JP6907691B2 - Intake and exhaust structure of compressed natural gas engine - Google Patents

Intake and exhaust structure of compressed natural gas engine Download PDF

Info

Publication number
JP6907691B2
JP6907691B2 JP2017097373A JP2017097373A JP6907691B2 JP 6907691 B2 JP6907691 B2 JP 6907691B2 JP 2017097373 A JP2017097373 A JP 2017097373A JP 2017097373 A JP2017097373 A JP 2017097373A JP 6907691 B2 JP6907691 B2 JP 6907691B2
Authority
JP
Japan
Prior art keywords
exhaust
intake
passage
throttle valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017097373A
Other languages
Japanese (ja)
Other versions
JP2018193899A (en
Inventor
義文 長島
義文 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2017097373A priority Critical patent/JP6907691B2/en
Priority to PCT/JP2018/018282 priority patent/WO2018212088A1/en
Priority to CN201880032625.2A priority patent/CN110637150B/en
Publication of JP2018193899A publication Critical patent/JP2018193899A/en
Application granted granted Critical
Publication of JP6907691B2 publication Critical patent/JP6907691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、圧縮天然ガス機関の吸排気構造に関する。 The present invention relates to an intake / exhaust structure of a compressed natural gas engine.

圧縮天然ガス自動車に於いては、排気中の窒素酸化物、炭化水素、一酸化炭素を浄化する為に三元触媒を使用している(例えば特許文献1を参照)。 Compressed natural gas vehicles use a three-way catalyst to purify nitrogen oxides, hydrocarbons, and carbon monoxide in the exhaust gas (see, for example, Patent Document 1).

特開2017−002865号公報JP-A-2017-002865

三元触媒を使用し排気中の窒素酸化物、炭化水素、一酸化炭素を浄化する為に圧縮天然ガス機関をストイキ燃焼運転領域に於いて運転する必要が有る。 It is necessary to operate a compressed natural gas engine in the stoichiometric combustion operating region in order to purify nitrogen oxides, hydrocarbons and carbon monoxide in the exhaust using a three-way catalyst.

然し乍ら、圧縮天然ガス機関をストイキ燃焼運転領域に於いて運転すると、燃費の悪化と排気温度が高温と成る為、圧縮天然ガス機関の耐久性に悪影響を与える虞が有る。 However, if the compressed natural gas engine is operated in the stoichiometric combustion operation region, the fuel efficiency deteriorates and the exhaust temperature becomes high, which may adversely affect the durability of the compressed natural gas engine.

特に高負荷運転領域に於いては燃費悪化を伴う燃料リッチ化を使用せず排気再循環を使用し排気温度を低下させる必要が有るが、過給機を搭載した圧縮天然ガス自動車に於いては排気圧が吸気圧と比較し低圧と成り易く排気再循環率を上昇させ難い。 Especially in the high load operation region, it is necessary to lower the exhaust temperature by using exhaust gas recirculation without using fuel enrichment that accompanies deterioration of fuel efficiency, but in compressed natural gas vehicles equipped with a supercharger. The exhaust pressure tends to be lower than the intake pressure, and it is difficult to increase the exhaust gas recirculation rate.

また、圧縮天然ガス機関はディーゼル機関と相違し所定のトルクを得る為に大量の空気を燃料と共に気筒に供給する必要が有る為、過給機を搭載した圧縮天然ガス自動車に於いては小容量の原動機を使用する事によって過渡応答性(発進応答性)を向上させている。 Also, unlike a diesel engine, a compressed natural gas engine needs to supply a large amount of air to the cylinder together with fuel in order to obtain a predetermined torque, so a compressed natural gas vehicle equipped with a supercharger has a small capacity. Transient responsiveness (starting responsiveness) is improved by using the prime mover of.

然し乍ら、過給機を搭載した小容量の原動機を使用すると全領域において最適にはならなく少なからず損失が発生し、高回転高負荷運転領域に於いて排気圧が高圧と成る為、排気温度が上昇する虞が有る。 However, if a small-capacity prime mover equipped with a turbocharger is used, it will not be optimal in the entire area and a considerable loss will occur, and the exhaust pressure will be high in the high-speed, high-load operation area, so the exhaust temperature will rise. There is a risk of rising.

従って、本発明は、過給機の損失を削減し燃費悪化を低減させつつ、排気温度が上昇する事を抑制し圧縮天然ガス機関の耐久性に悪影響を与え難い圧縮天然ガス機関の吸排気構造を提供する事を目的とする。 Therefore, the present invention has an intake / exhaust structure of a compressed natural gas engine that suppresses an increase in the exhaust temperature and does not adversely affect the durability of the compressed natural gas engine while reducing the loss of the turbocharger and reducing the deterioration of fuel efficiency. The purpose is to provide.

本発明は、吸気通路に設置される過給機の圧縮機と、前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、前記迂回吸気通路に設置される第二絞気弁と、排気通路に設置される過給機の原動機と、前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、前記迂回排気通路に設置される排気逃し弁と、前記吸気通路の吸気下流端に接続される吸気多岐管と、前記排気通路の排気上流端に接続される排気多岐管と、前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、前記排気再循環通路に設置される排気再循環弁と、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、を備え、前記制御装置は、低回転低負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁とを開くと共に前記排気逃し弁と前記排気再循環弁とを閉じ、過給圧が上昇するに連れ前記第二絞気弁を閉じていく圧縮天然ガス機関の吸排気構造を提供する。 The present invention includes a turbocharger compressor installed in an intake passage, a first throttle valve installed in the intake passage on the intake downstream side of the compressor, and the intake air on the intake upstream side of the compressor. A detour intake passage that communicates the passage with the intake passage between the compressor and the first throttle valve, a second throttle valve installed in the detour intake passage, and a supercharger installed in the exhaust passage. The prime mover of the machine, a detour exhaust passage that connects the exhaust passage on the exhaust upstream side of the prime mover to the exhaust passage on the exhaust downstream side of the prime mover, an exhaust relief valve installed in the detour exhaust passage, and the intake passage. The exhaust gas recirculation pipe connected to the intake downstream end of the exhaust passage, the exhaust gas pipe connected to the exhaust upstream end of the exhaust passage, the exhaust gas recirculation passage connecting the exhaust gas pipe to the intake gas pipe, and the exhaust gas recirculation. comprising an exhaust recirculation valve which is installed in the circulation passage, and a control device for opening and closing said exhaust gas recirculation valve wherein the first diaphragm valves and said second diaphragm valves and the waste gate valve, the control device In the low rotation and low load operation region, the first throttle valve and the second throttle valve are opened and the exhaust relief valve and the exhaust gas recirculation valve are closed, so that the supercharging pressure rises. Provided is an intake / exhaust structure of a compressed natural gas engine that closes the second throttle valve.

また、吸気通路に設置される過給機の圧縮機と、前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、前記迂回吸気通路に設置される第二絞気弁と、排気通路に設置される過給機の原動機と、前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、前記迂回排気通路に設置される排気逃し弁と、前記吸気通路の吸気下流端に接続される吸気多岐管と、前記排気通路の排気上流端に接続される排気多岐管と、前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、前記排気再循環通路に設置される排気再循環弁と、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、を備え、前記制御装置は、低回転高負荷運転領域に於いては、前記第一絞気弁と前記排気再循環弁とを開くと共に前記第二絞気弁と前記排気逃し弁とを閉じる圧縮天然ガス機関の吸排気構造を提供する。Further, the compressor of the supercharger installed in the intake passage, the first throttle valve installed in the intake passage on the intake downstream side of the compressor, and the intake passage on the intake upstream side of the compressor. A detour intake passage communicating with the intake passage between the compressor and the first throttle valve, a second throttle valve installed in the detour intake passage, and a supercharger installed in the exhaust passage. A prime mover, a detour exhaust passage that connects the exhaust passage on the exhaust upstream side of the prime mover to the exhaust passage on the exhaust downstream side of the prime mover, an exhaust relief valve installed in the detour exhaust passage, and intake of the intake passage. An exhaust gas recirculation pipe connected to a downstream end, an exhaust gas recirculation pipe connected to an exhaust upstream end of the exhaust passage, an exhaust recirculation passage connecting the exhaust gas pipe to the intake gas pipe, and an exhaust gas recirculation passage. The exhaust gas recirculation valve is provided with a control device for opening and closing the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust recirculation valve. In the low rotation and high load operation region, the intake / exhaust structure of the compressed natural gas engine that opens the first throttle valve and the exhaust gas recirculation valve and closes the second throttle valve and the exhaust relief valve is provided. offer.

また、吸気通路に設置される過給機の圧縮機と、前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、前記迂回吸気通路に設置される第二絞気弁と、排気通路に設置される過給機の原動機と、前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、前記迂回排気通路に設置される排気逃し弁と、前記吸気通路の吸気下流端に接続される吸気多岐管と、前記排気通路の排気上流端に接続される排気多岐管と、前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、前記排気再循環通路に設置される排気再循環弁と、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、を備え、前記制御装置は、中高回転低負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気再循環弁とを開くと共に前記排気逃し弁を閉じる圧縮天然ガス機関の吸排気構造を提供する。Further, the compressor of the supercharger installed in the intake passage, the first throttle valve installed in the intake passage on the intake downstream side of the compressor, and the intake passage on the intake upstream side of the compressor. A detour intake passage communicating with the intake passage between the compressor and the first throttle valve, a second throttle valve installed in the detour intake passage, and a supercharger installed in the exhaust passage. A prime mover, a detour exhaust passage that connects the exhaust passage on the exhaust upstream side of the prime mover to the exhaust passage on the exhaust downstream side of the prime mover, an exhaust relief valve installed in the detour exhaust passage, and intake of the intake passage. An intake gas recirculation pipe connected to the downstream end, an exhaust gas recirculation pipe connected to the exhaust upstream end of the exhaust passage, an exhaust gas recirculation passage connecting the exhaust gas pipe to the intake gas recirculation pipe, and an exhaust gas recirculation passage. The exhaust gas recirculation valve is provided with a control device for opening and closing the first air throttle valve, the second air throttle valve, the exhaust relief valve, and the exhaust gas recirculation valve. Provided is an intake / exhaust structure of a compressed natural gas engine that opens the first throttle valve, the second throttle valve, and the exhaust gas recirculation valve and closes the exhaust relief valve in the medium-high rotation low load operation region. do.

また、吸気通路に設置される過給機の圧縮機と、前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、前記迂回吸気通路に設置される第二絞気弁と、排気通路に設置される過給機の原動機と、前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、前記迂回排気通路に設置される排気逃し弁と、前記吸気通路の吸気下流端に接続される吸気多岐管と、前記排気通路の排気上流端に接続される排気多岐管と、前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、前記排気再循環通路に設置される排気再循環弁と、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、を備え、前記制御装置は、低中高回転中負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開く圧縮天然ガス機関の吸排気構造を提供する。Further, the compressor of the supercharger installed in the intake passage, the first throttle valve installed in the intake passage on the intake downstream side of the compressor, and the intake passage on the intake upstream side of the compressor. A detour intake passage communicating with the intake passage between the compressor and the first throttle valve, a second throttle valve installed in the detour intake passage, and a supercharger installed in the exhaust passage. A prime mover, a detour exhaust passage that connects the exhaust passage on the exhaust upstream side of the prime mover to the exhaust passage on the exhaust downstream side of the prime mover, an exhaust relief valve installed in the detour exhaust passage, and intake of the intake passage. An intake gas recirculation pipe connected to the downstream end, an exhaust gas recirculation pipe connected to the exhaust upstream end of the exhaust passage, an exhaust gas recirculation passage connecting the exhaust gas pipe to the intake gas recirculation pipe, and an exhaust gas recirculation passage. The exhaust gas recirculation valve is provided with a control device for opening and closing the first air throttle valve, the second air throttle valve, the exhaust relief valve, and the exhaust gas recirculation valve. Provided is an intake / exhaust structure of a compressed natural gas engine that opens the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust gas recirculation valve in the low-medium-high rotation medium-load operation region. ..

また、吸気通路に設置される過給機の圧縮機と、前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、前記迂回吸気通路に設置される第二絞気弁と、排気通路に設置される過給機の原動機と、前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、前記迂回排気通路に設置される排気逃し弁と、前記吸気通路の吸気下流端に接続される吸気多岐管と、前記排気通路の排気上流端に接続される排気多岐管と、前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、前記排気再循環通路に設置される排気再循環弁と、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、を備え、前記制御装置は、中高回転高負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気再循環弁とを開くと共に前記排気逃し弁を閉じ、吸気圧をアクセル開度と機関回転数とに応じた目標吸気圧に到達させる事が出来ない時は吸気圧を目標吸気圧に到達させるべく前記排気逃し弁を開く圧縮天然ガス機関の吸排気構造を提供する。Further, the compressor of the supercharger installed in the intake passage, the first throttle valve installed in the intake passage on the intake downstream side of the compressor, and the intake passage on the intake upstream side of the compressor. A detour intake passage communicating with the intake passage between the compressor and the first throttle valve, a second throttle valve installed in the detour intake passage, and a supercharger installed in the exhaust passage. A prime mover, a detour exhaust passage that connects the exhaust passage on the exhaust upstream side of the prime mover to the exhaust passage on the exhaust downstream side of the prime mover, an exhaust relief valve installed in the detour exhaust passage, and intake of the intake passage. An exhaust gas recirculation pipe connected to a downstream end, an exhaust gas recirculation pipe connected to an exhaust upstream end of the exhaust passage, an exhaust recirculation passage connecting the exhaust gas pipe to the intake gas pipe, and an exhaust gas recirculation passage. The exhaust gas recirculation valve is provided with a control device for opening and closing the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust recirculation valve. In the medium-high rotation high load operation region, the first throttle valve, the second throttle valve, and the exhaust gas recirculation valve are opened and the exhaust gas recirculation valve is closed, and the intake pressure is adjusted to the accelerator opening and the engine rotation. Provided is an intake / exhaust structure of a compressed natural gas engine that opens the exhaust relief valve in order to bring the intake pressure to the target intake pressure when the target intake pressure corresponding to the number cannot be reached.

更に、吸気通路に設置される過給機の圧縮機と、前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、前記迂回吸気通路に設置される第二絞気弁と、排気通路に設置される過給機の原動機と、前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、前記迂回排気通路に設置される排気逃し弁と、前記吸気通路の吸気下流端に接続される吸気多岐管と、前記排気通路の排気上流端に接続される排気多岐管と、前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、前記排気再循環通路に設置される排気再循環弁と、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、を備え、前記制御装置は、低高温時の中高回転高負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁とを開くと共に前記排気再循環弁を閉じる圧縮天然ガス機関の吸排気構造を提供する。Further, the compressor of the supercharger installed in the intake passage, the first throttle valve installed in the intake passage on the intake downstream side of the compressor, and the intake passage on the intake upstream side of the compressor. A detour intake passage communicating with the intake passage between the compressor and the first throttle valve, a second throttle valve installed in the detour intake passage, and a supercharger installed in the exhaust passage. A prime mover, a detour exhaust passage that connects the exhaust passage on the exhaust upstream side of the prime mover to the exhaust passage on the exhaust downstream side of the prime mover, an exhaust relief valve installed in the detour exhaust passage, and intake of the intake passage. An exhaust gas recirculation pipe connected to a downstream end, an exhaust gas recirculation pipe connected to an exhaust upstream end of the exhaust passage, an exhaust recirculation passage connecting the exhaust gas pipe to the intake gas pipe, and an exhaust gas recirculation passage. The exhaust gas recirculation valve is provided with a control device for opening and closing the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust recirculation valve. In the medium-high rotation high-load operation region at low and high temperatures, the suction of the compressed natural gas engine that opens the first throttle valve, the second throttle valve, and the exhaust gas recirculation valve and closes the exhaust gas recirculation valve. Provides an exhaust structure.

前記原動機の排気下流側の前記排気通路に設置される排気制動弁を更に備え、前記制御装置は、前記排気制動弁も開閉する事が望ましい。 It is desirable that the exhaust braking valve provided in the exhaust passage on the downstream side of the exhaust of the prime mover is further provided, and the control device also opens and closes the exhaust braking valve.

前記制御装置は、排気制動作動運転領域に於いては、前記第一絞気弁と前記第二絞気弁とを開くと共に前記排気制動弁を閉じる事が望ましい。 It is desirable that the control device opens the first throttle valve and the second throttle valve and closes the exhaust braking valve in the exhaust braking operation operation region.

本発明によって、過給機の損失を削減し燃費を向上させつつ、排気温度が上昇する事を抑制し圧縮天然ガス機関の耐久性に悪影響を与え難い圧縮天然ガス機関の吸排気構造を提供する事が出来る。 INDUSTRIAL APPLICABILITY The present invention provides an intake / exhaust structure of a compressed natural gas engine that suppresses an increase in exhaust temperature and does not adversely affect the durability of the compressed natural gas engine while reducing the loss of the turbocharger and improving fuel efficiency. You can do things.

本発明の実施の形態に係る圧縮天然ガス機関の吸排気構造を説明する図である。It is a figure explaining the intake / exhaust structure of the compressed natural gas engine which concerns on embodiment of this invention. 制御装置の入出力関係を説明する図である。It is a figure explaining the input / output relation of a control device. 運転領域を説明する図である。It is a figure explaining the operation area. 低回転低負荷運転領域に於ける吸排気構造の動作を説明する図である。It is a figure explaining the operation of the intake / exhaust structure in a low rotation low load operation region. 低回転低負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。It is the figure which summarized the control and the movement of a compressed natural gas engine in a low rotation low load operation region. 低回転高負荷運転領域に於ける吸排気構造の動作を説明する図である。It is a figure explaining the operation of the intake / exhaust structure in a low rotation high load operation region. 低回転高負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。It is the figure which summarized the control and the movement of a compressed natural gas engine in a low rotation high load operation region. 中高回転低負荷運転領域に於ける吸排気構造の動作を説明する図である。It is a figure explaining the operation of the intake / exhaust structure in a medium-high rotation low load operation region. 中高回転低負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。It is the figure which summarized the control and the movement of a compressed natural gas engine in a medium-high rotation low-load operation region. 低中高回転中負荷運転領域に於ける吸排気構造の動作を説明する図である。It is a figure explaining the operation of the intake / exhaust structure in a low medium high rotation medium load operation region. 低中高回転中負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。It is the figure which summarized the control and the movement of the compressed natural gas engine in the low medium high rotation medium load operation region. 中高回転高負荷運転領域に於ける吸排気構造の動作を説明する図である。It is a figure explaining the operation of the intake / exhaust structure in a medium-high rotation high load operation region. 中高回転高負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。It is the figure which summarized the control and the movement of the compressed natural gas engine in the medium-high rotation high load operation region. 低高温時の中高回転高負荷運転領域に於ける吸排気構造の動作を説明する図である。It is a figure explaining the operation of the intake / exhaust structure in a medium-high rotation high load operation region at a low high temperature. 低高温時の中高回転高負荷運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。It is the figure which summarized the control and the movement of a compressed natural gas engine in a medium-high rotation high-load operation region at a low high temperature. 排気制動作動運転領域に於ける吸排気構造の動作を説明する図である。It is a figure explaining the operation of the intake / exhaust structure in the exhaust braking operation operation area. 排気制動作動運転領域に於ける制御と圧縮天然ガス機関の動きとを纏めた図である。It is the figure which summarized the control and the movement of the compressed natural gas engine in the exhaust braking operation operation area.

以下、本発明の実施の形態を添付図面に順って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1及び2に示す様に、本発明の実施の形態に係る圧縮天然ガス機関の吸排気構造100は、吸気通路101と、排気通路102と、吸気多岐管103と、排気多岐管104と、過給機105の圧縮機106と、過給機105の原動機107と、第一絞気弁108と、迂回吸気通路109と、第二絞気弁110と、迂回排気通路111と、排気逃し弁112と、排気再循環通路113と、排気再循環弁114と、排気制動弁115と、制御装置116と、を備える。 As shown in FIGS. 1 and 2, the intake / exhaust structure 100 of the compressed natural gas engine according to the embodiment of the present invention includes an intake passage 101, an exhaust passage 102, an intake multi-tube 103, and an exhaust multi-tube 104. The compressor 106 of the supercharger 105, the prime mover 107 of the supercharger 105, the first throttle valve 108, the detour intake passage 109, the second throttle valve 110, the detour exhaust passage 111, and the exhaust relief valve. The exhaust gas recirculation passage 113, the exhaust gas recirculation valve 114, the exhaust braking valve 115, and the control device 116 are provided.

吸気通路101は、所謂、吸気管であって、複数の気筒117の夫々に吸気を供給する。排気通路102は、所謂、排気管であって、複数の気筒117の夫々から排気を排出する。吸気通路101と排気通路102は、車種に応じ種々の経路に沿い配索される。 The intake passage 101 is a so-called intake pipe, and supplies intake air to each of the plurality of cylinders 117. The exhaust passage 102 is a so-called exhaust pipe, and exhausts exhaust gas from each of the plurality of cylinders 117. The intake passage 101 and the exhaust passage 102 are arranged along various routes according to the vehicle type.

吸気多岐管103は、吸気通路101の吸気下流端に接続されると共に吸気通路101を通じ圧縮天然ガス機関に供給される吸気を複数の気筒117の夫々に分流する。排気多岐管104は、排気通路102の排気上流端に接続されると共に複数の気筒117の夫々から排出される排気を排気通路102に合流する。 The intake multi-purpose pipe 103 is connected to the intake downstream end of the intake passage 101 and divides the intake air supplied to the compressed natural gas engine through the intake passage 101 into each of the plurality of cylinders 117. The exhaust multi-purpose pipe 104 is connected to the exhaust upstream end of the exhaust passage 102 and joins the exhaust discharged from each of the plurality of cylinders 117 into the exhaust passage 102.

吸気多岐管103に第一圧力検出器118が設置される。第一圧力検出器118は、所謂、MAPセンサであって、制御装置116に接続され吸気多岐管103の絶対圧を検出する。本明細書に於いては、第一圧力検出器118が検出した吸気多岐管103の絶対圧を「吸気多岐管圧」と定義する。 The first pressure detector 118 is installed in the intake multi-tube 103. The first pressure detector 118 is a so-called MAP sensor, which is connected to the control device 116 and detects the absolute pressure of the intake multi-tube 103. In the present specification, the absolute pressure of the intake multi-tube 103 detected by the first pressure detector 118 is defined as "intake multi-tube pressure".

過給機105は、圧縮機106と、原動機107と、回転軸119と、を有する。過給機105は、所謂、排気タービン式過給機であって、排気の運動エネルギを利用し原動機107が駆動されると共に原動機107の運動エネルギを利用し圧縮機106が駆動される事によって大量の空気を圧縮(過給)し複数の気筒117の夫々に供給する。圧縮機106は、所謂、コンプレッサであって、吸気通路101に設置される。原動機107は、所謂、タービンであって、排気通路102に設置される。回転軸119は、圧縮機106と原動機107とを同軸に於いて回転自在に連結する。 The supercharger 105 includes a compressor 106, a prime mover 107, and a rotating shaft 119. The supercharger 105 is a so-called exhaust turbine type supercharger, and a large amount is driven by using the kinetic energy of the exhaust to drive the prime mover 107 and using the kinetic energy of the prime mover 107 to drive the compressor 106. Air is compressed (supercharged) and supplied to each of a plurality of cylinders 117. The compressor 106 is a so-called compressor and is installed in the intake passage 101. The prime mover 107 is a so-called turbine and is installed in the exhaust passage 102. The rotating shaft 119 rotatably connects the compressor 106 and the prime mover 107 coaxially.

原動機107の排気下流側の排気通路102に三元触媒120が設置される。三元触媒120は、排気中の窒素酸化物、炭化水素、一酸化炭素を浄化する。 The three-way catalyst 120 is installed in the exhaust passage 102 on the downstream side of the exhaust of the prime mover 107. The three-way catalyst 120 purifies nitrogen oxides, hydrocarbons, and carbon monoxide in the exhaust gas.

第一絞気弁108は、圧縮機106の吸気下流側の吸気通路101に設置されると共に吸気通路101を通じ吸気多岐管103に供給される吸気を開度に応じ増減量する。 The first throttle valve 108 is installed in the intake passage 101 on the downstream side of the intake of the compressor 106, and increases or decreases the amount of intake air supplied to the intake multi-tube 103 through the intake passage 101 according to the opening degree.

圧縮機106と第一絞気弁108との間の吸気通路101にインタクーラ121が設置される。インタクーラ121は、所謂、熱交換器であって、過給機105が圧縮し昇温した空気を冷却する。 The intercooler 121 is installed in the intake passage 101 between the compressor 106 and the first throttle valve 108. The intercooler 121 is a so-called heat exchanger, and cools the air compressed and heated by the supercharger 105.

第一絞気弁108とインタクーラ121との間の吸気通路101に第二圧力検出器122が設置される。第二圧力検出器122は、所謂、MAPセンサであって、制御装置116に接続され第一絞気弁108とインタクーラ121との間の吸気通路101の絶対圧を検出する。本明細書に於いては、第二圧力検出器122が検出した第一絞気弁108とインタクーラ121との間の吸気通路101の絶対圧を「吸気通路圧」と定義する。 A second pressure detector 122 is installed in the intake passage 101 between the first throttle valve 108 and the intercooler 121. The second pressure detector 122 is a so-called MAP sensor, which is connected to the control device 116 and detects the absolute pressure of the intake passage 101 between the first throttle valve 108 and the intercooler 121. In the present specification, the absolute pressure of the intake passage 101 between the first throttle valve 108 and the intercooler 121 detected by the second pressure detector 122 is defined as "intake passage pressure".

迂回吸気通路109は、所謂、迂回吸気管であって、圧縮機106の吸気上流側の吸気通路101を圧縮機106と第一絞気弁108との間、具体的に言えば、インタクーラ121と第一絞気弁108との間の吸気通路101と連通すると共に吸気通路101を通じ吸気多岐管103に供給される吸気を二経路に分流する。 The detour intake passage 109 is a so-called detour intake pipe, and the intake passage 101 on the intake upstream side of the compressor 106 is placed between the compressor 106 and the first throttle valve 108, specifically, the intercooler 121. It communicates with the intake passage 101 between the first throttle valve 108 and divides the intake air supplied to the intake multi-tube 103 through the intake passage 101 into two paths.

第二絞気弁110は、迂回吸気通路109に設置されると共に迂回吸気通路109を通じ吸気多岐管103に供給される吸気を開度に応じ増減量する。尚、第二絞気弁110は、結果的に吸気通路101を通じ圧縮機106に供給される吸気を開度に応じ増減量する。 The second throttle valve 110 is installed in the detour intake passage 109 and increases or decreases the amount of intake air supplied to the intake multi-purpose pipe 103 through the detour intake passage 109 according to the opening degree. As a result, the second throttle valve 110 increases or decreases the amount of intake air supplied to the compressor 106 through the intake passage 101 according to the opening degree.

迂回排気通路111は、所謂、迂回排気管であって、原動機107の排気上流側の排気通路102を原動機107の排気下流側の排気通路102に連通すると共に排気通路102を通じ排出される排気を二経路に分流する。 The detour exhaust passage 111 is a so-called detour exhaust pipe, and communicates the exhaust passage 102 on the exhaust upstream side of the prime mover 107 to the exhaust passage 102 on the exhaust downstream side of the prime mover 107 and exhausts two exhaust gases discharged through the exhaust passage 102. Divide into the route.

排気逃し弁112は、迂回排気通路111に設置されると共に迂回排気通路111を通じ排出される排気を開度に応じ増減量する。尚、排気逃し弁112は、結果的に排気通路102を通じ原動機107に供給される排気を開度に応じ増減量する。 The exhaust relief valve 112 is installed in the bypass exhaust passage 111 and increases or decreases the amount of exhaust gas discharged through the bypass exhaust passage 111 according to the opening degree. As a result, the exhaust relief valve 112 increases or decreases the amount of exhaust gas supplied to the prime mover 107 through the exhaust passage 102 according to the opening degree.

排気再循環通路113は、所謂、排気再循環管であって、排気多岐管104を吸気多岐管103と連通すると共に排気の一部を吸気に環流する。排気再循環通路113に排気再循環クーラ123が設置される。排気再循環クーラ123は、所謂、熱交換器であって、排気再循環通路113を通じ吸気に環流される排気を冷却する。 The exhaust gas recirculation passage 113 is a so-called exhaust gas recirculation pipe, which communicates the exhaust gas recirculation pipe 104 with the intake gas recirculation pipe 103 and circulates a part of the exhaust gas to the intake air. An exhaust gas recirculation cooler 123 is installed in the exhaust gas recirculation passage 113. The exhaust gas recirculation cooler 123 is a so-called heat exchanger, and cools the exhaust gas recirculated to the intake air through the exhaust gas recirculation passage 113.

排気再循環弁114は、排気再循環クーラ123の環流下流側の排気再循環通路113に設置されると共に排気再循環通路113を通じ吸気に環流される排気を開度に応じ増減量する。 The exhaust gas recirculation valve 114 is installed in the exhaust recirculation passage 113 on the downstream side of the recirculation of the exhaust recirculation cooler 123, and increases or decreases the amount of exhaust gas recirculated to the intake air through the exhaust recirculation passage 113 according to the opening degree.

排気制動弁115は、原動機107の排気下流側の排気通路102に設置され、エキゾーストブレーキ作動時に排気通路102を通じ排出される排気を遮断しブレーキ力を高める。 The exhaust braking valve 115 is installed in the exhaust passage 102 on the downstream side of the exhaust of the prime mover 107, and shuts off the exhaust gas discharged through the exhaust passage 102 when the exhaust brake is operated to increase the braking force.

制御装置116は、所謂、エンジンコントロールユニットであって、第一絞気弁108と第二絞気弁110と排気逃し弁112と排気再循環弁114と排気制動弁115とを開閉する。 The control device 116 is a so-called engine control unit, and opens and closes the first throttle valve 108, the second throttle valve 110, the exhaust relief valve 112, the exhaust recirculation valve 114, and the exhaust braking valve 115.

尚、制御装置116にアクセル開度と機関回転数とが入力される。アクセル開度は、アクセル開度センサ124によって検出される。機関回転数は、機関回転数センサ125によって検出される。 The accelerator opening degree and the engine speed are input to the control device 116. The accelerator opening degree is detected by the accelerator opening degree sensor 124. The engine speed is detected by the engine speed sensor 125.

本明細書に於いては、機関回転数が低い運転領域を「低回転運転領域」と定義すると共に機関回転数が高い運転領域を「高回転運転領域」と定義する。「低回転運転領域」と「高回転運転領域」との間の運転領域を「中回転運転領域」と定義する。 In the present specification, an operating region having a low engine speed is defined as a "low rotation operating region", and an operating region having a high engine speed is defined as a "high rotation operating region". The operating region between the "low rotation operating region" and the "high rotation operating region" is defined as the "medium rotation operating region".

同様に機関負荷が低い運転領域を「低負荷運転領域」と定義すると共に機関負荷が高い運転領域を「高負荷運転領域」と定義する。「低負荷運転領域」と「高負荷運転領域」との間の運転領域を「中負荷運転領域」と定義する。 Similarly, an operating region with a low engine load is defined as a "low load operating region", and an operating region with a high engine load is defined as a "high load operating region". The operating area between the "low load operating area" and the "high load operating area" is defined as the "medium load operating area".

尚、各運転領域を区画する境界は機関性能に応じ変化する為、本明細書に於いて各運転領域を区画する境界を特定する事はしない。 Since the boundary that divides each operating area changes according to the engine performance, the boundary that divides each operating area is not specified in this specification.

[低回転低負荷運転領域に於ける吸排気構造100の動作]
図3に示す様に、低回転低負荷運転領域Aに於いては、制御装置116は、図4及び5に示す様に、第一絞気弁108と第二絞気弁110とを開くと共に排気逃し弁112と排気再循環弁114とを閉じ、過給圧が上昇するに連れ第二絞気弁110を閉じていく。排気制動弁115は、当然に閉じている。
[Operation of intake / exhaust structure 100 in low rotation and low load operation region]
As shown in FIG. 3, in the low rotation low load operation region A, the control device 116 opens the first throttle valve 108 and the second throttle valve 110 as shown in FIGS. 4 and 5. The exhaust relief valve 112 and the exhaust gas recirculation valve 114 are closed, and the second throttle valve 110 is closed as the supercharging pressure rises. The exhaust braking valve 115 is naturally closed.

具体的に言えば、運転者がアクセルを小さく踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を小さく開く。 Specifically, when the driver depresses the accelerator slightly, the control device 116 reduces the first throttle valve 108 so that the intake multi-tube pressure detected by the first pressure detector 118 matches the target intake multi-tube pressure. open.

尚、目標吸気多岐管圧は、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ設定する事が出来る。 The target intake multi-purpose pipe pressure can be set according to the accelerator opening degree detected by the accelerator opening degree sensor 124 and the engine rotation speed detected by the engine rotation speed sensor 125.

第一絞気弁108を小さく開くと、少量の吸気のみが複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される。 When the first throttle valve 108 is opened small, only a small amount of intake air is supplied to each of the plurality of cylinders 117 and is burned as a mixture with fuel in each of the plurality of cylinders 117.

尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射のパルス幅と点火時期とを設定すると共に設定したパルス幅に応じ燃料をインジェクタによって噴射させ設定した点火時期に応じ点火プラグによって点火させる。 The control device 116 has a fuel injection pulse width and ignition timing according to the intake amount calculated based on the intake multi-tube pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And is set and fuel is injected by the injector according to the set pulse width and ignited by the spark plug according to the set ignition timing.

然し乍ら、負荷が低く排気が原動機107を駆動させるに足る運動エネルギを持たない為、圧縮機106が吸気の絞り損失と成る虞が有る。 However, since the load is low and the exhaust gas does not have sufficient kinetic energy to drive the prime mover 107, the compressor 106 may cause an intake throttle loss.

吸排気構造100に於いては、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が第二絞気弁110を開く事によって迂回吸気通路109を通じ圧縮機106を迂回させながら複数の気筒117の夫々に吸気を供給する事が出来る。 In the intake / exhaust structure 100, the control device 116 detours by opening the second throttle valve 110 according to the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125. The intake air can be supplied to each of the plurality of cylinders 117 while bypassing the compressor 106 through the intake passage 109.

圧縮機106が吸気の絞り損失と成る事を抑制する事が出来る為、トルクを素早く立ち上げ排気に原動機107を駆動させるに足る運動エネルギを持たせる事が出来る。 Since it is possible to suppress the compressor 106 from causing a throttle loss of the intake air, it is possible to quickly start the torque and give the exhaust enough kinetic energy to drive the prime mover 107.

また、迂回吸気通路109を通じ圧縮機106を迂回させながら複数の気筒117の夫々に吸気を供給している為、圧縮機106が原動機107に対し駆動抵抗と成り難く、原動機107(ひいては圧縮機106)の回転数を上昇させ易く、過給圧も上昇させ易い。 Further, since the compressor 106 is bypassed through the detour intake passage 109 to supply intake air to each of the plurality of cylinders 117, the compressor 106 is unlikely to be a drive resistance to the prime mover 107, and the prime mover 107 (and thus the compressor 106). ) Is easy to increase, and the boost pressure is also easy to increase.

更に、排気逃し弁112と排気再循環弁114とを閉じている為、排気損失が小さく、排気圧を上昇させ易く、過給圧も上昇させ易い。 Further, since the exhaust relief valve 112 and the exhaust gas recirculation valve 114 are closed, the exhaust loss is small, the exhaust pressure is easily increased, and the boost pressure is also easily increased.

また、過給圧が上昇するに連れ第二絞気弁110を閉じていく為、小容量の原動機107を使用しなくても過渡応答性(発進応答性)を向上させる事が出来る。 Further, since the second throttle valve 110 is closed as the boost pressure rises, the transient responsiveness (starting responsiveness) can be improved without using a small-capacity prime mover 107.

従って、吸排気構造100に於いては、燃費の悪化を抑制しながらもトルクを素早く立ち上げる事が出来る。 Therefore, in the intake / exhaust structure 100, the torque can be quickly increased while suppressing the deterioration of fuel efficiency.

[低回転高負荷運転領域に於ける吸排気構造100の動作]
図3に示す様に、低回転高負荷運転領域Bに於いては、制御装置116は、図6及び7に示す様に、第一絞気弁108と排気再循環弁114とを開くと共に第二絞気弁110と排気逃し弁112とを閉じる。
[Operation of intake / exhaust structure 100 in low rotation and high load operation region]
As shown in FIG. 3, in the low rotation and high load operation region B, as shown in FIGS. 6 and 7, the control device 116 opens the first throttle valve 108 and the exhaust recirculation valve 114, and at the same time, the first throttle valve 108 and the exhaust gas recirculation valve 114 are opened. (Ii) Close the throttle valve 110 and the exhaust relief valve 112.

具体的に言えば、運転者がアクセルを大きく踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を完全に開く。また、過給圧と共にトルクを上昇させるべく制御装置116が第二絞気弁110を完全に閉じる。 Specifically, when the driver depresses the accelerator significantly, the control device 116 completes the first throttle valve 108 so that the intake multi-tube pressure detected by the first pressure detector 118 matches the target intake multi-tube pressure. Open to. Further, the control device 116 completely closes the second throttle valve 110 in order to increase the torque together with the boost pressure.

第一絞気弁108を完全に開くと共に第二絞気弁110を完全に閉じると、第一絞気弁108が吸気の絞り損失と成らず、圧縮機106が駆動し大量の吸気が複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される為、原動機107(ひいては圧縮機106)の回転数が上昇されると共に過給圧も上昇される。 When the first throttle valve 108 is completely opened and the second throttle valve 110 is completely closed, the first throttle valve 108 does not cause a throttle loss of the intake air, the compressor 106 is driven, and a large amount of intake air is generated. Since it is supplied to each of the cylinders 117 and burned as an air-fuel mixture with the fuel in each of the plurality of cylinders 117, the rotation speed of the prime mover 107 (and thus the compressor 106) is increased and the supercharging pressure is also increased. Will be done.

尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射のパルス幅と点火時期とを設定すると共に設定したパルス幅に応じ燃料を噴射させ設定した点火時期に応じ点火させる。 The control device 116 has a fuel injection pulse width and ignition timing according to the intake amount calculated based on the intake multi-tube pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And is set and fuel is injected according to the set pulse width and ignited according to the set ignition timing.

同時に制御装置116が排気逃し弁112を閉じる為、排気圧が上昇される事によって吸気圧と排気圧との差が小さく成り、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が排気再循環弁114を開く事によってノッキングを防げる程度に排気再循環を掛ける事が出来る。 At the same time, the control device 116 closes the exhaust relief valve 112, so that the difference between the intake pressure and the exhaust pressure becomes smaller due to the increase in the exhaust pressure, and the calculation is based on the intake multi-tube pressure detected by the first pressure detector 118. Exhaust gas recirculation can be applied to the extent that knocking can be prevented by opening the exhaust gas recirculation valve 114 by the control device 116 according to the intake amount and the engine speed detected by the engine rotation speed sensor 125.

排気再循環が掛かると、ノッキング制御装置がノッキング判定をしない為、点火時期が遅く成らず、点火時期を最適値に設定する事が出来る。更に、排気再循環を掛ける事によって排気温度を低下させる事も出来る。 When the exhaust gas recirculation is applied, the knocking control device does not make a knocking determination, so that the ignition timing is not delayed and the ignition timing can be set to the optimum value. Furthermore, the exhaust temperature can be lowered by applying exhaust gas recirculation.

従って、吸排気構造100に於いては、吸気の絞り損失も無く、点火時期を最適値に設定する事が出来る為、燃費を向上させる事が出来る。 Therefore, in the intake / exhaust structure 100, there is no intake throttle loss, and the ignition timing can be set to the optimum value, so that the fuel consumption can be improved.

[中高回転低負荷運転領域に於ける吸排気構造100の動作]
図3に示す様に、中高回転低負荷運転領域(と低回転低負荷運転領域の一部)Cに於いては、制御装置116は、図8及び9に示す様に、第一絞気弁108と第二絞気弁110と排気再循環弁114とを開くと共に排気逃し弁112を閉じる。
[Operation of intake / exhaust structure 100 in medium / high rotation / low load operation region]
As shown in FIG. 3, in the medium-high rotation low load operation region (and a part of the low rotation low load operation region) C, the control device 116 is the first throttle valve as shown in FIGS. 8 and 9. The 108, the second throttle valve 110, and the exhaust gas recirculation valve 114 are opened, and the exhaust relief valve 112 is closed.

具体的に言えば、運転者がアクセルを小さく踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を小さく開く。 Specifically, when the driver depresses the accelerator slightly, the control device 116 reduces the first throttle valve 108 so that the intake multi-tube pressure detected by the first pressure detector 118 matches the target intake multi-tube pressure. open.

第一絞気弁108を小さく開くと、少量の吸気のみが複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される。 When the first throttle valve 108 is opened small, only a small amount of intake air is supplied to each of the plurality of cylinders 117 and is burned as a mixture with fuel in each of the plurality of cylinders 117.

尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射のパルス幅と点火時期とを設定すると共に設定したパルス幅に応じ燃料を噴射させ設定した点火時期に応じ点火させる。 The control device 116 has a fuel injection pulse width and ignition timing according to the intake amount calculated based on the intake multi-tube pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And is set and fuel is injected according to the set pulse width and ignited according to the set ignition timing.

然し乍ら、負荷が低く排気が原動機107を駆動させるに足る運動エネルギを持たない為、圧縮機106が吸気の絞り損失と成る虞が有る。 However, since the load is low and the exhaust gas does not have sufficient kinetic energy to drive the prime mover 107, the compressor 106 may cause an intake throttle loss.

吸排気構造100に於いては、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が第二絞気弁110を開く事によって迂回吸気通路109を通じ圧縮機106を迂回させながら複数の気筒117の夫々に吸気を供給する事が出来る。 In the intake / exhaust structure 100, the control device 116 detours by opening the second throttle valve 110 according to the accelerator opening detected by the accelerator opening sensor 124 and the engine speed detected by the engine speed sensor 125. The intake air can be supplied to each of the plurality of cylinders 117 while bypassing the compressor 106 through the intake passage 109.

圧縮機106が吸気の絞り損失と成る事を抑制する事が出来る為、トルクを素早く立ち上げ排気に原動機107を駆動させるに足る運動エネルギを持たせる事が出来る。 Since it is possible to suppress the compressor 106 from causing a throttle loss of the intake air, it is possible to quickly start the torque and give the exhaust enough kinetic energy to drive the prime mover 107.

また、迂回吸気通路109を通じ圧縮機106を迂回させながら複数の気筒117の夫々に吸気を供給している為、圧縮機106が原動機107に対し駆動抵抗と成り難く、原動機107(ひいては圧縮機106)の回転数を上昇させ易く、過給圧も上昇させ易い。 Further, since the compressor 106 is bypassed through the detour intake passage 109 to supply intake air to each of the plurality of cylinders 117, the compressor 106 is unlikely to be a drive resistance to the prime mover 107, and the prime mover 107 (and thus the compressor 106). ) Is easy to increase, and the boost pressure is also easy to increase.

同時に第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が排気再循環弁114を開くが、第一絞気弁108の開度が小さく吸気圧が低い為、吸気圧と排気圧との差が大きく、大量に排気再循環が掛かる。大量に排気再循環を掛ける事によってポンピング損失を小さくし燃費を向上させる事が出来る。 At the same time, the control device 116 opens the exhaust gas recirculation valve 114 according to the intake amount calculated based on the intake multi-pipe pressure detected by the first pressure detector 118 and the engine rotation speed detected by the engine rotation speed sensor 125. Since the opening degree of the one throttle valve 108 is small and the intake pressure is low, the difference between the intake pressure and the exhaust pressure is large, and a large amount of exhaust gas recirculation is applied. By applying a large amount of exhaust gas recirculation, pumping loss can be reduced and fuel efficiency can be improved.

更に、排気逃し弁112を閉じている為、排気損失が小さく、排気圧を上昇させ易く、過給圧も上昇させ易い。 Further, since the exhaust relief valve 112 is closed, the exhaust loss is small, the exhaust pressure is easily increased, and the boost pressure is also easily increased.

従って、吸排気構造100に於いては、燃費の悪化を抑制しながらもトルクを素早く立ち上げる事が出来る。 Therefore, in the intake / exhaust structure 100, the torque can be quickly increased while suppressing the deterioration of fuel efficiency.

[低中高回転中負荷運転領域に於ける吸排気構造100の動作]
図3に示す様に、低中高回転中負荷運転領域Dに於いては、制御装置116は、図10及び11に示す様に、第一絞気弁108と第二絞気弁110と排気逃し弁112と排気再循環弁114とを開く。
[Operation of intake / exhaust structure 100 in low-medium-high-speed medium-load operation region]
As shown in FIG. 3, in the low-medium-high rotation medium-load operating region D, the control device 116 includes the first throttle valve 108, the second throttle valve 110, and the exhaust relief as shown in FIGS. 10 and 11. The valve 112 and the exhaust gas recirculation valve 114 are opened.

具体的に言えば、運転者がアクセルを中程度(アクセル開度50%程度)に踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を中程度(開度50%程度)に開く。 Specifically, when the driver depresses the accelerator to a medium level (accelerator opening of about 50%), the control device is designed to match the intake multi-tube pressure detected by the first pressure detector 118 with the target intake multi-tube pressure. 116 opens the first throttle valve 108 to a medium degree (opening of about 50%).

更に、加速力を得る為に、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が第二絞気弁110を小さく開く。 Further, in order to obtain the acceleration force, the control device 116 opens the second throttle valve 110 small according to the accelerator opening degree detected by the accelerator opening degree sensor 124 and the engine rotation speed detected by the engine rotation speed sensor 125.

第一絞気弁108を中程度に開くと共に第二絞気弁110を小さく開くと、圧縮機106が駆動し吸気が複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される為、原動機107(ひいては圧縮機106)の回転数が上昇されると共に過給圧も上昇される。 When the first throttle valve 108 is opened moderately and the second throttle valve 110 is opened small, the compressor 106 is driven and intake air is supplied to each of the plurality of cylinders 117 and at each of the plurality of cylinders 117. Since it is burned as an air-fuel mixture with fuel, the rotation speed of the prime mover 107 (and thus the compressor 106) is increased, and the supercharging pressure is also increased.

尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射のパルス幅と点火時期とを設定すると共に設定したパルス幅に応じ燃料を噴射させ設定した点火時期に応じ点火させる。 The control device 116 has a fuel injection pulse width and ignition timing according to the intake amount calculated based on the intake multi-tube pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And is set and fuel is injected according to the set pulse width and ignited according to the set ignition timing.

同時に第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が排気再循環弁114を開く。更に、アクセル開度センサ124が検出したアクセル開度に応じ排気逃し弁112を開く。 At the same time, the control device 116 opens the exhaust gas recirculation valve 114 according to the intake amount calculated based on the intake multi-tube pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. Further, the exhaust relief valve 112 is opened according to the accelerator opening degree detected by the accelerator opening degree sensor 124.

排気圧が上昇するに連れ排気再循環が掛かり、たとえ第一絞気弁108が閉じていても吸気多岐管圧が正圧に近く成り、ポンピング損失が小さく成る為、燃費を向上させる事が出来る。 Exhaust gas recirculation is applied as the exhaust pressure rises, and even if the first throttle valve 108 is closed, the intake multi-pipe pressure becomes close to the positive pressure and the pumping loss becomes smaller, so fuel efficiency can be improved. ..

また、制御装置116は、第一絞気弁108を極力(完全に)開くべく、且つ第一圧力検出器118が検出した吸気多岐管圧と第二圧力検出器122が検出した吸気通路圧を一致させるべく、第二絞気弁110の開度を調整する。 Further, the control device 116 sets the intake multi-tube pressure detected by the first pressure detector 118 and the intake passage pressure detected by the second pressure detector 122 in order to open the first throttle valve 108 as much as possible (completely). The opening degree of the second throttle valve 110 is adjusted so as to match.

即ち、圧縮機106が送り込む吸気量が圧縮天然ガス機関の必要吸気量を超えた場合に第一絞気弁108を閉じていく為、吸気の絞り損失が発生するが、吸気の絞り損失を極力無くす様に、第一圧力検出器118が検出した吸気多岐管圧と第二圧力検出器122が検出した吸気通路圧を一致させるべく第二絞気弁110の開度を調整し、過給圧の上昇し過ぎに伴う圧縮機106の抵抗を低減させる。 That is, when the intake amount sent by the compressor 106 exceeds the required intake amount of the compressed natural gas engine, the first throttle valve 108 is closed, so that the intake throttle loss occurs, but the intake throttle loss is minimized. The opening degree of the second throttle valve 110 is adjusted so that the intake multi-tube pressure detected by the first pressure detector 118 and the intake passage pressure detected by the second pressure detector 122 are matched so as to eliminate the boost pressure. The resistance of the compressor 106 due to the excessive rise of the compressor 106 is reduced.

従って、吸排気構造100に於いては、トルクを制御する第一絞気弁108が吸気の絞り損失と成り難く、燃費を向上させる事が出来る。 Therefore, in the intake / exhaust structure 100, the first throttle valve 108 that controls the torque is unlikely to cause a throttle loss of the intake air, and the fuel consumption can be improved.

[中高回転高負荷運転領域に於ける吸排気構造100の動作]
図3に示す様に、中高回転高負荷運転領域Eに於いては、制御装置116は、図12及び13に示す様に、第一絞気弁108と第二絞気弁110と排気再循環弁114とを開くと共に排気逃し弁112を閉じ、吸気圧(第一圧力検出器118が検出した吸気多岐管圧)をアクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じた目標吸気圧に到達させる事が出来ない時は吸気圧を目標吸気圧に到達させるべく排気逃し弁112を開く。
[Operation of intake / exhaust structure 100 in medium-high rotation and high-load operation region]
As shown in FIG. 3, in the medium-high rotation high load operation region E, the control device 116 includes the first throttle valve 108, the second throttle valve 110, and the exhaust gas recirculation as shown in FIGS. 12 and 13. The valve 114 is opened and the exhaust relief valve 112 is closed, and the accelerator opening sensor 124 detects the intake pressure (intake multi-tube pressure detected by the first pressure detector 118) and the engine rotation speed sensor 125 detects it. When it is not possible to reach the target intake pressure according to the engine rotation speed, the exhaust relief valve 112 is opened so that the intake pressure reaches the target intake pressure.

具体的に言えば、運転者がアクセルを大きく(アクセル開度70%以上)に踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を完全に開く。 Specifically, when the driver depresses the accelerator greatly (accelerator opening 70% or more), the control device 116 is designed to match the intake multi-tube pressure detected by the first pressure detector 118 with the target intake multi-tube pressure. Fully opens the first throttle valve 108.

更に、加速力を得る為に、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が第二絞気弁110を小さく開く。 Further, in order to obtain the acceleration force, the control device 116 opens the second throttle valve 110 small according to the accelerator opening degree detected by the accelerator opening degree sensor 124 and the engine rotation speed detected by the engine rotation speed sensor 125.

第一絞気弁108を完全に開くと共に第二絞気弁110を小さく開くと、圧縮機106が駆動し吸気が複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される為、原動機107(ひいては圧縮機106)の回転数が上昇されると共に過給圧も上昇される。更に、制御装置116が排気逃し弁112を閉じる事によって排気圧を上昇させる。 When the first throttle valve 108 is completely opened and the second throttle valve 110 is opened slightly, the compressor 106 is driven and intake air is supplied to each of the plurality of cylinders 117 and in each of the plurality of cylinders 117. Since it is burned as an air-fuel mixture with fuel, the rotation speed of the prime mover 107 (and thus the compressor 106) is increased, and the supercharging pressure is also increased. Further, the control device 116 closes the exhaust relief valve 112 to increase the exhaust pressure.

尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射のパルス幅と点火時期とを設定すると共に設定したパルス幅に応じ燃料を噴射させ設定した点火時期に応じ点火させる。 The control device 116 has a fuel injection pulse width and ignition timing according to the intake amount calculated based on the intake multi-tube pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. And is set and fuel is injected according to the set pulse width and ignited according to the set ignition timing.

同時に第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が排気再循環弁114を開く事によってノッキングを防げる程度に排気再循環を掛ける事が出来る。 At the same time, the control device 116 knocks by opening the exhaust gas recirculation valve 114 according to the intake amount calculated based on the intake multi-tube pressure detected by the first pressure detector 118 and the engine speed detected by the engine speed sensor 125. Exhaust gas recirculation can be applied to the extent that this can be prevented.

排気再循環が掛かると、ノッキング制御装置がノッキング判定をせず、リタードしない。また、排気再循環が掛かり燃焼速度が遅くなる為、進角ができ、燃料リッチ化せずとも、排気温度が上昇しない。即ち、燃料の消費を抑制する事が出来る。 When the exhaust gas recirculation is applied, the knocking control device does not make a knocking determination and does not retard. In addition, since the exhaust gas recirculation is applied and the combustion speed is slowed down, the advance angle can be achieved, and the exhaust temperature does not rise even if the fuel is not enriched. That is, fuel consumption can be suppressed.

尚、第一絞気弁108を完全に開く事によってトルクが上がり過ぎた場合は、第二絞気弁110を開き圧力を逃がす。更に、第二絞気弁110を完全に閉じても目標のトルクに成らない場合は、排気逃し弁112の開度を調整する事によって過給圧を調整する。 If the torque increases too much by completely opening the first throttle valve 108, the second throttle valve 110 is opened to release the pressure. Further, if the target torque is not reached even if the second throttle valve 110 is completely closed, the boost pressure is adjusted by adjusting the opening degree of the exhaust relief valve 112.

以上の様に、中高回転高負荷運転領域に於いては排気温度が高温と成り、排気温度を低下させる為に排気再循環率を上昇させる必要が有るが、吸気多岐管圧と排気多岐管圧との差によって排気再循環を掛ける為、排気逃し弁112を閉じる事によって排気多岐管圧を上昇させる。 As described above, the exhaust temperature becomes high in the medium-high rotation and high-load operation region, and it is necessary to increase the exhaust gas recirculation rate in order to lower the exhaust temperature. Since the exhaust gas recirculation is applied due to the difference between the exhaust gas and the exhaust gas recirculation, the exhaust gas recirculation is increased by closing the exhaust relief valve 112.

然し乍ら、機関回転数の上昇と共に排気の運動エネルギが大きく成る為、排気の運動エネルギが大きい状態に於いては圧縮機106が送り込む吸気量も多く成り、吸気多岐管圧が上昇し、排気再循環が掛かり難く成る為、第二絞気弁110を開き圧力を逃がす事によって最適状態とする事が出来る。 However, since the kinetic energy of the exhaust gas increases as the engine speed increases, the amount of intake air sent by the compressor 106 also increases when the kinetic energy of the exhaust gas is large, and the intake multi-pipe pressure rises, resulting in exhaust gas recirculation. Since it becomes difficult to apply the pressure, the optimum state can be obtained by opening the second throttle valve 110 and releasing the pressure.

[低高温時の中高回転高負荷運転領域に於ける吸排気構造100の動作]
低高温時の中高回転高負荷運転領域に於いては、制御装置116は、図14及び15に示す様に、第一絞気弁108と第二絞気弁110と排気逃し弁112とを開くと共に排気再循環弁114を閉じる。
[Operation of intake / exhaust structure 100 in medium-high rotation high-load operation region at low and high temperatures]
In the medium-high rotation high-load operation region at low and high temperatures, the control device 116 opens the first throttle valve 108, the second throttle valve 110, and the exhaust relief valve 112, as shown in FIGS. 14 and 15. At the same time, the exhaust gas recirculation valve 114 is closed.

具体的に言えば、冷却水の水温が低い又は異常に高い場合は、排気再循環装置が故障しやすくなる為、排気再循環制御を停止し、排気再循環弁114を完全に閉じている。従って、運転者がアクセルを大きく(アクセル開度70%以上)に踏み込むと、第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を完全に開く。 Specifically, when the temperature of the cooling water is low or abnormally high, the exhaust gas recirculation device is likely to break down, so that the exhaust gas recirculation control is stopped and the exhaust gas recirculation valve 114 is completely closed. Therefore, when the driver depresses the accelerator greatly (accelerator opening 70% or more), the control device 116 first throttles the intake multi-tube pressure detected by the first pressure detector 118 to match the target intake multi-tube pressure. The air valve 108 is fully opened.

更に、加速力を得る為に、第一圧力検出器118が検出した吸気多岐管圧を、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じた排気再循環停止時用目標吸気多岐管圧と一致させるべく制御装置116が第二絞気弁110を小さく開く。 Further, in order to obtain the acceleration force, the intake multi-tube pressure detected by the first pressure detector 118 is determined according to the accelerator opening detected by the accelerator opening sensor 124 and the engine rotation speed detected by the engine rotation speed sensor 125. The control device 116 opens the second throttle valve 110 small in order to match the target intake multi-tube pressure for when the exhaust gas recirculation is stopped.

また、第一圧力検出器118が検出した吸気多岐管圧が排気再循環停止時用目標吸気多岐管圧に到達しない時は、第二絞気弁110の開度を調整する。 Further, when the intake multi-pipe pressure detected by the first pressure detector 118 does not reach the target intake multi-tube pressure for when the exhaust gas recirculation is stopped, the opening degree of the second throttle valve 110 is adjusted.

第一絞気弁108を完全に開くと共に第二絞気弁110を小さく開くと、圧縮機106が駆動し吸気が複数の気筒117の夫々に供給されると共に複数の気筒117の夫々に於いて燃料との混合気とし燃焼される為、原動機107(ひいては圧縮機106)の回転数が上昇されると共に過給圧も上昇される。 When the first throttle valve 108 is completely opened and the second throttle valve 110 is opened slightly, the compressor 106 is driven and intake air is supplied to each of the plurality of cylinders 117 and in each of the plurality of cylinders 117. Since it is burned as an air-fuel mixture with fuel, the rotation speed of the prime mover 107 (and thus the compressor 106) is increased, and the supercharging pressure is also increased.

尚、制御装置116は、第一圧力検出器118が検出した吸気多岐管圧を基に演算した吸気量と機関回転数センサ125が検出した機関回転数とに応じ燃料噴射の排気再循環停止時用パルス幅と排気再循環停止時用点火時期とを設定すると共に設定した排気再循環停止時用パルス幅に応じ燃料を噴射させ設定した排気再循環停止時用点火時期に応じ点火させる。この時、過給圧を低下させると共にリタードした点火時期を使用する為、ノッキングが発生しない。 When the exhaust gas recirculation of the fuel injection is stopped, the control device 116 corresponds to the intake amount calculated based on the intake multi-tube pressure detected by the first pressure detector 118 and the engine rotation speed detected by the engine rotation speed sensor 125. Set the pulse width and the ignition timing for exhaust gas recirculation stop, and inject fuel according to the set pulse width for exhaust gas recirculation stop and ignite according to the set ignition timing for exhaust gas recirculation stop. At this time, knocking does not occur because the boost pressure is lowered and the retarded ignition timing is used.

尚、排気再循環が掛からず、排気逃し弁112を完全に開いてもトルクが出過ぎる為、第二絞気弁110を開き第一絞気弁108が吸気の絞り損失と成らない様に圧力を逃がす。この時、排気再循環が無い為、ノッキングを回避する為にリタードする。タイミングリタードによって排気温度が上昇し過ぎない様に燃料を増量し排気温度を低下させる。 Since exhaust gas recirculation is not applied and torque is excessive even if the exhaust relief valve 112 is completely opened, pressure is applied so that the second throttle valve 110 is opened and the first throttle valve 108 does not cause intake throttle loss. Let go. At this time, since there is no exhaust gas recirculation, retarding is performed to avoid knocking. The amount of fuel is increased and the exhaust temperature is lowered so that the exhaust temperature does not rise too much due to the timing retard.

以上の様に、低水温時は凝固水の影響、高水温時は排気再循環クーラ123の信頼性の問題から排気再循環を掛ける事が出来ない。排気再循環を使用する事が出来ない場合は、少量の吸気量によって出力を得る事が出来る為、排気逃し弁112と第二絞気弁110とを開く事によって吸気量を減らす様にする。 As described above, the exhaust gas recirculation cannot be applied due to the influence of coagulated water at low water temperature and the reliability problem of the exhaust gas recirculation cooler 123 at high water temperature. If the exhaust gas recirculation cannot be used, the output can be obtained with a small amount of intake air, so the amount of intake air is reduced by opening the exhaust relief valve 112 and the second throttle valve 110.

[排気制動作動運転領域に於ける吸排気構造100の動作]
図3に示す様に、排気制動作動運転領域Fに於いては、制御装置116は、図16及び17に示す様に、第一絞気弁108と第二絞気弁110とを開くと共に排気制動弁115を閉じる。
[Operation of intake / exhaust structure 100 in the exhaust braking operation operation region]
As shown in FIG. 3, in the exhaust braking operation operation region F, the control device 116 opens the first throttle valve 108 and the second throttle valve 110 and exhausts as shown in FIGS. 16 and 17. Close the braking valve 115.

具体的に言えば、運転者が排気制動スイッチを入れアクセルを抜くと、燃料をカットすると共に第一圧力検出器118が検出した吸気多岐管圧を目標吸気多岐管圧と一致させるべく制御装置116が第一絞気弁108を小さく開き少量の吸気を送り込む。 Specifically, when the driver turns on the exhaust braking switch and releases the accelerator, the control device 116 cuts the fuel and matches the intake multi-tube pressure detected by the first pressure detector 118 with the target intake multi-tube pressure. Opens the first throttle valve 108 small and sends a small amount of intake air.

更に、制御装置116が排気制動弁115を閉じる事によって排気圧を上昇させ、回転しない圧縮機106を迂回させるべく、アクセル開度センサ124が検出したアクセル開度と機関回転数センサ125が検出した機関回転数とに応じ制御装置116が第二絞気弁110を開く。以上によって空気を圧縮し制動力を向上させる。温度が低下し圧力も低下すると制動力が下がる為、圧力を見ながら第一絞気弁108を開く。 Further, the accelerator opening degree and the engine speed sensor 125 detected by the accelerator opening degree sensor 124 are detected in order to raise the exhaust pressure by closing the exhaust braking valve 115 by the control device 116 and bypass the non-rotating compressor 106. The control device 116 opens the second throttle valve 110 according to the engine speed. As described above, the air is compressed and the braking force is improved. When the temperature drops and the pressure drops, the braking force drops, so the first throttle valve 108 is opened while observing the pressure.

排気制動が不要と成ったら排気制動弁115を開き通常の制御に戻る。即ち、機関回転数が燃料復帰回転数未満と成ったら排気制動弁115を開くと共に燃料の噴射を再開する。 When the exhaust braking is no longer necessary, the exhaust braking valve 115 is opened to return to normal control. That is, when the engine speed becomes less than the fuel return speed, the exhaust braking valve 115 is opened and fuel injection is restarted.

以上の様に、排気制動作動時は圧縮機106が吸気の絞り損失と成り、吸気が入り込まず排気制動力が小さく成るが、吸排気構造100に於いては、第二絞気弁110を開く事によって吸気を送り込み、排気制動力を上昇させる事が出来る。 As described above, when the exhaust braking is activated, the compressor 106 causes a throttle loss of the intake air, and the intake air does not enter and the exhaust braking force becomes small. However, in the intake / exhaust structure 100, the second throttle valve 110 is opened. By doing so, it is possible to send in intake air and increase the exhaust braking force.

以上に説明した様に、本発明によって、過給機の損失を削減し燃費悪化を低減させつつ、排気温度が上昇する事を抑制し圧縮天然ガス機関の耐久性に悪影響を与え難い圧縮天然ガス機関の吸排気構造100を提供する事が出来る。 As described above, according to the present invention, while reducing the loss of the turbocharger and reducing the deterioration of fuel consumption, the compressed natural gas that suppresses the rise in the exhaust temperature and does not easily adversely affect the durability of the compressed natural gas engine. An engine intake / exhaust structure 100 can be provided.

100 吸排気構造
101 吸気通路
102 排気通路
103 吸気多岐管
104 排気多岐管
105 過給機
106 圧縮機
107 原動機
108 第一絞気弁
109 迂回吸気通路
110 第二絞気弁
111 迂回排気通路
112 排気逃し弁
113 排気再循環通路
114 排気再循環弁
115 排気制動弁
116 制御装置
117 気筒
118 第一圧力検出器
119 回転軸
120 三元触媒
121 インタクーラ
122 第二圧力検出器
123 排気再循環クーラ
124 アクセル開度センサ
125 機関回転数センサ
A 低回転低負荷運転領域
B 低回転高負荷運転領域
C 中高回転低負荷運転領域
D 低中高回転中負荷運転領域
E 中高回転高負荷運転領域
F 排気制動作動運転領域
100 Intake / exhaust structure 101 Intake passage 102 Exhaust passage 103 Intake multi-pipe 104 Exhaust multi-tube 105 Supercharger 106 Compressor 107 Motor 108 First throttle valve 109 Bypass intake passage 110 Second throttle valve 111 Bypass exhaust passage 112 Exhaust escape Valve 113 Exhaust gas recirculation passage 114 Exhaust gas recirculation valve 115 Exhaust braking valve 116 Control device 117 Cylinder 118 First pressure detector 119 Rotating shaft 120 Three-way catalyst 121 Intercooler 122 Second pressure detector 123 Exhaust recirculation cooler 124 Accelerator opening Sensor 125 Engine rotation speed sensor A Low rotation low load operation area B Low rotation high load operation area C Medium high rotation Low load operation area D Low medium high rotation Medium load operation area E Medium high rotation High load operation area F Exhaust braking operation operation area

Claims (8)

吸気通路に設置される過給機の圧縮機と、
前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、
前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、
前記迂回吸気通路に設置される第二絞気弁と、
排気通路に設置される過給機の原動機と、
前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、
前記迂回排気通路に設置される排気逃し弁と、
前記吸気通路の吸気下流端に接続される吸気多岐管と、
前記排気通路の排気上流端に接続される排気多岐管と、
前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、
前記排気再循環通路に設置される排気再循環弁と、
前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、
を備え
前記制御装置は、低回転低負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁とを開くと共に前記排気逃し弁と前記排気再循環弁とを閉じ、過給圧が上昇するに連れ前記第二絞気弁を閉じていく
事を特徴とする圧縮天然ガス機関の吸排気構造。
The compressor of the supercharger installed in the intake passage and
A first throttle valve installed in the intake passage on the downstream side of the intake of the compressor,
A detour intake passage that communicates the intake passage on the intake upstream side of the compressor with the intake passage between the compressor and the first throttle valve.
The second throttle valve installed in the detour intake passage and
The prime mover of the turbocharger installed in the exhaust passage and
A detour exhaust passage that communicates the exhaust passage on the exhaust upstream side of the prime mover with the exhaust passage on the exhaust downstream side of the prime mover.
The exhaust relief valve installed in the detour exhaust passage and
An intake multi-tube connected to the intake downstream end of the intake passage,
Exhaust multi-purpose pipe connected to the exhaust upstream end of the exhaust passage,
An exhaust gas recirculation passage that communicates the exhaust gas recirculation pipe with the intake air pipe,
The exhaust recirculation valve installed in the exhaust recirculation passage and
A control device that opens and closes the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust gas recirculation valve.
Equipped with a,
In the low rotation and low load operation region, the control device opens the first throttle valve and the second throttle valve, closes the exhaust relief valve and the exhaust recirculation valve, and boosts the pressure. An intake / exhaust structure of a compressed natural gas engine characterized in that the second throttle valve is closed as the temperature rises.
吸気通路に設置される過給機の圧縮機と、The compressor of the supercharger installed in the intake passage and
前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、A first throttle valve installed in the intake passage on the downstream side of the intake of the compressor,
前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、A detour intake passage that communicates the intake passage on the intake upstream side of the compressor with the intake passage between the compressor and the first throttle valve.
前記迂回吸気通路に設置される第二絞気弁と、The second throttle valve installed in the detour intake passage and
排気通路に設置される過給機の原動機と、The prime mover of the turbocharger installed in the exhaust passage and
前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、A detour exhaust passage that communicates the exhaust passage on the exhaust upstream side of the prime mover with the exhaust passage on the exhaust downstream side of the prime mover.
前記迂回排気通路に設置される排気逃し弁と、The exhaust relief valve installed in the detour exhaust passage and
前記吸気通路の吸気下流端に接続される吸気多岐管と、An intake multi-tube connected to the intake downstream end of the intake passage,
前記排気通路の排気上流端に接続される排気多岐管と、Exhaust multi-purpose pipe connected to the exhaust upstream end of the exhaust passage,
前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、An exhaust gas recirculation passage that communicates the exhaust gas recirculation pipe with the intake air pipe,
前記排気再循環通路に設置される排気再循環弁と、The exhaust recirculation valve installed in the exhaust recirculation passage and
前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、A control device that opens and closes the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust gas recirculation valve.
を備え、With
前記制御装置は、低回転高負荷運転領域に於いては、前記第一絞気弁と前記排気再循環弁とを開くと共に前記第二絞気弁と前記排気逃し弁とを閉じるThe control device opens the first throttle valve and the exhaust gas recirculation valve and closes the second throttle valve and the exhaust relief valve in the low rotation and high load operation region.
事を特徴とする圧縮天然ガス機関の吸排気構造。The intake and exhaust structure of a compressed natural gas engine that is characterized by this.
吸気通路に設置される過給機の圧縮機と、The compressor of the supercharger installed in the intake passage and
前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、A first throttle valve installed in the intake passage on the downstream side of the intake of the compressor,
前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、A detour intake passage that communicates the intake passage on the intake upstream side of the compressor with the intake passage between the compressor and the first throttle valve.
前記迂回吸気通路に設置される第二絞気弁と、The second throttle valve installed in the detour intake passage and
排気通路に設置される過給機の原動機と、The prime mover of the turbocharger installed in the exhaust passage and
前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、A detour exhaust passage that communicates the exhaust passage on the exhaust upstream side of the prime mover with the exhaust passage on the exhaust downstream side of the prime mover.
前記迂回排気通路に設置される排気逃し弁と、The exhaust relief valve installed in the detour exhaust passage and
前記吸気通路の吸気下流端に接続される吸気多岐管と、An intake multi-tube connected to the intake downstream end of the intake passage,
前記排気通路の排気上流端に接続される排気多岐管と、Exhaust multi-purpose pipe connected to the exhaust upstream end of the exhaust passage,
前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、An exhaust gas recirculation passage that communicates the exhaust gas recirculation pipe with the intake air pipe,
前記排気再循環通路に設置される排気再循環弁と、The exhaust recirculation valve installed in the exhaust recirculation passage and
前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、A control device that opens and closes the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust gas recirculation valve.
を備え、With
前記制御装置は、中高回転低負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気再循環弁とを開くと共に前記排気逃し弁を閉じるThe control device opens the first throttle valve, the second throttle valve, and the exhaust gas recirculation valve and closes the exhaust relief valve in the medium-high rotation low load operation region.
事を特徴とする圧縮天然ガス機関の吸排気構造。The intake and exhaust structure of a compressed natural gas engine that is characterized by this.
吸気通路に設置される過給機の圧縮機と、The compressor of the supercharger installed in the intake passage and
前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、A first throttle valve installed in the intake passage on the downstream side of the intake of the compressor,
前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、A detour intake passage that communicates the intake passage on the intake upstream side of the compressor with the intake passage between the compressor and the first throttle valve.
前記迂回吸気通路に設置される第二絞気弁と、The second throttle valve installed in the detour intake passage and
排気通路に設置される過給機の原動機と、The prime mover of the turbocharger installed in the exhaust passage and
前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、A detour exhaust passage that communicates the exhaust passage on the exhaust upstream side of the prime mover with the exhaust passage on the exhaust downstream side of the prime mover.
前記迂回排気通路に設置される排気逃し弁と、The exhaust relief valve installed in the detour exhaust passage and
前記吸気通路の吸気下流端に接続される吸気多岐管と、An intake multi-tube connected to the intake downstream end of the intake passage,
前記排気通路の排気上流端に接続される排気多岐管と、Exhaust multi-purpose pipe connected to the exhaust upstream end of the exhaust passage,
前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、An exhaust gas recirculation passage that communicates the exhaust gas recirculation pipe with the intake air pipe,
前記排気再循環通路に設置される排気再循環弁と、The exhaust recirculation valve installed in the exhaust recirculation passage and
前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、A control device that opens and closes the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust gas recirculation valve.
を備え、With
前記制御装置は、低中高回転中負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開くThe control device opens the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust recirculation valve in the low-medium-high rotation medium-load operation region.
事を特徴とする圧縮天然ガス機関の吸排気構造。The intake and exhaust structure of a compressed natural gas engine that is characterized by this.
吸気通路に設置される過給機の圧縮機と、The compressor of the supercharger installed in the intake passage and
前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、A first throttle valve installed in the intake passage on the downstream side of the intake of the compressor,
前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、A detour intake passage that communicates the intake passage on the intake upstream side of the compressor with the intake passage between the compressor and the first throttle valve.
前記迂回吸気通路に設置される第二絞気弁と、The second throttle valve installed in the detour intake passage and
排気通路に設置される過給機の原動機と、The prime mover of the turbocharger installed in the exhaust passage and
前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、A detour exhaust passage that communicates the exhaust passage on the exhaust upstream side of the prime mover with the exhaust passage on the exhaust downstream side of the prime mover.
前記迂回排気通路に設置される排気逃し弁と、The exhaust relief valve installed in the detour exhaust passage and
前記吸気通路の吸気下流端に接続される吸気多岐管と、An intake multi-tube connected to the intake downstream end of the intake passage,
前記排気通路の排気上流端に接続される排気多岐管と、Exhaust multi-purpose pipe connected to the exhaust upstream end of the exhaust passage,
前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、An exhaust gas recirculation passage that communicates the exhaust gas recirculation pipe with the intake air pipe,
前記排気再循環通路に設置される排気再循環弁と、The exhaust recirculation valve installed in the exhaust recirculation passage and
前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、A control device that opens and closes the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust gas recirculation valve.
を備え、With
前記制御装置は、中高回転高負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気再循環弁とを開くと共に前記排気逃し弁を閉じ、吸気圧をアクセル開度と機関回転数とに応じた目標吸気圧に到達させる事が出来ない時は吸気圧を目標吸気圧に到達させるべく前記排気逃し弁を開くIn the medium-high rotation and high-load operation region, the control device opens the first throttle valve, the second throttle valve, and the exhaust recirculation valve, closes the exhaust relief valve, and accelerates the intake pressure. When the target intake pressure according to the opening degree and the engine rotation speed cannot be reached, the exhaust relief valve is opened to bring the intake pressure to the target intake pressure.
事を特徴とする圧縮天然ガス機関の吸排気構造。The intake and exhaust structure of a compressed natural gas engine that is characterized by this.
吸気通路に設置される過給機の圧縮機と、The compressor of the supercharger installed in the intake passage and
前記圧縮機の吸気下流側の前記吸気通路に設置される第一絞気弁と、A first throttle valve installed in the intake passage on the downstream side of the intake of the compressor,
前記圧縮機の吸気上流側の前記吸気通路を前記圧縮機と前記第一絞気弁との間の前記吸気通路と連通する迂回吸気通路と、A detour intake passage that communicates the intake passage on the intake upstream side of the compressor with the intake passage between the compressor and the first throttle valve.
前記迂回吸気通路に設置される第二絞気弁と、The second throttle valve installed in the detour intake passage and
排気通路に設置される過給機の原動機と、The prime mover of the turbocharger installed in the exhaust passage and
前記原動機の排気上流側の前記排気通路を前記原動機の排気下流側の前記排気通路に連通する迂回排気通路と、A detour exhaust passage that communicates the exhaust passage on the exhaust upstream side of the prime mover with the exhaust passage on the exhaust downstream side of the prime mover.
前記迂回排気通路に設置される排気逃し弁と、The exhaust relief valve installed in the detour exhaust passage and
前記吸気通路の吸気下流端に接続される吸気多岐管と、An intake multi-tube connected to the intake downstream end of the intake passage,
前記排気通路の排気上流端に接続される排気多岐管と、Exhaust multi-purpose pipe connected to the exhaust upstream end of the exhaust passage,
前記排気多岐管を前記吸気多岐管と連通する排気再循環通路と、An exhaust gas recirculation passage that communicates the exhaust gas recirculation pipe with the intake air pipe,
前記排気再循環通路に設置される排気再循環弁と、The exhaust recirculation valve installed in the exhaust recirculation passage and
前記第一絞気弁と前記第二絞気弁と前記排気逃し弁と前記排気再循環弁とを開閉する制御装置と、A control device that opens and closes the first throttle valve, the second throttle valve, the exhaust relief valve, and the exhaust gas recirculation valve.
を備え、With
前記制御装置は、低高温時の中高回転高負荷運転領域に於いては、前記第一絞気弁と前記第二絞気弁と前記排気逃し弁とを開くと共に前記排気再循環弁を閉じるThe control device opens the first throttle valve, the second throttle valve, and the exhaust relief valve and closes the exhaust recirculation valve in the medium-high rotation high load operation region at low and high temperatures.
事を特徴とする圧縮天然ガス機関の吸排気構造。The intake and exhaust structure of a compressed natural gas engine that is characterized by this.
前記原動機の排気下流側の前記排気通路に設置される排気制動弁を更に備え、
前記制御装置は、前記排気制動弁も開閉する
請求項乃至の何れか一項に記載の圧縮天然ガス機関の吸排気構造。
Further provided with an exhaust braking valve installed in the exhaust passage on the downstream side of the exhaust of the prime mover.
The intake / exhaust structure of a compressed natural gas engine according to any one of claims 1 to 6 , wherein the control device also opens and closes the exhaust braking valve.
前記制御装置は、排気制動作動運転領域に於いては、前記第一絞気弁と前記第二絞気弁とを開くと共に前記排気制動弁を閉じる
請求項に記載の圧縮天然ガス機関の吸排気構造。
The suction of the compressed natural gas engine according to claim 7 , wherein the control device opens the first throttle valve and the second throttle valve and closes the exhaust braking valve in the exhaust braking operation operating region. Exhaust structure.
JP2017097373A 2017-05-16 2017-05-16 Intake and exhaust structure of compressed natural gas engine Active JP6907691B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017097373A JP6907691B2 (en) 2017-05-16 2017-05-16 Intake and exhaust structure of compressed natural gas engine
PCT/JP2018/018282 WO2018212088A1 (en) 2017-05-16 2018-05-11 Air intake/exhaust structure for compressed natural gas engine
CN201880032625.2A CN110637150B (en) 2017-05-16 2018-05-11 Air intake and exhaust structure of compressed natural gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017097373A JP6907691B2 (en) 2017-05-16 2017-05-16 Intake and exhaust structure of compressed natural gas engine

Publications (2)

Publication Number Publication Date
JP2018193899A JP2018193899A (en) 2018-12-06
JP6907691B2 true JP6907691B2 (en) 2021-07-21

Family

ID=64274498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017097373A Active JP6907691B2 (en) 2017-05-16 2017-05-16 Intake and exhaust structure of compressed natural gas engine

Country Status (3)

Country Link
JP (1) JP6907691B2 (en)
CN (1) CN110637150B (en)
WO (1) WO2018212088A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172577B2 (en) * 2018-12-26 2022-11-16 マツダ株式会社 Intake air temperature control device for supercharged engine
CN113404599B (en) * 2021-06-28 2022-08-05 山西兰花大宁发电有限公司 Control method of gas internal combustion engine set

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103083A (en) * 1996-09-27 1998-04-21 Hino Motors Ltd Exhaust braking device of gas engine
JP4320859B2 (en) * 1998-11-27 2009-08-26 マツダ株式会社 Control device for turbocharged engine
JP2007211710A (en) * 2006-02-10 2007-08-23 Toyota Motor Corp Controller for internal combustion engine
JP4953100B2 (en) * 2008-08-11 2012-06-13 トヨタ自動車株式会社 Turbocharged internal combustion engine
US8931463B2 (en) * 2010-06-07 2015-01-13 Alset Ip S A R.L. Bi-fuel engine with increased power
JP5912240B2 (en) * 2010-10-26 2016-04-27 いすゞ自動車株式会社 Exhaust gas recirculation device
JP5982203B2 (en) * 2012-07-11 2016-08-31 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
US9243552B2 (en) * 2013-06-10 2016-01-26 Ford Global Technologies, Llc Method for determining wastegate valve lift
US9732669B2 (en) * 2014-02-25 2017-08-15 Ford Global Technologies, Llc Wastegate valve seat position determination
JP6146538B2 (en) * 2014-05-30 2017-06-14 日産自動車株式会社 Internal combustion engine and control method for internal combustion engine
JP6443737B2 (en) * 2014-11-18 2018-12-26 三菱自動車工業株式会社 Variable capacity turbocharged engine

Also Published As

Publication number Publication date
CN110637150A (en) 2019-12-31
WO2018212088A1 (en) 2018-11-22
CN110637150B (en) 2021-08-03
JP2018193899A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
US20200208581A1 (en) Systems and methods for a split exhaust engine system
CN105275625B (en) System and method for exhaust catalyst temperature control
US10393039B2 (en) Systems and methods for a split exhaust engine system
US10024255B2 (en) Systems and methods for a split exhaust engine system
US10012159B1 (en) Systems and methods for a split exhaust engine system
US9115639B2 (en) Supercharged internal combustion engine having exhaust-gas recirculation arrangement and method for operating an internal combustion engine
US20150121862A1 (en) Active exhaust pulse management
JP4858582B2 (en) Control method of spark ignition engine and spark ignition engine
JP2006233898A (en) Egr device
JP2009235920A (en) Fuel injection control device of cylinder injection internal combustion engine with supercharger
JP2019090378A (en) Engine with supercharger
US10731609B2 (en) Methods and systems for energy recovery via an EGR cooler
JP6907691B2 (en) Intake and exhaust structure of compressed natural gas engine
JP4752832B2 (en) Control device for internal combustion engine
CN102782288B (en) The control device of electromotor
US20180266344A1 (en) Internal combustion engine
JP4953100B2 (en) Turbocharged internal combustion engine
JP6763488B2 (en) Control method and control device for internal combustion engine for vehicles
JP2004124744A (en) Turbocharged engine
JP6406158B2 (en) Engine control device
JP6699272B2 (en) Engine and control method thereof
US11585301B1 (en) Two-stage boost system for engines
JP2014234808A (en) Device and method for exhaust gas recirculation of internal combustion engine with supercharger
JP2014238034A (en) Control device and control method of internal combustion engine
WO2023007530A1 (en) Catalyst warm-up control method and device for internal combustion engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R150 Certificate of patent or registration of utility model

Ref document number: 6907691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150