WO2023005755A1 - 基座偏压调节装置和方法、半导体工艺设备 - Google Patents

基座偏压调节装置和方法、半导体工艺设备 Download PDF

Info

Publication number
WO2023005755A1
WO2023005755A1 PCT/CN2022/106654 CN2022106654W WO2023005755A1 WO 2023005755 A1 WO2023005755 A1 WO 2023005755A1 CN 2022106654 W CN2022106654 W CN 2022106654W WO 2023005755 A1 WO2023005755 A1 WO 2023005755A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
bias
adjustment unit
impedance
bias adjustment
Prior art date
Application number
PCT/CN2022/106654
Other languages
English (en)
French (fr)
Inventor
张超
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to KR1020237040641A priority Critical patent/KR20240001211A/ko
Priority to EP22848360.8A priority patent/EP4379088A1/en
Publication of WO2023005755A1 publication Critical patent/WO2023005755A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks

Definitions

  • the present invention relates to the technical field of semiconductor manufacturing, in particular to a base bias adjustment device and method, and semiconductor process equipment.
  • Plasma is widely used in the production process of semiconductor devices.
  • an RF power source is used to excite the process gas in the reaction chamber to generate plasma.
  • the plasma contains a large number of active particles such as electrons, ions, excited atoms, molecules and free radicals. These active particles interact with the wafer placed in the reaction chamber and exposed to the plasma environment, causing the surface of the wafer to Various physical and chemical reactions to complete the etching of the wafer or other processes.
  • Fig. 1 is a structural diagram of an existing Physical Vapor Deposition (Physical Vapor Deposition, hereinafter referred to as PVD) equipment.
  • PVD apparatus comprises reaction chamber 01, is provided with target material 02 on the top of reaction chamber 01, and this target material 02 is electrically connected with radio frequency power supply and DC power supply (the two are not shown), and in process chamber In the chamber 01 and below the target 02 is provided a base 03 for carrying a wafer 04 .
  • the base 03 is electrically connected to the RF power source 05 through the matching device 06, and the RF power source 05 is used to apply a negative bias voltage to the base 03.
  • the bias voltage of the base 03 can be adjusted. Thereby controlling parameters such as deposition rate and film stress.
  • the RF power supply 05 can only apply negative bias voltage to the susceptor 03, the wafer may be damaged in some processes, resulting in an excessively high forward voltage (Voltage Forward, VF) value of the wafer, resulting in poor process results. qualified.
  • the PVD equipment has a small process window, which cannot meet different process requirements.
  • the present invention aims to solve at least one of the technical problems in the prior art, and proposes a base bias adjustment device and method, and semiconductor process equipment, which can meet different process requirements, thereby expanding the process window.
  • a base bias adjustment device including a positive bias adjustment unit, a negative bias adjustment unit and an anti-interference unit, wherein,
  • the first end of the positive bias adjustment unit is grounded, the second end of the positive bias adjustment unit is electrically connected to the base, and is used to adjust the bias voltage of the base, and can make the base generate a positive voltage. bias;
  • the first end of the negative bias adjustment unit is grounded, the second end of the negative bias adjustment unit is electrically connected to the base through the anti-interference unit, and is used to adjust the bias voltage of the base, and capable of negatively biasing the base;
  • the anti-interference unit is connected to the circuit between the negative bias adjustment unit and the base, and is used to prevent the current in the circuit between the positive bias adjustment unit and the base from flowing into the In the circuit between the negative bias adjustment unit and the base, the positive bias adjustment unit and the negative bias adjustment unit can be used simultaneously in the process.
  • the positive bias adjustment unit includes a variable impedance circuit, one end of the variable impedance circuit is electrically connected to the base, the other end of the variable impedance circuit is grounded, and the variable impedance circuit It is used to adjust the bias voltage of the base by adjusting the impedance of the variable impedance circuit.
  • variable impedance circuit includes at least one first variable capacitor; or at least one variable inductor; or at least one first variable capacitor and at least one variable inductor electrically connected, the at least The electrical connection modes adopted by the first variable capacitor and the at least one variable inductor include parallel connection, series connection or mixed connection.
  • the anti-interference unit includes a band rejection filter or a digital filter.
  • the negative bias adjustment unit includes a radio frequency power supply and a matching circuit connected between the radio frequency power supply and the base.
  • the matching circuit includes a first branch and a second branch, wherein one end of the first branch is electrically connected to the output end of the radio frequency power supply, and the other end of the first branch is grounded , and a second variable capacitor is provided on the first branch;
  • the two ends of the second branch are respectively electrically connected to the output end of the radio frequency power supply and the base, and a third variable capacitor is arranged on the second branch; the anti-interference unit is connected to the On the second branch road.
  • the matching circuit includes a first branch, a second branch, a third branch and a fourth branch, wherein one end of the first branch is electrically connected to the output end of the radio frequency power supply, The other end of the first branch is grounded, and a second variable capacitor is arranged on the first branch;
  • the two ends of the second branch are respectively electrically connected to the output end of the radio frequency power supply and one end of the fourth branch, and a fixed capacitance is arranged on the second branch;
  • One end of the third branch is electrically connected to one end of the fourth branch, the other end of the third branch is grounded, and a third variable capacitor is arranged on the third branch;
  • the other end of the fourth branch is electrically connected to the base through the anti-interference unit.
  • the base bias adjustment device further includes a parameter acquisition unit and a control unit, wherein the parameter acquisition unit is configured to acquire the current impedance-related parameter value of the forward bias adjustment unit in real time, and which is sent to said control unit;
  • the control unit is used to control the positive bias adjustment unit to adjust the bias voltage of the base according to the current parameter value and the preset parameter setting value until the current parameter value is equal to the parameter setting value.
  • the parameter acquisition unit includes a voltage detection element, and the voltage detection element is used to detect the current bias value of the base in real time and send it to the control unit;
  • the control unit is used to control the positive bias adjustment unit to adjust the bias of the base according to the current bias value and the preset bias setting value until the current bias value is equal to the Bias setpoint.
  • the parameter acquisition unit includes an impedance detection element, the impedance detection element is used to detect the input voltage value and the input current value of the positive bias voltage adjustment unit in real time, and send them to the control unit;
  • the control unit is used to calculate and obtain an input impedance value according to the input voltage value and input current value, and control the positive bias voltage adjustment unit to adjust the base voltage according to the input impedance value and a preset impedance setting value.
  • the present invention also provides a semiconductor process equipment, including a reaction chamber, a base is arranged in the reaction chamber, and a target is arranged on the top of the reaction chamber, the semiconductor process
  • the device also includes the above-mentioned base bias adjustment device provided by the present invention, the base bias adjustment device is electrically connected with the base, and used for adjusting the base bias.
  • the present invention also provides a susceptor bias adjustment method, which is applied to the above-mentioned susceptor bias adjustment device provided by the present invention, and the susceptor bias adjustment method includes the following steps:
  • step S2 Judging whether the current parameter value is equal to the preset parameter setting value, if yes, return to the step S1; if not, proceed to step S3;
  • the positive bias adjustment unit includes a variable impedance circuit, one end of the variable impedance circuit is electrically connected to the base, the other end of the variable impedance circuit is grounded, and the variable impedance circuit It is used to adjust the bias voltage of the base by adjusting the impedance of the variable impedance circuit; each of the variable impedance circuits includes at least one first variable capacitor, or at least one variable inductor, or at least one first variable capacitor and at least one variable inductor electrically connected;
  • Described step S3 specifically comprises:
  • step S32 Judging whether the current parameter value is equal to the parameter setting value, if yes, return to step S1; if not, proceed to step S33;
  • step S33 Judging whether the distance between the current position and the initial position of the moving piece of the first variable capacitor exceeds a preset threshold, if yes, proceed to step S34; if not, return to step S31;
  • step S35 Judging whether the current parameter value is equal to the parameter setting value, if yes, then return to the step S1; if not, then proceed to step S36;
  • step S36 Judging whether the distance between the current position of the moving piece of the first variable capacitor and the initial position exceeds the preset threshold, if yes, proceed to step S37; if not, return to step S34;
  • the second end of the positive bias adjustment unit is electrically connected to the base, and the second end of the negative bias adjustment unit is connected to the base through the anti-interference unit.
  • the base is electrically connected, and by using the anti-interference unit to suppress the current in the circuit between the positive bias adjustment unit and the base from flowing into the circuit between the negative bias adjustment unit and the base, the positive bias adjustment unit and the base can be made.
  • the negative bias adjustment unit always maintains electrical conduction with the base at the same time, and at the same time ensures that the bias adjustment of the base by the positive bias adjustment unit will not be affected by the negative bias adjustment unit, that is, the positive bias adjustment unit and the negative bias adjustment unit are realized.
  • the voltage adjustment unit can be used in the process at the same time, and avoid mutual interference between the two; at the same time, because the positive bias adjustment unit can make the base generate a positive bias, and the negative bias adjustment unit can make the base generate a negative Bias voltage, the simultaneous use of the two can make the adjustment range of the base bias voltage larger, thereby expanding the process window to meet more different process requirements
  • Fig. 1 is the structural diagram of existing a kind of PVD equipment
  • Fig. 2 is a functional block diagram of the base bias adjustment device provided by the first embodiment of the present invention.
  • FIG. 3 is an equivalent circuit diagram of the base bias adjustment device provided by the first embodiment of the present invention.
  • FIG. 4A is a Smith chart showing the matching range of the matching circuit for impedance matching when no positive bias adjustment unit is provided;
  • 4B is a Smith chart showing the matching range of the matching circuit for impedance matching when the positive bias voltage adjustment unit is set;
  • FIG. 5 is an equivalent circuit diagram of a base bias voltage adjusting device provided by a second embodiment of the present invention.
  • FIG. 6 is an equivalent circuit diagram of a base bias adjustment device provided by a third embodiment of the present invention.
  • FIG. 7 is an equivalent circuit diagram of a base bias adjustment device provided by a fourth embodiment of the present invention.
  • FIG. 8 is a flow chart of a susceptor bias adjustment method provided by a fifth embodiment of the present invention.
  • FIG. 9 is a flowchart of step S3 adopted in the fifth embodiment of the present invention.
  • the base bias adjustment device provided by the first embodiment of the present invention includes a positive bias adjustment unit 2 , a negative bias adjustment unit 3 and an anti-interference unit 4 , wherein the positive bias adjustment unit 2 The first end is grounded, and the second end is directly connected to the base 1.
  • the so-called direct connection means that there is only a wire between the positive bias adjustment unit 2 and the base 1 that can make the two electrically conductive, and there is no connection between the two. Switching devices or other devices are arranged between them, so that the positive bias voltage adjustment unit 2 and the base 1 are directly electrically connected during the process.
  • the positive bias adjustment unit 2 is used to adjust the bias of the base 1, and can make the base 1 generate a positive bias; the first end of the negative bias adjustment unit 3 is grounded, and the second end is connected to the base through the anti-jamming unit 4 1 connection, used to adjust the bias voltage of the base 1, and can make the base 1 negatively biased.
  • the anti-interference unit 4 is connected to the circuit between the negative bias adjustment unit 3 and the base 1, and is used to suppress the current in the circuit between the positive bias adjustment unit 2 and the base 1 from flowing into the negative bias adjustment unit 3 and the base 1. In the circuit between base 1.
  • the circuits between the positive bias adjustment unit 2 and the negative bias adjustment unit 3 and the base 1 are directly electrically connected, and the positive bias adjustment unit 2 and the negative bias adjustment unit 3
  • the bias voltage of the base 1 can be adjusted at the same time.
  • the anti-interference unit 4 it can be ensured that the current in the circuit between the positive bias voltage adjustment unit 2 and the base 1 will not flow into the negative bias voltage adjustment unit 3 and the base 1. In the circuit between base 1.
  • the circuit between the negative bias adjustment unit 3 and the base 1 and the circuit between the positive bias adjustment unit 2 and the base 1 are connected in parallel, and the current from the base 1 will be shunted.
  • the adjustment of the bias voltage of the base 1 through the positive bias voltage adjustment unit 2 is affected, for example, it cannot be accurately adjusted to a desired bias voltage value.
  • the bias value on the base 1 is the sum of the preset positive bias voltage setting value and negative bias voltage setting value , if the set value of the positive bias voltage is greater than the set value of the negative bias voltage, then the adjusted bias voltage on the base 1 is a positive bias voltage; if the set value of the positive bias voltage is less than the set value of the negative bias voltage, then the adjusted The bias on base 1 is a negative bias.
  • the positive bias adjustment unit is used alone, the adjusted bias on the base is a positive bias; if the negative bias adjustment unit is used alone, the adjusted bias on the base is a negative bias.
  • positive bias adjustment unit or negative bias adjustment unit alone refers to using the bias on the base of the positive bias adjustment unit or negative bias adjustment unit alone, but the positive bias adjustment unit 2 The circuits between the negative bias adjustment unit 3 and the base 1 are always on.
  • the base By adjusting the bias voltage on the base 1, the energy of the particles on the surface of the wafer and the thickness of the plasma sheath can be changed when depositing the film, so that the stress and density of the film can be improved.
  • a negative bias voltage is generated on the susceptor 1
  • the energy of metal atoms in the plasma bombarding the wafer is greater, so the deposition rate is faster, but the wafer may be damaged in some processes, resulting in wafer VF The value is too high.
  • a positive bias voltage is generated on the susceptor 1, metal atoms in the plasma bombard the wafer with less energy, but the deposition rate is slower. Therefore, according to different process requirements, the base can be selected to generate a negative bias voltage or a positive bias voltage, thereby expanding the process window.
  • the above-mentioned anti-interference unit 4 can be a band-stop filter or a digital filter, etc., taking a band-stop filter as an example, which includes a parallel fixed capacitor and a fixed inductor, for example, by using the band
  • the blocking filter is connected to the circuit between the negative bias adjustment unit 3 and the base 1, which can make the circuit on the circuit under the premise that the power output by the negative bias adjustment unit 3 can be normally loaded
  • the impedance is infinite, so that the current in the circuit between the positive bias adjustment unit 2 and the base 1 can be prevented from flowing into the circuit between the negative bias adjustment unit 3 and the base 1 .
  • the anti-interference unit 4 can also adopt any other structure, as long as the current in the circuit between the positive bias adjustment unit 2 and the base 1 can be prevented from flowing into the gap between the negative bias adjustment unit 3 and the base 1 in the circuit between them.
  • the positive bias adjustment unit 2 includes an impedance variable circuit 21, one end of the impedance variable circuit 21 is electrically connected to the base 1, the other end of the impedance variable circuit 21 is grounded, and the impedance variable The circuit 21 is used to adjust the magnitude of the bias voltage of the base 1 by adjusting the impedance of the variable impedance circuit 21 .
  • the variable impedance circuit 21 may include at least one first variable capacitor, or at least one variable inductor, or at least one first variable capacitor and at least one variable inductor electrically connected.
  • the variable impedance circuit 21 includes a first variable capacitor 211. By adjusting the capacitance value of the first variable capacitor 211, the impedance of the variable impedance circuit 21 can be adjusted, so that the base 1 adjustment of the bias voltage.
  • variable capacitors and/or fixed inductances can be set in the variable impedance circuit 21.
  • a variable capacitor 211 is connected in series with a fixed inductor 212, and the two will generate series resonance, which can play a role in adjusting the resonant frequency of the base 1 so that it will not approach the resonant frequency of the system, thereby avoiding resonance.
  • the negative bias adjustment unit 3 includes a matching circuit 31 and a radio frequency power supply 32 ; by adjusting the power of the radio frequency power supply 32 , the bias voltage of the base 1 can be adjusted.
  • the frequency of the radio frequency power supply 32 can be 13MHz or 2MHz.
  • the matching circuit 31 is used to make the input impedance of the impedance matching network (formed by passive devices such as capacitors, inductors, etc. between the radio frequency power supply 31 and the base 1) and the output impedance of the radio frequency power supply 32 conjugate match, thereby reducing the load
  • the power reflection of the end (base 1) makes the base 1 obtain the maximum power, that is, realizes impedance matching.
  • the impedance matching network for example, adopts an L-shaped impedance matching network.
  • the matching circuit 31 includes a first branch 311 and a second branch 312, wherein one end of the first branch 311 It is electrically connected with the output terminal of the radio frequency power supply 32, the other end of the first branch circuit 311 is grounded, and the second variable capacitor 313 is arranged on the first branch circuit 311; The output terminal of is electrically connected to the base 1 , and a third variable capacitor 314 is provided on the second branch 312 .
  • the adjusted input impedance of the impedance matching network can be conjugate-matched with the output impedance of the radio frequency power supply 32 , thereby realizing impedance matching.
  • the above-mentioned anti-interference unit 4 is connected to the second branch 312 , for example, it can be set on the side of the input end of the third variable capacitor 314 .
  • the above-mentioned anti-jamming unit 4 as an example of a band-stop filter including parallel fixed capacitance and fixed inductance, it will make the impedance on the second branch 312 infinite, so that the current from the base 1 can only flow into the variable impedance circuit 21 without flowing into the second branch 312 .
  • FIG. 4A is a Smith chart showing the matching range of the impedance matching performed by the matching circuit when no positive bias adjustment unit is provided.
  • FIG. 4B is a Smith chart showing the matching range of the impedance matching performed by the matching circuit when the positive bias adjustment unit is provided.
  • the range A surrounded by the dot columns in Figure 4A indicates the matching range of the matching circuit for impedance matching when the positive bias voltage adjustment unit is not set
  • the two columns in Figure 4B The two ranges B surrounded by the dot columns indicate the matching range for the impedance matching of the matching circuit when the positive bias adjustment unit is set, wherein the two ranges B correspond to the upper limit and the lower limit of the capacitance range of the first variable capacitor 211 respectively value. Comparing Fig. 4A and Fig.
  • the above-mentioned impedance matching network adopts an L-shaped impedance matching network, but the present invention is not limited thereto. In practical applications, the above-mentioned impedance matching network can adopt any other type, and the present invention There is no particular restriction on this.
  • the base bias adjustment device provided by the second embodiment of the present invention is an improvement on the base bias adjustment device based on the above first embodiment.
  • the susceptor bias adjustment device further includes a parameter acquisition unit and a control unit 53, wherein the parameter acquisition unit is used to acquire the impedance-related current of the forward bias adjustment unit 2 in real time. parameter value and send it to the control unit 53.
  • the above-mentioned current parameter values related to impedance are, for example, the current bias voltage value of the base 1 or the input voltage value and input current value (from the base 1 ) of the forward bias voltage adjustment unit 2 and so on.
  • the control unit 53 is used to control the positive bias voltage adjusting unit 2 to adjust the bias voltage of the base 1 according to the above-mentioned current parameter value and the preset parameter setting value until the current parameter value is equal to the parameter setting value. Thereby, automatic control of susceptor bias adjustment can be realized.
  • the setting values of the above parameters can be set in advance in the process formula. And, if the current parameter value is the current bias voltage value of the base 1, then the parameter setting value is the bias voltage setting value; if the current parameter value is the input voltage value and input current value of the positive bias voltage adjustment unit 2, then the parameter The set value is the impedance set value.
  • the power value output by the RF power supply 32 can also be set in advance in the process recipe, and in the process It is also possible to adjust the power value output by the RF power supply 32, that is to say, in the process, both the negative bias voltage adjustment unit 3 and the positive bias voltage adjustment unit 2 can adjust the bias voltage of the base 1, as long as the final base It is sufficient that the bias voltage on 1 can reach the target bias voltage value meeting the process requirements.
  • the above-mentioned parameter acquisition unit includes a voltage detection element 51, which is used to detect the current bias value of the base 1 in real time and send it to the control unit 53; the control unit 53 is used to control the positive bias voltage adjustment unit 2 to adjust the bias voltage of the base 1 according to the current bias voltage value and the preset bias voltage setting value until the current bias voltage value is equal to the above bias voltage setting value .
  • the current bias voltage value of the susceptor 1 can be detected in real time by the above-mentioned voltage detection element 51, and the susceptor bias voltage can be adjusted in real time during the process, so that it can not only meet the process requirements, but also ensure that different process chambers process consistency.
  • the control unit 53 can adjust the capacitance value of the first variable capacitor 211 by driving the moving plate of the first variable capacitor 211 to rotate through the motor 52 , so that the current in the variable impedance circuit 21 can be changed, and then the bias voltage of the base 1 can be adjusted.
  • the control mode of the control unit 53 can be adaptively adjusted.
  • the impedance matching process of the above-mentioned matching circuit 31 belongs to the known technology. For example, as shown in FIG. Using the detected voltage and current values, two motors (341, 342) are used to respectively drive the rotors of the second variable capacitor 313 and the third variable capacitor 314 to rotate to adjust the capacitance values of the two, thereby performing impedance matching.
  • the base bias adjustment device provided by the third embodiment of the present invention compared with the above-mentioned first and second embodiments, its difference is that the impedance variable circuit 21' is different from the above-mentioned first and second embodiments.
  • the impedance variable circuit 21 in the embodiment is different.
  • variable impedance circuit 21' also includes a first variable capacitor 211, by adjusting the capacitance value of the first variable capacitor 211, the impedance of the variable impedance circuit 21 can be adjusted, thereby realizing the bias voltage of the base 1 adjustment.
  • corresponding fixed capacitors and/or fixed inductances can be set in the variable impedance circuit 21, for example, as shown in FIG.
  • a fixed inductance 212 is provided in parallel with the first variable capacitor 211 , and the two will generate parallel resonance, which can also play a role in adjusting the resonance frequency of the base 1 .
  • the impedance matching network adopts, for example, a ⁇ -type impedance matching network.
  • the matching circuit 31' includes a first branch 311, a second branch 312, The third branch 313 and the fourth branch 314, wherein, one end of the first branch 311 is electrically connected to the output end of the radio frequency power supply 32, the other end of the first branch 311 is grounded, and the first branch 311 is provided
  • One end of the three branches 313 is electrically connected to one end of the fourth branch 314, the other end of the third branch 313 is grounded, and a third variable capacitor 317 is arranged on the third branch 313; The other end is electrically connected to the base 1 through the anti-jamming unit 4 .
  • the adjusted input impedance of the impedance matching network can be conjugate-matched with the output impedance of the radio frequency power supply 32 , thereby realizing impedance matching.
  • the anti-jamming unit 4 is connected to the fourth branch 314.
  • the anti-jamming unit 4 as an example of a band-stop filter comprising a parallel fixed capacitance and a fixed inductance, it will make the fourth branch 314
  • the impedance above is infinite, so that the current from the base 1 can only flow into the variable impedance circuit 21 ′, but not into the fourth branch 314 .
  • the above-mentioned impedance matching network adopts a ⁇ -type impedance matching network, but the present invention is not limited thereto.
  • the above-mentioned impedance matching network can adopt any other type, for example, as shown in FIG. 4 shows the L-shaped impedance matching network.
  • the base bias adjustment device provided by the fourth embodiment of the present invention is similar to the above-mentioned second embodiment, and also includes a parameter acquisition unit and a control unit 53, and the difference is that in this embodiment
  • the parameter acquisition unit includes an impedance detection element 54, which is used to detect the input voltage value and the input current value of the positive bias voltage adjustment unit 2 in real time, and send them to the control unit 53; the control unit 53 is used to The input impedance value is obtained by calculating the voltage value and the input current value, and according to the input impedance value and the preset impedance setting value, the positive bias voltage adjustment unit 2 is controlled to adjust the bias voltage of the base 1 until the above input impedance value is equal to the impedance setting value. Value. Thereby, automatic control of susceptor bias adjustment can be realized.
  • the above-mentioned control unit 53 can adjust the capacitance value of the first variable capacitor 211 by driving the moving plate of the first variable capacitor 211 to rotate through the motor 52 , so that the current in the variable impedance circuit 21 can be changed, and then the bias voltage of the base 1 can be adjusted.
  • the impedance detection element 54 shown in FIG. 7 can also be applied to the base bias voltage adjusting device shown in FIG. 5 and replace the voltage detection element 51 .
  • the voltage detection element 51 can also be applied to the base bias voltage adjusting device shown in FIG. 7 and replace the impedance detection element 54 .
  • an embodiment of the present invention further provides a semiconductor process equipment, including a reaction chamber, a base is arranged in the reaction chamber, and a target is arranged on the top of the reaction chamber.
  • the semiconductor process equipment further includes a base bias adjusting device, which is electrically connected to the base and used for adjusting the base bias.
  • the base bias adjustment device adopts the base bias adjustment device provided by the above-mentioned embodiments of the present invention.
  • the semiconductor process equipment provided by the embodiments of the present invention can keep the positive bias adjustment unit and the negative bias adjustment unit in an electrical conduction state with the base all the time by using the base bias adjustment device provided by the above-mentioned various embodiments of the present invention, At the same time, ensure that the bias adjustment of the base by the positive bias adjustment unit will not be affected by the negative bias adjustment unit, that is, realize the simultaneous use of the positive bias adjustment unit and the negative bias adjustment unit in the process, and avoid both At the same time, because the positive bias adjustment unit can make the base generate a positive bias, and the negative bias adjustment unit can make the base generate a negative bias, the two can make the adjustment of the base bias The range is larger, thereby expanding the process window to meet more and different process needs.
  • the fifth embodiment of the present invention also provides a susceptor bias adjustment method, which is applied to the susceptor bias adjustment device provided in the second or fourth embodiment of the present invention, as shown in FIG. 8
  • the base bias adjustment method includes the following steps:
  • the above-mentioned current parameter values related to impedance are, for example, the current bias voltage value of the base 1 or the input voltage value and input current value of the forward bias voltage adjustment unit 2, and the like.
  • step S2 Judging whether the above-mentioned current parameter value is equal to the preset parameter setting value, if yes, then return to the above-mentioned step S1; if not, then proceed to step S3;
  • the setting values of the above parameters can be set in advance in the process formula. And, if the current parameter value is the current bias voltage value of the base 1, then the parameter setting value is the bias voltage setting value; if the current parameter value is the input voltage value and input current value of the positive bias voltage adjustment unit 2, then the parameter The set value is the impedance set value.
  • step S1 the current bias value of the base 1 is detected in real time by the voltage detection element 51; the above In step S2, it is judged whether the current bias voltage value is equal to the preset bias voltage setting value, if yes, return to the above step S1; if not, proceed to step S3; in the above step S3, according to the current bias voltage value and the preset Set the bias voltage setting value, and control the positive bias voltage adjustment unit 2 to adjust the bias voltage of the base 1 until the current bias voltage value is equal to the above bias voltage setting value.
  • step S3 the difference between the current bias value and the preset bias setting value can be calculated, and the positive bias adjustment unit 2 can be controlled to adjust the bias of the base 1 according to the difference until the current bias value is equal to the above bias setting.
  • the input voltage value of the positive bias voltage adjustment unit 2 is detected in real time by the impedance detection element 54 and the input current value; in the above step S2, the input impedance value is calculated according to the above input voltage value and the input current value to obtain the current impedance value, and it is judged whether the current impedance value is equal to the preset impedance setting value, and if so, return The above step S1; if not, proceed to step S3; in the above step S3, according to the current impedance value and the preset impedance setting value, control the positive bias voltage adjustment unit 2 to adjust the bias voltage of the base 1 until the current impedance value equal to the above bias impedance value.
  • step S3 it is possible to calculate the difference between the current impedance value and the preset impedance setting value, and control the positive bias voltage adjustment unit 2 to adjust the bias voltage of the base 1 according to the difference until the current impedance value is equal to the above-mentioned Bias impedance value.
  • the susceptor bias can be adjusted in real time during the process, so that it can not only meet the process requirements, but also ensure different process chambers Process consistency between chambers.
  • the base bias adjustment method provided in this embodiment can realize the automatic control of the base bias adjustment.
  • step S3 specifically includes:
  • the above-mentioned unit change amount is the angle of each rotation of the moving plate of the first variable capacitor 211 , that is, the angle change amount.
  • the motor 52 may drive the rotor of the first variable capacitor 211 to rotate to adjust the capacitance of the first variable capacitor 211 .
  • step S32 judging whether the current parameter value is equal to the above-mentioned parameter setting value, if so, then return to the above-mentioned step S1; if not, then proceed to step S33;
  • the parameter acquisition unit includes the voltage detection element 51 shown in FIG. 5
  • the above-mentioned current parameter value is a current bias voltage value
  • the above-mentioned parameter setting value is a bias voltage setting value.
  • the parameter acquisition unit includes the impedance detection element 54 shown in FIG. 7
  • the above-mentioned current parameter value is the current impedance value
  • the above-mentioned parameter setting value is the impedance setting value.
  • step S33 Determine whether the distance between the current position and the initial position of the moving plate of the first variable capacitor 211 (for example, the amount of change in angle) exceeds a preset threshold, if so, proceed to step S34; if not, return to the above step S31 ;
  • the preset threshold is, for example, 5% of the angle value corresponding to the initial position of the moving plate of the first variable capacitor 211 .
  • step S35 judging whether the above-mentioned current parameter value is equal to the parameter setting value, if so, then return to step S1; if not, then proceed to step S36;
  • the second end of the positive bias adjustment unit is electrically connected to the base, and the second end of the negative bias adjustment unit
  • the anti-jamming unit is electrically connected to the base, and by using the anti-jamming unit to suppress the current in the circuit between the positive bias adjustment unit and the base from flowing into the circuit between the negative bias adjustment unit and the base, the positive
  • the bias adjustment unit and the negative bias adjustment unit are always in electrical conduction with the base at the same time, and at the same time ensure that the bias adjustment of the base by the positive bias adjustment unit will not be affected by the negative bias adjustment unit, that is, to achieve positive bias
  • the adjustment unit and the negative bias adjustment unit are used in the process at the same time, and the mutual interference between the two is avoided; at the same time, because the positive bias adjustment unit can make the base generate a positive bias, and the negative bias adjustment unit can The base generates a negative bias voltage, and the simultaneous use of the two can make the adjustment range of the base bias

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Amplifiers (AREA)
  • Drying Of Semiconductors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本发明提供一种基座偏压调节装置和方法、半导体工艺设备,该装置包括正偏压调节单元、负偏压调节单元和抗干扰单元,其中,正偏压调节单元的第一端接地,正偏压调节单元的第二端与基座电连接,用于调节基座的偏压,且能够使基座产生正偏压;负偏压调节单元的第一端接地,负偏压调节单元的第二端通过抗干扰单元与基座电连接,用于调节基座的偏压,且能够使基座产生负偏压;抗干扰单元连接在负偏压调节单元与基座之间的电路上,用于抑制正偏压调节单元与基座之间的电路中的电流流入负偏压调节单元与基座之间的电路中,以实现正偏压调节单元和负偏压调节单元在工艺过程中同时使用。本发明的技术方案,可以满足不同工艺需求,从而扩大了工艺窗口。

Description

基座偏压调节装置和方法、半导体工艺设备 技术领域
本发明涉及半导体制造技术领域,具体地,涉及一种基座偏压调节装置和方法、半导体工艺设备。
背景技术
等离子体被广泛应用于半导体器件的生产过程中。在等离子体刻蚀或者沉积系统中,射频电源用于激发反应腔室中的工艺气体产生等离子体。等离子体中含有大量的电子、离子、激发态的原子、分子和自由基等活性粒子,这些活性粒子和置于反应腔室并曝露在等离子体环境下的晶圆相互作用,使晶圆表面发生各种物理和化学反应,从而完成晶圆的刻蚀或者其他工艺过程。
由于电子比正离子轻,在相同时间内,电子落在晶圆表面的数量比离子多,从而会在晶圆表面形成直流负偏压。这个直流负偏压会吸引等离子体中带正电荷的离子和活性反应基团向晶圆表面加速运动,轰击晶圆以达到预期的工艺结果。直流偏压的大小影响着正离子的轰击能量,进而也影响着一定的工艺参数(例如:刻蚀速率、沉积速率等)。目前,在绝大多数的等离子体设备中,均通过利用下电极射频电源向基座加载射频(RF)激励信号的方式,来达到增加晶圆上的直流负偏压及相应的增加离子能量的目的。
图1为现有的一种物理气相沉积(Physical Vapor Deposition,以下简称PVD)设备的结构图。请参阅图1,PVD设备包括反应腔室01,在反应腔室01的顶部设置有靶材02,该靶材02与射频电源和直流电源(二者未示出)电连接,并且在工艺腔室01内,且位于靶材02的下方设置有用于承载晶圆04的基座03。基座03通过匹配器06与射频电源05电连接,射频电源05用于向基座03加载负偏压,通过改变射频电源05输出的射频功率的大小, 可以调节基座03的偏压大小,从而控制沉积速率和薄膜应力等参数。
但是,由于上述射频电源05只能向基座03加载负偏压,在某些工艺中可能会损伤晶圆,从而导致晶圆正向电压(Voltage Forward,VF)值过高,造成工艺结果不合格。而且,该PVD设备的工艺窗口较小,无法满足不同工艺需求。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种基座偏压调节装置和方法、半导体工艺设备,其可以满足不同工艺需求,从而扩大了工艺窗口。
为实现本发明的目的而提供一种基座偏压调节装置,包括正偏压调节单元、负偏压调节单元和抗干扰单元,其中,
所述正偏压调节单元的第一端接地,所述正偏压调节单元的第二端与基座电连接,用于调节所述基座的偏压,且能够使所述基座产生正偏压;
所述负偏压调节单元的第一端接地,所述负偏压调节单元的第二端通过所述抗干扰单元与所述基座电连接,用于调节所述基座的偏压,且能够使所述基座产生负偏压;
所述抗干扰单元连接在所述负偏压调节单元与所述基座之间的电路上,用于抑制所述正偏压调节单元与所述基座之间的电路中的电流流入所述负偏压调节单元与所述基座之间的电路中,以实现所述正偏压调节单元和所述负偏压调节单元在工艺过程中同时使用。
可选的,所述正偏压调节单元包括阻抗可变电路,所述阻抗可变电路的一端与所述基座电连接,所述阻抗可变电路的另一端接地,所述阻抗可变电路用于通过调节所述阻抗可变电路的阻抗大小,来调节所述基座的偏压大小。
可选的,所述阻抗可变电路包括至少一个第一可变电容;或者至少一个可变电感;或者电性连接的至少一个第一可变电容和至少一个可变电感,所 述至少一个第一可变电容和至少一个可变电感采用的电性连接方式包括并联、串联或者混联。
可选的,所述抗干扰单元包括带阻滤波器或者数字滤波器。
可选的,所述负偏压调节单元包括射频电源和连接在所述射频电源和所述基座之间的匹配电路。
可选的,所述匹配电路包括第一支路和第二支路,其中,所述第一支路的一端与所述射频电源的输出端电连接,所述第一支路的另一端接地,且在所述第一支路上设置有第二可变电容;
所述第二支路的两端分别与所述射频电源的输出端和所述基座电连接,且在所述第二支路上设置有第三可变电容;所述抗干扰单元连接在所述第二支路上。
可选的,所述匹配电路包括第一支路、第二支路、第三支路和第四支路,其中,所述第一支路的一端与所述射频电源的输出端电连接,所述第一支路的另一端接地,且在所述第一支路上设置有第二可变电容;
所述第二支路的两端分别与所述射频电源的输出端和所述第四支路的一端电连接,且在所述第二支路上设置有固定电容;
所述第三支路的一端与所述第四支路的一端电连接,所述第三支路的另一端接地,且在所述第三支路上设置有第三可变电容;
所述第四支路的另一端通过所述抗干扰单元与所述基座电连接。
可选的,所述基座偏压调节装置还包括参数获取单元和控制单元,其中,所述参数获取单元用于实时获取所述正偏压调节单元的与阻抗相关的当前参数值,并将其发送至所述控制单元;
所述控制单元用于根据所述当前参数值和预设的参数设定值,控制所述正偏压调节单元调节所述基座的偏压,直至所述当前参数值等于所述参数设定值。
可选的,所述参数获取单元包括电压检测元件,所述电压检测元件用于实时检测所述基座的当前偏压值,并将其发送至所述控制单元;
所述控制单元用于根据所述当前偏压值和预设的偏压设定值,控制所述正偏压调节单元调节所述基座的偏压,直至所述当前偏压值等于所述偏压设定值。
可选的,所述参数获取单元包括阻抗检测元件,所述阻抗检测元件用于实时检测所述正偏压调节单元的输入电压值和输入电流值,并将其发送至所述控制单元;
所述控制单元用于根据所述输入电压值和输入电流值计算获得输入阻抗值,并根据所述输入阻抗值和预设的阻抗设定值,控制所述正偏压调节单元调节所述基座的偏压,直至所述输入阻抗值等于所述阻抗设定值。
作为另一个技术方案,本发明还提供一种半导体工艺设备,包括反应腔室,在所述反应腔室内设置有基座,且在所述反应腔室的顶部设置有靶材,所述半导体工艺设备还包括本发明提供的上述基座偏压调节装置,所述基座偏压调节装置与所述基座电连接,用以调节所述基座的偏压。
作为另一个技术方案,本发明还提供一种基座偏压调节方法,应用于本发明提供的上述基座偏压调节装置,所述基座偏压调节方法包括以下步骤:
S1、在进行工艺的过程中,实时获取所述正偏压调节单元的与阻抗相关的当前参数值;
S2、判断所述当前参数值是否等于预设的参数设定值,若是,则返回所述步骤S1;若否,则进行步骤S3;
S3、控制所述正偏压调节单元调节所述基座的偏压,直至所述当前偏压值等于所述参数设定值之后,返回所述步骤S1。
可选的,所述正偏压调节单元包括阻抗可变电路,所述阻抗可变电路的一端与所述基座电连接,所述阻抗可变电路的另一端接地,所述阻抗可变电 路用于通过调节所述阻抗可变电路的阻抗大小,来调节所述基座的偏压大小;所述阻抗可变电路均包括至少一个第一可变电容,或者至少一个可变电感,或者电性连接的至少一个第一可变电容和至少一个可变电感;
所述步骤S3具体包括:
S31、驱动所述第一可变电容的动片沿第一方向转动一个单位变化量;
S32、判断所述当前参数值是否等于所述参数设定值,若是,则返回所述步骤S1;若否,则进行步骤S33;
S33、判断所述第一可变电容的动片的当前位置与初始位置之间的距离是否超过预设阈值,若是,则进行步骤S34;若否,则返回所述步骤S31;
S34、驱动所述第一可变电容的动片沿第二方向转动一个所述单位变化量;所述第二方向与所述第一方向相反;
S35、判断所述当前参数值是否等于所述参数设定值,若是,则返回所述步骤S1;若否,则进行步骤S36;
S36、判断所述第一可变电容的动片的当前位置与所述初始位置之间的距离是否超过所述预设阈值,若是,则进行步骤S37;若否,则返回所述步骤S34;
S37、发出报警信号,并停止工艺。
本发明具有以下有益效果:
本发明提供的基座偏压调节装置和方法、半导体工艺设备的技术方案中,正偏压调节单元的第二端与基座电连接,负偏压调节单元的第二端通过抗干扰单元与基座电连接,通过借助该抗干扰单元抑制正偏压调节单元与基座之间的电路中的电流流入负偏压调节单元与基座之间的电路中,可以使正偏压调节单元和负偏压调节单元始终同时与基座保持电导通状态,同时保证正偏压调节单元对基座的偏压调节不会受到负偏压调节单元的影响,即实现正偏压调节单元和负偏压调节单元在工艺过程中的同时使用,并且避免二者 之间的相互干扰;同时,由于正偏压调节单元能够使基座产生正偏压,而负偏压调节单元能够使基座产生负偏压,二者同时使用可以使基座偏压的调节范围更大,从而扩大了工艺窗口,以满足更多不同的工艺需求
附图说明
图1为现有的一种PVD设备的结构图;
图2为本发明第一实施例提供的基座偏压调节装置的原理框图;
图3为本发明第一实施例提供的基座偏压调节装置的等效电路图;
图4A为表示未设置正偏压调节单元时匹配电路进行阻抗匹配的匹配范围的史密斯圆图;
图4B为表示设置正偏压调节单元时匹配电路进行阻抗匹配的匹配范围的史密斯圆图;
图5为本发明第二实施例提供的基座偏压调节装置的等效电路图;
图6为本发明第三实施例提供的基座偏压调节装置的等效电路图;
图7为本发明第四实施例提供的基座偏压调节装置的等效电路图;
图8为本发明第五实施例提供的基座偏压调节方法的流程框图;
图9为本发明第五实施例采用的步骤S3的流程框图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明提供的基座偏压调节装置和方法、半导体工艺设备进行详细描述。
第一实施例
请参阅图2,本发明第一实施例提供的基座偏压调节装置,其包括正偏压调节单元2、负偏压调节单元3和抗干扰单元4,其中,正偏压调节单元2的第一端接地,第二端与基座1直接连接,所谓直接连接,是指正偏压调节单元2与基座1之间只设置有能够使二者电导通的导线,而没有在二者之间 设置开关器件或者其他器件,这样,在进行工艺时,正偏压调节单元2与基座1直接是电导通的。正偏压调节单元2用于调节基座1的偏压,且能够使基座1产生正偏压;负偏压调节单元3的第一端接地,第二端通过抗干扰单元4与基座1连接,用于调节基座1的偏压,并能够使基座1产生负偏压。抗干扰单元4连接在负偏压调节单元3与基座1之间的电路上,用于抑制正偏压调节单元2与基座1之间的电路中的电流流入负偏压调节单元3与基座1之间的电路中。也就是说,在进行工艺时,正偏压调节单元2和负偏压调节单元3各自与基座1之间的电路直接是电导通的,正偏压调节单元2和负偏压调节单元3能够同时对基座1进行偏压调节,与此同时,借助抗干扰单元4,可以保证正偏压调节单元2与基座1之间的电路中的电流不会流入负偏压调节单元3与基座1之间的电路中。
具体来说,如图2所示,负偏压调节单元3与基座1之间的电路与正偏压调节单元2与基座1之间的电路相互并联,来自基座1的电流会分流至两个电路中,导致通过正偏压调节单元2对基座1的偏压调节受到影响,例如无法准确地调节至期望的偏压值。在这种情况下,通过将抗干扰单元4连接在负偏压调节单元3与基座1之间的电路上,抑制正偏压调节单元2与基座1之间的电路中的电流流入负偏压调节单元3与基座1之间的电路中,可以避免来自基座1的电流分流,从而可以使通过正偏压调节单元2对基座1的偏压调节不会受到负偏压调节单元3的影响,从而可以实现正偏压调节单元2和负偏压调节单元3在工艺过程中的同时使用,二者同时使用可以使基座偏压的调节范围更大,从而扩大了工艺窗口,以满足更多不同的工艺需求。
需要说明的是,若同时使用正偏压调节单元2和负偏压调节单元3,则基座1上的偏压值为预设的正偏压设定值和负偏压设定值之和,若正偏压设定值大于负偏压设定值,则调节后的基座1上的偏压为正偏压;若正偏压设定值小于负偏压设定值,则调节后的基座1上的偏压为负偏压。另外,若单 独使用正偏压调节单元,则调节后的基座上的偏压为正偏压;若单独使用负偏压调节单元,则调节后的基座上的偏压为负偏压。在实际应用中,可以根据具体需要选择是单独使用正偏压调节单元或负偏压调节单元,还是同时使用正偏压调节单元和负偏压调节单元,以及选择基座上的偏压是正偏压还是负偏压,并选择相应的正偏压设定值和/或负偏压设定值。需要说明的是,上述单独使用是指单独调节基座1上的偏压,但是正偏压调节单元2和负偏压调节单元3均与基座1始终保持电导通状态。
还需要说明的是,所谓单独使用正偏压调节单元或负偏压调节单元,是指单独利用正偏压调节单元或负偏压调节单元基座上的偏压,但是正偏压调节单元2和负偏压调节单元3各自与基座1之间的电路均始终是导通的。
通过调节基座1上的偏压,可以在沉积薄膜时,改变晶圆表面的粒子能量和等离子体鞘层厚度,从而可以改善薄膜的应力和密度。同时,在基座1上产生负偏压时,等离子体中的金属原子轰击晶圆的能量较大,从而沉积速率较快,但是在某些工艺中可能会损伤晶圆,从而导致晶圆VF值过高。在基座1上产生正偏压时,等离子体中的金属原子轰击晶圆的能量较小,但是沉积速率较慢。由此,可以根据不同工艺需求,选择使基座产生负偏压或者正偏压,从而扩大了工艺窗口。
在一些可选的实施例中,上述抗干扰单元4可以为带阻滤波器或者数字滤波器等等,以带阻滤波器为例,其例如包括并联的固定电容和固定电感,通过将该带阻滤波器连接在负偏压调节单元3与基座1之间的电路上,可以在保证负偏压调节单元3输出的功率能够正常加载至基座1上的前提下,使该电路上的阻抗无穷大,从而可以抑制正偏压调节单元2与基座1之间的电路中的电流流入负偏压调节单元3与基座1之间的电路中。当然,在实际应用中,抗干扰单元4还可以采用其他任意结构,只要能够抑制正偏压调节单元2与基座1之间的电路中的电流流入负偏压调节单元3与基座1之间的电 路中即可。
在一些可选的实施例中,正偏压调节单元2包括阻抗可变电路21,该阻抗可变电路21的一端与基座1电连接,阻抗可变电路21的另一端接地,阻抗可变电路21用于通过调节该阻抗可变电路21的阻抗大小,以调节基座1的偏压大小。
阻抗可变电路21可以包括至少一个第一可变电容,或者至少一个可变电感,或者电性连接的至少一个第一可变电容和至少一个可变电感。例如,如图3所示,阻抗可变电路21包括第一可变电容211,通过调节该第一可变电容211的电容值,可以调节该阻抗可变电路21的阻抗,从而实现基座1的偏压的调节。
另外,根据不同的工艺条件以及工艺需求,可以在阻抗可变电路21中设置相应的固定电容和/或固定电感,例如,如图3所示,在阻抗可变电路21中还设置有和第一可变电容211串联的固定电感212,二者会产生串联谐振,这可以起到调节基座1的谐振频率的作用,使之不会接近系统的谐振频率,从而可以避免产生谐振。
在一些可选的实施例中,负偏压调节单元3包括匹配电路31和射频电源32;通过调节射频电源32的功率大小,可以调节基座1的偏压大小。射频电源32的频率可以是13MHz或者2MHz。
匹配电路31用于使阻抗匹配网络(由射频电源31与基座1之间的诸如电容、电感等的无源器件构成)的输入阻抗和射频电源32的输出阻抗共轭匹配,从而减小负载端(基座1)的功率反射,使基座1上获得最大的功率,即实现阻抗匹配。
上述阻抗匹配网络例如采用L型的阻抗匹配网络,在这种情况下,如图3所示,匹配电路31包括第一支路311和第二支路312,其中,第一支路311的一端与射频电源32的输出端电连接,第一支路311的另一端接地,且在第 一支路311上设置有第二可变电容313;第二支路312的两端分别与射频电源32的输出端和基座1电连接,且在第二支路312上设置有第三可变电容314。通过调节第二可变电容313和第三可变电容314各自的电容值,可以使调节后的阻抗匹配网络的输入阻抗和射频电源32的输出阻抗共轭匹配,从而实现阻抗匹配。
如图3所示,上述抗干扰单元4连接在第二支路312上,例如可以设置在第三可变电容314的输入端一侧。以上述抗干扰单元4为包含并联的固定电容和固定电感的带阻滤波器为例,其会使第二支路312上的阻抗无穷大,从而可以使来自基座1的电流只流入阻抗可变电路21,而不会流入第二支路312。
图4A为表示未设置正偏压调节单元时匹配电路进行阻抗匹配的匹配范围的史密斯圆图。图4B为表示设置正偏压调节单元时匹配电路进行阻抗匹配的匹配范围的史密斯圆图。其中,以采用13MHz的匹配电路进行阻抗匹配为例,图4A中由点列围成的范围A表示未设置正偏压调节单元时,匹配电路进行阻抗匹配的匹配范围,图4B中由两列点列围成的两个范围B表示设置正偏压调节单元时匹配电路进行阻抗匹配的匹配范围,其中,两个范围B分别对应第一可变电容211的电容范围的上限值和下限值。对比图4A和图4B可知,范围A和两个范围B的重合面积较大,由此可知,设置正偏压调节单元对匹配电路的匹配范围的影响可以忽略不计,因此,可以允许正偏压调节单元2和负偏压调节单元3在工艺过程中同时使用,进而可以扩大基座偏压的调节范围,以满足不同工艺需求。
需要说明的是,在本实施例中,上述阻抗匹配网络采用L型的阻抗匹配网络,但是,本发明并不局限于此,在实际应用中,上述阻抗匹配网络可以采用其他任意类型,本发明对此没有特别的限制。
第二实施例
请参阅图5,本发明第二实施例提供的基座偏压调节装置,其是在上述第一实施例的基础上,对基座偏压调节装置进行的改进。具体地,在上述第一实施例的基础上,基座偏压调节装置还包括参数获取单元和控制单元53,其中,参数获取单元用于实时获取正偏压调节单元2的与阻抗相关的当前参数值,并将其发送至控制单元53。上述与阻抗相关的当前参数值例如为基座1的当前偏压值或者正偏压调节单元2的输入电压值和输入电流值(来自基座1)等等。控制单元53用于根据上述当前参数值和预设的参数设定值,控制正偏压调节单元2调节基座1的偏压,直至当前参数值等于参数设定值。由此,可以实现基座偏压调节的自动控制。
上述参数设定值可以预先在工艺配方中进行设定。并且,若当前参数值为基座1的当前偏压值,则参数设定值为偏压设定值;若当前参数值为正偏压调节单元2的输入电压值和输入电流值,则参数设定值为阻抗设定值。
需要说明的是,若需要负偏压调节单元3与正偏压调节单元2在工艺过程中同时使用,则射频电源32输出的功率值也可以预先在工艺配方中进行设定,而且在工艺过程中也可以调节射频电源32输出的功率值,也就是说,在工艺过程中,负偏压调节单元3与正偏压调节单元2均可以对基座1的偏压进行调节,只要最终基座1上的偏压能够达到满足工艺需求的目标偏压值即可。
在一些可选的实施例中,如图5所示,上述参数获取单元包括电压检测元件51,该电压检测元件51用于实时检测基座1的当前偏压值,并将其发送至控制单元53;控制单元53用于根据该当前偏压值和预设的偏压设定值,控制正偏压调节单元2调节基座1的偏压,直至当前偏压值等于上述偏压设定值。通过上述电压检测元件51实时检测基座1的当前偏压值,可以在进行工艺的过程中实时调节基座偏压,从而既可以使其满足工艺需求,又可以保证不同的工艺腔室之间的工艺一致性。
具体地,对于图5中示出的偏压调节单元2的具体结构,上述控制单元53可以通过电机52驱动第一可变电容211的动片转动,来调节第一可变电容211的电容值,从而可以改变阻抗可变电路21中的电流,进而可以实现对基座1的偏压的调节。当然,根据不同的偏压调节单元2的结构,可以适应性地调整控制单元53的控制方式。
需要说明的是,上述匹配电路31进行阻抗匹配的过程属于公知技术,例如,如图5所示,利用检测装置实时检测匹配电路31输入端的电压值和电流值,并利用匹配电路控制单元35根据检测到的电压值和电流值,利用两个电机(341,342)分别驱动第二可变电容313和第三可变电容314的动片转动,来调节二者的电容值,从而进行阻抗匹配。
第三实施例
请参阅图6,本发明第三实施例提供的基座偏压调节装置,其与上述第一、第二实施例相比,其区别在于:阻抗可变电路21’与上述第一、第二实施例中的阻抗可变电路21不同。
具体地,阻抗可变电路21’同样包括第一可变电容211,通过调节该第一可变电容211的电容值,可以调节该阻抗可变电路21的阻抗,从而实现基座1的偏压的调节。在此基础上,根据不同的工艺条件以及工艺需求,可以在阻抗可变电路21中设置相应的固定电容和/或固定电感,例如,如图6所示,在阻抗可变电路21’中还设置有和第一可变电容211并联的固定电感212,二者会产生并联谐振,这同样可以起到调节基座1的谐振频率的作用。
在一些可选的实施例中,如图6所示,阻抗匹配网络例如采用π型的阻抗匹配网络,在这种情况下,匹配电路31’包括第一支路311、第二支路312、第三支路313和第四支路314,其中,第一支路311的一端与射频电源32的输出端电连接,第一支路311的另一端接地,且在第一支路311上设置有第二可变电容315;第二支路312的两端分别与射频电源32的输出端和第四支 路314的一端电连接,且在第二支路312上设置有固定电容316;第三支路313的一端与第四支路314的一端电连接,第三支路313的另一端接地,且在第三支路313上设置有第三可变电容317;第四支路314的另一端通过抗干扰单元4与基座1电连接。通过调节第二可变电容315和第三可变电容317各自的电容值,可以使调节后的阻抗匹配网络的输入阻抗和射频电源32的输出阻抗共轭匹配,从而实现阻抗匹配。
如图6所示,抗干扰单元4连接在第四支路314上,以上述抗干扰单元4为包含并联的固定电容和固定电感的带阻滤波器为例,其会使第四支路314上的阻抗无穷大,从而可以使来自基座1的电流只流入阻抗可变电路21’,而不会流入在第四支路314。
需要说明的是,在本实施例中,上述阻抗匹配网络采用π型的阻抗匹配网络,但是,本发明并不局限于此,在实际应用中,上述阻抗匹配网络可以采用其他任意类型,例如图4中示出的L型的阻抗匹配网络。
第四实施例
请参阅图7,本发明第四实施例提供的基座偏压调节装置,其与上述第二实施例相类似的,同样包括参数获取单元和控制单元53,而区别在于,本实施例中的参数获取单元包括阻抗检测元件54,该阻抗检测元件54用于实时检测正偏压调节单元2的输入电压值和输入电流值,并将其发送至控制单元53;控制单元53用于根据上述输入电压值和输入电流值计算获得输入阻抗值,并根据该输入阻抗值和预设的阻抗设定值,控制正偏压调节单元2调节基座1的偏压,直至上述输入阻抗值等于阻抗设定值。由此,可以实现基座偏压调节的自动控制。
具体地,对于图7中示出的偏压调节单元2的具体结构,上述控制单元53可以通过电机52驱动第一可变电容211的动片转动,来调节第一可变电容211的电容值,从而可以改变阻抗可变电路21中的电流,进而可以实现对 基座1的偏压的调节。
需要说明的是,图7中示出的阻抗检测元件54也可以应用于图5示出的基座偏压调节装置中,并替换电压检测元件51。当然,电压检测元件51也可以应用于图7示出的基座偏压调节装置中,并替换阻抗检测元件54。
作为另一个技术方案,本发明实施例还提供一种半导体工艺设备,包括反应腔室,在该反应腔室内设置有基座,且在反应腔室的顶部设置有靶材。并且,该半导体工艺设备还包括基座偏压调节装置,该基座偏压调节装置与基座电连接,用以调节基座的偏压。该基座偏压调节装置采用了本发明上述各个实施例提供的基座偏压调节装置。
本发明实施例提供的半导体工艺设备,通过采用本发明上述各个实施例提供的基座偏压调节装置,可以使正偏压调节单元和负偏压调节单元始终同时与基座保持电导通状态,同时保证正偏压调节单元对基座的偏压调节不会受到负偏压调节单元的影响,即实现正偏压调节单元和负偏压调节单元在工艺过程中的同时使用,并且避免二者之间的相互干扰;同时,由于正偏压调节单元能够使基座产生正偏压,而负偏压调节单元能够使基座产生负偏压,二者同时使用可以使基座偏压的调节范围更大,从而扩大了工艺窗口,以满足更多不同的工艺需求。
第五实施例
作为另一个技术方案,本发明第五实施例还提供一种基座偏压调节方法,应用于本发明上述第二实施例或者第四实施例提供的基座偏压调节装置,如图8所示,以应用于图5或图7示出的基座偏压调节装置为例,该基座偏压调节方法包括以下步骤:
S1、在进行工艺的过程中,实时获取正偏压调节单元2的与阻抗相关的当前参数值;
上述与阻抗相关的当前参数值例如为基座1的当前偏压值或者正偏压调 节单元2的输入电压值和输入电流值等等。
S2、判断上述当前参数值是否等于预设的参数设定值,若是,则返回上述步骤S1;若否,则进行步骤S3;
上述参数设定值可以预先在工艺配方中进行设定。并且,若当前参数值为基座1的当前偏压值,则参数设定值为偏压设定值;若当前参数值为正偏压调节单元2的输入电压值和输入电流值,则参数设定值为阻抗设定值。
S3、控制正偏压调节单元2调节基座1的偏压,直至当前偏压值等于上述参数设定值之后,返回上述步骤S1。
在一些可选的实施例中,如图5所示,以参数获取单元包括电压检测元件51为例,上述步骤S1中,通过该电压检测元件51实时检测基座1的当前偏压值;上述步骤S2中,判断该当前偏压值是否等于预设的偏压设定值,若是,则返回上述步骤S1;若否,则进行步骤S3;上述步骤S3中,根据该当前偏压值和预设的偏压设定值,控制正偏压调节单元2调节基座1的偏压,直至当前偏压值等于上述偏压设定值。
在上述步骤S3中,可以通过计算当前偏压值和预设的偏压设定值的差值,并根据该差值控制正偏压调节单元2调节基座1的偏压,直至当前偏压值等于上述偏压设定值。
在一些可选的实施例中,如图7所示,以参数获取单元包括阻抗检测元件54为例,上述步骤S1中,通过该阻抗检测元件54实时检测正偏压调节单元2的输入电压值和输入电流值;上述步骤S2中,根据上述输入电压值和输入电流值计算获得输入阻抗值计算获得当前阻抗值,并判断该当前阻抗值是否等于预设的阻抗设定值,若是,则返回上述步骤S1;若否,则进行步骤S3;上述步骤S3中,根据该当前阻抗值和预设的阻抗设定值,控制正偏压调节单元2调节基座1的偏压,直至当前阻抗值等于上述偏压阻抗值。
在上述步骤S3中,可以通过计算当前阻抗值和预设的阻抗设定值的差 值,并根据该差值控制正偏压调节单元2调节基座1的偏压,直至当前阻抗值等于上述偏压阻抗值。
通过上述步骤S1中实时检测基座1的当前偏压值或者当前阻抗值,可以在进行工艺的过程中实时调节基座偏压,从而既可以使其满足工艺需求,又可以保证不同的工艺腔室之间的工艺一致性。
本实施例提供的基座偏压调节方法,可以实现基座偏压调节的自动控制。
在一些可选的实施例中,结合图5、图7和图9所示,上述步骤S3具体包括:
S31、驱动第一可变电容211的动片沿第一方向转动一个单位变化量;
上述单位变化量为第一可变电容211的动片每次转动的角度,即,角度变化量。
在一些可选的实施例中,如图5所示,可以通过电机52驱动第一可变电容211的动片转动,来调节第一可变电容211的电容值。
S32、判断当前参数值是否等于上述参数设定值,若是,则返回上述步骤S1;若否,则进行步骤S33;
在一些可选的实施例中,若参数获取单元包括图5所示的电压检测元件51,则上述当前参数值为当前偏压值,上述参数设定值为偏压设定值。若参数获取单元包括图7所示的阻抗检测元件54,则上述当前参数值为当前阻抗值,上述参数设定值为阻抗设定值。
S33、判断上述第一可变电容211的动片的当前位置与初始位置之间的距离(例如角度变化量)是否超过预设阈值,若是,则进行步骤S34;若否,则返回上述步骤S31;
在一些可选的实施例中,上述预设阈值例如为与上述第一可变电容211的动片的初始位置对应的角度值的5%。
S34、驱动第一可变电容211的动片沿第二方向转动一个上述单位变化量;该第二方向与第一方向相反;
S35、判断上述当前参数值是否等于参数设定值,若是,则返回步骤S1;若否,则进行步骤S36;
S36、判断第一可变电容211的动片的当前位置与初始位置之间的距离是否超过上述预设阈值,若是,则进行步骤S37;若否,则返回步骤S34;
S37、发出报警信号,并停止工艺。
综上所述,本发明提供的基座偏压调节装置和方法、半导体工艺设备的技术方案中,正偏压调节单元的第二端与基座电连接,负偏压调节单元的第二端通过抗干扰单元与基座电连接,通过借助该抗干扰单元抑制正偏压调节单元与基座之间的电路中的电流流入负偏压调节单元与基座之间的电路中,可以使正偏压调节单元和负偏压调节单元始终同时与基座保持电导通状态,同时保证正偏压调节单元对基座的偏压调节不会受到负偏压调节单元的影响,即实现正偏压调节单元和负偏压调节单元在工艺过程中的同时使用,并且避免二者之间的相互干扰;同时,由于正偏压调节单元能够使基座产生正偏压,而负偏压调节单元能够使基座产生负偏压,二者同时使用可以使基座偏压的调节范围更大,从而扩大了工艺窗口,以满足更多不同的工艺需求。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种基座偏压调节装置,其特征在于,包括正偏压调节单元、负偏压调节单元和抗干扰单元,其中,
    所述正偏压调节单元的第一端接地,所述正偏压调节单元的第二端与基座电连接,用于调节所述基座的偏压,且能够使所述基座产生正偏压;
    所述负偏压调节单元的第一端接地,所述负偏压调节单元的第二端通过所述抗干扰单元与所述基座电连接,用于调节所述基座的偏压,且能够使所述基座产生负偏压;
    所述抗干扰单元连接在所述负偏压调节单元与所述基座之间的电路上,用于抑制所述正偏压调节单元与所述基座之间的电路中的电流流入所述负偏压调节单元与所述基座之间的电路中,以实现所述正偏压调节单元和所述负偏压调节单元在工艺过程中同时使用。
  2. 根据权利要求1所述的基座偏压调节装置,其特征在于,所述正偏压调节单元包括阻抗可变电路,所述阻抗可变电路的一端与所述基座电连接,所述阻抗可变电路的另一端接地,所述阻抗可变电路用于通过调节所述阻抗可变电路的阻抗大小,来调节所述基座的偏压大小。
  3. 根据权利要求2所述的基座偏压调节装置,其特征在于,所述阻抗可变电路包括至少一个第一可变电容;或者至少一个可变电感;或者电性连接的至少一个第一可变电容和至少一个可变电感,所述至少一个第一可变电容和至少一个可变电感采用的电性连接方式包括并联、串联或者混联。
  4. 根据权利要求1-3任意一项所述的基座偏压调节装置,其特征在于,所述抗干扰单元包括带阻滤波器或者数字滤波器。
  5. 根据权利要求1-3任意一项所述的基座偏压调节装置,其特征在于,所述负偏压调节单元包括射频电源和连接在所述射频电源和所述基座之间的匹配电路。
  6. 根据权利要求5所述的基座偏压调节装置,其特征在于,所述匹配电路包括第一支路和第二支路,其中,所述第一支路的一端与所述射频电源的输出端电连接,所述第一支路的另一端接地,且在所述第一支路上设置有第二可变电容;
    所述第二支路的两端分别与所述射频电源的输出端和所述基座电连接,且在所述第二支路上设置有第三可变电容;所述抗干扰单元连接在所述第二支路上。
  7. 根据权利要求5所述的基座偏压调节装置,其特征在于,所述匹配电路包括第一支路、第二支路、第三支路和第四支路,其中,所述第一支路的一端与所述射频电源的输出端电连接,所述第一支路的另一端接地,且在所述第一支路上设置有第二可变电容;
    所述第二支路的两端分别与所述射频电源的输出端和所述第四支路的一端电连接,且在所述第二支路上设置有固定电容;
    所述第三支路的一端与所述第四支路的一端电连接,所述第三支路的另一端接地,且在所述第三支路上设置有第三可变电容;
    所述第四支路的另一端通过所述抗干扰单元与所述基座电连接。
  8. 根据权利要求1-3任意一项所述的基座偏压调节装置,其特征在于,所述基座偏压调节装置还包括参数获取单元和控制单元,其中,所述参数获取单元用于实时获取所述正偏压调节单元的与阻抗相关的当前参数值,并将其发送至所述控制单元;
    所述控制单元用于根据所述当前参数值和预设的参数设定值,控制所述 正偏压调节单元调节所述基座的偏压,直至所述当前参数值等于所述参数设定值。
  9. 根据权利要求8所述的基座偏压调节装置,其特征在于,所述参数获取单元包括电压检测元件,所述电压检测元件用于实时检测所述基座的当前偏压值,并将其发送至所述控制单元;
    所述控制单元用于根据所述当前偏压值和预设的偏压设定值,控制所述正偏压调节单元调节所述基座的偏压,直至所述当前偏压值等于所述偏压设定值。
  10. 根据权利要求8所述的基座偏压调节装置,其特征在于,所述参数获取单元包括阻抗检测元件,所述阻抗检测元件用于实时检测所述正偏压调节单元的输入电压值和输入电流值,并将其发送至所述控制单元;
    所述控制单元用于根据所述输入电压值和输入电流值计算获得输入阻抗值,并根据所述输入阻抗值和预设的阻抗设定值,控制所述正偏压调节单元调节所述基座的偏压,直至所述输入阻抗值等于所述阻抗设定值。
  11. 一种半导体工艺设备,包括反应腔室,在所述反应腔室内设置有基座,且在所述反应腔室的顶部设置有靶材,其特征在于,所述半导体工艺设备还包括权利要求1-10任意一项所述的基座偏压调节装置,所述基座偏压调节装置与所述基座电连接,用以调节所述基座的偏压。
  12. 一种基座偏压调节方法,其特征在于,应用于权利要求8-10任意一项所述的基座偏压调节装置,所述基座偏压调节方法包括以下步骤:
    S1、在进行工艺的过程中,实时获取所述正偏压调节单元的与阻抗相关的当前参数值;
    S2、判断所述当前参数值是否等于预设的参数设定值,若是,则返回所 述步骤S1;若否,则进行步骤S3;
    S3、控制所述正偏压调节单元调节所述基座的偏压,直至所述当前偏压值等于所述参数设定值之后,返回所述步骤S1。
  13. 根据权利要求12所述的基座偏压调节方法,其特征在于,所述正偏压调节单元包括阻抗可变电路,所述阻抗可变电路的一端与所述基座电连接,所述阻抗可变电路的另一端接地,所述阻抗可变电路用于通过调节所述阻抗可变电路的阻抗大小,来调节所述基座的偏压大小;所述阻抗可变电路均包括至少一个第一可变电容,或者至少一个可变电感,或者电性连接的至少一个第一可变电容和至少一个可变电感;
    所述步骤S3具体包括:
    S31、驱动所述第一可变电容的动片沿第一方向转动一个单位变化量;
    S32、判断所述当前参数值是否等于所述参数设定值,若是,则返回所述步骤S1;若否,则进行步骤S33;
    S33、判断所述第一可变电容的动片的当前位置与初始位置之间的距离是否超过预设阈值,若是,则进行步骤S34;若否,则返回所述步骤S31;
    S34、驱动所述第一可变电容的动片沿第二方向转动一个所述单位变化量;所述第二方向与所述第一方向相反;
    S35、判断所述当前参数值是否等于所述参数设定值,若是,则返回所述步骤S1;若否,则进行步骤S36;
    S36、判断所述第一可变电容的动片的当前位置与所述初始位置之间的距离是否超过所述预设阈值,若是,则进行步骤S37;若否,则返回所述步骤S34;
    S37、发出报警信号,并停止工艺。
PCT/CN2022/106654 2021-07-27 2022-07-20 基座偏压调节装置和方法、半导体工艺设备 WO2023005755A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237040641A KR20240001211A (ko) 2021-07-27 2022-07-20 베이스 바이어스 전압 조절 장치 및 방법, 반도체 공정 디바이스
EP22848360.8A EP4379088A1 (en) 2021-07-27 2022-07-20 Susceptor bias adjustment apparatus and method, and semiconductor process device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110849800.0A CN113604788B (zh) 2021-07-27 2021-07-27 基座偏压调节装置和方法、半导体工艺设备
CN202110849800.0 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023005755A1 true WO2023005755A1 (zh) 2023-02-02

Family

ID=78338424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106654 WO2023005755A1 (zh) 2021-07-27 2022-07-20 基座偏压调节装置和方法、半导体工艺设备

Country Status (5)

Country Link
EP (1) EP4379088A1 (zh)
KR (1) KR20240001211A (zh)
CN (1) CN113604788B (zh)
TW (1) TW202306436A (zh)
WO (1) WO2023005755A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604788B (zh) * 2021-07-27 2022-10-21 北京北方华创微电子装备有限公司 基座偏压调节装置和方法、半导体工艺设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083397A (zh) * 2007-05-29 2007-12-05 东南大学 一种串并联隔离无源电力滤波器
JP2015133291A (ja) * 2014-01-15 2015-07-23 株式会社ダイヘン インピーダンス整合装置
CN107230981A (zh) * 2017-07-07 2017-10-03 华中科技大学 一种含谐波吸收器的串联混合型有源滤波器
CN109797371A (zh) * 2017-11-17 2019-05-24 北京北方华创微电子装备有限公司 基座偏压调节装置、半导体加工设备及薄膜制作方法
CN113604788A (zh) * 2021-07-27 2021-11-05 北京北方华创微电子装备有限公司 基座偏压调节装置和方法、半导体工艺设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203912292U (zh) * 2014-06-26 2014-10-29 京东方光科技有限公司 一种分段式调光电路及可调光照明设备
CN106702335B (zh) * 2015-11-13 2019-08-23 北京北方华创微电子装备有限公司 下电极及半导体加工设备
CN107180737B (zh) * 2016-03-11 2019-10-08 北京北方华创微电子装备有限公司 用于实现阻抗匹配和功率分配的装置及半导体加工设备
CN109119317B (zh) * 2017-06-23 2020-11-10 北京北方华创微电子装备有限公司 一种偏压调制方法、偏压调制系统和等离子体处理设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083397A (zh) * 2007-05-29 2007-12-05 东南大学 一种串并联隔离无源电力滤波器
JP2015133291A (ja) * 2014-01-15 2015-07-23 株式会社ダイヘン インピーダンス整合装置
CN107230981A (zh) * 2017-07-07 2017-10-03 华中科技大学 一种含谐波吸收器的串联混合型有源滤波器
CN109797371A (zh) * 2017-11-17 2019-05-24 北京北方华创微电子装备有限公司 基座偏压调节装置、半导体加工设备及薄膜制作方法
CN113604788A (zh) * 2021-07-27 2021-11-05 北京北方华创微电子装备有限公司 基座偏压调节装置和方法、半导体工艺设备

Also Published As

Publication number Publication date
TW202306436A (zh) 2023-02-01
EP4379088A1 (en) 2024-06-05
KR20240001211A (ko) 2024-01-03
CN113604788B (zh) 2022-10-21
CN113604788A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN105826154B (zh) 针对脉冲射频电源的阻抗匹配方法及装置
CN108028165B (zh) 用于处理基板的射频功率传输调节
US9053908B2 (en) Method and apparatus for controlling substrate DC-bias and ion energy and angular distribution during substrate etching
TWI614807B (zh) 電漿處理裝置
US8491759B2 (en) RF impedance matching network with secondary frequency and sub-harmonic variant
US10264662B2 (en) Plasma processing apparatus
US8431035B2 (en) Plasma processing apparatus and method
US20080317965A1 (en) Plasma processing apparatus and method
JP4714166B2 (ja) 基板のプラズマ処理装置及びプラズマ処理方法
US8450635B2 (en) Method and apparatus for inducing DC voltage on wafer-facing electrode
WO2023005755A1 (zh) 基座偏压调节装置和方法、半导体工艺设备
TWI603370B (zh) Device for realizing impedance matching and power distribution and semiconductor processing device
WO2022078336A1 (zh) 阻抗匹配方法、阻抗匹配器和半导体工艺设备
JP3236216B2 (ja) 半導体ウェーハ製造用プラズマ処理装置
CN108878240B (zh) 阻抗匹配装置及半导体加工设备
TW201907510A (zh) 半導體裝置及其阻抗調節方法
WO2023043558A1 (en) Distortion current mitigation in a radio frequency plasma processing chamber
US20220399184A1 (en) Plasma uniformity control in pulsed dc plasma chamber
US20230298856A1 (en) Apparatus and method for delivering a plurality of waveform signals during plasma processing
JP2011238747A (ja) プラズマcvd成膜装置および高周波電圧の印加方法
CN109797371B (zh) 基座偏压调节装置、半导体加工设备及薄膜制作方法
WO2021040707A1 (en) Methods of tuning to improve plasma stability
KR102070768B1 (ko) 박막 증착 장치
KR102308684B1 (ko) 다중 점화위치 조정 기능을 가지는 임피던스 정합 장치 및 정합 방법
TW201905950A (zh) 可變電容、阻抗匹配裝置和半導體加工裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237040641

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237040641

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18572172

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022848360

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022848360

Country of ref document: EP

Effective date: 20240227