとの出力の最大値を判定し、最大値を基にアンプに電力を供給する共通電源を選定する共通電源選定部と、を備える。
 本開示の一態様であるコンピュータが読み取り可能な命令を記憶する記憶媒体は、1つ又は複数のプロセッサが実行することにより、産業機械のプログラムを取得し、プログラムを解析し、産業機械のモータを選定し、産業機械のモータに適合するアンプを選定し、プログラムの指令に従いモータを制御したときのモータの時間ごとの出力算出し、モータの時間ごとの出力の最大値を判定し、最大値を基にアンプに電力を供給する共通電源を選定する。
 本発明の一態様により、アンプ選定の分野で適切な機種を選定することができる。さらに、選定の際の動作設定を簡素化することもできる。
アンプ選定装置のブロック図である。 機械条件の設定画面である。 加減速制御の設定画面である。 加工プログラムの解析結果を示す表である。 加工プログラムに基づく工具の位置変化を示すグラフである。 加工プログラムに基づく工具の速度変化を示すグラフである。 加工プログラムの一例である。 モータとアンプの仕様値を示す図である。 アンプグループとアンプの関係を示す図である。 時間ごとの出力と共通電源の選定の関係を示す図である。 従来の共通電源の選定方法を示す図である。 アンプ選定装置の動作を示すフローチャートである。 算出したモータの電流値とアンプの仕様値とを示す図である。 本開示のアンプ選定装置のハードウェア構成図である。
[第1の開示]
 以下、第1の開示のアンプ選定装置100について説明する。
 第1の開示のアンプ選定装置100は、例えば、PC(パーソナルコンピュータ)などの情報処理装置に実装される。アンプ選定装置100には、産業機械のアンプを選定するための専用のソフトウェアがインストールされている。ユーザはソフトウェアを操作して、モータ、アンプ、共通電源を選定する。
 第1乃至第3の開示では、加工プログラムに基づき工作機械のモータ、アンプ、及び共通電源を選定する例について説明するが、工作機械以外のプレス機や射出成形機などの産業機械のモータ、アンプ、及び共通電源を選定してもよい。工作機械以外の産業機械のモータ、アンプ、及び共通電源の選定には、加工プログラムではなく動作プログラムを用いる。
 図1は、アンプ選定装置100のブロック図である。アンプ選定装置100は、条件取得部11、プログラム取得部12、プログラム解析部13、データ記憶部14、負荷算出部15、モータ選定部16、アンプ選定部17、出力算出部18、共通電源選定部19を備える。
 条件取得部11は、モータが駆動する機械の駆動機構、駆動機構の機械諸元、モータの加減速制御設定などモータの選定に必要な条件を取得する。機械の駆動機構には、ボールねじ機構、インデックス機構、プーリ機構などがある。機械諸元は、駆動機構の重量などの物性値である。
 図2は、駆動機構としてボールねじを選択したときの、機械諸元の設定画面である。機械条件として、機械効率、移動物重量、カウンターバランス、ボールねじ直径、ボールねじリード、ボールねじ長さ、減速比などが設定できる。設定内容は、これに限定されず、駆動機構によって異なる。
 モータの加減速制御情報は、時定数などの設定情報である。図3の設定画面では、加減速制御情報として、加減速タイプ、早送り時加減速時定数、切削送り時加減速時定数、位置ループゲイン、早送り速度、位置決め距離などが設定できる。
[規則91に基づく訂正 14.08.2023]
 プログラム取得部12は、工作機械の加工プログラムを取得する。加工プログラムは、外部から読み取ってもよいし、ユーザが入力してもよい。プログラム取得部12は、取得した加工プログラムの変更や追加なども受け付けてもよい。
 プログラム解析部13は、加工プログラムを解析して、工作機械の各軸の位置、速度、負荷などを表示する。図4の表は、加工プログラムの解析結果として、加工プログラムの行番号(ライン)、駆動機構の運転方式(モード)、時間、位置、速度、切削負荷、切削時間が表示される。図5のグラフは加工プログラムに基づく工作機械の工具の位置変化を示し、図6のグラフは加工プログラムに基づく工具の速度変化を示す。
 図7の加工プログラムを参照して、加工プログラムの解析方法について説明する。図7の加工プログラムの1行目「G90G94」は「座標系設定」である。この行は、モータの駆動には無関係であるため、解析結果を表やグラフに反映しない。
 加工プログラムの2行目「G04X0.5」は「X軸モータを0.5秒停止」という指令である。プログラム解析部13は、この加工プログラムを解析して、図4の表の1行目に、モード「停止時間」、時間「0.5秒」、位置「0」という解析結果を表示する。
 加工プログラムの3行目「G00X100.F30000」は「X軸を速度30000mm/minで100mm移動」という指令である。プログラム解析部13は、図4の表の2行目に、モード「早送り」、時間「-」、位置「100」、速度「30000」を表示する。このように、プログラム解析部13は、加工プログラムを解析しながら表とグラフを作成する。
 データ記憶部14は、モータ、アンプ、共通電源の選定に必要なデータを記憶している。データ記憶部14に記憶するデータには、定格出力、定格トルク、定格回転数、回転子慣性モーメント、磁気飽和係数などがあるが、これに限定されない。
 負荷算出部15は、機械の駆動機構、機械諸元、モータの加減速情報、加工プログラムの解析結果を基に、モータの負荷に関する値を算出する。本開示では、加工プログラムに基づきモータの負荷に関する値を算出する。そのため、実際の制御に近い値を取得することができる。
 モータの負荷に関する値には、慣性モーメント、負荷トルク、加速トルク、減速トルク、必要トルク、二乗平均トルク(実効負荷トルク)などがある。
 (式1)は必要トルクの計算式であり、(式2)は二乗平均トルクの計算式である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 モータ選定部16は、算出した必要トルクに対して十分な余裕があり、モータの出力軸にかかる慣性モーメントに対し所望のパルス速度で起動及び停止が可能であり、モータの出力軸にかかる慣性モーメントに対して所望の加速時定数及び減速時定数が確保できるモータを仮選定する。
 モータ選定部16は、仮選定したモータのトルク実効値、加減速時定数、過負荷特性、モータ加熱許容値などを確認し、工作機械の使用目的を満たすモータを選定する。
[規則91に基づく訂正 14.08.2023]
 アンプ選定部17は、データ記憶部14からモータの最大電流と連続電流の仕様値を取得し、モータの最大電流と連続電流を上回る最大電流と連続電流を持つアンプを選定する。なお、最大電流とは、最大トルクを出すときに短時間で流すことが可能な最大の電流値であり、連続電流とは、モータが過熱することなしに連続で流すことが可能な最大の電流値である。最大電流と連続電流は、モータの仕様で予め決まっている。
 図8を参照してアンプの選定方法を説明する。前提として工作機械のモータは複数あり、複数のモータのうちX軸のモータが既に選定されているものとする。モータが選定されると、アンプの候補が決まる。図8の例では、「アンプ1」と「アンプ2」という選定候補が決まる。
 選定されたX軸モータにおいて、最大電流の仕様値は「48Ap」、連続電流の仕様値は「12Ap」である。「アンプ1」の最大電流は「40Ap」、連続電流は「11.5Ap」である。「アンプ2」の最大電流は「80Ap」、連続電流は「22.5Ap」である。アンプ選定部17は、X軸モータの最大電流と連続電流とを上回る最大電流と連続電流を持つアンプを選定する。図8の例では、「アンプ2」を選定する。
 アンプは、共通電源ごとにグループ化されている。図9は、共通のグループに属するアンプの一覧である。アンプグループ名「AmpGroup1」のグループには、軸名称「X」「Y」「Z」「主軸」のモータが含まれる。図9の表には、選定されたアンプの機種名が表示される。
 出力算出部18は、回転速度とトルクからモータ出力を算出する。モータ出力とモータ損失から、出力を算出する。出力は、モータ動作の際に電源からの供給が必要な出力である。モータ出力、モータ損失の計算は、既存の技術なので説明を省略する。
 (式3)は、回転速度の計算式である。出力算出部18は、時系列の回転速度の計算において加工プログラムの解析結果を用いる。データ記憶部14、負荷算出部15、加工プログラムの解析結果を参照することにより、共通電源に接続された全てのモータの加工プログラム上の時系列の出力を算出することができる。
Figure JPOXMLDOC01-appb-M000003
[規則91に基づく訂正 14.08.2023]
 出力は、時系列で算出する。図10は、出力を時系列に並べた表である。図10の例では、「X軸」「Y軸」「Z軸」「主軸」の4つのモータの出力を1分ごとに一覧表示している。出力算出部18は、加工プログラムに従って工作機械を制御したときの4つのモータの出力を時系列に並べる。
 共通電源選定部19は、出力算出部18が算出した時間ごとの出力の合計値を算出し、合計値の最大値を判定する。図10の例では、「1min」の合計出力が「14kW」、「2min」の合計出力が「25kW」、…、「30min」の合計出力が「7kW」であり、出力の合計の最大値が「2min」の「25kW」であることが分かる。
[規則91に基づく訂正 14.08.2023]
 共通電源選定部19は、算出した出力の最大値と、共通電源の仕様から、出力の最大値を上回る容量を有する共通電源のうち最小出力の共通電源を選定する。
 図10の下表は、共通電源の仕様値を示す。2つの「共通電源1」及び「共通電源2」の最大出力はそれぞれ「27kW」、「40kW」である。「共通電源1」の最大出力「27kW」は、合計出力の最大値「25kW」を上回る。共通電源選定部19は、「X軸」「Y軸」「Z軸」「主軸」のモータの共通電源として「共通電源1」を選定する。
[規則91に基づく訂正 14.08.2023]
 比較のため、図11を参照して、従来の共通電源の選定方法を示す。従来の共通電源の選定では、最大出力の仕様値の合計値を求めて、合計値を上回る出力の共通電源を選定する。図11の例では、「X軸」のモータの最大出力が「8kW」、「Y軸」のモータの最大出力が「8kW」、「Z軸」のモータの最大出力が「8kW」、「主軸」のモータの最大出力が「6kW」である。4つのモータの最大出力の仕様値の合計は「30kW」である。従来の共通電源の選定では、仕様値の合計「30kW」を上回る最大出力を持つ「共通電源2」を選定する。
 従来の選定方法では、各モータの最大出力を基に共通電源を選定するため、過剰選定になることがある。本開示によれば、このような過剰選定を防止することができる。
 図12は、本開示のアンプ選定装置100の動作を示すフローチャートである。
 アンプ選定装置100は、モータを選定するための情報として、駆動機構及び機械諸元を取得し(ステップS1)、加減速制御情報を取得し(ステップS2)、加工プログラムを取得する(ステップS3)。
 アンプ選定装置100は、加工プログラムを解析し、解析結果を時系列に並べる(ステップS4)。
 アンプ選定装置100は、産業機械の駆動機構、機械諸元、モータの加減速情報、加工プログラムの解析結果を基に、モータの負荷に関する値を算出する。モータの負荷に関する値には、慣性モーメント、負荷トルク、加速トルクあるいは減速トルク、必要トルク、二乗平均トルクなどがある(ステップS5)。
 アンプ選定装置100は、モータの負荷に関する値を基にモータの選定を行う(ステップS6)。モータの選定方法は、既存の技術なので説明を省略する。
 アンプ選定装置100は、選定したモータを基に最大電流と連続電流の仕様値を取得する(ステップS7)。アンプ選定装置100は、取得したモータの最大電流と連続電流の仕様値を基に、アンプを選定する(ステップS8)。
 アンプ選定装置100は、共通電源から電源を供給されるモータに対し、前記加工プログラムの解析結果に従い、各モータの出力を時系列に算出する(ステップS9)。アンプ選定装置100は、時間ごとのモータの出力の合計値を算出する(ステップS10)。
 アンプ選定装置100は、モータの出力の合計値の最大値を判定する(ステップS11)。アンプ選定装置100は、最大出力がステップS11で求めた最大値よりも大きい共通電源を選定する(ステップS12)
[第2の開示]
 次いで、第2の開示のアンプ選定装置100について説明する。
 第2の開示のアンプ選定装置100は、第1の開示のアンプ選定装置100と同じ構成を備える。第1の開示のアンプ選定装置100と第2の開示のアンプ選定装置100との違いは、アンプ選定部17におけるアンプ選定方法である。
 第2の開示のアンプ選定部17は、最大電流と二乗平均電流を算出し、算出した必要電流と二乗平均電流を用いてアンプの選定を行う。最大電流は、必要な最大の電流である。最大電流は、必要トルクから算出する。(式4)は、必要電流と二乗平均電流の計算式である。同期モータでは、ある程度の電流まで、トルクと電流は、トルク定数を係数として比例関係にあるが、電流を更に増やす場合、磁気飽和という現象があり、磁気飽和の影響で電流あたりに発生するトルクが低下する。そのため磁気飽和を考慮して必要電流を算出する。磁気飽和係数は、同じモータでもトルク範囲によって異なる。磁気飽和係数は、予めデータ記憶部14に記憶する。算出した必要電流と二乗平均電流を用いてアンプを選定することにより、実トルクに見合った無駄のない設定が可能である。
Figure JPOXMLDOC01-appb-M000004
[規則91に基づく訂正 14.08.2023]
 図13は、加工プログラムに従い算出した最大電流と二乗平均電流の一例を示す。アンプ選定部17は、必要トルクから必要電流、二乗平均トルクから二乗平均電流を算出する。算出したX軸モータの最大電流は「40Ap」、二乗平均電流は「9Ap」になる。アンプ選定部17は、算出した最大電流「40Ap」及び二乗平均電流「9Ap」を上回る最大出力を持つ「アンプ1」を選定する。
 第1の開示のアンプの選定では、X軸モータの仕様で決められた最大電流及び連続電流を用いた。仕様で決められた最大電流及び連続電流は、余裕を持たせていることが多いので、過剰な能力のアンプを選定することがある。
 第2の開示のアンプ選定装置100は、仕様値の最大電流と連続電流ではなく、加工プログラムに従い算出した最大電流と二乗平均電流を基に、アンプを選定するため、過剰選定を防止することができる。
[第3の開示]
 次いで、第3の開示のアンプ選定装置100について説明する。
 第3の開示のアンプ選定装置100は、リニアモータを選定する。第3の開示のアンプ選定装置100の構成は、第1の開示のアンプ選定装置100と同じであるため、説明を省略する。
 第3の開示のアンプ選定装置100では、負荷算出部15及び出力算出部18の計算式が異なる。リニアモータでは、必要トルクではなく必要推力を算出し、二乗平均トルクではなく二乗平均推力を算出する。必要推力から必要電流、二乗平均推力から二乗平均電流を算出する。(式5)は必要推力の計算式であり、(式6)は二乗平均推力の計算式であり、(式7)は必要電流、及び二乗平均電流の計算式である。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 出力算出部18は、速度と推力からリニアモータの出力を算出する。リニアモータ出力とリニアモータ損失から、出力を算出する。出力は、リニアモータ動作の際に電源からの供給が必要な出力である。リニアモータ出力、リニアモータ損失の計算は、既存の技術なので説明を省略する。出力算出部18は、加工プログラムの解析結果を用いて速度を取得する。データ記憶部14、負荷算出部15、加工プログラムの解析結果を用いて速度を出力する。データ記憶部14、負荷算出部15、加工プログラムの解析結果を参照することにより、共通電源に接続された全てのリニアモータの実際の動作に必要な出力を時系列で算出することができる。
 共通電源選定部19は、出力算出部18が算出した時間ごとの出力の合計値を算出し、合計値の最大値を判定する。共通電源選定部19は、算出した出力の最大値を上回る容量を有する共通電源を選定する。
 上述したように、本開示のアンプ選定装置100は、リニアモータの選定にも適用することができる。
[規則91に基づく訂正 14.08.2023]
[ハードウェア構成]
 第1の開示乃至第3の開示におけるアンプ選定装置100は、図14のようなハードウェア構成を有する。
 図14を参照して、アンプ選定装置100のハードウェア構成を説明する。アンプ選定装置100が備えるCPU111は、アンプ選定装置100を全体的に制御するプロセッサである。CPU111は、バスを介してROM112に加工されたシステム・プログラムを読み出し、該システム・プログラムに従ってアンプ選定装置100の全体を制御する。RAM113には、一時的な計算データや表示データ、入力部71を介してユーザが入力した各種データ等が一時的に格納される。
 表示部70は、アンプ選定装置100に付属のモニタなどである。表示部70は、アンプ選定用のソフトウェアの操作画面などを表示する。
 入力部71は、表示部70と一体、又は、表示部70とは別のキーボード、タッチパネルなどである。ユーザは入力部71を操作して、アンプ及び共通電源を選定する。
 不揮発性メモリ114は、例えば、図示しないバッテリでバックアップされるなどして、アンプ選定装置100の電源がオフされても記憶状態が保持されるメモリである。不揮発性メモリ114には、図示しないインタフェースを介して外部機器から読み込まれたプログラムや入力部71を介して入力されたプログラム、アンプ選定装置100の各部や工作機械等から取得された各種データ(例えば、工作機械から取得した設定パラメータ等)が記憶される。不揮発性メモリ114に記憶されたプログラムや各種データは、実行時/利用時にはRAM113に展開されてもよい。また、ROM112には、各種のシステム・プログラムがあらかじめ書き込まれている。
[規則91に基づく訂正 14.08.2023]
 本開示のアンプ選定装置100では、加工プログラムを基に、実際の制御に近い値を用いて、モータを選定することができる。
 また、本開示のアンプ選定装置100では、加工プログラムを基に、各モータの出力を時系列に算出する。モータの出力は時間ごとに変化するが、時間ごとに変化する複数のモータの出力を合計することにより、実際の制御に近い合計出力が取得できるようになり、実トルクに見合った無駄のない設定が可能である。
  100 アンプ選定装置
  11  条件取得部
  12  プログラム取得部
  13  プログラム解析部
  14  データ記憶部
  15  負荷算出部
  16  モータ選定部
  17  アンプ選定部
  18  出力算出部
  19  共通電源選定部
  111 CPU
  112 ROM
  113 RAM
  114 不揮発性メモリ

Claims (6)

  1.  産業機械のモータのアンプを選定するアンプ選定装置であって、
     前記産業機械のプログラムを取得するプログラム取得部と、
     前記プログラムを解析するプログラム解析部と、
     前記産業機械のモータを選定するモータ選定部と、
     前記産業機械のモータに適合するアンプを選定するアンプ選定部と、
     前記プログラムの指令に従い前記モータを制御したときの前記モータの時間ごとの出力を算出する出力算出部と、
     前記モータの時間ごとの出力の最大値を判定し、前記最大値を基に前記アンプに電力を供給する共通電源を選定する共通電源選定部と、
     を備えるアンプ選定装置。
  2.  前記産業機械のモータは複数あり、前記共通電源選定部は、前記複数のモータの時間ごとの出力の合計値を算出し、前記時間ごとの合計値の最大値を判定し、前記合計値の最大値を基に共通電源を選定する、請求項1記載のアンプ選定装置。
  3.  前記プログラムに従い、必要トルク又は必要推力を算出する負荷算出部を備え、
     前記アンプ選定部は、前記必要トルク又は必要推力を基に、必要電流を算出し、前記必要電流を基にアンプを選定する請求項1記載のアンプ選定装置。
  4.  前記プログラムに従い、二乗平均トルク又は二乗平均推力を算出する負荷算出部を備え、
     前記アンプ選定部は、前記二乗平均トルク又は二乗平均推力を基に、二乗平均電流を算出し、前記二乗平均電流を基にアンプを選定する請求項1記載のアンプ選定装置。
  5.  前記プログラム取得部は、前記プログラムの入力機能、及び変更機能の少なくとも1つを備える、請求項1記載のアンプ選定装置。
  6.  1つ又は複数のプロセッサが実行することにより、
     産業機械のプログラムを取得し、
     前記プログラムを解析し、
     前記産業機械のモータを選定し、
     前記産業機械のモータに適合するアンプを選定し、
     前記プログラムの指令に従い前記モータを制御したときの前記モータの時間ごとの出力算出し、
     前記モータの時間ごとの出力の最大値を判定し、前記最大値を基に前記アンプに電力を供給する共通電源を選定する
     コンピュータが読み取り可能な命令を記憶する記憶媒体。
PCT/JP2021/027902 2021-07-28 2021-07-28 アンプ選定装置、及びコンピュータが読み取り可能な記憶媒体 WO2023007615A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180100777.3A CN117677953A (zh) 2021-07-28 2021-07-28 放大器选定装置以及计算机能够读取的存储介质
JP2021560678A JP7015419B1 (ja) 2021-07-28 2021-07-28 アンプ選定装置、及びコンピュータが読み取り可能な記憶媒体
PCT/JP2021/027902 WO2023007615A1 (ja) 2021-07-28 2021-07-28 アンプ選定装置、及びコンピュータが読み取り可能な記憶媒体
DE112021007696.5T DE112021007696T5 (de) 2021-07-28 2021-07-28 Verstärkerwahlvorrichtung und computerlesbares speichermedium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027902 WO2023007615A1 (ja) 2021-07-28 2021-07-28 アンプ選定装置、及びコンピュータが読み取り可能な記憶媒体

Publications (2)

Publication Number Publication Date
WO2023007615A1 WO2023007615A1 (ja) 2023-02-02
WO2023007615A9 true WO2023007615A9 (ja) 2023-10-26

Family

ID=80781090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027902 WO2023007615A1 (ja) 2021-07-28 2021-07-28 アンプ選定装置、及びコンピュータが読み取り可能な記憶媒体

Country Status (4)

Country Link
JP (1) JP7015419B1 (ja)
CN (1) CN117677953A (ja)
DE (1) DE112021007696T5 (ja)
WO (1) WO2023007615A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6381249B2 (ja) * 2014-03-27 2018-08-29 日本電産サンキョー株式会社 モータ駆動装置、モータ駆動装置の電源選定方法、およびプログラム
JP6348095B2 (ja) * 2015-11-13 2018-06-27 ファナック株式会社 電動機システムを選定するための選定装置、ネットワークシステム、及び方法
JP6457586B2 (ja) * 2017-06-06 2019-01-23 ファナック株式会社 誤選定時に誤り箇所を明示する機能を有するアンプ選定装置、アンプ選定方法、及びアンプ選定プログラム
JP6640805B2 (ja) * 2017-09-19 2020-02-05 ファナック株式会社 電源容量表示機能を有するアンプ選択装置、アンプ選択方法、及びアンプ選択プログラム
JP6770038B2 (ja) 2018-09-26 2020-10-14 ファナック株式会社 複数のコンバータユニットを有するシステムにおけるサーボアンプ選定装置

Also Published As

Publication number Publication date
CN117677953A (zh) 2024-03-08
DE112021007696T5 (de) 2024-03-14
JPWO2023007615A1 (ja) 2023-02-02
JP7015419B1 (ja) 2022-02-02
WO2023007615A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
CN104380218A (zh) 数控装置
US7034491B2 (en) Numerical controller
JP5469214B2 (ja) 指定条件に基づいて情報を表示する工作機械のデータ表示装置
JPWO2016067384A1 (ja) 工作機械の制御方法および工作機械の制御装置
CN105629887A (zh) 控制具有切削条件变更功能的机床的控制装置
JP2009098981A (ja) 加工時間算出装置およびそのプログラム
EP2871016A2 (en) Wire-cut electrical discharge machining machine and method of machining therein
WO2023007615A9 (ja) アンプ選定装置、及びコンピュータが読み取り可能な記憶媒体
JP2762788B2 (ja) 移動体の動作表示装置及びその表示方法
JPH11296214A (ja) 数値制御装置
US20230376000A1 (en) Control device
JPH09500331A (ja) Cnc工作機械用制御装置
Martin et al. Modelling and simulation of the milling action
JP2008225652A (ja) 数値制御装置
CN108015622B (zh) 机床的数值控制装置
JP2008211888A (ja) 電動機制御装置および電動機制御装置のパラメータ設定装置
CN111185801A (zh) 数值控制装置
US20230361709A1 (en) Estimation device for estimating drive state of electric motor disposed in machine tool
CN110170883B (zh) 攻丝加工的控制装置
JP7490149B1 (ja) 消費電力量調整装置、数値制御装置、および消費電力量調整方法
JP7355563B2 (ja) 制御装置
WO2022210294A9 (ja) 加工作業補助装置、及び記憶媒体
WO2023067699A1 (ja) 加工面推定装置およびコンピュータ読み取り可能な記憶媒体
WO2023242945A1 (ja) モータモニタリング装置
CN112904802A (zh) 程序解析装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021560678

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112021007696

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202180100777.3

Country of ref document: CN