WO2023007530A1 - Catalyst warm-up control method and device for internal combustion engine - Google Patents

Catalyst warm-up control method and device for internal combustion engine Download PDF

Info

Publication number
WO2023007530A1
WO2023007530A1 PCT/JP2021/027469 JP2021027469W WO2023007530A1 WO 2023007530 A1 WO2023007530 A1 WO 2023007530A1 JP 2021027469 W JP2021027469 W JP 2021027469W WO 2023007530 A1 WO2023007530 A1 WO 2023007530A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst warm
internal combustion
turbine
combustion engine
Prior art date
Application number
PCT/JP2021/027469
Other languages
French (fr)
Japanese (ja)
Inventor
容康 木村
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2021/027469 priority Critical patent/WO2023007530A1/en
Publication of WO2023007530A1 publication Critical patent/WO2023007530A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to catalyst warm-up control in an internal combustion engine having a catalyst upstream of the turbine of a turbocharger.
  • the catalyst provided in the exhaust system for purifying exhaust gas is often arranged downstream of the turbine of the turbocharger.
  • the catalyst may be placed upstream of the turbine of the turbocharger. In such a configuration, even if the waste gate valve is fully opened during the catalyst warm-up operation, it is not effective for heating the catalyst.
  • the present invention relates to catalyst warm-up control for an internal combustion engine in which at least one catalyst is arranged upstream of a turbine of a turbocharger, wherein during catalyst warm-up operation, the opening of a waste gate valve of the turbine is reduced or the opening of the turbine is reduced.
  • the opening of the variable nozzle By reducing the opening of the variable nozzle, the temperature of the exhaust gas upstream of the turbine is increased.
  • FIG. 2 is a configuration explanatory diagram of a series hybrid vehicle
  • FIG. 1 is a configuration explanatory diagram of an internal combustion engine to which catalyst warm-up control of one embodiment is applied; Explanatory drawing of a variable nozzle.
  • FIG. 2 shows the system configuration of the internal combustion engine 2.
  • the internal combustion engine 2 is a four-stroke cycle spark ignition internal combustion engine equipped with a turbocharger 12.
  • a pair of intake valves 14 and a pair of exhaust valves 15 are arranged on the ceiling wall surface of each cylinder 13.
  • an ignition plug 16 is arranged in a central portion surrounded by the intake valve 14 and the exhaust valve 15 .
  • a fuel injection valve 17 that supplies fuel into the cylinder 13 is provided below the intake valve 14 .
  • the engine controller 8 controls the ignition timing of the ignition plug 16 and the injection timing and injection amount of fuel by the fuel injection valve 17 .
  • variable valve timing mechanisms 18 and 19 that can change their opening timing and closing timing.
  • variable valve timing mechanisms 18 and 19 may be of any type, for example, a type of mechanism that retards the phase of the camshaft with respect to the phase of the crankshaft can be used.
  • the recirculation valve 27 is basically for suppressing a phenomenon in which the pressure rises transiently upstream of the throttle valve 22 when the throttle valve 22 suddenly closes and decelerates rapidly. is open, the pressure downstream of the compressor 12a is released to the low pressure side upstream of the compressor 12a.
  • a turbine 12 b of the turbocharger 12 is positioned in the exhaust passage 30 , and a catalyst device 31 is arranged upstream of this turbine 12 b , that is, between the turbine 12 b and the exhaust valve 15 .
  • the catalyst device 31 has a shape in which a three-way catalyst 31A, a particulate filter (so-called GPF) 31B for collecting exhaust particulates, and an oxidation catalyst 31C are arranged in series from the upstream side. It has a configuration that is combined with A selective catalytic reduction device, that is, an SCR device 32 is arranged downstream of the turbine 12b to reduce NOx using urea water as a second catalyst.
  • the upstream catalytic device 31 is mounted, for example, adjacent to the cylinder head of the internal combustion engine 2, and the SCR device 32 is arranged, for example, under the floor of the vehicle.
  • Turbine 12b includes a wastegate valve 34 that bypasses a portion of the exhaust in response to boost pressure to control boost pressure.
  • the wastegate valve 34 is of an electric type whose opening is controlled by the engine controller 8 .
  • an exhaust gas recirculation passage 35 for recirculating part of the exhaust gas from the exhaust passage 30 to the intake passage 21 is provided. It is
  • the engine controller 8 includes a crank angle sensor 41 for detecting the engine rotation speed, a water temperature sensor 42 for detecting the cooling water temperature, and a catalyst temperature of the catalyst device 31 (for example, catalyst temperature sensors 43 and 44 for detecting the catalyst temperature of the three-way catalyst 31A) and the catalyst temperature of the SCR device 32, respectively; an atmospheric pressure sensor 45 for detecting atmospheric pressure; Detection signals from sensors such as the supercharging pressure sensor 47 are input. Based on these detection signals, the engine controller 8 controls the fuel injection amount, injection timing, ignition timing, opening of the throttle valve 22, opening of the recirculation valve 27, opening of the waste gate valve 34, intake valve 14 and The opening/closing timing of the exhaust valve 15, etc. are optimally controlled. Instead of directly detecting the carrier temperature of the catalyst, the catalyst temperature sensors 43 and 44 may indirectly determine the catalyst temperature from the temperature of the gas before and after the catalyst.
  • the catalytic converter 31 is warmed up before the actual start of power generation in order to quickly secure the exhaust purification performance by warming up the catalytic converter 31 .
  • a warm-up operation is performed.
  • air-fuel ratio control is executed with the stoichiometric air-fuel ratio as the target air-fuel ratio, and retarded combustion is performed in which the ignition timing is retarded due to an increase in exhaust temperature.
  • the waste gate valve 34 in the turbine 12b of the turbocharger 12 is controlled to be fully closed. This increases the resistance to the exhaust flow, increasing the pressure and temperature of the exhaust from the exhaust valve 15 to the turbine 12b. As a result, the catalyst device 31 located upstream of the turbine 12b is effectively warmed, and the three-way catalyst 31A and the oxidation catalyst 31C quickly reach their activation temperatures. When at least the most upstream three-way catalyst 31A reaches the activation temperature, the exhaust purification action during the catalyst warm-up operation can be obtained.
  • a first method for suppressing the output is correction for decreasing the opening of the throttle valve 22.
  • the second means is to appropriately open the recirculation valve 27, which is generally opened during deceleration (when the throttle valve 22 is closed), to reduce the supercharging pressure.
  • the temperature of the SCR device 32 is monitored when the upstream catalyst warm-up progresses to some extent, and if the temperature of the SCR device 32 is below the threshold, the opening of the waste gate valve 34 is increased. to correct. As a result, part of the exhaust gas is introduced into the SCR device 32 without passing through the turbine 12b, thereby promoting the warm-up of the SCR device 32.
  • FIG. 3 is an explanatory diagram of an example of the variable nozzle 51.
  • the turbocharger 12 equipped with the variable nozzle 51 is adapted to correspond to the magnitude of the exhaust flow rate by varying the nozzle area of the exhaust inlet in the scroll of the turbine 12b. 52 operates to change the nozzle area of the variable nozzle 51 .
  • variable nozzle 51 is controlled to the minimum opening degree during the catalyst warm-up operation. This increases the resistance to the flow of the exhaust, again increasing the pressure and temperature of the exhaust from the exhaust valve 15 to the turbine 12b. Therefore, the catalyst device 31 located upstream of the turbine 12b is effectively warmed.
  • Warming up of the SCR device 32 on the downstream side is also the same as in the above embodiment. If there is, the opening degree of the variable nozzle 51 is corrected to increase.
  • variable nozzle 51 can be set to the minimum opening degree, and in addition, the waste gate valve 34 can be fully closed.
  • the variable nozzle 51 may be set to the minimum opening.
  • control that fully closes the waste gate valve 34 or minimizes the opening of the variable nozzle 51 during catalyst warm-up operation also improves the transient response when transitioning from catalyst warm-up operation to power generation operation. contribute. That is, since the turbine 12b is maintained in a state of rotating at a relatively high speed, the output can be immediately increased to the vicinity of the best fuel consumption point.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the present invention is not limited to the internal combustion engine of a series hybrid vehicle, and can be widely applied to other types of hybrid vehicles and internal combustion engines of general vehicles using only an internal combustion engine as a drive source.
  • the catalyst arranged upstream of the turbine is not limited to the catalyst device having the combined structure as in the above embodiment, and may be any catalyst such as a three-way catalyst or an oxidation catalyst depending on the specifications of the internal combustion engine.
  • the present invention is not limited to internal combustion engines that perform lean combustion.
  • the waste gate valve 34 is fully closed or the variable nozzle 51 is set to the minimum opening during catalyst warm-up, but it may be set to an appropriate intermediate opening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supercharger (AREA)

Abstract

An internal combustion engine (2) which drives a motor generator (1) for generating electricity in a series hybrid vehicle includes a catalyst device (31) upstream of a turbine (12b) of a turbocharger (12). Catalyst warm-up operation occurs prior to effective full power generation operation at the start of a vehicle trip. An engine controller (8) fully closes a wastegate valve (34) during catalyst warm-up operation. This increases the resistance to the flow of exhaust, increasing the pressure and temperature of the exhaust on the upstream side of the turbine (12b). This promotes warm-up of the catalyst device (31). An opening degree of a throttle valve (22) is reduced, for example, to limit output.

Description

内燃機関の触媒暖機制御方法および装置METHOD AND APPARATUS FOR INTERNAL COMBUSTION ENGINE CATALYST WARM-UP CONTROL
 この発明は、ターボチャージャのタービン上流に触媒を備えた内燃機関における触媒暖機制御に関する。 This invention relates to catalyst warm-up control in an internal combustion engine having a catalyst upstream of the turbine of a turbocharger.
 ターボチャージャを備えた内燃機関にあっては、排気浄化のために排気系に設けられる触媒は、多くの場合、ターボチャージャのタービンの下流側に配置される。このような構成では、冷機始動後に行われる触媒暖機運転の際にタービンのウェストゲートバルブを全開とすることが一般的である。すなわち、タービンを通らずに排気をタービン下流の触媒に案内することで、触媒の早期活性化を図っている。 In an internal combustion engine with a turbocharger, the catalyst provided in the exhaust system for purifying exhaust gas is often arranged downstream of the turbine of the turbocharger. In such a configuration, it is common to fully open the wastegate valve of the turbine during catalyst warm-up operation that is performed after a cold start. That is, early activation of the catalyst is attempted by guiding the exhaust gas to the catalyst downstream of the turbine without passing through the turbine.
 一方、内燃機関の仕様によっては、ターボチャージャのタービン上流に触媒が配置されることがある。このような構成では、触媒暖機運転時にウェストゲートバルブを全開としても触媒の加熱に有効ではない。 On the other hand, depending on the specifications of the internal combustion engine, the catalyst may be placed upstream of the turbine of the turbocharger. In such a configuration, even if the waste gate valve is fully opened during the catalyst warm-up operation, it is not effective for heating the catalyst.
 なお、特許文献1には、触媒がタービンの下流に配置された構成において触媒暖機運転時にウェストゲートバルブの開度を縮小することが開示されているが、これは、冷機始動直後に集まる凝縮水がA/Fセンサに衝突することがないようにするためのものであり、触媒の早期暖機とは無関係である。 Patent document 1 discloses reducing the opening of the waste gate valve during catalyst warm-up operation in a configuration in which the catalyst is arranged downstream of the turbine. This is to keep water from hitting the A/F sensor and has nothing to do with early catalyst warm up.
特開2014-005779号公報JP 2014-005779 A
 この発明は、ターボチャージャのタービン上流に少なくとも1つの触媒が配置された内燃機関の触媒暖機制御であって、触媒暖機運転時に、上記タービンのウェストゲートバルブの開度の縮小もしくは上記タービンの可変ノズルの開度の縮小により上記タービン上流の排温を上昇させる。 The present invention relates to catalyst warm-up control for an internal combustion engine in which at least one catalyst is arranged upstream of a turbine of a turbocharger, wherein during catalyst warm-up operation, the opening of a waste gate valve of the turbine is reduced or the opening of the turbine is reduced. By reducing the opening of the variable nozzle, the temperature of the exhaust gas upstream of the turbine is increased.
 このようにタービン上流の排温が上昇することで、タービン上流に位置する触媒の温度が早期に上昇し、排気浄化作用が早期に得られる。 As the temperature of the exhaust gas upstream of the turbine rises in this way, the temperature of the catalyst positioned upstream of the turbine rises quickly, and the exhaust gas purification action can be obtained quickly.
シリーズハイブリッド車両の構成説明図。FIG. 2 is a configuration explanatory diagram of a series hybrid vehicle; 一実施例の触媒暖機制御が適用される内燃機関の構成説明図。FIG. 1 is a configuration explanatory diagram of an internal combustion engine to which catalyst warm-up control of one embodiment is applied; 可変ノズルの説明図。Explanatory drawing of a variable nozzle.
 図1は、この発明が適用される車両の一例としてシリーズハイブリッド車両の構成を概略的に示している。シリーズハイブリッド車両は、主に発電機として動作する発電用モータジェネレータ1と、この発電用モータジェネレータ1を電力要求に応じて駆動する発電用内燃機関として用いられる内燃機関2と、主にモータとして動作して駆動輪3を駆動する走行用モータジェネレータ4と、発電した電力を一時的に蓄えるバッテリ5と、を備えて構成されている。内燃機関2が発電用モータジェネレータ1を駆動することによって得られた電力は、図示しないインバータ装置を介してバッテリ5に蓄えられる。走行用モータジェネレータ4は、バッテリ5の電力を用いて駆動制御される。走行用モータジェネレータ4の回生時の電力は、やはり図示しないインバータ装置を介してバッテリ5に蓄えられる。 FIG. 1 schematically shows the configuration of a series hybrid vehicle as an example of a vehicle to which the present invention is applied. The series hybrid vehicle includes a motor generator 1 for power generation that mainly operates as a power generator, an internal combustion engine 2 that is used as an internal combustion engine for power generation that drives the motor generator 1 for power generation according to electric power demand, and an internal combustion engine 2 that mainly operates as a motor. It is composed of a traveling motor generator 4 that drives the drive wheels 3 as a driving force, and a battery 5 that temporarily stores the generated electric power. Electric power obtained by the internal combustion engine 2 driving the motor generator 1 is stored in the battery 5 via an inverter device (not shown). The driving motor generator 4 is driven and controlled using the electric power of the battery 5 . Electric power generated during regeneration by the motor generator 4 for traveling is stored in the battery 5 via an inverter device (not shown).
 図2は、内燃機関2のシステム構成を示している。この内燃機関2は、ターボチャージャ12を備えた4ストロークサイクルの火花点火式内燃機関であって、各シリンダ13の天井壁面に、一対の吸気弁14および一対の排気弁15が配置されているとともに、これらの吸気弁14および排気弁15に囲まれた中央部に点火プラグ16が配置されている。吸気弁14の下方には、シリンダ13内へ燃料を供給する燃料噴射弁17が設けられている。点火プラグ16の点火時期および燃料噴射弁17による燃料の噴射時期ならびに噴射量はエンジンコントローラ8によって制御される。 FIG. 2 shows the system configuration of the internal combustion engine 2. The internal combustion engine 2 is a four-stroke cycle spark ignition internal combustion engine equipped with a turbocharger 12. A pair of intake valves 14 and a pair of exhaust valves 15 are arranged on the ceiling wall surface of each cylinder 13. , and an ignition plug 16 is arranged in a central portion surrounded by the intake valve 14 and the exhaust valve 15 . A fuel injection valve 17 that supplies fuel into the cylinder 13 is provided below the intake valve 14 . The engine controller 8 controls the ignition timing of the ignition plug 16 and the injection timing and injection amount of fuel by the fuel injection valve 17 .
 また吸気弁14および排気弁15は、各々の開時期および閉時期を変更可能な可変バルブタイミング機構18,19を備えている。この可変バルブタイミング機構18,19はどのような形式のものであってもよいが、例えばクランクシャフトの位相に対してカムシャフトの位相を遅進させる形式の機構を用いることができる。 In addition, the intake valve 14 and the exhaust valve 15 are provided with variable valve timing mechanisms 18 and 19 that can change their opening timing and closing timing. Although the variable valve timing mechanisms 18 and 19 may be of any type, for example, a type of mechanism that retards the phase of the camshaft with respect to the phase of the crankshaft can be used.
 吸気通路21は、吸気コレクタ21aを有し、この吸気コレクタ21aよりも上流側に、エンジンコントローラ8からの制御信号によって開度が制御される電子制御型スロットルバルブ22が設けられている。スロットルバルブ22の上流側に、ターボチャージャ12のコンプレッサ12aが位置し、このコンプレッサ12aよりも上流に、吸入空気量を検出するエアフロメータ24およびエアクリーナ25が配設されている。コンプレッサ12aとスロットルバルブ22との間には、高温高圧となった吸気を冷却するために、例えば水冷式のインタークーラ26が設けられている。また、コンプレッサ12aの吐出側と吸入側とを連通するようにリサーキュレーションバルブ27が設けられている。リサーキュレーションバルブ27は、基本的には、スロットルバルブ22が急に閉じた急減速時にスロットルバルブ22上流で圧力が過渡的に上昇する現象を抑制するためのものであり、リサーキュレーションバルブ27が開いた状態ではコンプレッサ12a下流の圧力がコンプレッサ12a上流の低圧側に逃がされる。 The intake passage 21 has an intake collector 21a, and an electronically controlled throttle valve 22 whose opening is controlled by a control signal from the engine controller 8 is provided upstream of the intake collector 21a. A compressor 12a of the turbocharger 12 is positioned upstream of the throttle valve 22, and an air flow meter 24 and an air cleaner 25 for detecting the amount of intake air are disposed upstream of the compressor 12a. A water-cooled intercooler 26, for example, is provided between the compressor 12a and the throttle valve 22 to cool the high temperature and high pressure intake air. A recirculation valve 27 is provided to communicate the discharge side and the suction side of the compressor 12a. The recirculation valve 27 is basically for suppressing a phenomenon in which the pressure rises transiently upstream of the throttle valve 22 when the throttle valve 22 suddenly closes and decelerates rapidly. is open, the pressure downstream of the compressor 12a is released to the low pressure side upstream of the compressor 12a.
 排気通路30には、ターボチャージャ12のタービン12bが位置し、このタービン12bの上流側つまりタービン12bと排気弁15との間に触媒装置31が配置されている。この実施例においては、触媒装置31は、上流側から順に、三元触媒31Aと、排気微粒子を捕集するための微粒子フィルタ(いわゆるGPF)31Bと、酸化触媒31Cと、が直列に並んだ形に組み合わされた構成となっている。またタービン12bの下流側には、第2の触媒として、尿素水を用いてNOxの還元処理を行う選択触媒還元装置つまりSCR装置32が配置されている。上流側の触媒装置31は例えば内燃機関2のシリンダヘッドに隣接して搭載されており、SCR装置32は例えば車両の床下に配置されている。 A turbine 12 b of the turbocharger 12 is positioned in the exhaust passage 30 , and a catalyst device 31 is arranged upstream of this turbine 12 b , that is, between the turbine 12 b and the exhaust valve 15 . In this embodiment, the catalyst device 31 has a shape in which a three-way catalyst 31A, a particulate filter (so-called GPF) 31B for collecting exhaust particulates, and an oxidation catalyst 31C are arranged in series from the upstream side. It has a configuration that is combined with A selective catalytic reduction device, that is, an SCR device 32 is arranged downstream of the turbine 12b to reduce NOx using urea water as a second catalyst. The upstream catalytic device 31 is mounted, for example, adjacent to the cylinder head of the internal combustion engine 2, and the SCR device 32 is arranged, for example, under the floor of the vehicle.
 排気通路30の触媒装置31よりも上流側に、空燃比を検出する空燃比センサ33が配置されている。タービン12bは、過給圧を制御するために過給圧に応じて排気の一部をバイパスするウェストゲートバルブ34を備えている。ウェストゲートバルブ34は、エンジンコントローラ8によって開度が制御される電動型の構成のものが用いられている。 An air-fuel ratio sensor 33 that detects the air-fuel ratio is arranged upstream of the catalyst device 31 in the exhaust passage 30 . Turbine 12b includes a wastegate valve 34 that bypasses a portion of the exhaust in response to boost pressure to control boost pressure. The wastegate valve 34 is of an electric type whose opening is controlled by the engine controller 8 .
 また、排気通路30から吸気通路21へ排気の一部を還流する排気還流通路35を備えており、この排気還流通路35には、例えば水冷式のEGRガスクーラ37と、EGRバルブ38と、が設けられている。 Further, an exhaust gas recirculation passage 35 for recirculating part of the exhaust gas from the exhaust passage 30 to the intake passage 21 is provided. It is
 上記エンジンコントローラ8には、上記のエアフロメータ24、空燃比センサ33のほか、機関回転速度を検出するためのクランク角センサ41、冷却水温を検出する水温センサ42、触媒装置31の触媒温度(例えば三元触媒31Aの触媒温度)およびSCR装置32の触媒温度をそれぞれ検出する触媒温度センサ43,44、大気圧を検出する大気圧センサ45、外気温を検出する外気温センサ46、過給圧を検出する過給圧センサ47、等のセンサ類の検出信号が入力されている。エンジンコントローラ8は、これらの検出信号に基づき、燃料噴射量および噴射時期、点火時期、スロットルバルブ22の開度、リサーキュレーションバルブ27の開度、ウェストゲートバルブ34の開度、吸気弁14や排気弁15の開閉時期、等を最適に制御している。なお、触媒温度センサ43,44としては、触媒の担体温度を直接に検出することに代えて、前後のガス温度等から間接的に触媒温度を求めるものであってもよい。 In addition to the air flow meter 24 and the air-fuel ratio sensor 33, the engine controller 8 includes a crank angle sensor 41 for detecting the engine rotation speed, a water temperature sensor 42 for detecting the cooling water temperature, and a catalyst temperature of the catalyst device 31 (for example, catalyst temperature sensors 43 and 44 for detecting the catalyst temperature of the three-way catalyst 31A) and the catalyst temperature of the SCR device 32, respectively; an atmospheric pressure sensor 45 for detecting atmospheric pressure; Detection signals from sensors such as the supercharging pressure sensor 47 are input. Based on these detection signals, the engine controller 8 controls the fuel injection amount, injection timing, ignition timing, opening of the throttle valve 22, opening of the recirculation valve 27, opening of the waste gate valve 34, intake valve 14 and The opening/closing timing of the exhaust valve 15, etc. are optimally controlled. Instead of directly detecting the carrier temperature of the catalyst, the catalyst temperature sensors 43 and 44 may indirectly determine the catalyst temperature from the temperature of the gas before and after the catalyst.
 内燃機関2は、基本的には、バッテリ5のSOCが所定の始動SOC値まで低下したときに始動され、SOCが所定レベルまで回復すると停止する。このように内燃機関2が発電用モータジェネレータ1を駆動して発電を行っているときは、基本的には、内燃機関2は燃費最良点付近で運転され、本実施例では、空燃比をリーンとしたリーン運転がなされる。このようなリーン運転の際に生じた未燃HCは、一部が三元触媒31Aで浄化され、さらに下流の酸化触媒31Cで浄化される。また排気微粒子は、微粒子フィルタ31Bで捕集される。さらに、リーン運転によるNOxは、一部が三元触媒31Aで浄化されるが、主にSCR装置32によって還元処理される。なお、リーン運転では排気温度が比較的に低くなるが、触媒装置31がタービン12bの上流に位置するので、タービン12bにより温度低下する前の排気が触媒装置31に案内され、十分な触媒作用が維持される。 The internal combustion engine 2 is basically started when the SOC of the battery 5 drops to a predetermined starting SOC value, and stops when the SOC recovers to a predetermined level. When the internal combustion engine 2 drives the electric power generating motor generator 1 to generate electric power, the internal combustion engine 2 is basically operated near the best fuel consumption point. and lean operation is performed. A portion of the unburned HC generated during such lean operation is purified by the three-way catalyst 31A and further purified by the downstream oxidation catalyst 31C. Exhaust particulates are also collected by the particulate filter 31B. Further, NOx generated by lean operation is partially purified by the three-way catalyst 31A, but is mainly reduced by the SCR device 32. In lean operation, the exhaust gas temperature is relatively low, but since the catalyst device 31 is positioned upstream of the turbine 12b, the exhaust gas before the temperature is lowered by the turbine 12b is guided to the catalyst device 31, and sufficient catalytic action is obtained. maintained.
 一方、車両がトリップを開始したとき、内燃機関2が既に暖機状態である場合を除き、触媒装置31を暖めて速やかに排気浄化性能を確保するために、実質的な発電開始に先立って触媒暖機運転が実行される。本実施例では、触媒暖機運転の際は、理論空燃比を目標空燃比とした空燃比制御が実行され、また、排気温度上昇のために点火時期をリタードしたリタード燃焼となる。 On the other hand, when the vehicle starts to trip, except for the case where the internal combustion engine 2 is already warmed up, the catalytic converter 31 is warmed up before the actual start of power generation in order to quickly secure the exhaust purification performance by warming up the catalytic converter 31 . A warm-up operation is performed. In this embodiment, during catalyst warm-up operation, air-fuel ratio control is executed with the stoichiometric air-fuel ratio as the target air-fuel ratio, and retarded combustion is performed in which the ignition timing is retarded due to an increase in exhaust temperature.
 このような触媒暖機運転の際に、本実施例では、ターボチャージャ12のタービン12bにおけるウェストゲートバルブ34が全閉に制御される。これにより排気の流れに対する抵抗が大きくなり、排気弁15からタービン12bに至る間の排気の圧力および温度が上昇する。これにより、タービン12bの上流に位置する触媒装置31が効果的に暖められ、三元触媒31Aや酸化触媒31Cが速やかに活性温度に到達する。少なくとも最上流の三元触媒31Aが活性温度に到達すれば、触媒暖機運転中の排気浄化作用が得られるようになる。 During such catalyst warm-up operation, in this embodiment, the waste gate valve 34 in the turbine 12b of the turbocharger 12 is controlled to be fully closed. This increases the resistance to the exhaust flow, increasing the pressure and temperature of the exhaust from the exhaust valve 15 to the turbine 12b. As a result, the catalyst device 31 located upstream of the turbine 12b is effectively warmed, and the three-way catalyst 31A and the oxidation catalyst 31C quickly reach their activation temperatures. When at least the most upstream three-way catalyst 31A reaches the activation temperature, the exhaust purification action during the catalyst warm-up operation can be obtained.
 この触媒暖機運転では、内燃機関2の大きな出力は不要であり、未燃HCの排出抑制等の観点から排気のガス量が少ないことが望ましい。ウェストゲートバルブ34を全閉とすることで、ターボチャージャ12の過給作用が大きくなる傾向となるので、好ましい一実施例では、下記の1つあるいは複数の手段を用いて、触媒暖機運転時にウェストゲートバルブ34の開度縮小に合わせて出力抑制を行う。出力抑制の第1の手段は、スロットルバルブ22の開度の減少補正であり、スロットルバルブ22の開度を閉じ側に制御することで、内燃機関2の出力および排気ガス量を抑制する。第2の手段は、一般に減速時(スロットルバルブ22の閉動作時)に開くリサーキュレーションバルブ27を適宜に開いて過給圧を低下させることである。第3の手段は、可変バルブタイミング機構18,19を用いて吸気弁14および排気弁15の開閉時期を体積効率が低下する方向に制御することである。これらの出力抑制手段は、いずれかを単独で用いてもよく、あるいは適宜に組み合わせて用いてもよい。 In this catalyst warm-up operation, a large output of the internal combustion engine 2 is not required, and it is desirable that the exhaust gas amount is small from the viewpoint of emission control of unburned HC. By fully closing the waste gate valve 34, the supercharging effect of the turbocharger 12 tends to be increased. The output is suppressed in accordance with the reduction of the opening of the waste gate valve 34 . A first method for suppressing the output is correction for decreasing the opening of the throttle valve 22. By controlling the opening of the throttle valve 22 to the closing side, the output of the internal combustion engine 2 and the amount of exhaust gas are suppressed. The second means is to appropriately open the recirculation valve 27, which is generally opened during deceleration (when the throttle valve 22 is closed), to reduce the supercharging pressure. A third means is to use the variable valve timing mechanisms 18 and 19 to control the opening/closing timings of the intake valve 14 and the exhaust valve 15 in the direction in which the volumetric efficiency decreases. Any one of these output suppression means may be used alone, or may be used in combination as appropriate.
 また、触媒暖機運転中にウェストゲートバルブ34が全閉であると、タービン12bの下流に位置するSCR装置32の触媒暖機は遅れがちとなる。そのため、好ましい一実施例では、上流側の触媒暖機がある程度進行した段階でSCR装置32の温度を監視し、SCR装置32の温度が閾値以下であれば、ウェストゲートバルブ34の開度を増加補正する。これにより一部の排気がタービン12bを通らずにSCR装置32に導入されるようになり、SCR装置32の暖機が促進される。 Also, if the waste gate valve 34 is fully closed during the catalyst warm-up operation, catalyst warm-up of the SCR device 32 located downstream of the turbine 12b tends to be delayed. Therefore, in a preferred embodiment, the temperature of the SCR device 32 is monitored when the upstream catalyst warm-up progresses to some extent, and if the temperature of the SCR device 32 is below the threshold, the opening of the waste gate valve 34 is increased. to correct. As a result, part of the exhaust gas is introduced into the SCR device 32 without passing through the turbine 12b, thereby promoting the warm-up of the SCR device 32.
 次に、ターボチャージャ12のタービン12bが可変ノズルを備えている第2実施例について説明する。図3は、可変ノズル51の一例の説明図である。可変ノズル51を備えたターボチャージャ12は、タービン12bのスクロールにおける排気入口のノズル面積を可変とすることで排気流量の大小に対応できるようにしたものであり、エンジンコントローラ8からの制御信号によってアクチュエータ52が動作し、可変ノズル51のノズル面積が変更される。 Next, a second embodiment in which the turbine 12b of the turbocharger 12 has a variable nozzle will be described. FIG. 3 is an explanatory diagram of an example of the variable nozzle 51. As shown in FIG. The turbocharger 12 equipped with the variable nozzle 51 is adapted to correspond to the magnitude of the exhaust flow rate by varying the nozzle area of the exhaust inlet in the scroll of the turbine 12b. 52 operates to change the nozzle area of the variable nozzle 51 .
 本実施例では、触媒暖機運転の際に、可変ノズル51が最小開度に制御される。これにより、排気の流れに対する抵抗が大きくなり、やはり、排気弁15からタービン12bに至る間の排気の圧力および温度が上昇する。従って、タービン12bの上流に位置する触媒装置31が効果的に暖められることとなる。 In this embodiment, the variable nozzle 51 is controlled to the minimum opening degree during the catalyst warm-up operation. This increases the resistance to the flow of the exhaust, again increasing the pressure and temperature of the exhaust from the exhaust valve 15 to the turbine 12b. Therefore, the catalyst device 31 located upstream of the turbine 12b is effectively warmed.
 この可変ノズル51を最小開度に制御することによっても、ターボチャージャ12の過給作用が大となるので、上述した第1~第3の手段による出力抑制を併せて行うことが望ましい。 Controlling the variable nozzle 51 to the minimum opening also increases the supercharging effect of the turbocharger 12, so it is desirable to perform output suppression by means of the first to third means described above as well.
 また、下流のSCR装置32の暖機についても上記実施例と同様であり、上流側の触媒暖機がある程度進行した段階でSCR装置32の温度を監視し、SCR装置32の温度が閾値以下であれば、可変ノズル51の開度を増加補正する。 Warming up of the SCR device 32 on the downstream side is also the same as in the above embodiment. If there is, the opening degree of the variable nozzle 51 is corrected to increase.
 なお、触媒暖機運転時の可変ノズル51を最小開度とする制御は、前述したウェストゲートバルブ34を全閉とする制御と組み合わせて用いることも可能である。すなわち、可変ノズル51を最小開度とし、これに加えてウェストゲートバルブ34を全閉とすることができる。あるいは、ウェストゲートバルブ34を全閉とする制御に代えて、可変ノズル51を最小開度とするようにしてもよい。 It should be noted that the control that minimizes the opening of the variable nozzle 51 during the catalyst warm-up operation can be used in combination with the above-described control that fully closes the waste gate valve 34 . That is, the variable nozzle 51 can be set to the minimum opening degree, and in addition, the waste gate valve 34 can be fully closed. Alternatively, instead of controlling the waste gate valve 34 to be fully closed, the variable nozzle 51 may be set to the minimum opening.
 上記のように触媒暖機運転時にウェストゲートバルブ34を全閉としたり可変ノズル51を最小開度とする制御は、触媒暖機運転から発電用運転へ移行する際の過渡応答性の向上にも寄与する。すなわち、タービン12bが比較的高い回転数で回転している状態に維持されるので、直ちに燃費最良点付近の出力に高めることができる。 As described above, the control that fully closes the waste gate valve 34 or minimizes the opening of the variable nozzle 51 during catalyst warm-up operation also improves the transient response when transitioning from catalyst warm-up operation to power generation operation. contribute. That is, since the turbine 12b is maintained in a state of rotating at a relatively high speed, the output can be immediately increased to the vicinity of the best fuel consumption point.
 以上、この発明の一実施例を説明したが、この発明は上記実施例に限定されるものではなく、種々の変更が可能である。例えば、この発明は、シリーズハイブリッド車両の内燃機関に限らず、他の形式のハイブリッド車両や内燃機関のみを駆動源とする一般的な車両の内燃機関に広く適用が可能である。また、タービン上流に配置される触媒としては上記実施例のような組み合わせ構造を有する触媒装置に限らず、内燃機関の仕様に応じて、三元触媒や酸化触媒等、いかなる触媒であってもよい。勿論、この発明はリーン燃焼を行う内燃機関に限られるものではない。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications are possible. For example, the present invention is not limited to the internal combustion engine of a series hybrid vehicle, and can be widely applied to other types of hybrid vehicles and internal combustion engines of general vehicles using only an internal combustion engine as a drive source. Further, the catalyst arranged upstream of the turbine is not limited to the catalyst device having the combined structure as in the above embodiment, and may be any catalyst such as a three-way catalyst or an oxidation catalyst depending on the specifications of the internal combustion engine. . Of course, the present invention is not limited to internal combustion engines that perform lean combustion.
 また上記実施例では、触媒暖機運転時に、ウェストゲートバルブ34を全閉とし、あるいは、可変ノズル51を最小開度としているが、適当な中間開度であってもよい。 Further, in the above embodiment, the waste gate valve 34 is fully closed or the variable nozzle 51 is set to the minimum opening during catalyst warm-up, but it may be set to an appropriate intermediate opening.

Claims (9)

  1.  ターボチャージャのタービン上流に少なくとも1つの触媒が配置された内燃機関の触媒暖機制御方法であって、
     触媒暖機運転時に、上記タービンのウェストゲートバルブの開度の縮小もしくは上記タービンの可変ノズルの開度の縮小により上記タービン上流の排温を上昇させる、
     内燃機関の触媒暖機制御方法。
    A catalyst warm-up control method for an internal combustion engine in which at least one catalyst is arranged upstream of a turbine of a turbocharger,
    During catalyst warm-up operation, the exhaust temperature upstream of the turbine is increased by reducing the opening of the waste gate valve of the turbine or reducing the opening of the variable nozzle of the turbine.
    A catalyst warm-up control method for an internal combustion engine.
  2.  上記の触媒暖機運転時に、スロットルバルブの開度の減少補正を併せて行う、
     請求項1に記載の内燃機関の触媒暖機制御方法。
    At the time of the above catalyst warm-up operation, the reduction correction of the throttle valve opening is also performed.
    2. The catalyst warm-up control method for an internal combustion engine according to claim 1.
  3.  上記の触媒暖機運転時に、ターボチャージャのコンプレッサにおけるリサーキュレーションバルブを用いた過給圧低下制御を併せて行う、
     請求項1または2に記載の内燃機関の触媒暖機制御方法。
    At the time of the above catalyst warm-up operation, supercharging pressure reduction control using a recirculation valve in the compressor of the turbocharger is also performed.
    3. The catalyst warm-up control method for an internal combustion engine according to claim 1 or 2.
  4.  吸気弁および排気弁の少なくとも一方に可変バルブタイミング機構を備えており、
     上記の触媒暖機運転時に、体積効率が低下する方向に上記可変バルブタイミング機構を制御する、
     請求項1~3のいずれかに記載の内燃機関の触媒暖機制御方法。
    At least one of the intake valve and exhaust valve is equipped with a variable valve timing mechanism,
    controlling the variable valve timing mechanism in a direction in which the volumetric efficiency decreases during the catalyst warm-up operation;
    A catalyst warm-up control method for an internal combustion engine according to any one of claims 1 to 3.
  5.  上記の触媒暖機運転時に、上記ウェストゲートバルブを全閉とする、
     請求項1に記載の内燃機関の触媒暖機制御方法。
    Fully closing the waste gate valve during the catalyst warm-up operation,
    2. The catalyst warm-up control method for an internal combustion engine according to claim 1.
  6.  上記の触媒暖機運転時に、上記可変ノズルの開度を最小開度とする、
     請求項1に記載の内燃機関の触媒暖機制御方法。
    setting the opening of the variable nozzle to be the minimum opening during the catalyst warm-up operation;
    2. The catalyst warm-up control method for an internal combustion engine according to claim 1.
  7.  上記タービンの下流に第2の触媒を備えており、
     この第2の触媒の温度が閾値以下であれば上記ウェストゲートバルブの開度を増加補正する、
     請求項5に記載の内燃機関の触媒暖機制御方法。
    comprising a second catalyst downstream of the turbine;
    If the temperature of the second catalyst is equal to or lower than the threshold value, the opening of the waste gate valve is corrected to increase.
    6. The catalyst warm-up control method for an internal combustion engine according to claim 5.
  8.  上記タービンの下流に第2の触媒を備えており、
     この第2の触媒の温度が閾値以下であれば上記可変ノズルの開度を増加補正する、
     請求項6に記載の内燃機関の触媒暖機制御方法。
    comprising a second catalyst downstream of the turbine;
    If the temperature of the second catalyst is equal to or lower than the threshold value, the opening degree of the variable nozzle is corrected to increase.
    7. The catalyst warm-up control method for an internal combustion engine according to claim 6.
  9.  ウェストゲートバルブおよび可変ノズルの少なくとも一方を有するターボチャージャと、このターボチャージャのタービン上流に配置された少なくとも1つの触媒と、コントローラと、を備えた内燃機関の触媒暖機制御装置であって、
     上記コントローラは、触媒暖機運転時に、上記タービン上流の排温を上昇させるために、上記タービンのウェストゲートバルブの開度の縮小もしくは上記タービンの可変ノズルの開度の縮小を行う、
     内燃機関の触媒暖機制御装置
    A catalyst warm-up control device for an internal combustion engine, comprising: a turbocharger having at least one of a wastegate valve and a variable nozzle; at least one catalyst arranged upstream of the turbine of the turbocharger; and a controller,
    The controller reduces the opening of the waste gate valve of the turbine or the opening of the variable nozzle of the turbine in order to increase the exhaust temperature upstream of the turbine during catalyst warm-up operation.
    Catalyst warm-up controller for internal combustion engine
PCT/JP2021/027469 2021-07-26 2021-07-26 Catalyst warm-up control method and device for internal combustion engine WO2023007530A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027469 WO2023007530A1 (en) 2021-07-26 2021-07-26 Catalyst warm-up control method and device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027469 WO2023007530A1 (en) 2021-07-26 2021-07-26 Catalyst warm-up control method and device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2023007530A1 true WO2023007530A1 (en) 2023-02-02

Family

ID=85086410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027469 WO2023007530A1 (en) 2021-07-26 2021-07-26 Catalyst warm-up control method and device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2023007530A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208742A (en) * 2007-02-23 2008-09-11 Toyota Motor Corp Diesel engine control device
JP2008280873A (en) * 2007-05-09 2008-11-20 Nissan Motor Co Ltd Internal combustion engine
WO2013105226A1 (en) * 2012-01-11 2013-07-18 トヨタ自動車株式会社 Control device for internal combustion engine
JP2020118050A (en) * 2019-01-21 2020-08-06 トヨタ自動車株式会社 Control device for internal combustion engine mounted with supercharger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208742A (en) * 2007-02-23 2008-09-11 Toyota Motor Corp Diesel engine control device
JP2008280873A (en) * 2007-05-09 2008-11-20 Nissan Motor Co Ltd Internal combustion engine
WO2013105226A1 (en) * 2012-01-11 2013-07-18 トヨタ自動車株式会社 Control device for internal combustion engine
JP2020118050A (en) * 2019-01-21 2020-08-06 トヨタ自動車株式会社 Control device for internal combustion engine mounted with supercharger

Similar Documents

Publication Publication Date Title
EP2165059B1 (en) Internal combustion engine exhaust gas control system and control method of internal combustion engine exhaust gas control system
JP3925397B2 (en) Turbocharger control device with electric motor
JP2009228448A (en) Supercharging device of engine
JP6236960B2 (en) Control device and control method for spark ignition internal combustion engine
JP3994855B2 (en) Control device for internal combustion engine
JPH05321643A (en) Exhaust device of engine having turbo supercharger
JP2009235920A (en) Fuel injection control device of cylinder injection internal combustion engine with supercharger
JP2007002813A (en) Exhaust control device for supercharged internal combustion engine
JP2006322398A (en) Internal combustion engine
WO2023007530A1 (en) Catalyst warm-up control method and device for internal combustion engine
JP6907691B2 (en) Intake and exhaust structure of compressed natural gas engine
JP4061280B2 (en) Control unit for gasoline engine with variable nozzle mechanism turbocharger
JP6939986B2 (en) Internal combustion engine exhaust purification device temperature control method and internal combustion engine control device
JP2012167562A (en) Diesel engine
JP4042546B2 (en) Control device for internal combustion engine
JP4032773B2 (en) Internal combustion engine
JP6699272B2 (en) Engine and control method thereof
JP2004278326A (en) Egr control device of internal combustion engine
WO2022130614A1 (en) Catalyst warm-up control method for internal combustion engine, and catalyst warm-up control device
JP6406158B2 (en) Engine control device
JP7477049B2 (en) Hybrid vehicle control method and hybrid vehicle control device
JPWO2019106740A1 (en) Control method and control device for internal combustion engine for vehicle
JP2013047498A (en) Exhaust emission control device for engine
JP7105414B2 (en) HYBRID VEHICLE CONTROL METHOD AND HYBRID VEHICLE CONTROL DEVICE
JP2011007113A (en) Control device for internal combustion engine of cylinder injection type

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE