WO2023005869A1 - 一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法 - Google Patents

一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法 Download PDF

Info

Publication number
WO2023005869A1
WO2023005869A1 PCT/CN2022/107598 CN2022107598W WO2023005869A1 WO 2023005869 A1 WO2023005869 A1 WO 2023005869A1 CN 2022107598 W CN2022107598 W CN 2022107598W WO 2023005869 A1 WO2023005869 A1 WO 2023005869A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
alloy composition
long
polyester alloy
polyester
Prior art date
Application number
PCT/CN2022/107598
Other languages
English (en)
French (fr)
Inventor
杨志军
陈平绪
黄险波
岑茵
艾军伟
丁超
吴俊�
王培涛
蒋刚军
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2023005869A1 publication Critical patent/WO2023005869A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/324Alkali metal phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention relates to the technical field of engineering plastics, in particular to a polycarbonate/polyester alloy composition resistant to long-term thermo-oxidative aging and a preparation method thereof.
  • Polycarbonate/polyester alloy is a high-performance alloy material, which has the advantages of good toughness, high surface gloss, and good processing fluidity.
  • the combination of polyester and polycarbonate can significantly improve the chemical resistance of polycarbonate, and can further expand its application fields, such as electronic appliances, kitchen and bathroom, audio-visual equipment, transportation and other fields.
  • the rapid development of the industry has put forward higher requirements for materials, especially in terms of service safety and stability.
  • polycarbonate/polyester alloys should have long-term thermal oxygen stability To ensure that it maintains sufficient mechanical properties during long-term service.
  • polymer materials such as polycarbonate and polyester will age under the action of heat and oxygen during processing and use, that is, the performance of the material will deteriorate, such as yellowing, surface cracks, and molecular chain reduction. The mechanical properties of the material are reduced or even lost.
  • the excessive transesterification reaction of polycarbonate and polyester at high temperature is also easy to generate polycarbonate-polyester random block copolymers, resulting in deterioration of its performance.
  • the long-term thermo-oxidative aging resistance of the polycarbonate/polyester alloy prepared in the prior art needs to be further improved.
  • one of the purposes of the present invention is to provide a polycarbonate/polyester alloy composition resistant to long-term thermo-oxidative aging, which has good mechanical properties and long-term thermo-oxidative aging resistance .
  • the second object of the present invention is to provide a method for preparing a polycarbonate/polyester alloy composition resistant to long-term thermo-oxidative aging, which has simple steps and is easy for large-scale production.
  • a polycarbonate/polyester alloy composition resistant to long-term thermo-oxidative aging comprising the following components by weight:
  • the polycarbonate/polyester alloy composition resistant to long-term thermo-oxidative aging includes the following components by weight:
  • the octadecenoate stabilizer is one or more combinations of sodium oleate, zinc oleate, calcium oleate, sodium ricinoleate, zinc ricinoleate or calcium ricinoleate .
  • the transesterification inhibitor is one or a combination of two or more of sodium dihydrogen phosphate, zinc dihydrogen phosphate, anhydrous sodium dihydrogen phosphate, disodium dihydrogen phosphate or disodium dihydrogen pyrophosphate .
  • the octadecenoate stabilizer is an organic carboxylate
  • the transesterification inhibitor is an inorganic phosphate.
  • the synergy between the octadecenoate stabilizer and the transesterification inhibitor can more efficiently passivate polycarbonate and polyester.
  • the residual catalyst inhibits the transesterification reaction of polycarbonate/polyester alloy and slows down its thermo-oxidative aging, so that the prepared polycarbonate/polyester alloy composition has good mechanical properties and significantly improved long-term resistance Thermal Oxidative Aging Properties.
  • the polycarbonate is one or more of aromatic polycarbonate, aliphatic polycarbonate, branched polycarbonate, aromatic-aliphatic polycarbonate or siloxane copolycarbonate
  • aromatic polycarbonate preferably one or more of aromatic polycarbonate, aliphatic polycarbonate, branched polycarbonate, aromatic-aliphatic polycarbonate or siloxane copolycarbonate
  • the composition Among them, more preferably aromatic polycarbonate;
  • the polyester is one or more combinations of ethylene glycol, hexanediol, propylene glycol, butylene glycol, 1.4-cyclohexanedimethanol, neopentyl glycol or p-phenylenedimethanol, and p-phenylene dimethanol
  • a copolyester obtained by polymerizing one or more combinations of dicarboxylic acid, isophthalic acid, glutaric acid, adipic acid or suberic acid.
  • the copolyester is preferably polybutylene terephthalate or polyethylene terephthalate.
  • polybutylene terephthalate is more preferred; the preferred viscosity of the polybutylene terephthalate is 0.7dl/g ⁇ 1.5dl/g.
  • the viscosity is measured by the Ubbelohde viscometer method according to the standard GB/T14190, and the test temperature is 25°C.
  • the average molecular weight of the aromatic polycarbonate is 15,000-30,000; among them, the aromatic polycarbonate with an average molecular weight of 20,000-28,000 is more preferred.
  • the average molecular weight is within the above range, the obtained polycarbonate/polyester alloy composition has good mechanical strength and can ensure good formability.
  • the average molecular weight is tested by gel permeation chromatography, using dichloromethane as a solvent during the specific test, and the test temperature is 25°C.
  • aromatic polycarbonate can be prepared by interfacial polymerization method (phosgene method) or transesterification method (melt method).
  • the toughening agent is methyl methacrylate-butadiene-styrene copolymer, methyl methacrylate-acrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-butyl acrylate copolymer, At least one of ethylene-acrylate-glycidyl methacrylate terpolymer, maleic anhydride functionalized ethylene-vinyl acetate copolymer, acrylic toughener and acrylic-silicone rubber toughener.
  • the toughening agent is one or both of methyl methacrylate-butadiene-styrene copolymer, acrylic acid-silicone rubber toughening agent; more preferably, the toughening agent
  • the toughening agent is an acrylic-silicone rubber type toughening agent.
  • the methyl methacrylate-butadiene-styrene copolymer and the acrylic-silicone rubber toughening agent are both core-shell toughening agents. Tougheners with a core-shell structure have better toughness, and acrylic-silicone rubber tougheners have a saturated Si-O structure in the silicone rubber, which is not easy to age.
  • the particle size distribution of the toughening agent with core-shell structure is that D50 is 200nm-800nm. More preferably, the particle size distribution of the toughening agent with the above-mentioned core-shell structure is that D50 is 300nm to 500nm, and the toughening agent with a more preferable particle size has better impact toughness. The toughness is not good, and the particle size is too large to easily cause stress concentration and affect mechanical properties such as tensile.
  • the antioxidant is a mixture of a main antioxidant and a secondary antioxidant, and the mass ratio of the primary antioxidant to the secondary antioxidant is 1.0:(0.5-1.0).
  • the main antioxidant is at least one of hindered phenolic antioxidants, hindered amine antioxidants, and benzofuranone antioxidants;
  • the hindered phenolic antioxidant is ⁇ -(3, 5-Di-tert-butyl-4-hydroxyphenyl) n-octadecyl propionate;
  • the secondary antioxidant is at least one of a phosphorus-based secondary antioxidant and a sulfur-based secondary antioxidant; the phosphorus-based secondary antioxidant is three (2,4-di-tert-butylphenyl) Phosphate.
  • the mass ratio of the octadecenoate stabilizer to the transesterification inhibitor is 0.5 to 10, more preferably, the mass ratio of the octadecenoate stabilizer to the transesterification inhibitor The mass ratio is 1-8.
  • the mass ratio of the octadecenoate stabilizer to the transesterification inhibitor is too low, the transesterification cannot be effectively inhibited, and when the mass ratio is too high, it is not easy to capture the residual catalyst.
  • the polycarbonate/polyester alloy composition resistant to long-term thermo-oxidative aging also includes at least one of the following components in parts by weight: 0.01 to 1 part of lubricant, 0.01 to 2 parts of anti-dripping agent, 1 part by weight ⁇ 15 parts of flame retardant;
  • the lubricant is selected from at least one of carboxylate, low molecular weight paraffin, and silicone. Wherein, the average molecular weight of the low molecular weight paraffin is 500-3500.
  • the anti-dripping agent is polytetrafluoroethylene.
  • the flame retardant is a bromine antimony system flame retardant.
  • Two of the purpose of the present invention adopts following technical scheme to realize:
  • a preparation method of a polycarbonate/polyester alloy composition resistant to long-term thermo-oxidative aging comprising the following preparation steps:
  • step S2 putting the premixed material obtained in step S1 into a twin-screw extruder to extrude and granulate to obtain the polycarbonate/polyester alloy composition resistant to long-term thermo-oxidative aging.
  • the screw aspect ratio of the twin-screw extruder is 40-45:1
  • the temperature of the screw barrel is 210-250° C.
  • the screw speed is 500-600 rpm.
  • the polycarbonate/polyester alloy composition resistant to long-term thermo-oxidative aging of the present invention can passivate the active molecular chains of polycarbonate and polyester by adding octadecylenate stabilizer and transesterification inhibitor simultaneously end, inhibit the transesterification reaction of polycarbonate/polyester alloy and slow down its thermal oxygen aging, so that the prepared polycarbonate/polyester alloy composition has good mechanical properties and significantly improved long-term thermal oxygen resistance Aging performance.
  • the preparation method of the polycarbonate/polyester alloy composition resistant to long-term thermo-oxidative aging of the present invention is to obtain the polycarbonate/polyester alloy composition through premixing and extruding granulation, and has simple preparation steps, The production cost is low, and it is easy to mass-produce.
  • PC Polycarbonate 1: 1300-10NP (aromatic polycarbonate), prepared by phosgene method of Korea LG Chemical Co., Ltd., with an average molecular weight of 24000;
  • PC 2 7030 (aromatic polycarbonate), Japan Mitsubishi Group, prepared by phosgene method, with an average molecular weight of 36000;
  • Polyester (PBT) 1 GL236, Sinopec Yizheng Chemical Fiber Co., Ltd., viscosity is 1.3dl/g;
  • Acrylic-silicone rubber toughening agent 1 S-2100, Mitsubishi Chemical Co., Ltd., rubber particle size D50 is 400nm;
  • Acrylic-silicone rubber toughening agent 2 S-2130, Mitsubishi Chemical Co., Ltd., rubber particle size D50 is 800nm;
  • Acrylic-silicone rubber toughening agent 3 SX-006, Mitsubishi Chemical Co., Ltd., rubber particle size D50 is 100nm;
  • Octadenoate Stabilizer 1 Sodium Oleate
  • Octadenoate Stabilizer 2 Zinc Oleate
  • Octadenoate Stabilizer 3 Calcium Oleate
  • Octadenoate Stabilizer 4 Sodium Ricinoleate
  • Octadenoate Stabilizer 5 Zinc Ricinoleate
  • Octadenoate Stabilizer 6 Calcium Ricinoleate
  • Transesterification inhibitor 1 disodium dihydrogen pyrophosphate
  • Transesterification inhibitor 2 sodium dihydrogen phosphate
  • Secondary antioxidant tris(2,4-di-tert-butylphenyl) phosphite
  • Lubricant Pentaerythritol Stearate.
  • the polycarbonate/polyester alloy compositions resistant to long-term thermal and oxidative aging of each embodiment were prepared by the following raw material formulations (see Table 1) and methods.
  • polycarbonate, polyester, acrylic-silicone rubber toughener, octadecylenate stabilizer, transesterification inhibitor, antioxidant and lubricant were stirred in a mixer Mix to obtain a premix; put the above premix into a twin-screw extruder, melt and mix in the twin-screw extruder, extrude and granulate, and obtain a polycarbonate/polyester alloy combination resistant to long-term thermal oxygen aging thing.
  • the screw aspect ratio of the twin-screw extruder is 40-45:1
  • the temperature of the screw barrel is 210-250° C.
  • the screw speed is 500-600 rpm.
  • test methods of the various performances of the polycarbonate/polyester alloy composition resistant to long-term thermo-oxidative aging and the general polycarbonate/polyester alloy composition prepared by the comparative examples are as follows:
  • Tensile strength test the tensile strength of the tensile sample according to ASTM D638-14 standard; at the same time, the tensile sample is subjected to thermal oxygen aging in a constant temperature test box with a preset temperature of 130°C, and the aging time is 3000h according to the sampling plan Finally, after taking out the test sample, put it in an environment with a room temperature of 2322°C and a humidity of 50% for adjustment for more than 48 hours, then perform a tensile strength test and record the results, and compare the tensile strength before and after aging. The judgment of oxygen stability is good or bad, the higher the performance retention rate, the better the long-term thermal oxygen stability.
  • Impact strength According to ASTM D1822-13 standard, test the tensile impact strength of a 3.0mm thick sample; the type of the sample is Type c; at the same time, the tensile impact sample is tested in a constant temperature test box with a preset temperature of 130°C Thermal oxygen aging, take out the test sample after 3000h aging time according to the sampling plan, put it in an environment with a room temperature of 25°C and a humidity of 50% for more than 48h, then test and record the results, and compare the performance before and after aging. The higher the performance retention rate, the better the long-term thermal oxygen stability.
  • the polycarbonate/polyester alloy composition prepared by adding octadecenoic acid salt and transesterification inhibitor at the same time has stable performance after aging, and the aging tensile performance of 3000h remains The rate is higher than 70%, and the 3000h aging tensile impact performance retention rate is higher than 70%.
  • the synergistic effect of octadecylenate and transesterification inhibitor can passivate the active molecular chain ends of polycarbonate and polyester, inhibit the transesterification reaction of polycarbonate/polyester alloy and slow down its heat. Oxygen aging, so that the prepared polycarbonate/polyester alloy composition can have good mechanical properties and significantly improved long-term thermal-oxidative aging resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及工程塑料技术领域,具体涉及一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法,聚碳酸酯/聚酯合金组合物包括如下组分:聚碳酸酯、聚酯、增韧剂、十八烯酸盐稳定剂、酯交换抑制剂、抗氧剂。本发明通过同时添加十八烯酸盐稳定剂及酯交换抑制剂,能够钝化聚碳酸酯及聚酯的活性分子链端,抑制聚碳酸酯/聚酯合金的酯交换反应并减缓其热氧老化,从而能够使所制得的聚碳酸酯/聚酯合金组合物具有良好的机械性能以及明显改善的耐长期热氧老化性能。本发明的耐长期热氧老化的聚碳酸酯/聚酯合金组合物的制备方法,通过预混料和挤出造粒即制得聚碳酸酯/聚酯合金组合物,具有制备步骤简单,生产成本低,并易于大规模生产的特点。

Description

一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法 技术领域
本发明涉及工程塑料技术领域,具体涉及一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法。
背景技术
聚碳酸酯/聚酯合金是一种高性能的合金材料,具有韧性好,表面光泽度高,加工流动性好等优点。另外聚酯与聚碳酸酯的结合能够显著提高聚碳酸酯的耐化学性,并能进一步拓展其应用领域,如电子电器、厨卫、视听设备、交通运输等领域。行业的快速发展对材料提出了更高的要求,尤其是在服役安全和稳定性方面,为了满足材料在实际应用中的技术变化需求,聚碳酸酯/聚酯合金应具备长期的热氧稳定性以保证其在长期服役过程中保持足够的机械性能。
然而,聚碳酸酯和聚酯等高分子材料在加工及使用过程中会在热、氧等作用下发生老化,即材料性能劣化,如出现泛黄、表面龟裂、分子链降低等缺陷,导致材料的机械性能下降甚至丧失。此外,聚碳酸酯和聚酯在高温下过度的酯交换反应也容易生成聚碳酸酯-聚酯的无规嵌段共聚物,导致其性能发生劣化。目前,现有技术中制备的聚碳酸酯/聚酯合金的耐长期热氧老化性能需要进一步提升。
因此,开发一种耐长期热氧老化及具有良好机械性能的聚碳酸酯/聚酯合金材料以提高其服役安全性、稳定性及扩大应用范围具有重要的研究意义。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,该合金组合物具有良好的机械性能及耐长期热 氧老化性能。
本发明的目的之二在于提供一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物的制备方法,其步骤简单,易于大规模生产。
本发明的目的之一采用如下技术方案实现:
一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,包括如下重量份的组分:
Figure PCTCN2022107598-appb-000001
优选的,所述的一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,包括如下重量份的组分:
Figure PCTCN2022107598-appb-000002
优选的,所述十八烯酸盐稳定剂为油酸钠、油酸锌、油酸钙、蓖麻油酸钠、 蓖麻油酸锌或蓖麻油酸钙中的一种或两种以上的组合物。
优选的,所述酯交换抑制剂为磷酸二氢钠、磷酸二氢锌、无水磷酸二氢钠、磷酸二氢二钠或焦磷酸二氢二钠中的一种或两种以上的组合物。
其中,十八烯酸盐稳定剂为有机羧酸盐,酯交换抑制剂为无机磷酸盐,十八烯酸盐稳定剂和酯交换抑制剂的协同能够更高效钝化聚碳酸酯及聚酯中残留的催化剂,抑制聚碳酸酯/聚酯合金的酯交换反应并减缓其热氧老化,从而能够使所制得的聚碳酸酯/聚酯合金组合物具有良好的机械性能以及明显改善的耐长期热氧老化性能。
优选的,所述聚碳酸酯为芳香族聚碳酸酯、脂肪族聚碳酸酯、支化聚碳酸酯、芳香族-脂肪族聚碳酸酯或硅氧烷共聚碳酸酯中的一种或两种以上的组合物;其中,更优选为芳香族聚碳酸酯;
所述聚酯为乙二醇、己二醇、丙二醇、丁二醇、1.4-环己烷二甲醇、新戊二醇或对苯二甲醇的一种或两种以上的组合物,与对苯二甲酸、间苯二甲酸、戊二酸、己二酸或辛二酸的一种或两种以上的组合物进行聚合得到的共聚酯。
其中,所述共聚酯优选为聚对苯二甲酸丁二醇酯或聚对苯二甲酸乙二醇酯。其中,更优选为聚对苯二甲酸丁二醇酯;所述聚对苯二甲酸丁二醇酯的优选粘度为0.7dl/g~1.5dl/g。其中,粘度是根据标准GB/T14190采用乌氏粘度计法测定得到,测试温度为25℃。
优选的,所述芳香族聚碳酸酯的平均分子量为15000~30000;其中,更优选为平均分子量20000~28000的芳香族聚碳酸酯。当平均分子量在上述范围内,所制得的聚碳酸酯/聚酯合金组合物的机械强度良好并且能保证良好的成型性。其中,平均分子量通过凝胶渗透色谱法测试,具体测试时是以二氯甲烷作为溶 剂,测试温度为25℃。
其中,芳香族聚碳酸酯可以通过界面聚合法(光气法)或酯交换法(熔融法)制备得到。
优选的,所述增韧剂为甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物、甲基丙烯酸甲酯-丙烯酸共聚物、乙烯-丙烯酸甲酯共聚物、乙烯-丙烯酸丁酯共聚物、乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯三元共聚物、马来酸酐功能化的乙烯-醋酸乙烯共聚物、丙烯酸类增韧剂和丙烯酸-硅橡胶类增韧剂中的至少一种。
更为优选的,所述增韧剂为甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物、丙烯酸-硅橡胶类增韧剂中的一种或两种;更为优选的,所述增韧剂为丙烯酸-硅橡胶类增韧剂。其中,甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物和丙烯酸-硅橡胶类增韧剂均为核壳结构的增韧剂。核壳结构的增韧剂具有更好的增韧性,并且,丙烯酸-硅橡胶类增韧剂,其硅橡胶中是饱和的Si-O结构,不容易老化。
上述核壳结构的增韧剂的粒径分布为D50为200nm~800nm。更为优选的,上述核壳结构的增韧剂的粒径分布为D50为300nm~500nm,所更为优选的粒径的增韧剂具有更好的冲击韧性,其中,粒径太小其冲击韧性不好,粒径太大容易造成应力集中,影响拉伸等力学性能。
其中,所述抗氧剂为主抗氧剂和辅抗氧剂的混合物,所述主抗氧剂和所述辅抗氧剂的质量之比为1.0:(0.5~1.0)。
优选的,所述主抗氧剂为受阻酚类抗氧剂、受阻胺抗氧剂、苯并呋喃酮抗氧剂中的至少一种;所述受阻酚类抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯;
所述的辅抗氧剂为磷系辅抗氧剂和硫系辅抗氧剂中的至少一种;所述磷系辅抗氧剂为三(2,4-二叔丁基苯基)亚磷酸酯。
优选的,所述十八烯酸盐稳定剂与所述酯交换抑制剂的质量比为0.5~10,更为优选的是,所述十八烯酸盐稳定剂与所述酯交换抑制剂的质量比为1~8。其中,所述十八烯酸盐稳定剂与所述酯交换抑制剂的质量比太低时无法有效抑制酯交换,质量比太高时不容易捕捉残留催化剂。
优选的,所述耐长期热氧老化的聚碳酸酯/聚酯合金组合物还包括如下重量份的组分的至少一种:0.01~1份润滑剂、0.01~2份抗滴落剂、1~15份阻燃剂;
所述润滑剂选自羧酸酯、低分子量石蜡、硅酮中的至少一种。其中,所述低分子量石蜡的平均分子量为500~3500。
其中,所述抗滴落剂为聚四氟乙烯。
其中,所述阻燃剂为溴锑体系的阻燃剂。本发明的目的之二采用如下技术方案实现:
一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物的制备方法,包括如下制备步骤:
S1:将配方量的组分在混合机中搅拌共混,得到预混料;
S2:将将步骤S1中得到的预混料投入双螺杆挤出机中挤出造粒,即制得所述耐长期热氧老化的聚碳酸酯/聚酯合金组合物。
其中,双螺杆挤出机的螺杆长径比为40~45:1,螺筒温度为210~250℃,螺杆转速为500~600rpm。
相比现有技术,本发明的有益效果在于:
1)本发明的耐长期热氧老化的聚碳酸酯/聚酯合金组合物,通过同时添加十八烯酸盐稳定剂及酯交换抑制剂,能够钝化聚碳酸酯及聚酯的活性分子链端,抑制聚碳酸酯/聚酯合金的酯交换反应并减缓其热氧老化,从而能够使所制得的聚碳酸酯/聚酯合金组合物具有良好的机械性能以及明显改善的耐长期热氧老化 性能。
2)本发明的耐长期热氧老化的聚碳酸酯/聚酯合金组合物制备方法,通过预混料和挤出造粒即制得聚碳酸酯/聚酯合金组合物,具有制备步骤简单,生产成本低,并易于大规模生产的特点。
具体实施方式
下面,结合具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。以下是本发明具体的实施例,在下述实施例中所采用的原材料、设备等除特殊限定外均可以通过购买方式获得。
其中,以下实施例所使用的原材料如下:
聚碳酸酯(PC)1:1300-10NP(芳香族聚碳酸酯),韩国LG化学有限公司光气法制备,平均分子量24000;
聚碳酸酯(PC)2:7030(芳香族聚碳酸酯),日本三菱集团,光气法制备,平均分子量为36000;
聚酯(PBT)1:GL236,中国石化仪征化纤有限责任公司,粘度为1.3dl/g;
聚酯(PBT)2:1100-211M,台湾长春人造树脂厂股份有限公司,粘度为1.0dl/g;
丙烯酸-硅橡胶类增韧剂1:S-2100,日本三菱化学株式会社,橡胶粒径D50为400nm;
丙烯酸-硅橡胶类增韧剂2:S-2130,日本三菱化学株式会社,橡胶粒径D50为800nm;
丙烯酸-硅橡胶类增韧剂3:SX-006,日本三菱化学株式会社,橡胶粒径D50为100nm;
十八烯酸盐稳定剂1:油酸钠,
十八烯酸盐稳定剂2:油酸锌,
十八烯酸盐稳定剂3:油酸钙,
十八烯酸盐稳定剂4:蓖麻油酸钠,
十八烯酸盐稳定剂5:蓖麻油酸锌,
十八烯酸盐稳定剂6:蓖麻油酸钙,
酯交换抑制剂1:焦磷酸二氢二钠;
酯交换抑制剂2:磷酸二氢钠;
主抗氧剂:β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯;
辅抗氧剂:三(2,4-二叔丁基苯基)亚磷酸酯;
润滑剂:季戊四醇硬脂酸酯。
实施例1实施例17
各实施例的耐长期热氧老化的聚碳酸酯/聚酯合金组合物是通过如下原料配方(参见表1)和方法制备得到。
根据表1中的原料配方,将聚碳酸酯、聚酯、丙烯酸-硅橡胶类增韧剂、十八烯酸盐稳定剂、酯交换抑制剂、抗氧剂和润滑剂在混合机中搅拌共混,得到预混料;将上述预混料投入双螺杆挤出机中,在双螺杆挤出机中熔融混合并挤出造粒,得到聚耐长期热氧老化的碳酸酯/聚酯合金组合物。其中,双螺杆挤出机的螺杆长径比为40~45:1,螺筒温度为210~250℃,螺杆转速为500~600rpm。
表1实施例1~7各组分配比(按重量份计)及其性能测试结果
Figure PCTCN2022107598-appb-000003
Figure PCTCN2022107598-appb-000004
表2实施例8~15各组分配比(按重量份计)及其性能测试结果
Figure PCTCN2022107598-appb-000005
Figure PCTCN2022107598-appb-000006
表3实施例16~17各组分配比(按重量份计)及其性能测试结果
Figure PCTCN2022107598-appb-000007
对比例1对比例4
各对比例的聚碳酸酯/聚酯合金组合物的原料配方参见表3,制备方法与实施例1-17相同。
表3对比例1~4各组分配比(按重量份计)及其性能测试结果
Figure PCTCN2022107598-appb-000008
其中,上述各实施例制得的耐长期热氧老化的聚碳酸酯/聚酯合金组合物及对比例制得的一般的聚碳酸酯/聚酯合金组合物的各项性能的测试方法如下:
拉伸强度:根据ASTM D638-14标准测试拉伸样条的拉伸强度;同时将拉伸样条在预设好温度为130℃的恒温实验箱中进行热氧老化,按照取样计划3000h老化时间后取出测试样条后,放在室温为2322℃、湿度为50%的环境下进行调节48h以上,然后进行拉伸强度测试并记录结果,通过对比老化前后的拉伸强度性能保持率作为长期热氧稳定性好坏的判定,性能保持率越高,长期热氧稳定性越好。
冲击强度:根据ASTM D1822-13标准测试厚度为3.0mm样条的拉伸冲击强度;样条类型为Type c;同时将拉伸冲击样条在预设好温度为130℃的恒温实验箱中进行热氧老化,按照取样计划3000h老化时间后取出测试样条后,放在 室温为25℃、湿度为50%的环境下进行调节48h以上,然后进行测试并记录结果,通过对比老化前后的性能保持率作为长期热氧稳定性好坏的判定,性能保持率越高,长期热氧稳定性越好。
从对比例1-4中可以看出,未添加或单独添加十八烯酸盐稳定剂,或者,未添加或单独添加酯交换抑制剂的聚碳酸酯/聚酯合金组合物,不仅初始拉伸强度或拉伸冲击强度偏低,而且老化后拉伸强度及拉伸冲击强度保持率也低于65%。另外,从实施例1~17中可以看出,同时添加十八烯酸盐及酯交换抑制剂制得的聚碳酸酯/聚酯合金组合物,其老化后性能稳定,3000h老化拉伸性能保持率均高于70%,3000h老化拉伸冲击性能保持率均高于70%。因而,说明了通过十八烯酸盐及酯交换抑制剂的协同作用,能够钝化聚碳酸酯及聚酯的活性分子链端,抑制聚碳酸酯/聚酯合金的酯交换反应并减缓其热氧老化,从而能够使所制得的聚碳酸酯/聚酯合金组合物具有良好的机械性能以及明显改善的耐长期热氧老化性能。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,其特征在于,包括如下重量份的组分:
    Figure PCTCN2022107598-appb-100001
  2. 根据权利要求1所述的一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,其特征在于,包括如下重量份的组分:
    Figure PCTCN2022107598-appb-100002
  3. 根据权利要求1所述的一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,其特征在于,所述十八烯酸盐稳定剂为油酸钠、油酸锌、油酸钙、蓖麻油酸钠、蓖麻油酸锌或蓖麻油酸钙中的一种或两种以上的组合物;
    所述酯交换抑制剂为磷酸二氢钠、磷酸二氢锌、无水磷酸二氢钠、磷酸二 氢二钠或焦磷酸二氢二钠中的一种或两种以上的组合物;
    所述聚碳酸酯为芳香族聚碳酸酯、脂肪族聚碳酸酯、支化聚碳酸酯、芳香族-脂肪族聚碳酸酯或硅氧烷共聚碳酸酯中的一种或两种以上的组合物;
    所述聚酯为乙二醇、己二醇、丙二醇、丁二醇、1.4-环己烷二甲醇、新戊二醇或对苯二甲醇的一种或两种以上的组合物,与对苯二甲酸、间苯二甲酸、戊二酸、己二酸或辛二酸的一种或两种以上的组合物进行聚合得到的共聚酯;
    所述增韧剂为甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物、甲基丙烯酸甲酯-丙烯酸共聚物、乙烯-丙烯酸甲酯共聚物、乙烯-丙烯酸丁酯共聚物、乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯三元共聚物、马来酸酐功能化的乙烯-醋酸乙烯共聚物、丙烯酸类增韧剂和丙烯酸-硅橡胶类增韧剂中的至少一种。
  4. 根据权利要求3所述的一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,其特征在于,所述芳香族聚碳酸酯的平均分子量为15000~30000;
    所述共聚酯为聚对苯二甲酸丁二醇酯或聚对苯二甲酸乙二醇酯。
  5. 根据权利要求3所述的一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,其特征在于,所述增韧剂为甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物、丙烯酸-硅橡胶类增韧剂中的一种或两种;
    所述增韧剂的粒径分布为D50为200nm~800nm。
  6. 根据权利要求5所述的一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,其特征在于,所述增韧剂的粒径分布为D50为300nm~500nm。
  7. 根据权利要求1所述的一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,其特征在于,所述抗氧剂为主抗氧剂和辅抗氧剂的混合物,所述主抗氧剂和所述辅抗氧剂的质量之比为1.0:(0.5~1.0);
    所述主抗氧剂为受阻酚类抗氧剂、受阻胺抗氧剂、苯并呋喃酮抗氧剂中的至少一种;所述受阻酚类抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯;
    所述的辅抗氧剂为磷系辅抗氧剂和硫系辅抗氧剂中的至少一种;所述磷系辅抗氧剂为三(2,4-二叔丁基苯基)亚磷酸酯。
  8. 根据权利要求1所述的一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,其特征在于,所述十八烯酸盐稳定剂与所述酯交换抑制剂的质量比为0.5~10。
  9. 根据权利要求1所述的一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物,其特征在于,所述耐长期热氧老化的聚碳酸酯/聚酯合金组合物还包括如下重量份的组分的至少一种:0.01~1份润滑剂、0.01~2份抗滴落剂、1~15份阻燃剂、0.01~2份染料、0.01~2份颜料;
    所述润滑剂选自羧酸酯、低分子量石蜡、硅酮中的至少一种。
  10. 权利要求1至9任一项所述的一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物的制备方法,其特征在于,包括如下制备步骤:
    S1:将配方量的组分在混合机中搅拌共混,得到预混料;
    S2:将将步骤S1中得到的预混料投入双螺杆挤出机中挤出造粒,即制得所述耐长期热氧老化的聚碳酸酯/聚酯合金组合物。
PCT/CN2022/107598 2021-07-29 2022-07-25 一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法 WO2023005869A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110862886.0A CN113667287B (zh) 2021-07-29 2021-07-29 一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法
CN202110862886.0 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023005869A1 true WO2023005869A1 (zh) 2023-02-02

Family

ID=78540682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107598 WO2023005869A1 (zh) 2021-07-29 2022-07-25 一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法

Country Status (2)

Country Link
CN (1) CN113667287B (zh)
WO (1) WO2023005869A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117343504A (zh) * 2023-11-10 2024-01-05 扬州君禾薄膜科技有限公司 一种耐紫外老化聚酯材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667287B (zh) * 2021-07-29 2022-08-16 金发科技股份有限公司 一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法
CN114806124B (zh) * 2022-03-31 2024-05-14 金发科技股份有限公司 一种耐候pc/聚酯合金材料及其制备方法与应用
CN115160756A (zh) * 2022-06-27 2022-10-11 湖北合聚新材料有限公司 一种用于塑料件车身盖板的高抗冲耐油漆pc/pbt合金材料及制备方法和应用
CN115975367B (zh) * 2023-02-24 2024-05-14 金发科技股份有限公司 一种具有良好加工稳定性的聚碳酸酯组合物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983004038A1 (en) * 1982-05-13 1983-11-24 Ethyl Corporation Polyester composition
CN1218070A (zh) * 1997-09-04 1999-06-02 通用电气公司 具有改善的耐降解作用和改善的热稳定性的冲击性改善的碳酸酯聚合物组合物
JP2007031542A (ja) * 2005-07-26 2007-02-08 Kaneka Corp ポリカーボネート樹脂組成物および該組成物から得られる成形体
JP2011132313A (ja) * 2009-12-22 2011-07-07 Daicel Polymer Ltd 難燃性ポリカーボネート系樹脂組成物及び薄肉成形体
CN111117186A (zh) * 2019-12-24 2020-05-08 会通新材料股份有限公司 一种阻燃、抗低温冲击和高耐候性的pc/pbt合金及其制备方法
CN111718569A (zh) * 2020-07-09 2020-09-29 上海浦景化工技术股份有限公司 一种聚乙醇酸的回收方法及其应用
CN113667287A (zh) * 2021-07-29 2021-11-19 金发科技股份有限公司 一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957388B2 (en) * 2013-01-10 2018-05-01 Mitsubishi Engineering-Plastics Corporation Polybutylene terephthalate resin composition and molded article
CN108676331A (zh) * 2018-05-08 2018-10-19 武汉合聚塑化新材料有限公司 一种高强度耐高温pbt/pc合金树脂材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983004038A1 (en) * 1982-05-13 1983-11-24 Ethyl Corporation Polyester composition
CN1218070A (zh) * 1997-09-04 1999-06-02 通用电气公司 具有改善的耐降解作用和改善的热稳定性的冲击性改善的碳酸酯聚合物组合物
JP2007031542A (ja) * 2005-07-26 2007-02-08 Kaneka Corp ポリカーボネート樹脂組成物および該組成物から得られる成形体
JP2011132313A (ja) * 2009-12-22 2011-07-07 Daicel Polymer Ltd 難燃性ポリカーボネート系樹脂組成物及び薄肉成形体
CN111117186A (zh) * 2019-12-24 2020-05-08 会通新材料股份有限公司 一种阻燃、抗低温冲击和高耐候性的pc/pbt合金及其制备方法
CN111718569A (zh) * 2020-07-09 2020-09-29 上海浦景化工技术股份有限公司 一种聚乙醇酸的回收方法及其应用
CN113667287A (zh) * 2021-07-29 2021-11-19 金发科技股份有限公司 一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117343504A (zh) * 2023-11-10 2024-01-05 扬州君禾薄膜科技有限公司 一种耐紫外老化聚酯材料及其制备方法
CN117343504B (zh) * 2023-11-10 2024-04-05 扬州君禾薄膜科技有限公司 一种耐紫外老化聚酯材料及其制备方法

Also Published As

Publication number Publication date
CN113667287A (zh) 2021-11-19
CN113667287B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2023005869A1 (zh) 一种耐长期热氧老化的聚碳酸酯/聚酯合金组合物及其制备方法
WO2023045889A1 (zh) 一种可降解的阻隔组合物及其制备方法和应用
CN107383829A (zh) 耐老化耐水解无卤阻燃聚碳酸酯组合物及其制备方法
CN108178874B (zh) 一种高压电力电缆用聚丙烯绝缘料及其制备方法
CN112266619B (zh) 耐湿热老化的聚碳酸酯组合物及其制备方法
TWI726894B (zh) 提高比較追蹤指數的方法以及環氧化合物及乙烯丙烯酸乙酯共聚物的用途
CN110577730A (zh) 高光泽耐油开关面板用聚碳酸酯组合物及其制备方法
CN108384117B (zh) 一种抗静电聚丙烯组合物
KR20170063159A (ko) 폴리부틸렌테레프탈레이트 수지 조성물 및 이로부터 제조된 성형품
CN104725823A (zh) 耐低温阻燃pc复合材料及其制备方法
CN111004478B (zh) 一种高性能抗静电聚酯材料及其制备方法
CN111253728A (zh) 聚碳酸酯组合物及其制备方法
CN102134495A (zh) 高流动性液晶聚合物组合物及其制备方法
CN111004476B (zh) 一种工程塑料组合物及其制备方法
CN102939336B (zh) 由可再生资源得到的聚合物的组合物
CN104861528A (zh) 一种ptt/petg复合材料及其制备方法
CN101824203B (zh) 固体缩聚型磷酸酯阻燃abs/pc合金及其制备方法
CN111303604B (zh) 一种聚碳酸酯/聚对苯二甲酸乙二醇-1,4-环己烷二甲醇酯合金材料及其制备方法
CN113045892B (zh) 一种阻燃尼龙66材料及其制备方法
CN114621526A (zh) 一种环保聚丙烯复合材料及其制备方法
CN112480630A (zh) 一种高铁用良外观无卤阻燃聚碳酸酯组合物及其制备方法
CN101701101A (zh) 低烟无卤阻燃聚碳酸酯及其制作工艺
CN106280456A (zh) 本征型pps/玻纤/环氧树脂/埃洛石微纳复合阻燃电缆材料及其制备方法
CN114539735B (zh) 一种pbt/pok复合材料及其应用
CN115322551B (zh) 一种聚碳酸酯组合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE