JP2011007113A - Control device for internal combustion engine of cylinder injection type - Google Patents

Control device for internal combustion engine of cylinder injection type Download PDF

Info

Publication number
JP2011007113A
JP2011007113A JP2009151754A JP2009151754A JP2011007113A JP 2011007113 A JP2011007113 A JP 2011007113A JP 2009151754 A JP2009151754 A JP 2009151754A JP 2009151754 A JP2009151754 A JP 2009151754A JP 2011007113 A JP2011007113 A JP 2011007113A
Authority
JP
Japan
Prior art keywords
exhaust
internal combustion
valve
combustion engine
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009151754A
Other languages
Japanese (ja)
Inventor
Hiroaki Fujii
宏明 藤井
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009151754A priority Critical patent/JP2011007113A/en
Priority to DE102010030496.4A priority patent/DE102010030496B4/en
Publication of JP2011007113A publication Critical patent/JP2011007113A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0246Variable control of the exhaust valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0249Variable control of the exhaust valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine of cylinder injection type capable of reducing the particle matter (PM) exhaust amount by re-combusting the PM such as smoke generated in the combustion chamber of the engine.SOLUTION: On the basis of the engine operating condition, whether the PM generated in the combustion chamber of the engine 11 will increase or not is predicted, and if increase of PM is predicted, an exhaust side variable valve lift device 40 is controlled so as to retard the opening timing of an exhaust valve 38. If, like this, the opening timing of the exhaust valve 38 is retarded when the PM generated in the combustion chamber is predicted to increase, the period of confining the high-temperature combustion gas immediately after ignition within the combustion chamber of the engine 11 can be widened by an amount corresponding to the angle retard of the valve opening timing of the exhaust value 38. This widens the high-temperature period (re-combustion period) in which the PM generated in the combustion chamber is exposed to high-temperature gas, which reduces the PM exhaust amount through promotion of the PM re-combustion in the combustion chamber.

Description

本発明は、筒内に燃料を直接噴射する筒内噴射式内燃機関の制御装置に関する発明である。   The present invention relates to a control apparatus for a direct injection internal combustion engine that directly injects fuel into a cylinder.

近年、内燃機関の高出力化、低燃費化、低エミッション化の要求を満たすために、筒内噴射内燃機関(直噴エンジン)を搭載した車両が増加している。この筒内噴射内燃機関は運転条件によっては、スモーク等のパーティクルマターの排出量が増加するため、従来より、スモーク排出量を低減する技術が幾つか提案されている。   In recent years, in order to satisfy the demands for high output, low fuel consumption, and low emission of internal combustion engines, vehicles equipped with in-cylinder injection internal combustion engines (direct injection engines) are increasing. Since this cylinder injection internal combustion engine increases the discharge amount of particle matter such as smoke depending on the operating conditions, several techniques for reducing the smoke discharge amount have been proposed.

例えば、特許文献1(特開2002−327651号公報)では、燃焼室の温度を推定して、その推定温度が所定温度以下のときに、排気に黒煙が含まれる状態であると判断して、内部EGRを増加させるとともに、燃焼状態が不安定になると判断された場合にはそれを抑制する制御(例えば内部EGR量の減少、点火時期の進角、燃料噴射時期の進角、吸入空気量の増加等)を行うことで、黒煙の発生を抑制し、かつ燃焼が不安定になるのを防ぐようにしている。   For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-327651), the temperature of the combustion chamber is estimated, and when the estimated temperature is equal to or lower than a predetermined temperature, it is determined that the exhaust contains black smoke. Control that increases the internal EGR and suppresses the combustion state when it is determined to be unstable (for example, reduction of the internal EGR amount, advance of the ignition timing, advance of the fuel injection timing, intake air amount) Etc.), the generation of black smoke is suppressed and combustion is prevented from becoming unstable.

また、特許文献2(特開2008−88856号公報)では、ピストンウエット(ピストン付着燃料量)が多くなると、スモークが発生量が多くなるという関係を考慮して、燃料噴射期間中において、ピストン位置が高いときに、ピストン位置が低いときと比較して、燃料噴射弁から噴射する燃料の貫徹力が弱くなるように噴射燃料の貫徹力を少くとも2段階に切り換えるようにしている。   Further, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2008-88856), the piston position is increased during the fuel injection period in consideration of the relationship that when the piston wet (piston adhesion fuel amount) increases, the amount of smoke generated increases. When the fuel pressure is high, the penetrating force of the injected fuel is switched to at least two stages so that the penetrating force of the fuel injected from the fuel injection valve is weaker than when the piston position is low.

特開2002−327651号公報JP 2002-327651 A 特開2008−88856号公報JP 2008-88856 A

上記特許文献1,2のスモーク低減技術は、いずれも、エンジンの燃焼室内で発生するスモーク発生量を低減する技術である。しかし、エンジン運転条件や燃料性状によっては、スモーク発生量を十分に低減できない場合がある。このような場合、燃焼室で発生したスモークは、排気管中の触媒によっては浄化されないため、そのままテールパイプから車外に放出される。   The smoke reduction techniques of Patent Documents 1 and 2 are techniques for reducing the amount of smoke generated in the combustion chamber of the engine. However, depending on engine operating conditions and fuel properties, the amount of smoke generated may not be sufficiently reduced. In such a case, the smoke generated in the combustion chamber is not purified by the catalyst in the exhaust pipe, and thus is directly discharged from the tail pipe to the outside of the vehicle.

そこで、本発明が解決しようとする課題は、内燃機関の燃焼室内で発生したスモーク等のパーティクルマター(以下「PM」と表記する)を再燃焼させてPM排出量を低減できる筒内噴射式内燃機関の制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is that a cylinder injection type internal combustion engine that can reduce the PM emission amount by recombusting particle matter such as smoke (hereinafter referred to as “PM”) generated in the combustion chamber of the internal combustion engine. It is to provide an engine control device.

上記課題を解決するために、請求項1に係る発明は、筒内に燃料を直接噴射する筒内噴射式内燃機関の制御装置において、排気バルブの少なくとも開弁タイミングを変化させる排気側可変バルブ装置と、前記内燃機関の運転状態に基づいて該内燃機関の燃焼室内で発生するPMが増加するか否かを予測するPM増加予測手段と、前記PM増加予測手段によりPMの増加が予測されたときに前記排気バルブの開弁タイミングを遅角させるように前記排気側可変バルブ装置を制御する制御手段とを備えた構成としたものである。   In order to solve the above-mentioned problems, an invention according to claim 1 is directed to an exhaust side variable valve device that changes at least the valve opening timing of an exhaust valve in a control device for a direct injection internal combustion engine that directly injects fuel into the cylinder. PM increase prediction means for predicting whether or not the PM generated in the combustion chamber of the internal combustion engine increases based on the operating state of the internal combustion engine, and when the PM increase is predicted by the PM increase prediction means And a control means for controlling the exhaust-side variable valve device so as to retard the valve opening timing of the exhaust valve.

このように、内燃機関の燃焼室内で発生するPMの増加が予測されたときに、排気バルブの開弁タイミングを遅角させるようにすれば、内燃機関の燃焼室内に着火直後の高温の燃焼ガスを閉じ込める期間を、排気バルブの開弁タイミングを遅角させる分だけ拡大することができる。これにより、燃焼室内で発生したPMが高温ガスに晒される高温期間(再燃焼期間)を拡大することができ、この高温期間中に発生したPMの再燃焼を促進して、PM排出量を効果的に低減することができる。   As described above, when the increase in PM generated in the combustion chamber of the internal combustion engine is predicted, if the opening timing of the exhaust valve is retarded, the high-temperature combustion gas immediately after ignition in the combustion chamber of the internal combustion engine The period during which the exhaust gas is confined can be extended by delaying the valve opening timing of the exhaust valve. As a result, the high temperature period (reburning period) during which the PM generated in the combustion chamber is exposed to the high temperature gas can be expanded, and the reburning of the PM generated during this high temperature period is promoted, and the PM emission amount is effective. Can be reduced.

この場合、請求項2のように、PM増加予測手段は、内燃機関の運転状態が成層燃焼時、冷間始動時、高負荷時のいずれかに該当するときに、PMが増加すると予測するようにすると良い。一般に、成層燃焼は、均質燃焼と比べてPMが発生しやすい。また、冷間始動時や高負荷時は、均質燃焼でもPMが発生しやすい。従って、成層燃焼時、冷間始動時、高負荷時のいずれかに該当するか否かで、PMが増加するか否かを予測することが可能である。   In this case, as described in claim 2, the PM increase prediction means predicts that PM increases when the operating state of the internal combustion engine corresponds to any of stratified combustion, cold start, and high load. It is good to make it. In general, stratified combustion is more likely to generate PM than homogeneous combustion. Further, at the time of cold start or high load, PM is likely to be generated even in homogeneous combustion. Therefore, it is possible to predict whether or not PM will increase depending on whether it corresponds to any of stratified combustion, cold start, and high load.

ところで、排気バルブの開弁タイミングを遅角させるほど、内部EGR量(排気残留量)が増加する傾向があり、内部EGR量が多くなり過ぎると、燃焼安定性が低下する。
そこで、請求項3のように、PM増加予測手段によりPMの増加が予測されたときに、内部EGR量を推定し、推定した内部EGR量に基づいて燃焼安定性を確保できる範囲内で排気バルブの開弁タイミングを遅角させるようにすると良い。このようにすれば、内部EGR量が過多になることにより燃焼安定性が低下することを回避することができ、PM排出量低減と燃焼安定性確保とを両立させることができる。
By the way, as the opening timing of the exhaust valve is retarded, the internal EGR amount (exhaust residual amount) tends to increase. If the internal EGR amount increases excessively, the combustion stability decreases.
Therefore, as described in claim 3, when an increase in PM is predicted by the PM increase prediction means, the internal EGR amount is estimated, and the exhaust valve is within a range in which combustion stability can be ensured based on the estimated internal EGR amount. It is advisable to delay the valve opening timing. In this way, it is possible to avoid a decrease in combustion stability due to an excessive amount of internal EGR, and it is possible to achieve both PM emission reduction and combustion stability ensuring.

上記請求項1〜3に係る発明で用いる排気側可変バルブ装置は、請求項4のように、排気バルブのバルブリフト量を変化させる可変バルブリフト装置であっても良いし、請求項5のように、排気バルブのバルブタイミングを変化させる可変バルブタイミング装置であっても良く、要は、排気バルブの少なくとも開弁タイミングを変化させることができる可変バルブ装置であれば良い。   The exhaust-side variable valve device used in the inventions according to claims 1 to 3 may be a variable valve lift device that changes the valve lift amount of the exhaust valve, as in claim 4, or as in claim 5. In addition, a variable valve timing device that changes the valve timing of the exhaust valve may be used. In short, any variable valve device that can change at least the valve opening timing of the exhaust valve may be used.

また、請求項6のように、筒内噴射式内燃機関の排気通路に設けられた排気タービンによって吸気通路に設けられたコンプレッサを駆動して吸入空気を過給する過給機と、前記排気タービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブとを備えた過給機付きの筒内噴射式内燃機関においては、内燃機関の運転状態に基づいて該内燃機関から排出されるPMが増加するか否かを予測し、前記ウェイストゲートバルブが開放されている運転領域でPMの増加が予測されたときに前記ウェイストゲートバルブを閉じるようにしても良い。つまり、ウェイストゲートバルブが開放されている運転領域でPMの増加が予測されたときに、ウェイストゲートバルブを閉じるようにすれば、排気タービンをバイパスする排気バイパス通路への燃焼ガスの流れが遮断されて、内燃機関から排出される燃焼ガスが全て排気タービン側の排気通路に流れるようになる。これにより、排気タービン側の排気通路内の排気圧力が上昇して該排気通路内の温度が上昇して、内燃機関から該排気通路内に排出される燃焼ガス中のPMの再燃焼が促進されて、PM排出量が効果的に低減される。   According to a sixth aspect of the present invention, there is provided a supercharger for supercharging intake air by driving a compressor provided in an intake passage by an exhaust turbine provided in an exhaust passage of a direct injection internal combustion engine, and the exhaust turbine In a cylinder injection internal combustion engine with a supercharger that includes a waste gate valve that opens and closes an exhaust bypass passage that bypasses the exhaust gas, does the PM discharged from the internal combustion engine increase based on the operating state of the internal combustion engine? The waste gate valve may be closed when an increase in PM is predicted in an operation region where the waste gate valve is open. In other words, if an increase in PM is predicted in the operating region where the waste gate valve is open, if the waste gate valve is closed, the flow of combustion gas to the exhaust bypass passage that bypasses the exhaust turbine is blocked. Thus, all the combustion gas discharged from the internal combustion engine flows into the exhaust passage on the exhaust turbine side. As a result, the exhaust pressure in the exhaust passage on the exhaust turbine side rises, the temperature in the exhaust passage rises, and the recombustion of PM in the combustion gas discharged from the internal combustion engine into the exhaust passage is promoted. Thus, the PM emission amount is effectively reduced.

また、請求項7のように、排気通路に二次空気を供給する二次空気供給装置を備えた筒内噴射式内燃機関においては、内燃機関の運転状態に基づいて該内燃機関から排出されるPMが増加するか否かを予測し、PMの増加が予測されたときに前記二次空気供給装置を作動させて前記排気通路に二次空気を供給するようにしても良い。つまり、PMの増加が予測されたときに排気通路に二次空気を供給するようにすれば、排気通路内の酸素濃度が上昇して、内燃機関から排気通路内に排出される燃焼ガス中のPMの再燃焼(酸化反応)が促進されて、PM排出量が効果的に低減される。   According to a seventh aspect of the present invention, in a direct injection internal combustion engine equipped with a secondary air supply device for supplying secondary air to the exhaust passage, the exhaust gas is discharged from the internal combustion engine based on the operating state of the internal combustion engine. Whether or not PM increases may be predicted, and when the increase in PM is predicted, the secondary air supply device may be operated to supply secondary air to the exhaust passage. In other words, if secondary air is supplied to the exhaust passage when an increase in PM is predicted, the oxygen concentration in the exhaust passage increases, and the combustion gas in the combustion gas discharged from the internal combustion engine into the exhaust passage PM recombustion (oxidation reaction) is promoted, and the amount of PM emission is effectively reduced.

図1は本発明の実施例1におけるエンジン制御システムの構成を概略的に示す図である。FIG. 1 is a diagram schematically showing a configuration of an engine control system in Embodiment 1 of the present invention. 図2は実施例1のPM低減制御ルーチンの処理の流れを示すフローチャートである。FIG. 2 is a flowchart illustrating a process flow of the PM reduction control routine according to the first embodiment. 図3はPM増加予測時に排気バルブの開弁タイミングを遅角させたときの筒内ガス平均温度の変化を通常時と比較して説明する図である。FIG. 3 is a diagram for explaining the change in the in-cylinder gas average temperature when the valve opening timing of the exhaust valve is retarded at the time of PM increase prediction as compared with the normal time. 図4は排気バルブの開弁タイミングを遅角させたときの筒内ガス平均温度の挙動とPM排出量との関係を説明する図である。FIG. 4 is a diagram for explaining the relationship between the behavior of the in-cylinder gas average temperature and the PM emission amount when the opening timing of the exhaust valve is retarded. 図5は本発明の実施例2における過給機付きのエンジン制御システムの構成を概略的に示す図である。FIG. 5 is a diagram schematically showing the configuration of an engine control system with a supercharger in Embodiment 2 of the present invention. 図6は実施例2のPM低減制御ルーチンの処理の流れを示すフローチャートである。FIG. 6 is a flowchart illustrating a process flow of the PM reduction control routine according to the second embodiment. 図7は本発明の実施例3における二次空気供給装置付きのエンジン制御システムの構成を概略的に示す図である。FIG. 7 is a diagram schematically showing the configuration of an engine control system with a secondary air supply device in Embodiment 3 of the present invention. 図8は実施例3のPM低減制御ルーチンの処理の流れを示すフローチャートである。FIG. 8 is a flowchart illustrating a process flow of the PM reduction control routine according to the third embodiment.

以下、本発明を実施するための形態を具体化した3つの実施例1〜3を説明する。   Hereinafter, three embodiments 1 to 3 embodying the mode for carrying out the present invention will be described.

本発明を排気側可変バルブ装置付きの筒内噴射式内燃機関に適用した実施例1を図1乃至図4に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の構成を概略的に説明する。
筒内噴射式の内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、DCモータ等のモータ15によって駆動されるスロットルバルブ16が設けられ、このスロットルバルブ16の開度(スロットル開度)がスロットル開度センサ17によって検出される。
A first embodiment in which the present invention is applied to an in-cylinder injection internal combustion engine with an exhaust-side variable valve device will be described with reference to FIGS.
First, the overall configuration of the engine control system will be schematically described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an in-cylinder internal combustion engine, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. . A throttle valve 16 driven by a motor 15 such as a DC motor is provided on the downstream side of the air flow meter 14, and an opening degree (throttle opening degree) of the throttle valve 16 is detected by a throttle opening degree sensor 17.

また、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20に、エンジン11の筒内の気流(スワール流やタンブル流)を制御する気流制御弁31が設けられている。   A surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 that introduces air into each cylinder of the engine 11, and the air flow (swirl flow or tumble flow) in the cylinder of the engine 11 is controlled by the intake manifold 20 of each cylinder. An airflow control valve 31 is provided.

一方、エンジン11の各気筒の上部には、それぞれ燃料を筒内に直接噴射する燃料噴射弁21が取り付けられている。エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。また、エンジン11の吸気バルブ37と排気バルブ38には、それぞれバルブリフト量と開弁タイミングを変化させる吸気側・排気側可変バルブリフト装置39,40(可変バルブ装置)が設けられている。各可変バルブリフト装置39,40は、油圧を駆動源とする油圧駆動式のものであっても良いし、モータ、ソレノイド等の電気アクチュエータを駆動源とする電気駆動式のものであっても良い。   On the other hand, a fuel injection valve 21 for directly injecting fuel into the cylinder is attached to the upper part of each cylinder of the engine 11. A spark plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 22. The intake valve 37 and the exhaust valve 38 of the engine 11 are provided with intake and exhaust side variable valve lift devices 39 and 40 (variable valve devices) for changing the valve lift amount and the valve opening timing, respectively. Each of the variable valve lift devices 39 and 40 may be a hydraulic drive type using hydraulic pressure as a drive source, or may be an electric drive type using an electric actuator such as a motor or a solenoid as a drive source. .

エンジン11のシリンダブロックには、ノッキングを検出するノックセンサ32と、冷却水温を検出する冷却水温センサ23と、所定クランク角毎にクランクパルスを出力するクランク角センサ24と、基準カム角毎にカムパルスを出力する吸気側・排気側カム角センサ(図示せず)が取り付けられ、クランクパルスの間隔(周波数)に基づいてエンジン回転速度が演算されると共に、カムパルスの出力位相を基準にしてクランクパルスをカウントしてそのカウント値からクランク角が検出される。更に、クランク角センサ24と吸気側・排気側カム角センサの出力パルスとの関係に基づいて吸気バルブ37の開弁タイミングと排気バルブ38の開弁タイミングが演算される。   The cylinder block of the engine 11 includes a knock sensor 32 that detects knocking, a cooling water temperature sensor 23 that detects cooling water temperature, a crank angle sensor 24 that outputs a crank pulse at every predetermined crank angle, and a cam pulse at every reference cam angle. Is installed, and the engine speed is calculated based on the crank pulse interval (frequency), and the crank pulse is calculated based on the cam pulse output phase. The crank angle is detected from the counted value. Further, the valve opening timing of the intake valve 37 and the valve opening timing of the exhaust valve 38 are calculated based on the relationship between the crank angle sensor 24 and the output pulses of the intake side / exhaust side cam angle sensor.

一方、エンジン11の排気管25(排気通路)には、排出ガスを浄化する上流側触媒26と下流側触媒27が設けられ、上流側触媒26の上流側に、排出ガスの空燃比又はリーン/リッチ等を検出する排出ガスセンサ28(空燃比センサ、酸素センサ等)が設けられている。本実施例1では、上流側触媒26として理論空燃比付近で排出ガス中のCO,HC,NOx等を浄化する三元触媒が設けられ、下流側触媒27としてNOx触媒(NOx吸蔵還元型触媒)が設けられている。このNOx触媒27は、排出ガスの空燃比がリーンのときに排出ガス中のNOxを吸蔵し、空燃比が理論空燃比付近又はリッチになったときに吸蔵NOxを還元浄化して放出する特性を持っている。   On the other hand, the exhaust pipe 25 (exhaust passage) of the engine 11 is provided with an upstream catalyst 26 and a downstream catalyst 27 for purifying exhaust gas, and an air-fuel ratio or lean / fuel ratio of the exhaust gas is disposed upstream of the upstream catalyst 26. An exhaust gas sensor 28 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting rich or the like is provided. In the first embodiment, a three-way catalyst for purifying CO, HC, NOx and the like in the exhaust gas is provided near the stoichiometric air-fuel ratio as the upstream side catalyst 26, and a NOx catalyst (NOx storage reduction type catalyst) as the downstream side catalyst 27. Is provided. The NOx catalyst 27 has a characteristic of storing NOx in the exhaust gas when the air-fuel ratio of the exhaust gas is lean, and reducing and purifying the stored NOx when the air-fuel ratio becomes near or rich in the stoichiometric air-fuel ratio. have.

また、排気管25のうちの上流側触媒26の下流側と吸気管12のうちのスロットルバルブ16の下流側のサージタンク18との間には、排出ガスの一部を吸気側に還流させるためのEGR配管33が接続され、このEGR配管33の途中にEGR量(排気還流量)を制御するEGR弁34が設けられている。   Further, in order to recirculate a part of the exhaust gas to the intake side between the downstream side of the upstream side catalyst 26 in the exhaust pipe 25 and the surge tank 18 on the downstream side of the throttle valve 16 in the intake pipe 12. The EGR pipe 33 is connected, and an EGR valve 34 for controlling the EGR amount (exhaust gas recirculation amount) is provided in the middle of the EGR pipe 33.

前述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)30に入力される。このECU30は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種の制御ルーチンを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や燃料噴射時期、点火プラグ22の点火時期、吸気側・排気側可変バルブリフト装置39,40のバルブリフト量と開弁タイミング等を制御する。   Outputs of the various sensors described above are input to an engine control circuit (hereinafter referred to as “ECU”) 30. The ECU 30 is mainly composed of a microcomputer, and executes various control routines stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount and fuel of the fuel injection valve 21 according to the engine operating state. The injection timing, the ignition timing of the ignition plug 22, the valve lift amounts and valve opening timings of the intake side / exhaust side variable valve lift devices 39, 40 are controlled.

このECU30は、エンジン運転状態(要求トルク、エンジン回転速度、負荷等)に応じて成層燃焼モードと均質燃焼モードとを切り換える。成層燃焼モードでは、少量の燃料を圧縮行程で筒内に直接噴射して点火プラグ22の近傍に成層混合気を形成して成層燃焼させることで、燃費を向上させる。一方、均質燃焼モードでは、燃料噴射量を成層燃焼時よりも増量して吸気行程で筒内に直接噴射して均質混合気を形成して均質燃焼させることで、エンジン出力を高める。   The ECU 30 switches between the stratified combustion mode and the homogeneous combustion mode according to the engine operating state (requested torque, engine speed, load, etc.). In the stratified charge combustion mode, a small amount of fuel is directly injected into the cylinder in the compression stroke, and a stratified mixture is formed in the vicinity of the spark plug 22 for stratified charge combustion, thereby improving fuel efficiency. On the other hand, in the homogeneous combustion mode, the engine output is increased by increasing the fuel injection amount more than in the stratified combustion and directly injecting it into the cylinder in the intake stroke to form a homogeneous mixture and performing homogeneous combustion.

一般に、成層燃焼は、均質燃焼と比べてスモーク等のパーティクルマター(以下「PM」と表記する)が発生しやすい。また、冷間始動時や高負荷時は、均質燃焼でもPMが発生しやすい。従って、成層燃焼時、冷間始動時、高負荷時には、エンジン11の燃焼室内でのPM発生量が多くなる。   In general, stratified combustion is more likely to generate particle matter such as smoke (hereinafter referred to as “PM”) than homogeneous combustion. Further, at the time of cold start or high load, PM is likely to be generated even in homogeneous combustion. Accordingly, the amount of PM generated in the combustion chamber of the engine 11 increases during stratified combustion, cold start, and high load.

そこで、本実施例1では、ECU30は、後述する図2のPM低減制御ルーチンを実行することで、エンジン運転状態に基づいてエンジン11の燃焼室内で発生するPMが増加するか否かを予測し、PMの増加が予測されたときに、排気バルブ38の開弁タイミングを遅角させるように排気側可変バルブリフト装置40を制御する。図3に示すように、エンジン11の燃焼室内で発生するPMの増加が予測されたときに、排気バルブ38の開弁タイミングを遅角させるようにすれば、エンジン11の燃焼室内に着火直後の高温の燃焼ガスを閉じ込める期間を、排気バルブ38の開弁タイミングを遅角させる分だけ拡大することができる。これにより、燃焼室内で発生したPMが高温ガスに晒される高温期間(再燃焼期間)を通常よりも拡大することができ、図4に示すように、高温期間を適度に拡大することで、燃焼室内でPMの再燃焼を促進して、PM排出量を効果的に低減することができる。   Therefore, in the first embodiment, the ECU 30 predicts whether or not the PM generated in the combustion chamber of the engine 11 increases based on the engine operating state by executing a PM reduction control routine of FIG. 2 described later. When the increase in PM is predicted, the exhaust side variable valve lift device 40 is controlled so as to retard the valve opening timing of the exhaust valve 38. As shown in FIG. 3, when the increase in PM generated in the combustion chamber of the engine 11 is predicted, if the valve opening timing of the exhaust valve 38 is retarded, the combustion chamber of the engine 11 immediately after ignition is set. The period during which the high-temperature combustion gas is confined can be extended by delaying the valve opening timing of the exhaust valve 38. As a result, the high temperature period (reburning period) during which the PM generated in the combustion chamber is exposed to the high temperature gas can be extended more than usual, and as shown in FIG. PM reburning can be promoted indoors, and the amount of PM emission can be effectively reduced.

以上説明した本実施例1のPM低減制御は、ECU30によって図2のPM低減制御ルーチンに従って次のようにして実行される。本ルーチンは、排気側可変バルブリフト装置40(以下「排気VVL」と表記する)の目標バルブリフト量・目標開弁タイミングの変更時に実行され、特許請求の範囲でいう制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、各種センサの出力信号に基づいて現在のエンジン運転状態を判定し、次のステップ102で、現在のエンジン運転状態に基づいて排気VVLの制御状態を補正可能であるか否かを判定し、排気VVLの制御状態を補正できないと判定されれば、以降の処理を行うことなく、本ルーチンを終了する。   The PM reduction control of the first embodiment described above is executed by the ECU 30 according to the PM reduction control routine of FIG. This routine is executed when the target valve lift amount / target valve opening timing of the exhaust side variable valve lift device 40 (hereinafter referred to as “exhaust VVL”) is changed, and plays a role as control means in the claims. . When this routine is started, first, in step 101, the current engine operating state is determined based on the output signals of various sensors, and in the next step 102, the control state of the exhaust VVL is determined based on the current engine operating state. It is determined whether correction is possible, and if it is determined that the control state of the exhaust VVL cannot be corrected, this routine is terminated without performing the subsequent processing.

これに対し、上記ステップ102で、排気VVLの制御状態を補正可能であると判定されれば、ステップ103に進み、エンジン運転領域がエンジン11の燃焼室内で発生するPMが増加するPM増加領域であるか否かを判定する。本実施例1では、成層燃焼時、冷間始動時、高負荷時のいずれかに該当するか否かで、PM増加領域であるか否かを判定する。このステップ103の処理が特許請求の範囲でいうPM増加予測手段としての役割を果たす。このステップ103で、PM増加領域ではないと判定されれば、燃焼室内でのPM発生量が少なく、PM低減制御を行う必要がないと判断して、以降の処理を行うことなく、本ルーチンを終了する。   On the other hand, if it is determined in step 102 that the control state of the exhaust VVL can be corrected, the process proceeds to step 103, where the engine operation region is a PM increase region where PM generated in the combustion chamber of the engine 11 increases. It is determined whether or not there is. In the first embodiment, it is determined whether the region is in the PM increase region based on whether it corresponds to any of stratified combustion, cold start, and high load. The processing in step 103 serves as PM increase prediction means in the claims. If it is determined in step 103 that the region is not in the PM increase region, it is determined that the amount of PM generated in the combustion chamber is small and it is not necessary to perform PM reduction control, and this routine is performed without performing the subsequent processing. finish.

一方、上記ステップ103で、PM増加領域であると判定されれば、ステップ104に進み、吸気バルブ37と排気バルブ38のバルブリフト量と開閉タイミング等に基づいて内部EGR量(排気残留量)を推定する。この後、ステップ105に進み、内部EGR量に基づいて排気VVLを遅角可能であるか否かを判定し、排気VVLを遅角できないと判定されれば、以降の処理を行うことなく、本ルーチンを終了する。これは、内部EGR量が多くなり過ぎると、燃焼安定性が低下するため、内部EGR量が多くなり過ぎないようにするためである。   On the other hand, if it is determined in step 103 that the region is the PM increase region, the routine proceeds to step 104, where the internal EGR amount (exhaust residual amount) is determined based on the valve lift amount and opening / closing timing of the intake valve 37 and the exhaust valve 38. presume. Thereafter, the routine proceeds to step 105, where it is determined whether or not the exhaust VVL can be retarded based on the internal EGR amount. If it is determined that the exhaust VVL cannot be retarded, the present processing is performed without performing the subsequent processing. End the routine. This is for preventing the internal EGR amount from being excessively increased because the combustion stability is deteriorated when the internal EGR amount is excessively increased.

上記ステップ105で、排気VVLを遅角可能であると判定されれば、ステップ106に進み、排気VVLの目標開弁タイミングを設定する。この後、ステップ107に進み、上記排気VVLの目標開弁タイミングに制御した場合の内部EGR量が適正範囲内(燃焼安定性を確保できる範囲内)であるか否かを判定し、内部EGR量が適正範囲内であると判定されれば、ステップ111に進み、排気VVLの開弁タイミングを上記ステップ106で設定した目標開弁タイミングに補正(遅角)する。これにより、燃焼室内で発生したPMが高温ガスに晒される高温期間(再燃焼期間)を拡大して、燃焼室内でPMの再燃焼を促進してPM排出量を低減する。   If it is determined in step 105 that the exhaust VVL can be retarded, the routine proceeds to step 106, where the target valve opening timing of the exhaust VVL is set. Thereafter, the routine proceeds to step 107, where it is determined whether or not the internal EGR amount is within an appropriate range (within the range in which combustion stability can be ensured) when the exhaust VVL is controlled to the target valve opening timing. Is determined to be within the appropriate range, the process proceeds to step 111 where the valve opening timing of the exhaust VVL is corrected (retarded) to the target valve opening timing set in step 106 above. Thereby, the high temperature period (reburning period) during which PM generated in the combustion chamber is exposed to the high temperature gas is expanded, and PM reburning is promoted in the combustion chamber to reduce the PM emission amount.

これに対し、上記ステップ107で、内部EGR量が適正範囲を越えていると判定されれば、ステップ108に進み、排気VVLの目標バルブリフト量を内部EGR量を減少させる方向に補正すると共に、次のステップ109で、吸気VVL(吸気側可変バルブリフト装置39)の目標バルブリフト量を内部EGR量を減少させる方向に補正する。この後、ステップ110に進み、前記ステップ106で設定した排気VVLの目標開弁タイミングに制御した場合の内部EGR量が適正範囲内(燃焼安定性を確保できる範囲内)であるか否かを判定し、内部EGR量が適正範囲内であると判定されれば、ステップ111に進み、排気VVLの開弁タイミングを前記ステップ106で設定した目標開弁タイミングに補正(遅角)する。   On the other hand, if it is determined in step 107 that the internal EGR amount exceeds the appropriate range, the process proceeds to step 108, and the target valve lift amount of the exhaust VVL is corrected in a direction to decrease the internal EGR amount. In the next step 109, the target valve lift amount of the intake VVL (intake side variable valve lift device 39) is corrected so as to decrease the internal EGR amount. Thereafter, the routine proceeds to step 110, where it is determined whether or not the internal EGR amount is within an appropriate range (within a range in which combustion stability can be ensured) when controlled to the target valve opening timing of the exhaust VVL set at step 106. If it is determined that the internal EGR amount is within the appropriate range, the process proceeds to step 111 where the valve opening timing of the exhaust VVL is corrected (retarded) to the target valve opening timing set in step 106.

尚、上記ステップ110で、内部EGR量が適正範囲を越えていると判定されれば、ステップ106に戻り、排気VVLの目標開弁タイミングを内部EGR量を減少させる方向に補正して、上述したステップ107〜110の処理を繰り返す。これにより、内部EGR量が燃焼安定性を確保できる範囲内で排気VVLの目標開弁タイミングをできるだけ遅角側に設定する。   If it is determined in step 110 that the internal EGR amount exceeds the appropriate range, the process returns to step 106 to correct the target valve opening timing of the exhaust VVL so as to decrease the internal EGR amount. Steps 107 to 110 are repeated. Thus, the target valve opening timing of the exhaust VVL is set as late as possible within the range in which the internal EGR amount can ensure the combustion stability.

以上説明した本実施例1では、エンジン運転状態に基づいてエンジン11の燃焼室内で発生するPMが増加するか否かを予測し、PMの増加が予測されたときに、排気バルブ38の開弁タイミングを遅角させるように排気側可変バルブリフト装置40を制御するようにしたので、エンジン11の燃焼室内で発生するPMの増加が予測されたときに、燃焼室内で発生したPMが高温ガスに晒される高温期間(再燃焼期間)を通常よりも拡大することができて、燃焼室内でPMの再燃焼を促進して、PM排出量を効果的に低減することができる。   In the first embodiment described above, it is predicted whether or not PM generated in the combustion chamber of the engine 11 will increase based on the engine operating state, and when the PM increase is predicted, the exhaust valve 38 is opened. Since the exhaust-side variable valve lift device 40 is controlled so as to retard the timing, when an increase in PM generated in the combustion chamber of the engine 11 is predicted, the PM generated in the combustion chamber becomes a high-temperature gas. The exposed high temperature period (reburning period) can be extended more than usual, and PM reburning can be promoted in the combustion chamber to effectively reduce the PM emission amount.

しかも、本実施例1では、PMの増加が予測されたときに、内部EGR量を推定し、推定した内部EGR量に基づいて燃焼安定性を確保できる範囲内で排気バルブ38の開弁タイミングを遅角させるようにしたので、内部EGR量が過多になることにより燃焼安定性が低下することを回避することができ、PM排出量低減と燃焼安定性確保とを両立させることができる。   Moreover, in the first embodiment, when an increase in PM is predicted, the internal EGR amount is estimated, and the opening timing of the exhaust valve 38 is set within a range in which combustion stability can be ensured based on the estimated internal EGR amount. Since the retarding angle is set, it is possible to avoid a decrease in combustion stability due to an excessive amount of internal EGR, and it is possible to achieve both PM emission reduction and ensuring combustion stability.

尚、本実施例1では、排気側可変バルブ装置として、排気バルブ38のバルブリフト量を変化させる可変バルブリフト装置40を用いたが、排気バルブ38のバルブタイミングを変化させる可変バルブタイミング装置を用いても良く、要は、排気バルブ38の少なくとも開弁タイミングを変化させることができる可変バルブ装置を用いれば良い。   In the first embodiment, the variable valve lift device 40 that changes the valve lift amount of the exhaust valve 38 is used as the exhaust side variable valve device. However, a variable valve timing device that changes the valve timing of the exhaust valve 38 is used. In short, a variable valve device that can change at least the valve opening timing of the exhaust valve 38 may be used.

次に、図5及び図6を用いて本発明を過給機付きの筒内噴射内燃機関に適用した実施例2を説明する。
まず、図5に基づいて過給機付きのエンジン制御システム全体の構成を概略的に説明する。但し、前記実施例1と実質的に同じ部分は、同一符号を付して説明を省略又は簡略化し、主として異なる部分について説明する。
Next, a second embodiment in which the present invention is applied to a cylinder injection internal combustion engine with a supercharger will be described with reference to FIGS.
First, based on FIG. 5, the structure of the whole engine control system with a supercharger is demonstrated roughly. However, substantially the same parts as those of the first embodiment are denoted by the same reference numerals, description thereof is omitted or simplified, and different parts are mainly described.

過給機45は、排気管25(排気通路)のうちの上流側触媒26の上流側(排出ガスセンサ28の上流側)に、排気タービン46が配置され、吸気管12のうちのエアフローメータ14とスロットルバルブ16との間に、コンプレッサ47が配置されている。この過給機45は、排気タービン46とコンプレッサ47とが連結され、排出ガスの運動エネルギーで排気タービン46を回転駆動することでコンプレッサ47を回転駆動して吸入空気を過給するようになっている。   The supercharger 45 has an exhaust turbine 46 disposed upstream of the upstream catalyst 26 (upstream of the exhaust gas sensor 28) in the exhaust pipe 25 (exhaust passage), and the air flow meter 14 in the intake pipe 12. A compressor 47 is arranged between the throttle valve 16. In this supercharger 45, an exhaust turbine 46 and a compressor 47 are connected, and the exhaust turbine 46 is rotationally driven by the kinetic energy of the exhaust gas, whereby the compressor 47 is rotationally driven to supercharge intake air. Yes.

更に、吸気管12には、コンプレッサ47をバイパスする吸気バイパス通路48が設けられ、この吸気バイパス通路48の途中に、吸気バイパス通路48を開閉するエアバイパスバルブ(以下「ABV」と表記する)49が設けられている。このABV49は、ABV用バキュームスイッチングバルブ(以下「ABV用VSV」と表記する)50を制御することでABV49の開度が制御されるようになっている。また、吸気管12のうちのコンプレッサ47とスロットルバルブ16との間には、過給機45のコンプレッサ47で加圧された吸入空気を冷却するインタークーラー51が設けられている。   Further, the intake pipe 12 is provided with an intake bypass passage 48 that bypasses the compressor 47, and an air bypass valve (hereinafter referred to as “ABV”) 49 that opens and closes the intake bypass passage 48 in the middle of the intake bypass passage 48. Is provided. The opening degree of the ABV 49 is controlled by controlling an ABV vacuum switching valve (hereinafter referred to as “ABV VSV”) 50. Further, an intercooler 51 for cooling the intake air pressurized by the compressor 47 of the supercharger 45 is provided between the compressor 47 and the throttle valve 16 in the intake pipe 12.

一方、排気管25には、排気タービン46をバイパスする排気バイパス通路52が設けられ、この排気バイパス通路52の途中に、排気バイパス通路52を開閉するウェイストゲートバルブ(以下「WGV」と表記する)53が設けられている。このWGV53は、WGV用バキュームスイッチングバルブ(以下「WGV用VSV」と表記する)54を制御してダイヤフラム式のアクチュエータ55を制御することでWGV53の開度が制御されるようになっている。   On the other hand, an exhaust bypass passage 52 that bypasses the exhaust turbine 46 is provided in the exhaust pipe 25, and a waste gate valve (hereinafter referred to as “WGV”) that opens and closes the exhaust bypass passage 52 in the middle of the exhaust bypass passage 52. 53 is provided. The WGV 53 is configured such that the opening degree of the WGV 53 is controlled by controlling a diaphragm type actuator 55 by controlling a WGV vacuum switching valve (hereinafter referred to as “WGV VSV”) 54.

この場合、エンジン11に吸入空気を過給する運転領域では、WGV53を閉弁又は開度を小さくして、排気バイパス通路52への燃焼ガスの流れを遮断又はガス流量を低下させて、エンジン11から排出される高温の燃焼ガスを排気タービン46側の排気管25に流す(排気タービン46側に流すガス流量はWGV53の開度によって制御する)。これにより、排気タービン46側の排気管25内の排気圧力を上昇させて排気タービン46の回転速度を上昇させることで、コンプレッサ47の回転速度を上昇させて過給効果を高める。   In this case, in the operation region where the intake air is supercharged to the engine 11, the WGV 53 is closed or the opening degree is reduced, the flow of the combustion gas to the exhaust bypass passage 52 is cut off or the gas flow rate is reduced, and the engine 11 The high-temperature combustion gas discharged from the exhaust gas flows through the exhaust pipe 25 on the exhaust turbine 46 side (the gas flow rate flowing to the exhaust turbine 46 side is controlled by the opening of the WGV 53). Thus, the exhaust pressure in the exhaust pipe 25 on the exhaust turbine 46 side is increased to increase the rotational speed of the exhaust turbine 46, thereby increasing the rotational speed of the compressor 47 and enhancing the supercharging effect.

一方、吸入空気の過給を必要としない運転領域では、WGV53を開弁して、エンジン11から排出される燃焼ガスを排気バイパス通路52に流すことで、排気タービン46側の排気管25内の排気圧力を低下させて排気タービン46の回転を停止させると共に、ABV49を開弁して、コンプレッサ47をバイパスする吸気バイパス通路48に吸入空気を流して吸入空気の過給を停止させる。   On the other hand, in the operation region where the supercharging of the intake air is not required, the WGV 53 is opened, and the combustion gas discharged from the engine 11 is caused to flow into the exhaust bypass passage 52, so that the exhaust pipe 25 on the exhaust turbine 46 side The exhaust pressure is decreased to stop the rotation of the exhaust turbine 46, and the ABV 49 is opened to suck the intake air through the intake bypass passage 48 that bypasses the compressor 47, thereby stopping the supercharging of the intake air.

本実施例2では、ECU30は、後述する図6のPM低減制御ルーチンを実行することで、エンジン運転状態に基づいてエンジン11の燃焼室内で発生するPM(排気管25内に排出されるPM)が増加するか否かを予測し、WGV53が開放されている運転領域でPMの増加が予測されたときにWGV53を閉じるようにしている。つまり、WGV53が開放されている運転領域でPMの増加が予測されたときに、WGV53を閉じるようにすれば、排気タービン46をバイパスする排気バイパス通路52への燃焼ガスの流れが遮断されて、エンジン11から排出される燃焼ガスが全て排気タービン46側の排気管25に流れるようになる。これにより、排気タービン46側の排気管25内の排気圧力が上昇して該排気管25内の温度が上昇して、エンジン11から該排気管25内に排出される燃焼ガス中のPMの再燃焼が促進されて、PM排出量が効果的に低減される。   In the second embodiment, the ECU 30 executes a PM reduction control routine of FIG. 6 to be described later, whereby PM generated in the combustion chamber of the engine 11 based on the engine operating state (PM discharged into the exhaust pipe 25). The WGV 53 is closed when an increase in PM is predicted in the operating region where the WGV 53 is open. That is, when an increase in PM is predicted in the operation region where the WGV 53 is open, if the WGV 53 is closed, the flow of the combustion gas to the exhaust bypass passage 52 that bypasses the exhaust turbine 46 is interrupted, All the combustion gas discharged from the engine 11 flows into the exhaust pipe 25 on the exhaust turbine 46 side. As a result, the exhaust pressure in the exhaust pipe 25 on the exhaust turbine 46 side increases, the temperature in the exhaust pipe 25 rises, and the PM in the combustion gas discharged from the engine 11 into the exhaust pipe 25 is recycled. Combustion is promoted, and the PM emission amount is effectively reduced.

以上説明した本実施例2のPM低減制御は、ECU30によって図6のPM低減制御ルーチンに従って次のようにして実行される。本ルーチンは、エンジン運転中に所定周期で繰り返し実行され、特許請求の範囲でいうPM増加予測手段及び制御手段としての役割を果たす。   The PM reduction control of the second embodiment described above is executed by the ECU 30 according to the PM reduction control routine of FIG. This routine is repeatedly executed at predetermined intervals during engine operation, and serves as PM increase prediction means and control means in the claims.

本ルーチンが起動されると、まずステップ201で、各種センサの出力信号等に基づいて現在のエンジン運転状態を判定し、次のステップ202で、WGV53が開弁しているか否かを判定し、WGV53が開弁していなければ、以降の処理を行うことなく、本ルーチンを終了する。   When this routine is started, first, in step 201, the current engine operating state is determined based on the output signals of various sensors, and in the next step 202, it is determined whether the WGV 53 is open, If the WGV 53 is not open, this routine is terminated without performing the subsequent processing.

これに対し、上記ステップ202で、WGV53が開弁していると判定されれば、ステップ203に進み、WGV53が閉弁可能な運転状態であるか否かを判定し、WGV53が閉弁可能な運転状態ではないと判定されれば、以降の処理を行うことなく、本ルーチンを終了する。   On the other hand, if it is determined in step 202 that the WGV 53 is open, the process proceeds to step 203, where it is determined whether or not the WGV 53 is in an operating state in which it can be closed, and the WGV 53 can be closed. If it is determined not to be in the operating state, this routine is terminated without performing the subsequent processing.

上記ステップ203で、WGV53が閉弁可能な運転状態であると判定されれば、ステップ204に進み、エンジン運転領域がエンジン11の燃焼室内で発生するPMが増加するPM増加領域であるか否かを判定する。本実施例2では、成層燃焼時、冷間始動時、高負荷時のいずれかに該当するか否かで、PM増加領域であるか否かを判定する。このステップ204で、PM増加領域ではないと判定されれば、燃焼室内でのPM発生量が少なく、PM低減制御を行う必要がないと判断して、以降の処理を行うことなく、本ルーチンを終了する。   If it is determined in step 203 that the WGV 53 is in an operating state in which the valve can be closed, the process proceeds to step 204, and whether or not the engine operation region is a PM increase region in which the PM generated in the combustion chamber of the engine 11 increases. Determine. In the second embodiment, it is determined whether or not the region is in the PM increasing region depending on whether it corresponds to any of stratified combustion, cold start, and high load. If it is determined in step 204 that the region is not in the PM increase region, it is determined that the amount of PM generated in the combustion chamber is small and it is not necessary to perform PM reduction control, and this routine is performed without performing the subsequent processing. finish.

一方、上記ステップ204で、PM増加領域であると判定されれば、ステップ205に進み、WGV53を閉弁して、排気バイパス通路52への燃焼ガスの流れを遮断して、エンジン11から排出される燃焼ガスを全て排気タービン46側の排気管25に流して、排気タービン46側の排気管25内の排気圧力を上昇させる。これにより、排気管25内の温度を上昇させて、エンジン11から該排気管25内に排出される燃焼ガス中のPMの再燃焼を促進してPM排出量を低減する。この際、エンジン11から排出する燃焼ガスの温度を上昇させる制御(例えば点火時期の遅角等)をWGV53の閉弁と併せて行うようにしても良く、これにより、排気管25内の温度を効率良く上昇させてPMの再燃焼を効率良く促進させることができる。   On the other hand, if it is determined in the above step 204 that the region is the PM increasing region, the process proceeds to step 205, the WGV 53 is closed, the flow of the combustion gas to the exhaust bypass passage 52 is shut off, and the engine 11 is discharged. The exhaust gas in the exhaust pipe 25 on the exhaust turbine 46 side is raised by causing all the combustion gas to flow through the exhaust pipe 25 on the exhaust turbine 46 side. As a result, the temperature in the exhaust pipe 25 is raised to promote the re-combustion of PM in the combustion gas discharged from the engine 11 into the exhaust pipe 25 to reduce the PM emission amount. At this time, control for increasing the temperature of the combustion gas discharged from the engine 11 (for example, retarding the ignition timing, etc.) may be performed in conjunction with closing the WGV 53, thereby controlling the temperature in the exhaust pipe 25. The reburning of PM can be promoted efficiently by raising the efficiency efficiently.

尚、本実施例2の過給機45は、WGV53とABV49の両方を備えた構成としているが、ABV49を省いた構成としても良く、要は、WGV付きの過給機を搭載した筒内噴射エンジンであれば、本発明を適用可能である。   The supercharger 45 of the second embodiment is configured to include both the WGV 53 and the ABV 49, but may be configured to omit the ABV 49. In short, in-cylinder injection equipped with a supercharger with a WGV The present invention can be applied to any engine.

次に、図7及び図8を用いて本発明を二次空気供給装置付きの筒内噴射内燃機関に適用した実施例3を説明する。
まず、図7に基づいて二次空気供給装置付きのエンジン制御システム全体の構成を概略的に説明する。但し、前記実施例1と実質的に同じ部分は、同一符号を付して説明を省略又は簡略化し、主として異なる部分について説明する。
Next, a third embodiment in which the present invention is applied to a direct injection internal combustion engine with a secondary air supply device will be described with reference to FIGS.
First, based on FIG. 7, the structure of the whole engine control system with a secondary air supply apparatus is demonstrated roughly. However, substantially the same parts as those of the first embodiment are denoted by the same reference numerals, description thereof is omitted or simplified, and different parts are mainly described.

二次空気供給装置60は、排気管25のうちの排出ガスセンサ28よりも上流側(例えば排気ポート近傍)に二次空気を供給する。具体的には、次空気供給装置60は、電気モータで駆動されるエアポンプ61から吐出する二次空気を、二次空気配管62を通して各気筒の二次空気供給ノズル63に分配して各気筒の排気マニホールド(排気通路)に導入する。二次空気配管62には、該二次空気配管62を開閉する制御弁64が設けられている。   The secondary air supply device 60 supplies secondary air to the upstream side of the exhaust gas sensor 28 in the exhaust pipe 25 (for example, near the exhaust port). Specifically, the secondary air supply device 60 distributes the secondary air discharged from the air pump 61 driven by the electric motor to the secondary air supply nozzle 63 of each cylinder through the secondary air pipe 62, and supplies the secondary air to each cylinder. Introduce into the exhaust manifold (exhaust passage). The secondary air pipe 62 is provided with a control valve 64 that opens and closes the secondary air pipe 62.

この二次空気供給装置60のエアポンプ61と制御弁64は、ECU30によって制御される。ECU30は、後述する図8のPM低減制御ルーチンを実行することで、エンジン運転状態に基づいてエンジン11の燃焼室内で発生するPM(排気管25内に排出されるPM)が増加するか否かを予測し、PMの増加が予測されたときに、エアポンプ61をオンすると共に制御弁64を開弁して排気管25に二次空気を導入する。これにより、排気管25内の酸素濃度が上昇して、エンジン11から排気管25内に排出される燃焼ガス中のPMの再燃焼(酸化反応)を促進させて、PM排出量を効果的に低減する。   The air pump 61 and the control valve 64 of the secondary air supply device 60 are controlled by the ECU 30. The ECU 30 executes a PM reduction control routine shown in FIG. 8 described later to determine whether or not the PM generated in the combustion chamber of the engine 11 (PM discharged into the exhaust pipe 25) increases based on the engine operating state. When the increase in PM is predicted, the air pump 61 is turned on and the control valve 64 is opened to introduce secondary air into the exhaust pipe 25. As a result, the oxygen concentration in the exhaust pipe 25 is increased, and the recombustion (oxidation reaction) of PM in the combustion gas discharged from the engine 11 into the exhaust pipe 25 is promoted, thereby effectively reducing the PM emission amount. To reduce.

以上説明した本実施例3のPM低減制御は、ECU30によって図8のPM低減制御ルーチンに従って次のようにして実行される。本ルーチンは、エンジン運転中に所定周期で繰り返し実行され、特許請求の範囲でいうPM増加予測手段及び制御手段としての役割を果たす。   The PM reduction control of the third embodiment described above is executed by the ECU 30 according to the PM reduction control routine of FIG. This routine is repeatedly executed at predetermined intervals during engine operation, and serves as PM increase prediction means and control means in the claims.

本ルーチンが起動されると、まずステップ301で、各種センサの出力信号等に基づいて現在のエンジン運転状態を判定し、次のステップ302で、二次空気導入中であるか否かを判定し、二次空気導入中であれば、以降の処理を行うことなく、本ルーチンを終了する。   When this routine is started, first, in step 301, the current engine operating state is determined based on the output signals of various sensors, and in the next step 302, it is determined whether secondary air is being introduced. If the secondary air is being introduced, this routine is terminated without performing the subsequent processing.

これに対し、上記ステップ302で、二次空気導入中ではないと判定されれば、ステップ303に進み、排気管25内に二次空気を導入可能な運転状態であるか否かを判定し、二次空気を導入可能な運転状態ではないと判定されれば、以降の処理を行うことなく、本ルーチンを終了する。   On the other hand, if it is determined in step 302 that the secondary air is not being introduced, the process proceeds to step 303, where it is determined whether or not the operation state is such that the secondary air can be introduced into the exhaust pipe 25. If it is determined that the operating state is not capable of introducing the secondary air, this routine is terminated without performing the subsequent processing.

上記ステップ303で、二次空気を導入可能な運転状態であると判定されれば、ステップ304に進み、エンジン運転領域がエンジン11の燃焼室内で発生するPMが増加するPM増加領域であるか否かを判定する。本実施例3では、成層燃焼時、冷間始動時、高負荷時のいずれかに該当するか否かで、PM増加領域であるか否かを判定する。このステップ304で、PM増加領域ではないと判定されれば、燃焼室内でのPM発生量が少なく、PM低減制御を行う必要がないと判断して、以降の処理を行うことなく、本ルーチンを終了する。   If it is determined in step 303 that the operation state is such that secondary air can be introduced, the process proceeds to step 304, and whether or not the engine operation region is a PM increase region in which the PM generated in the combustion chamber of the engine 11 increases. Determine whether. In the third embodiment, it is determined whether the region is in the PM increase region based on whether it corresponds to any of stratified combustion, cold start, and high load. If it is determined in step 304 that it is not in the PM increase region, it is determined that the amount of PM generated in the combustion chamber is small and it is not necessary to perform PM reduction control, and this routine is performed without performing the subsequent processing. finish.

一方、上記ステップ304で、PM増加領域であると判定されれば、ステップ305に進み、エアポンプ61をオンすると共に制御弁64を開弁して排気管25に二次空気を導入する。これにより、排気管25内の酸素濃度を上昇させて、エンジン11から排気管25内に排出される燃焼ガス中のPMの再燃焼(酸化反応)を促進させて、PM排出量を効果的に低減する。この際、エンジン11から排出する燃焼ガスの温度を上昇させる制御(例えば点火時期の遅角等)を二次空気の導入と併せて行うようにしても良く、これにより、排気管25内の温度を効率良く上昇させてPMの再燃焼を効率良く促進させることができる。   On the other hand, if it is determined in step 304 that the PM increase region is reached, the process proceeds to step 305 where the air pump 61 is turned on and the control valve 64 is opened to introduce secondary air into the exhaust pipe 25. Thereby, the oxygen concentration in the exhaust pipe 25 is increased, and the recombustion (oxidation reaction) of PM in the combustion gas discharged from the engine 11 into the exhaust pipe 25 is promoted, thereby effectively reducing the PM emission amount. To reduce. At this time, control for increasing the temperature of the combustion gas discharged from the engine 11 (for example, retarding the ignition timing, etc.) may be performed together with the introduction of the secondary air, whereby the temperature in the exhaust pipe 25 is increased. It is possible to efficiently raise PM and promote PM reburning efficiently.

尚、本実施例3では、二次空気供給装置60のエアポンプ61を電動モータで駆動するようにしたが、二次空気供給装置60のエアポンプ61を、エンジン11の動力等で電磁クラッチを介して駆動するようにしても良い。   In the third embodiment, the air pump 61 of the secondary air supply device 60 is driven by an electric motor. However, the air pump 61 of the secondary air supply device 60 is driven via an electromagnetic clutch by the power of the engine 11 or the like. You may make it drive.

その他、本発明は、上記3つの実施例1〜3を適宜組み合わせて実施しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。   In addition, the present invention can be implemented with various modifications within a range not departing from the gist, such as appropriately combining the above-described three Examples 1 to 3.

11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、25…排気管、26…上流側触媒、27…下流側触媒、30…ECU(PM増加予測手段,制御手段)、31…気流制御弁、34…EGR弁、37…吸気バルブ、38…排気バルブ、39…吸気側可変バルブリフト装置、40…排気側可変バルブリフト装置(排気側可変バルブ装置)、45…過給機、46…排気タービン、47…コンプレッサ、48…吸気バイパス通路、49…ABV(エアバイパスバルブ)、52…排気バイパス通路、53…WGV(ウェイストゲートバルブ)、60…二次空気供給装置、61…エアポンプ、62…二次空気配管、63…二次空気供給ノズル、64…制御弁   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 21 ... Fuel injection valve, 22 ... Spark plug, 25 ... Exhaust pipe, 26 ... Upstream catalyst, 27 ... Downstream catalyst, 30 ... ECU ( PM increase predicting means, control means) 31 ... air flow control valve, 34 ... EGR valve, 37 ... intake valve, 38 ... exhaust valve, 39 ... intake side variable valve lift device, 40 ... exhaust side variable valve lift device (exhaust side) Variable valve device), 45 ... supercharger, 46 ... exhaust turbine, 47 ... compressor, 48 ... intake bypass passage, 49 ... ABV (air bypass valve), 52 ... exhaust bypass passage, 53 ... WGV (waste gate valve), 60 ... Secondary air supply device, 61 ... Air pump, 62 ... Secondary air piping, 63 ... Secondary air supply nozzle, 64 ... Control valve

Claims (7)

筒内に燃料を直接噴射する筒内噴射式内燃機関の制御装置において、
排気バルブの少なくとも開弁タイミングを変化させる排気側可変バルブ装置と、
前記内燃機関の運転状態に基づいて該内燃機関の燃焼室内で発生するパーティクルマター(以下「PM」と表記する)が増加するか否かを予測するPM増加予測手段と、
前記PM増加予測手段によりPMの増加が予測されたときに前記排気バルブの開弁タイミングを遅角させるように前記排気側可変バルブ装置を制御する制御手段と
を備えていることを特徴とする筒内噴射式内燃機関の制御装置。
In a control apparatus for a direct injection internal combustion engine that directly injects fuel into a cylinder,
An exhaust side variable valve device that changes at least the valve opening timing of the exhaust valve;
PM increase prediction means for predicting whether or not particle matter (hereinafter referred to as “PM”) generated in the combustion chamber of the internal combustion engine increases based on the operating state of the internal combustion engine;
Control means for controlling the exhaust-side variable valve device so as to retard the valve opening timing of the exhaust valve when an increase in PM is predicted by the PM increase predicting means. Control device for internal injection internal combustion engine.
前記PM増加予測手段は、前記内燃機関の運転状態が成層燃焼時、冷間始動時、高負荷時のいずれかに該当するときにPMが増加すると予測することを特徴とする請求項1に記載の筒内噴射式内燃機関の制御装置。   2. The PM increase prediction means predicts that PM increases when the operating state of the internal combustion engine corresponds to any of stratified combustion, cold start, and high load. The control apparatus for a direct injection internal combustion engine. 前記制御手段は、前記PM増加予測手段によりPMの増加が予測されたときに内部EGR量を推定する手段と、推定した内部EGR量に基づいて燃焼安定性を確保できる範囲内で前記排気バルブの開弁タイミングを遅角させる手段とを有することを特徴とする請求項1又は2に記載の筒内噴射式内燃機関の制御装置。   The control means estimates the internal EGR amount when an increase in PM is predicted by the PM increase prediction means, and controls the exhaust valve within a range in which combustion stability can be ensured based on the estimated internal EGR amount. 3. The control apparatus for a direct injection internal combustion engine according to claim 1, further comprising means for retarding a valve opening timing. 前記排気側可変バルブ装置は、排気バルブのバルブリフト量を変化させる可変バルブリフト装置であることを特徴とする請求項1乃至3のいずれかに記載の筒内噴射式内燃機関の制御装置。   The control device for a direct injection internal combustion engine according to any one of claims 1 to 3, wherein the exhaust-side variable valve device is a variable valve lift device that changes a valve lift amount of the exhaust valve. 前記排気側可変バルブ装置は、排気バルブのバルブタイミングを変化させる可変バルブタイミング装置であることを特徴とする請求項1乃至3のいずれかに記載の筒内噴射式内燃機関の制御装置。   4. The control device for a cylinder injection internal combustion engine according to claim 1, wherein the exhaust-side variable valve device is a variable valve timing device that changes a valve timing of the exhaust valve. 筒内に燃料を直接噴射する筒内噴射式内燃機関の制御装置において、
前記内燃機関の排気通路に設けられた排気タービンによって吸気通路に設けられたコンプレッサを駆動して吸入空気を過給する過給機と、
前記排気タービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブと、
前記内燃機関の運転状態に基づいて該内燃機関から排出されるパーティクルマター(以下「PM」と表記する)が増加するか否かを予測するPM増加予測手段と、
前記ウェイストゲートバルブが開放されている運転領域で前記PM増加予測手段によりPMの増加が予測されたときに前記ウェイストゲートバルブを閉じる制御手段と
を備えていることを特徴とする筒内噴射式内燃機関の制御装置。
In a control apparatus for a direct injection internal combustion engine that directly injects fuel into a cylinder,
A supercharger for supercharging intake air by driving a compressor provided in the intake passage by an exhaust turbine provided in the exhaust passage of the internal combustion engine;
A waste gate valve for opening and closing an exhaust bypass passage for bypassing the exhaust turbine;
PM increase prediction means for predicting whether or not particle matter (hereinafter referred to as “PM”) discharged from the internal combustion engine increases based on the operating state of the internal combustion engine;
Control means for closing the waste gate valve when an increase in PM is predicted by the PM increase prediction means in an operating region in which the waste gate valve is open. Engine control device.
筒内に燃料を直接噴射する筒内噴射式内燃機関の制御装置において、
前記内燃機関の排気通路に二次空気を供給する二次空気供給装置と、
前記内燃機関の運転状態に基づいて該内燃機関から排出されるパーティクルマター(以下「PM」と表記する)が増加するか否かを予測するPM増加予測手段と、
前記PM増加予測手段によりPMの増加が予測されたときに前記二次空気供給装置を作動させて前記排気通路に二次空気を供給する制御手段と
を備えていることを特徴とする筒内噴射式内燃機関の制御装置。
In a control apparatus for a direct injection internal combustion engine that directly injects fuel into a cylinder,
A secondary air supply device for supplying secondary air to the exhaust passage of the internal combustion engine;
PM increase prediction means for predicting whether or not particle matter (hereinafter referred to as “PM”) discharged from the internal combustion engine increases based on the operating state of the internal combustion engine;
In-cylinder injection comprising: control means for operating the secondary air supply device to supply secondary air to the exhaust passage when an increase in PM is predicted by the PM increase prediction means Control device for an internal combustion engine.
JP2009151754A 2009-06-26 2009-06-26 Control device for internal combustion engine of cylinder injection type Pending JP2011007113A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009151754A JP2011007113A (en) 2009-06-26 2009-06-26 Control device for internal combustion engine of cylinder injection type
DE102010030496.4A DE102010030496B4 (en) 2009-06-26 2010-06-24 Direct injection engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009151754A JP2011007113A (en) 2009-06-26 2009-06-26 Control device for internal combustion engine of cylinder injection type

Publications (1)

Publication Number Publication Date
JP2011007113A true JP2011007113A (en) 2011-01-13

Family

ID=43299301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009151754A Pending JP2011007113A (en) 2009-06-26 2009-06-26 Control device for internal combustion engine of cylinder injection type

Country Status (2)

Country Link
JP (1) JP2011007113A (en)
DE (1) DE102010030496B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127581A (en) * 2009-12-21 2011-06-30 Nippon Soken Inc Control device for internal combustion engine
JP2017125409A (en) * 2016-01-12 2017-07-20 マツダ株式会社 Engine oil deterioration diagnostic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69424868T2 (en) 1993-06-30 2001-01-11 Orbital Eng Australia EXHAUST VALVE REGULATOR RESPONDING TO KNOCK AND TORQUE
JP4691822B2 (en) 2001-04-27 2011-06-01 トヨタ自動車株式会社 Control device for internal combustion engine
DE10322361A1 (en) 2003-05-09 2004-11-25 Robert Bosch Gmbh Method of starting motor vehicle internal combustion engine involves filling combustion chamber with charge immediately after ignition for holding during stopped phase
JP4306711B2 (en) 2006-09-29 2009-08-05 トヨタ自動車株式会社 In-cylinder injection spark ignition internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127581A (en) * 2009-12-21 2011-06-30 Nippon Soken Inc Control device for internal combustion engine
JP2017125409A (en) * 2016-01-12 2017-07-20 マツダ株式会社 Engine oil deterioration diagnostic device

Also Published As

Publication number Publication date
DE102010030496A8 (en) 2016-07-28
DE102010030496B4 (en) 2022-03-03
DE102010030496A1 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
US8086385B2 (en) Control apparatus for internal combustion engine
JP5904290B2 (en) Turbocharged engine
US8607544B2 (en) Methods and systems for variable displacement engine control
JP5772025B2 (en) Control device for internal combustion engine
EP2985440B1 (en) Control apparatus of internal combustion engine
JP4780059B2 (en) Control device for internal combustion engine
JP5169439B2 (en) Internal combustion engine control device and internal combustion engine control system
US8099228B2 (en) Control apparatus for internal combustion engine
CN107524536B (en) Internal combustion engine and control method for internal combustion engine
JP5397567B1 (en) Control device for internal combustion engine
JP2012229666A (en) Internal combustion engine control device
JP2009235920A (en) Fuel injection control device of cylinder injection internal combustion engine with supercharger
JP2008025445A (en) Control device for internal combustion engine
JP2007327480A (en) Exhaust emission control system of internal combustion engine
JP5403277B2 (en) Internal combustion engine
JP2009216059A (en) Control device for internal combustion engine
JP2012097639A (en) Control device for internal combustion engine
JP4905327B2 (en) Exhaust gas purification system for internal combustion engine
JP2011007113A (en) Control device for internal combustion engine of cylinder injection type
JP5832156B2 (en) Control device for internal combustion engine
JP2012241574A (en) Control device of internal combustion engine
JP2009299623A (en) Control device for internal combustion engine
EP2397679B1 (en) Internal Combustion Engine
JP5435237B2 (en) Internal combustion engine
JP2009191660A (en) Control device of internal combustion engine