JP2012241574A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2012241574A
JP2012241574A JP2011110968A JP2011110968A JP2012241574A JP 2012241574 A JP2012241574 A JP 2012241574A JP 2011110968 A JP2011110968 A JP 2011110968A JP 2011110968 A JP2011110968 A JP 2011110968A JP 2012241574 A JP2012241574 A JP 2012241574A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011110968A
Other languages
Japanese (ja)
Other versions
JP5843478B2 (en
Inventor
Koji Fujii
孝治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2011110968A priority Critical patent/JP5843478B2/en
Publication of JP2012241574A publication Critical patent/JP2012241574A/en
Application granted granted Critical
Publication of JP5843478B2 publication Critical patent/JP5843478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent engine speed from being reduced when an external load on an internal combustion engine increases in an idle or low-load/low-speed operation region.SOLUTION: When an external load on an internal combustion engine increases, a control device increases the opening degree of an ISC (idle speed control) valve and increases a fuel injection amount. In this operation, when the air-fuel ratio of the gas circulating in catalyst is lean, the control device sets larger expansion DSKIP of the opening degree of the ISC valve than when an air-fuel ratio is rich.

Description

本発明は、触媒による排出ガスの浄化能率を保つ目的で実施される空燃比の制御に関する。   The present invention relates to air-fuel ratio control performed for the purpose of maintaining exhaust gas purification efficiency by a catalyst.

一般に、自動車等の排気通路には、内燃機関から排出される排気ガス中に含まれる有害物質HC、CO、NOxを酸化/還元して無害化する触媒が装着されている。HC、CO、NOxの全てを効率よく浄化するには、排出ガスの空燃比をウィンドウと称する理論空燃比近傍の一定範囲に収束させる必要がある。そのために、触媒の上流及び下流にそれぞれ空燃比センサを配し、フロント、リア両センサの出力信号を用いる二重のフィードバックループを構築して空燃比をフィードバック制御することが行われている(例えば、下記特許文献を参照)。 Generally, the exhaust passage of an automobile or the like, harmful substances HC contained in the exhaust gas discharged from an internal combustion engine, CO, is a catalyst to harmless by oxidation / reduction of NO x is mounted. In order to efficiently purify all of HC, CO, and NO x , it is necessary to converge the air-fuel ratio of the exhaust gas to a certain range near the stoichiometric air-fuel ratio called a window. For this purpose, an air-fuel ratio sensor is arranged upstream and downstream of the catalyst, and a double feedback loop using the output signals of both the front and rear sensors is constructed to feedback control the air-fuel ratio (for example, , See the following patent document).

このようなフィードバック制御は、アイドル運転中も継続している。制御されるガスの空燃比は、触媒の排気ガス浄化能率を維持するべく、目標空燃比(理論空燃比またはその近傍)を中心としてゆっくりとリッチ/リーンを繰り返すように振動する。   Such feedback control is continued even during idle operation. The air-fuel ratio of the controlled gas oscillates so as to repeat rich / lean slowly with the target air-fuel ratio (theoretical air-fuel ratio or the vicinity thereof) as the center in order to maintain the exhaust gas purification efficiency of the catalyst.

アイドル運転中にエアコンディショナや前照灯等の電気負荷がONになると、内燃機関にかかる負荷が大きくなり、エンジン回転数が落ち込む。そこで、電気負荷のスイッチがOFFからONに切替操作された時点で吸入空気量及び燃料噴射量を所定量増加させ、エンジン出力を上げて回転数の落ち込みを予防、耐エンスト性を高めることが行われている。   When an electric load such as an air conditioner or a headlamp is turned on during idle operation, the load applied to the internal combustion engine increases and the engine speed drops. Therefore, when the switch of the electrical load is switched from OFF to ON, the intake air amount and the fuel injection amount are increased by a predetermined amount, the engine output is increased to prevent the engine speed from falling and the engine stall resistance is improved. It has been broken.

しかしながら、気筒に充填されたガスの空燃比がリッチである期間とリーンである期間とでは、内燃機関の元々の出力に差異があり、電気負荷ONによるエンジン回転数の落ち込みの度合いが異なってくる。空燃比リーンの期間に電気負荷がONになった場合、エンジン回転数の落ち込みを抑止できないおそれがあった。   However, there is a difference in the original output of the internal combustion engine between the period in which the air-fuel ratio of the gas charged in the cylinder is rich and the period in which it is lean, and the degree of decrease in the engine speed due to the electric load being ON differs. . When the electric load is turned on during the air-fuel ratio lean period, there is a possibility that the engine speed drop cannot be suppressed.

特開2010−138791号公報JP 2010-138791 A

本発明は、上記の問題に初めて着目してなされたものであり、アイドルまたは低負荷低回転の運転領域にて内燃機関に対する外部負荷が増大するときにエンジン回転数が落ち込む問題を回避することを所期の目的としている。   The present invention has been made by paying attention to the above-mentioned problem for the first time, and avoids the problem that the engine speed drops when the external load on the internal combustion engine increases in an idling or low load / low speed operation region. The intended purpose.

本発明では、アイドルまたは低負荷低回転の運転領域にて内燃機関に対する外部負荷が増大するときにISC(Idle Speed Control)バルブまたはスロットルバルブの開度を拡大させる操作を行うとともに燃料噴射量を増量する内燃機関の制御装置であって、前記操作において、フロントO2センサを介して検出される触媒上流側の空燃比がリーンである場合にはリッチである場合と比較してISCバルブまたはスロットルバルブの開度の拡大量をより大きく設定し、並びに、リアO2センサを介して検出される触媒下流側の空燃比がリーンである場合にはリッチである場合と比較してISCバルブまたはスロットルバルブの開度の拡大量をより大きく補正することを特徴とする制御装置を構成した。 In the present invention, when the external load on the internal combustion engine increases in an idling or low load / low speed operation region, an operation of increasing the opening of an ISC (Idle Speed Control) valve or a throttle valve is performed and the fuel injection amount is increased. In the above-described operation, the ISC valve or the throttle valve is compared with the rich control when the air-fuel ratio on the upstream side of the catalyst detected through the front O 2 sensor is lean. When the air-fuel ratio on the downstream side of the catalyst detected through the rear O 2 sensor is lean, the ISC valve or the throttle valve is set as compared with the rich case. The control device is characterized in that the amount of increase in the degree of opening is corrected to be larger.

つまり、空燃比リーンの期間に電気負荷に代表される外部負荷が増大する場合には、空燃比リッチの期間に比べて吸入空気量及び燃料噴射量をより多く増量することとし、エンジン回転数の落ち込みを抑制するようにした。   That is, when the external load represented by the electric load increases during the air-fuel ratio lean period, the intake air amount and the fuel injection amount are increased more than the air-fuel ratio rich period, and the engine speed is increased. The depression was suppressed.

本発明によれば、アイドルまたは低負荷低回転の運転領域にて内燃機関に対する外部負荷が増大するときにエンジン回転数が落ち込む問題を有効に回避できる。   According to the present invention, it is possible to effectively avoid the problem that the engine speed drops when the external load on the internal combustion engine increases in an idling or low load / low speed operation region.

本発明の一実施形態の空燃比制御装置のハードウェア資源構成を示す図。The figure which shows the hardware resource structure of the air fuel ratio control apparatus of one Embodiment of this invention. フロントO2センサの出力を参照した空燃比フィードバック制御の模様を示すタイミング図。Timing diagram illustrating the pattern of the air-fuel ratio feedback control with reference to the output of the front O 2 sensor. 制御中心補正量FACFと遅延時間TDR、TDLとの関係を例示するグラフ。The graph which illustrates the relationship between control center correction amount FACF and delay time TDR, TDL. リアO2センサの出力を参照した空燃比フィードバック制御の模様を示すタイミング図。Timing diagram illustrating the pattern of the air-fuel ratio feedback control with reference to the output of the rear O 2 sensor. アイドル運転中に電気負荷がONになった場合のISCバルブ開度の補正の模様を示すタイミング図。The timing diagram which shows the pattern of the correction | amendment of the ISC valve opening degree when an electrical load turns ON during idle driving | operation. 触媒を流通するガスの空燃比とISC補正量DSKIPとの関係を示すグラフ。The graph which shows the relationship between the air fuel ratio of the gas which distribute | circulates a catalyst, and ISC correction amount DSKIP.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関0の概要を示す。本実施形態の内燃機関0は、複数の気筒1(図1には、そのうち一つを図示している)と、各気筒1内に燃料を噴射するインジェクタ11と、各気筒1に吸気を供給するための吸気通路3と、各気筒1から排気を排出するための排気通路4と、吸気通路3を流通する吸気を過給する排気ターボ過給機5と、排気通路4から吸気通路3に向けてEGRガスを還流させる外部EGR通路2とを備えている。   An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the outline | summary of the internal combustion engine 0 for vehicles in this embodiment is shown. The internal combustion engine 0 of the present embodiment includes a plurality of cylinders 1 (one of which is shown in FIG. 1), an injector 11 that injects fuel into each cylinder 1, and supplies intake air to each cylinder 1. An intake passage 3 for exhausting the exhaust gas, an exhaust passage 4 for discharging exhaust gas from each cylinder 1, an exhaust turbocharger 5 for supercharging intake air flowing through the intake passage 3, and an exhaust passage 4 to the intake passage 3. And an external EGR passage 2 for refluxing the EGR gas.

吸気通路3は、外部から空気を取り入れて気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、過給機5のコンプレッサ51、インタクーラ32、スロットルバルブ33、サージタンク34、吸気マニホルド35を、上流からこの順序に配置している。   The intake passage 3 takes in air from the outside and guides it to the intake port of the cylinder 1. On the intake passage 3, an air cleaner 31, a compressor 51 of the supercharger 5, an intercooler 32, a throttle valve 33, a surge tank 34, and an intake manifold 35 are arranged in this order from the upstream side.

また、吸気系において、スロットルバルブ33を迂回する迂回通路上にISCバルブ36を設けている。スロットルバルブ33がアクセルペダルの踏込量に応じて開閉する一方、ISCバルブはアクセルペダルが踏まれていないアイドル運転時にECU(電子制御装置)6から制御信号nの入力を受けて開閉する。   In the intake system, an ISC valve 36 is provided on a bypass path that bypasses the throttle valve 33. While the throttle valve 33 opens and closes according to the amount of depression of the accelerator pedal, the ISC valve opens and closes upon receiving a control signal n from the ECU (electronic control unit) 6 during idle operation when the accelerator pedal is not depressed.

排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42、過給機5の駆動タービン52及び三元触媒41を配置している。排気ターボ過給機5は、駆動タービン52とコンプレッサ51とを同軸で連結し連動するように構成したものである。そして、駆動タービン52を排気のエネルギを利用して回転駆動し、その回転力を以てコンプレッサ51にポンプ作用を営ませることにより、吸入空気を加圧圧縮(過給)して気筒1に送り込む。   The exhaust passage 4 guides exhaust generated as a result of burning fuel in the cylinder 1 from the exhaust port of the cylinder 1 to the outside. An exhaust manifold 42, a drive turbine 52 for the supercharger 5, and a three-way catalyst 41 are disposed on the exhaust passage 4. The exhaust turbocharger 5 is configured such that the drive turbine 52 and the compressor 51 are connected and linked in a coaxial manner. Then, the driving turbine 52 is rotationally driven by using the energy of the exhaust gas, and the compressor 51 is pumped by using the rotational force, whereby the intake air is pressurized and compressed (supercharged) and sent to the cylinder 1.

触媒41の上流及び下流にはそれぞれ、排出ガスの空燃比を検出するための空燃比センサ(図示せず)を設けている。各空燃比センサは、排出ガスに接触して反応することにより、当該ガスの酸素濃度に応じた電圧信号を出力する、排出ガスの空燃比に対して非線形な出力特性を有するO2センサである。周知の通り、O2センサの出力特性は、ウィンドウの範囲では空燃比に対する出力の変化率が大きく急峻な傾きを示し、それよりも空燃比が大きいリーン領域では低位飽和値に漸近し、空燃比が小さいリッチ領域では高位飽和値に漸近する、いわゆるZ特性曲線を描く。 An air-fuel ratio sensor (not shown) for detecting the air-fuel ratio of the exhaust gas is provided upstream and downstream of the catalyst 41, respectively. Each air-fuel ratio sensor is an O 2 sensor having a non-linear output characteristic with respect to the air-fuel ratio of the exhaust gas that outputs a voltage signal corresponding to the oxygen concentration of the gas by contacting and reacting with the exhaust gas. . As is well known, the output characteristics of the O 2 sensor show a large and steep slope with respect to the air-fuel ratio in the window range, and gradually approach the low saturation value in the lean region where the air-fuel ratio is larger than that. A so-called Z characteristic curve that draws asymptotic to a high-order saturation value is drawn in a rich region where is small.

外部EGR(Exhaust Gas Recirculation)通路2は、いわゆる高圧ループEGRを実現するものである。外部EGR通路2の入口は、排気通路4におけるタービン52の上流の所定箇所に接続している。外部EGR通路2の出口は、吸気通路3におけるスロットルバルブ33の下流の所定箇所、具体的にはサージタンク34に接続している。外部EGR通路2上にも、EGRクーラ21及びEGRバルブ22を設けてある。   The external EGR (Exhaust Gas Recirculation) passage 2 realizes a so-called high-pressure loop EGR. The inlet of the external EGR passage 2 is connected to a predetermined location upstream of the turbine 52 in the exhaust passage 4. The outlet of the external EGR passage 2 is connected to a predetermined location downstream of the throttle valve 33 in the intake passage 3, specifically to a surge tank 34. An EGR cooler 21 and an EGR valve 22 are also provided on the external EGR passage 2.

内燃機関0の運転制御を司るECU6は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。入力インタフェースには、車速を検出する車速センサから出力される車速信号a、エンジン回転数を検出する回転数センサから出力される回転数信号b、スロットルバルブ33の開度を検出するスロットルポジションセンサから出力される開度信号c、吸気通路3(特に、サージタンク34)内の吸気圧(過給圧)を検出する圧力センサから出力される吸気圧信号d、吸気通路3内の吸気温を検出する温度センサから出力される吸気温信号e、吸気カムシャフトの端部にあるタイミングセンサから出力されるクランク角度信号及び気筒判別用信号f、排気カムシャフトの端部にあるタイミングセンサから所定クランク角度の回転毎に出力される排気カム信号g、触媒41の上流側の排気ガスの空燃比を検出するフロントO2センサから出力される信号h、触媒41の下流側の排気ガスの空燃比を検出するリアO2センサから出力される信号i、エアコンディショナや照明灯等の電気負荷のON/OFFを切り替えるスイッチの信号j等が入力される。出力インタフェースからは、インジェクタ11に対して燃料噴射信号k、点火プラグ(のイグニッションコイル)に対して点火信号l、EGRバルブ22に対して開度操作信号m、ISCバルブ36に対して開度操作信号n等を出力する。 The ECU 6 that controls the operation of the internal combustion engine 0 is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like. The input interface includes a vehicle speed signal a output from the vehicle speed sensor that detects the vehicle speed, a rotation speed signal b output from the rotation speed sensor that detects the engine rotation speed, and a throttle position sensor that detects the opening of the throttle valve 33. The opening degree signal c that is output, the intake pressure signal d that is output from the pressure sensor that detects the intake pressure (supercharging pressure) in the intake passage 3 (particularly, the surge tank 34), and the intake air temperature in the intake passage 3 are detected. The intake air temperature signal e output from the temperature sensor, the crank angle signal and cylinder discrimination signal f output from the timing sensor at the end of the intake camshaft, and the predetermined crank angle from the timing sensor at the end of the exhaust camshaft. of the output of the exhaust cam signal g which is output every rotation, from the front O 2 sensor for detecting the air-fuel ratio of the exhaust gas upstream of the catalytic 41 That signal h, the signal is output from the rear O 2 sensor for detecting the air-fuel ratio of the exhaust gas downstream of the catalytic 41 i, an air conditioner and switches the ON / OFF of the electric load of the illumination lamp such as the signal j of the switch or the like Is entered. From the output interface, the fuel injection signal k for the injector 11, the ignition signal 1 for the ignition plug (ignition coil), the opening operation signal m for the EGR valve 22, and the opening operation for the ISC valve 36. Signal n etc. are output.

ECU6のプロセッサは、予めメモリに格納されているプログラムを解釈、実行して、内燃機関0の運転を制御する。ECU6は、内燃機関0の運転制御に必要な各種情報a、b、c、d、e、f、g、h、i、jを入力インタフェースを介して取得し、それらに基づいて吸気量や要求燃料噴射量、点火時期、要求EGR量等を演算する。そして、演算結果に対応した各種制御信号k、l、m、nを出力インタフェースを介して印加する。   The processor of the ECU 6 interprets and executes a program stored in the memory in advance, and controls the operation of the internal combustion engine 0. The ECU 6 obtains various information a, b, c, d, e, f, g, h, i, j necessary for operation control of the internal combustion engine 0 via the input interface, and based on them, the intake air amount and the request The fuel injection amount, ignition timing, required EGR amount, etc. are calculated. Then, various control signals k, l, m, and n corresponding to the calculation result are applied through the output interface.

空燃比制御に関して詳記する。本実施形態において、制御装置たるECU6は、気筒に充填される混合気の空燃比を制御する。具体的には、まず、吸気圧信号d及び吸気温信号e、エンジン回転数信号b等から吸入空気量を算出して基本噴射量TPを決定する。次いで、この基本噴射量TPを、上流側空燃比信号jに応じて定まるフィードバック補正係数FAFで補正し、さらには内燃機関0の状況に応じて定まる各種補正係数Kやインジェクタ11の無効噴射時間TAUVをも加味して、最終的な燃料噴射時間(インジェクタ11に対する通電時間)Tを算定する。燃料噴射時間Tは、T=TP×FAF×K+TAUVとなる。そして、燃料噴射時間Tだけインジェクタ11に信号kを入力、インジェクタ11を開弁して燃料を噴射させる。   The air-fuel ratio control will be described in detail. In this embodiment, ECU6 which is a control apparatus controls the air fuel ratio of the air-fuel mixture with which a cylinder is filled. Specifically, first, the basic injection amount TP is determined by calculating the intake air amount from the intake pressure signal d, intake temperature signal e, engine speed signal b, and the like. Next, the basic injection amount TP is corrected by a feedback correction coefficient FAF determined according to the upstream air-fuel ratio signal j, and various correction coefficients K determined according to the state of the internal combustion engine 0 and the invalid injection time TAUV of the injector 11. , The final fuel injection time (energization time for the injector 11) T is calculated. The fuel injection time T is T = TP × FAF × K + TAUV. Then, the signal k is input to the injector 11 for the fuel injection time T, and the injector 11 is opened to inject fuel.

上流側空燃比信号jを参照したフィードバック制御は、例えば内燃機関0の冷却水温が所定温度以上で、燃料カット中でなく、パワー増量中でなく、内燃機関0の始動から所定時間が経過し、フロントO2センサが活性中、吸気圧が正常である、等の諸条件が全て成立している場合に行う。このことは、アイドル運転中においても同様である。 In the feedback control with reference to the upstream air-fuel ratio signal j, for example, the cooling water temperature of the internal combustion engine 0 is equal to or higher than a predetermined temperature, the fuel is not being cut, the power is not increasing, and a predetermined time has elapsed since the start of the internal combustion engine 0. This is performed when all the conditions such as the front O 2 sensor is active and the intake pressure is normal are satisfied. The same applies to the idling operation.

図2に示すように、ECU6は、触媒41を流れるガスの空燃比を検出するセンサであるフロントO2センサの出力電圧hを、所定の判定値と比較して、判定値よりも高ければリッチ、判定値よりも低ければリーンと判定する。そして、センサ出力hがリーンからリッチに切り替わったときには、リッチ判定遅延時間TDRの経過を待って、フィードバック補正係数FAFをスキップ値RSMだけ減少させる。その後、補正係数FAFを所定時間当たりリーン積分値KIMだけ逓減させる。補正係数FAFの減少に伴い、燃料噴射量が絞られて、混合気の空燃比がリーンへと向かう。 As shown in FIG. 2, the ECU 6 compares the output voltage h of the front O 2 sensor, which is a sensor for detecting the air-fuel ratio of the gas flowing through the catalyst 41, with a predetermined determination value. If it is lower than the determination value, it is determined as lean. When the sensor output h is switched from lean to rich, the feedback correction coefficient FAF is decreased by the skip value RSM after the rich determination delay time TDR has elapsed. Thereafter, the correction coefficient FAF is decreased by a lean integral value KIM per predetermined time. As the correction coefficient FAF decreases, the fuel injection amount is reduced, and the air-fuel ratio of the air-fuel mixture moves toward lean.

あるいは、センサ出力hがリッチからリーンに切り替わったときには、リーン判定遅延時間TDLの経過を待って、フィードバック補正係数FAFをスキップ値RSPだけ増加させる。その後、補正係数FAFを所定時間当たりリッチ積分値KIPだけ逓増させる。補正係数FAFの増加に伴い、燃料噴射量が上積みされて、混合気の空燃比がリッチへと向かう。   Alternatively, when the sensor output h is switched from rich to lean, the feedback correction coefficient FAF is increased by the skip value RSP after the lean determination delay time TDL has elapsed. Thereafter, the correction coefficient FAF is increased by the rich integral value KIP per predetermined time. As the correction coefficient FAF increases, the fuel injection amount is increased and the air-fuel ratio of the air-fuel mixture becomes richer.

遅延時間TDR、TDLは、制御中心補正量FACFに応じて増減する。図3に、補正量FACFと遅延時間TDR、TDLとの関係を例示する。補正量FACFが大きくなるほど、リッチ判定遅延時間TDRは延長され、リーン判定遅延時間TDLは短縮される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が遅れ、減少から増加に転じる時期が早まる。結果として、燃料噴射量が平均的に増すこととなり、空燃比フィードバック制御の制御中心がリッチ側に変位する。   The delay times TDR and TDL increase or decrease according to the control center correction amount FACF. FIG. 3 illustrates the relationship between the correction amount FACF and the delay times TDR and TDL. As the correction amount FACF increases, the rich determination delay time TDR is extended and the lean determination delay time TDL is shortened. In this case, the time when the feedback correction coefficient FAF starts to decrease is delayed, and the time when the feedback correction coefficient FAF starts to increase increases. As a result, the fuel injection amount increases on average, and the control center of the air-fuel ratio feedback control is displaced to the rich side.

他方、補正量FACFが小さくなるほど、リッチ判定遅延時間TDRは短縮され、リーン判定遅延時間TDLは延長される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が早まり、減少から増加に転じる時期が遅れる。結果として、燃料噴射量が平均的に減ることとなり、空燃比フィードバック制御の制御中心がリーン側に変位する。   On the other hand, the smaller the correction amount FACF, the shorter the rich determination delay time TDR and the lean determination delay time TDL. Then, the time when the feedback correction coefficient FAF starts to decrease from the increase is advanced, and the time when the feedback correction coefficient FAF starts to increase is delayed. As a result, the fuel injection amount decreases on average, and the control center of the air-fuel ratio feedback control is displaced to the lean side.

ECU6は、フィードバック制御中、上記の制御中心補正量FACFをも算出する。下流側空燃比信号iを参照したフィードバック制御は、例えば冷却水温が所定温度以上で、空燃比フィードバック制御の開始から所定時間が経過し、フロントO2センサが活性してから所定時間が経過し、過渡期の燃料補正量が所定値を下回り、アイドル状態で車速が0若しくは0に近い所定閾値以下であるかまたは非アイドル状態で所定の運転領域にある、等の諸条件が全て成立している場合に行う。 The ECU 6 also calculates the control center correction amount FACF during the feedback control. In the feedback control with reference to the downstream air-fuel ratio signal i, for example, the cooling water temperature is equal to or higher than a predetermined temperature, a predetermined time elapses from the start of the air-fuel ratio feedback control, and a predetermined time elapses after the front O 2 sensor is activated, All conditions such as the fuel correction amount in the transition period is less than a predetermined value, the vehicle speed is 0 or less than a predetermined threshold value close to 0 in the idle state, or the vehicle is in the predetermined operation region in the non-idle state are satisfied. If you do.

図4に示すように、ECU6は、リアO2センサの出力電圧iを所定の判定値と比較して、判定値よりも高ければリッチ、判定値よりも低ければリーンと判定する。そして、センサ出力iがリッチである間は、制御中心補正量FACFを所定時間当たりリーン積分値FACFKIMだけ逓減させる。既に述べたように、補正量FACFの減少に伴い、空燃比フィードバック制御の制御中心はリーンへと向かう。 As shown in FIG. 4, the ECU 6 compares the output voltage i of the rear O 2 sensor with a predetermined determination value, and determines that it is rich if it is higher than the determination value and lean if it is lower than the determination value. Then, while the sensor output i is rich, the control center correction amount FACF is decreased by a lean integrated value FACFKIM per predetermined time. As already described, as the correction amount FACF decreases, the control center of the air-fuel ratio feedback control moves toward lean.

逆に、センサ出力iがリーンである間は、制御中心補正量FACFを所定時間当たりリッチ積分値FACFKIPだけ逓増させる。補正量FACFの増加に伴い、空燃比フィードバック制御の制御中心はリッチへと向かう。   Conversely, while the sensor output i is lean, the control center correction amount FACF is increased by the rich integral value FACFKIP per predetermined time. As the correction amount FACF increases, the control center of the air-fuel ratio feedback control becomes richer.

しかして、本実施形態では、アイドル運転中、電気負荷がOFFからONに切り替わる等して内燃機関0に対する外部負荷が増大するときに、ISCバルブ36の開度を拡大させる操作を行い、それとともに燃料噴射量を増量する制御を行う。   Thus, in the present embodiment, during the idling operation, when the external load on the internal combustion engine 0 increases, for example, when the electric load is switched from OFF to ON, an operation for increasing the opening of the ISC valve 36 is performed. Control to increase the fuel injection amount.

アイドル運転中、ECU6は、エンジン回転数を所定の目標アイドル回転数(例えば、約800rpm)に維持する目的で、実測回転数と目標アイドル回転数との偏差を参照し、その偏差を縮小するようにISCバルブ36を操作、即ち吸気量(さらには、燃料噴射量)を制御している。その上で、電気負荷のスイッチがOFFからONに切り替えられたことを感知した暁には、図5に示すように、ISCバルブ36の開度を、空燃比フィードバックに基づいて算定される値からDSETだけ拡大する。図5中、t1及びt2がそれぞれ、電気負荷がONに切り替わった時点である。吸気量の増分となるDSETは、増大する電気負荷の多寡に応じた量に設定することが望ましい。つまり、内燃機関0に新たに加わる外部負荷が大きいほど大きくする。   During the idling operation, the ECU 6 refers to the deviation between the actually measured engine speed and the target idle engine speed in order to maintain the engine engine speed at a predetermined target idle engine speed (for example, about 800 rpm), and reduces the deviation. In addition, the ISC valve 36 is operated, that is, the intake air amount (and the fuel injection amount) is controlled. After that, when it is detected that the switch of the electric load is switched from OFF to ON, as shown in FIG. 5, the opening of the ISC valve 36 is determined from a value calculated based on the air-fuel ratio feedback. Enlarge only DSET. In FIG. 5, t1 and t2 are the time points when the electric load is switched to ON, respectively. It is desirable to set DSET, which is the increment of the intake air amount, to an amount corresponding to the increasing amount of electric load. That is, the larger the external load newly applied to the internal combustion engine 0 is, the larger it is.

のみならず、電気負荷がONに切り替わった瞬間のエンジン回転数の落下を抑制するために、電気負荷がONに切り替わった時点で、ISCバルブ36の開度を上記のDSETからさらにDSKIPだけ大きく瞬間的に拡開した後、徐々にDSETまで絞る操作を行う。吸気量のスキップ増分DSKIPは、O2センサを介して検出している空燃比に応じて変化する。 In addition, in order to suppress a drop in the engine speed at the moment when the electric load is turned on, the opening of the ISC valve 36 is further increased from the above DSET by DSKIP when the electric load is turned on. After the expansion, the operation of gradually narrowing down to DSET is performed. The intake air amount skip increment DSKIP changes according to the air-fuel ratio detected via the O 2 sensor.

図6に、触媒41を流通するガスの空燃比とDSKIPとの関係を示す。DSKIPは、空燃比がリーンであるほど大きく、リッチであるほど小さい。ECU6は、フロントO2センサの出力hによって示される触媒41の上流側の空燃比がリーンであるほどDSKIPを大きく設定し、リッチであるほどDSKIPを小さく設定する。さらに、ECU6は、リアO2センサの出力iによって示される触媒41の下流側の空燃比がリーンであるほどDSKIPを大きく補正し、リッチであるほどDSKIPを小さく補正する。図5に示しているように、フロントO2センサの出力hがリーンを示す期間にある時点t1におけるDSKIPは、同出力hがリッチを示す期間にある時点t2におけるDSKIPよりも大きくなる。 FIG. 6 shows the relationship between the air-fuel ratio of the gas flowing through the catalyst 41 and DSKIP. DSKIP is larger as the air-fuel ratio is leaner and smaller as it is richer. The ECU 6 sets DSKIP larger as the air-fuel ratio upstream of the catalyst 41 indicated by the output h of the front O 2 sensor is leaner, and sets DSKIP smaller as it is richer. Further, the ECU 6 corrects the DSKIP larger as the air-fuel ratio downstream of the catalyst 41 indicated by the output i of the rear O 2 sensor is leaner, and corrects the DSKIP smaller as it is richer. As shown in FIG. 5, DSKIP at time point t1 during the period when the output h of the front O 2 sensor shows lean is larger than DSKIP at time point t2 when the output h shows rich.

ISCバルブ36開度の拡大による吸気量の増加に伴い、ECU6が(空燃比フィードバック制御として)算出する燃料噴射量が増加することは言うまでもない。   It goes without saying that the fuel injection amount calculated by the ECU 6 (as air-fuel ratio feedback control) increases as the intake air amount increases due to the increase in the opening of the ISC valve 36.

本実施形態では、アイドル運転領域にて内燃機関0に対する外部負荷が増大するときにISCバルブ36の開度を拡大させる操作を行うとともに燃料噴射量を増量する内燃機関0の制御装置6であって、前記操作において、フロントO2センサを介して検出される触媒41上流側の空燃比がリーンである場合にはリッチである場合と比較してISCバルブ36の開度の拡大量DSKIPをより大きく設定し、並びに、リアO2センサを介して検出される触媒41下流側の空燃比がリーンである場合にはリッチである場合と比較してISCバルブ36の開度の拡大量DSKIPをより大きく補正することを特徴とする制御装置6を構成した。 In the present embodiment, the control device 6 of the internal combustion engine 0 performs an operation of expanding the opening of the ISC valve 36 when the external load on the internal combustion engine 0 increases in the idle operation region and increases the fuel injection amount. In the above operation, when the air-fuel ratio upstream of the catalyst 41 detected via the front O 2 sensor is lean, the increase amount DSKIP of the opening of the ISC valve 36 is made larger than when the air-fuel ratio is rich. When the air-fuel ratio on the downstream side of the catalyst 41 detected through the rear O 2 sensor is lean, the amount of expansion DSKIP of the opening of the ISC valve 36 is made larger than when it is rich. The control device 6 is characterized by correcting.

本実施形態によれば、空燃比リーンの期間に電気負荷に代表される外部負荷が増大した場合に、空燃比リッチの期間に比べて吸入空気量及び燃料噴射量をより多く増量し、エンジン回転数の落ち込みを抑制できる。線形な出力特性を持つ高価なリニア空燃比センサを用いず、非線形な出力特性を持つ安価なO2センサを用いながらも、アイドル回転を安定化させることができるので、コスト低減に寄与し得る。 According to the present embodiment, when the external load represented by the electric load increases during the air-fuel ratio lean period, the intake air amount and the fuel injection amount are increased more than the air-fuel ratio rich period, and the engine rotation The drop in the number can be suppressed. The idle rotation can be stabilized while using an inexpensive O 2 sensor having a non-linear output characteristic without using an expensive linear air-fuel ratio sensor having a linear output characteristic, which can contribute to cost reduction.

なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、ISCバルブ36を実装せず電子スロットルバルブ33を実装した内燃機関0に本発明を適用する場合には、内燃機関0に対する外部負荷が増大するときに電子スロットルバルブ33の開度を拡大させる操作を行うとともに燃料噴射量を増量する。そして、前記操作において、フロントO2センサを介して検出される触媒41上流側の空燃比がリーンである場合にはリッチである場合と比較して電子スロットルバルブ33の開度の拡大量DSKIPをより大きく設定し、並びに、リアO2センサを介して検出される触媒41下流側の空燃比がリーンである場合にはリッチである場合と比較して電子スロットルバルブ33の開度の拡大量DSKIPをより大きく補正する。 The present invention is not limited to the embodiment described in detail above. For example, when the present invention is applied to the internal combustion engine 0 in which the electronic throttle valve 33 is mounted without mounting the ISC valve 36, the opening degree of the electronic throttle valve 33 is increased when the external load on the internal combustion engine 0 increases. Operate and increase the fuel injection amount. In the above operation, when the air-fuel ratio upstream of the catalyst 41 detected via the front O 2 sensor is lean, the increase amount DSKIP of the opening degree of the electronic throttle valve 33 is set as compared with the case where the air-fuel ratio is rich. When the air-fuel ratio on the downstream side of the catalyst 41 detected through the rear O 2 sensor is lean, the opening amount DSKIP of the electronic throttle valve 33 is increased compared to the rich case. To a larger value.

上記実施形態では、アイドル運転中にISCバルブ36または電子スロットルバルブ33の開度をDSKIPにより拡大する操作を行うとしていたが、アイドル運転中以外にも、アイドル運転に近い所定閾値以下の低負荷、所定閾値以下の低回転数の運転領域にて同様の操作を行ってもよい。さすれば、低負荷低回転域における、電気負荷等の増大に起因したエンジン回転数の落下、エンジン回転の不安定化を予防することができる。   In the above embodiment, the operation of expanding the opening of the ISC valve 36 or the electronic throttle valve 33 by the DSKIP during the idle operation is performed. You may perform the same operation in the driving | running | working area | region of the low rotation speed below a predetermined threshold value. In this case, it is possible to prevent the engine speed from dropping and the engine rotation from becoming unstable due to an increase in electric load or the like in the low load and low rotation range.

その他、各部の具体的構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each unit, the processing procedure, and the like can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関の制御に適用することができる。   The present invention can be applied to control of an internal combustion engine mounted on a vehicle or the like.

0…内燃機関
36…ISCバルブ
6…制御装置(ECU)
DESCRIPTION OF SYMBOLS 0 ... Internal combustion engine 36 ... ISC valve 6 ... Control apparatus (ECU)

Claims (1)

アイドルまたは低負荷低回転の運転領域にて内燃機関に対する外部負荷が増大するときにISCバルブまたはスロットルバルブの開度を拡大させる操作を行うとともに燃料噴射量を増量する内燃機関の制御装置であって、
前記操作において、フロントO2センサを介して検出される触媒上流側の空燃比がリーンである場合にはリッチである場合と比較してISCバルブまたはスロットルバルブの開度の拡大量をより大きく設定し、並びに、リアO2センサを介して検出される触媒下流側の空燃比がリーンである場合にはリッチである場合と比較してISCバルブまたはスロットルバルブの開度の拡大量をより大きく補正することを特徴とする内燃機関の制御装置。
A control device for an internal combustion engine that performs an operation of expanding an opening of an ISC valve or a throttle valve and increases a fuel injection amount when an external load on the internal combustion engine increases in an idling or low load / low speed operation region. ,
In the above operation, when the air-fuel ratio upstream of the catalyst detected via the front O 2 sensor is lean, the enlargement amount of the opening of the ISC valve or the throttle valve is set larger than when the air-fuel ratio is rich. In addition, when the air-fuel ratio on the downstream side of the catalyst detected via the rear O 2 sensor is lean, the amount of expansion of the opening of the ISC valve or the throttle valve is corrected more than when it is rich. A control device for an internal combustion engine.
JP2011110968A 2011-05-18 2011-05-18 Control device for internal combustion engine Active JP5843478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110968A JP5843478B2 (en) 2011-05-18 2011-05-18 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110968A JP5843478B2 (en) 2011-05-18 2011-05-18 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012241574A true JP2012241574A (en) 2012-12-10
JP5843478B2 JP5843478B2 (en) 2016-01-13

Family

ID=47463565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110968A Active JP5843478B2 (en) 2011-05-18 2011-05-18 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5843478B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163301A (en) * 2013-02-26 2014-09-08 Daihatsu Motor Co Ltd Air-fuel ratio control device
JP2019135382A (en) * 2018-02-05 2019-08-15 ダイハツ工業株式会社 Control device of internal combustion engine
JP2020037287A (en) * 2018-09-03 2020-03-12 ダイハツ工業株式会社 Control device of vehicle
US11624333B2 (en) 2021-04-20 2023-04-11 Kohler Co. Exhaust safety system for an engine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170744A (en) * 1986-01-22 1987-07-27 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine on vehicle
JPH1037788A (en) * 1996-07-22 1998-02-10 Nissan Motor Co Ltd Idle rotational speed control device of internal combustion engine
JPH10184428A (en) * 1996-12-24 1998-07-14 Daihatsu Motor Co Ltd Number of idle revolution control method for internal combustion engine
JPH1144241A (en) * 1997-07-30 1999-02-16 Nissan Motor Co Ltd Idle rotation speed control device for internal combustion engine
JP2000220505A (en) * 1999-01-28 2000-08-08 Honda Motor Co Ltd Control device for direct injection internal combustion engine
JP2001132521A (en) * 1999-11-10 2001-05-15 Daihatsu Motor Co Ltd Control method when pressure detector of internal combustion engine is out of order
JP2003172166A (en) * 2001-12-06 2003-06-20 Toyota Motor Corp Idling speed control device for internal combustion engine
JP2006037755A (en) * 2004-07-23 2006-02-09 Nissan Motor Co Ltd Control device for internal combustion engine
JP2009167991A (en) * 2008-01-21 2009-07-30 Denso Corp Idling operation control device for internal combustion engine
JP2010138791A (en) * 2008-12-11 2010-06-24 Daihatsu Motor Co Ltd Air-fuel ratio control device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170744A (en) * 1986-01-22 1987-07-27 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine on vehicle
JPH1037788A (en) * 1996-07-22 1998-02-10 Nissan Motor Co Ltd Idle rotational speed control device of internal combustion engine
JPH10184428A (en) * 1996-12-24 1998-07-14 Daihatsu Motor Co Ltd Number of idle revolution control method for internal combustion engine
JPH1144241A (en) * 1997-07-30 1999-02-16 Nissan Motor Co Ltd Idle rotation speed control device for internal combustion engine
JP2000220505A (en) * 1999-01-28 2000-08-08 Honda Motor Co Ltd Control device for direct injection internal combustion engine
JP2001132521A (en) * 1999-11-10 2001-05-15 Daihatsu Motor Co Ltd Control method when pressure detector of internal combustion engine is out of order
JP2003172166A (en) * 2001-12-06 2003-06-20 Toyota Motor Corp Idling speed control device for internal combustion engine
JP2006037755A (en) * 2004-07-23 2006-02-09 Nissan Motor Co Ltd Control device for internal combustion engine
JP2009167991A (en) * 2008-01-21 2009-07-30 Denso Corp Idling operation control device for internal combustion engine
JP2010138791A (en) * 2008-12-11 2010-06-24 Daihatsu Motor Co Ltd Air-fuel ratio control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163301A (en) * 2013-02-26 2014-09-08 Daihatsu Motor Co Ltd Air-fuel ratio control device
JP2019135382A (en) * 2018-02-05 2019-08-15 ダイハツ工業株式会社 Control device of internal combustion engine
JP7023129B2 (en) 2018-02-05 2022-02-21 ダイハツ工業株式会社 Internal combustion engine control device
JP2020037287A (en) * 2018-09-03 2020-03-12 ダイハツ工業株式会社 Control device of vehicle
JP7080565B2 (en) 2018-09-03 2022-06-06 ダイハツ工業株式会社 Vehicle control device
US11624333B2 (en) 2021-04-20 2023-04-11 Kohler Co. Exhaust safety system for an engine

Also Published As

Publication number Publication date
JP5843478B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
US8141349B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
US8813490B2 (en) Internal combustion engine exhaust emission control device and exhaust emission control method
US20090158713A1 (en) Exhaust Gas Purification System for Internal Combustion Engine
JP5843478B2 (en) Control device for internal combustion engine
JP2008128216A (en) Exhaust emission control device of internal combustion engine
EP2395223B1 (en) Internal combustion engine exhaust purifying device and exhaust purifying method
JP4747079B2 (en) Exhaust gas purification device for internal combustion engine
JP5832156B2 (en) Control device for internal combustion engine
JP4482848B2 (en) Exhaust gas purification device for turbocharged engine
JP2006214320A (en) Exhaust emission control device of internal combustion engine
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JP2009191660A (en) Control device of internal combustion engine
JP2006291897A (en) Control device for internal combustion engine
JP6699272B2 (en) Engine and control method thereof
JP4339599B2 (en) In-cylinder injection internal combustion engine control device
JP2001227393A (en) Fuel control device for diesel engine
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP2001159361A (en) White smoke exhaust restraining device for internal combustion engine
JP2002364413A (en) Exhaust emission control device for cylinder injection type engine with turbo supercharger
JP2011007113A (en) Control device for internal combustion engine of cylinder injection type
JP2011012687A (en) Engine torque control device
JP4325517B2 (en) Fuel injection control method for internal combustion engine
JP2008101486A (en) Control device of internal combustion engine
JP5794788B2 (en) Air-fuel ratio control device
JP2006017056A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5843478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250