WO2022078336A1 - 阻抗匹配方法、阻抗匹配器和半导体工艺设备 - Google Patents

阻抗匹配方法、阻抗匹配器和半导体工艺设备 Download PDF

Info

Publication number
WO2022078336A1
WO2022078336A1 PCT/CN2021/123317 CN2021123317W WO2022078336A1 WO 2022078336 A1 WO2022078336 A1 WO 2022078336A1 CN 2021123317 W CN2021123317 W CN 2021123317W WO 2022078336 A1 WO2022078336 A1 WO 2022078336A1
Authority
WO
WIPO (PCT)
Prior art keywords
matching
impedance
adjustable element
parameter value
path
Prior art date
Application number
PCT/CN2021/123317
Other languages
English (en)
French (fr)
Inventor
卫晶
陈星�
韦刚
华跃平
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to JP2023521609A priority Critical patent/JP7478906B2/ja
Priority to US18/248,870 priority patent/US20230386790A1/en
Priority to KR1020237009075A priority patent/KR20230049741A/ko
Publication of WO2022078336A1 publication Critical patent/WO2022078336A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/46One-port networks
    • H03H11/48One-port networks simulating reactances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to the technical field of semiconductors, and in particular, to an impedance matching method, an impedance matcher and a semiconductor process equipment applied to semiconductor process equipment.
  • the radio frequency power supply transmits the radio frequency energy to the process chamber through the impedance matching device, so as to excite the process gas in the process chamber to form plasma, and the plasma contains a large number of electrons, ions, excited states Active particles such as atoms, molecules and free radicals interact with the wafer to cause various physical and chemical reactions on the surface of the wafer material to complete the process of etching or deposition of the wafer.
  • the input impedance of the process chamber is generally a non-50 ohm impedance value with real part impedance and imaginary part impedance, resulting in impedance mismatch.
  • an impedance matcher is connected between the power supply and the process chamber to adjust the input impedance of the rear end of the radio frequency power supply to 50 ohms, so as to realize the normal transmission of radio frequency energy, that is, to achieve impedance matching.
  • the existing impedance matching device includes a sensor, an adjustable element, an execution unit and a control unit, wherein the sensor is used to detect the voltage signal and current signal on the radio frequency transmission line in real time, and send it to the control unit; the control unit is used to detect according to the sensor.
  • the signal adopts the automatic matching algorithm to calculate the adjustment amount of the parameter value of the adjustable element, and controls the execution unit to adjust the parameter value of the adjustable element (such as the capacitance value of the adjustable capacitor) according to the adjustment amount until it reaches the impedance matching state, so as to Maximum RF power is delivered to the process chamber to energize the plasma.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes an impedance matching method, an impedance matcher and a semiconductor process equipment applied to a semiconductor process equipment, which can not only improve the repeatability and stability of the process Therefore, the consistency of the process results can be improved, and the fine adjustment of the plasma impedance can be realized.
  • an embodiment of the present invention provides an impedance matching method applied to a semiconductor process equipment, including:
  • the parameter value of the adjustable element of the impedance matcher is adjusted to a preset initial value
  • the parameter value of the adjustable element is adjusted according to the pre-stored optimal matching path corresponding to the process;
  • the optimal matching path includes the The parameter value of the adjustable element;
  • an automatic matching algorithm is used to adjust the parameter value of the adjustable element until impedance matching is achieved.
  • the method for obtaining the optimal matching path includes:
  • N is an integer greater than or equal to a specified value
  • One matching path is selected from the N matching paths as the optimal matching path, and stored.
  • selecting a matching path from the N matching paths as the optimal matching path and storing it specifically including:
  • the matching path with the most repeated occurrences is selected from the matching paths without the extinction phenomenon as the optimal matching path, and stored.
  • the method before the step of adjusting the parameter value of the adjustable element of the impedance matcher to a preset initial value, the method further includes:
  • the specified value is greater than or equal to 20.
  • the initial value is a parameter value of the adjustable element corresponding to satisfying the plasma ignition condition.
  • the preset initial values are the same.
  • the adjustable element is an adjustable capacitor
  • the parameter value of the adjustable element is a capacitance value or a capacitance position of the adjustable capacitor.
  • an embodiment of the present invention further provides an impedance matcher, including a sensor for detecting a voltage signal and a current signal on a radio frequency transmission line, an adjustable element, an execution unit, a storage unit, and a control unit, the execution The unit is used to adjust the parameter value of the adjustable element;
  • the storage unit is used to store the initial value of the parameter value of the adjustable element and the optimal matching path corresponding to different processes; the optimal matching path includes the adjustable element corresponding to different times within the preset matching period parameter value;
  • the sensor is used to detect the voltage signal and the current signal on the radio frequency transmission line in real time after reaching the end time of the preset matching period, and send them to the control unit;
  • the control unit is used to call the initial value stored in the storage unit when the process starts, and control the execution unit to adjust the parameter value of the adjustable element to the initial value; when the radio frequency power supply is turned on , call the optimal matching path corresponding to the current process stored in the storage unit, and control the execution unit to adjust the parameter value of the adjustable element according to the optimal matching path; when the preset matching period is reached After the end time of , according to the voltage signal and the current signal, an automatic matching algorithm is used to control the execution unit to adjust the parameter value of the adjustable element until impedance matching is achieved.
  • an embodiment of the present invention further provides a semiconductor process equipment, including a process chamber and a radio frequency power supply for loading radio frequency power to the process chamber through an impedance matcher, the impedance matcher using the present invention
  • a semiconductor process equipment including a process chamber and a radio frequency power supply for loading radio frequency power to the process chamber through an impedance matcher, the impedance matcher using the present invention
  • the plasma source used by the semiconductor process equipment is an inductively coupled plasma source or a capacitively coupled plasma source.
  • the parameter values of the adjustable elements are firstly adjusted according to the pre-stored optimal matching path corresponding to the process, and then when the preset value is reached After the end time of the matching period, an automatic matching algorithm is used to adjust the parameter value of the adjustable element until the impedance matching is achieved. Because when the same process is used to process different workpieces, the pre-stored optimal matching path is used for matching in the start-up stage, which can make the matching paths used in the start-up stage of the process for processing different workpieces to be roughly the same.
  • matching according to the optimal matching path can avoid the phenomenon of extinction, thereby improving the repeatability and stability of the process, and further improving the consistency of the process results.
  • the subtle changes of the plasma impedance with the process time can be monitored in real time, so that the fine adjustment of the plasma impedance can be achieved.
  • the semiconductor process equipment provided by the embodiment of the present invention by using the impedance matcher provided by the embodiment of the present invention, can not only improve the repeatability and stability of the process, thereby improving the consistency of the process results, but also can achieve the equivalent of plasma Fine tuning of bulk impedance.
  • FIG. 1 is a flowchart of an impedance matching method applied to a semiconductor process equipment provided by a first embodiment of the present invention
  • Figure 2 is a schematic diagram of an impedance matcher
  • FIG. 3 is a schematic diagram of a matching path adopted in the first embodiment of the present invention.
  • Fig. 4 is a matching process diagram adopted in the first embodiment of the present invention.
  • FIG. 5 is a flowchart of an impedance matching method applied to a semiconductor process equipment provided by a second embodiment of the present invention.
  • an impedance matching method applied to a semiconductor process equipment provided by a first embodiment of the present invention includes the following steps:
  • the impedance matcher 1 is connected between the radio frequency power supply 3 and the process chamber 2 to adjust the input impedance of the rear end of the radio frequency power supply 3 to realize the normal transmission of radio frequency energy, That is, impedance matching is achieved.
  • the impedance matching device 1 includes a sensor 11, a matching network 12, an execution unit 14 and a control unit 13, wherein the sensor 11 is used to detect the voltage signal and current signal on the radio frequency transmission line in real time, and send them to the control unit 13;
  • the matching network 12 includes two adjustable capacitors (C1, C2), which are used as adjustable elements, and the capacitance value or capacitance position of the two is the parameter value of the adjustable element.
  • the control unit 13 is used to control the two motors (M1, C2). M2) Adjust the capacitance positions of the two adjustable capacitors (C1, C2) respectively, and different capacitance positions correspond to different capacitance values, so as to adjust the input impedance of the rear end of the RF power supply 3 to achieve the purpose of impedance matching.
  • the structure of the impedance matcher is not limited to the structure of the above impedance matcher shown in FIG. 2 , and its adjustable element can also adopt any other structure that can adjust the input impedance of the rear end of the radio frequency power supply 3 , such as Adjustable inductance or a combination of adjustable capacitance and adjustable inductance, etc.
  • the matching network 12 is, for example, an L-type, a ⁇ -type, a T-type, or the like.
  • the initial value of the parameter value of the above-mentioned adjustable element satisfies the plasma ignition condition, that is, the parameter value of the adjustable element required to realize the plasma ignition.
  • the plasma ignition condition is that the radio frequency power loaded into the process chamber is sufficient to maximize the electric field intensity generated by the chamber resonance, so that the electron collision and excitation can be accelerated to form plasma.
  • the preset The initial value is the same, that is, at the beginning of the process of processing different workpieces, the parameter values of the adjustable components are adjusted to the same initial value, which helps to improve the repeatability of the process, which in turn can improve the consistency of the process results sex.
  • the above-mentioned optimal matching path includes parameter values of the adjustable elements corresponding to different moments in the preset matching period.
  • the so-called adjustment of the parameter values of the above-mentioned adjustable elements according to the optimal matching path means that within the preset matching period, at what time the parameter values are adjusted to whatever values are preset, that is, the adjustable elements corresponding to each time
  • the parameter values of are all preset, and these parameter values set in chronological order constitute the matching path.
  • the control unit 13 only needs to directly adjust the parameter value of the adjustable element at each moment to make it equal to the preset parameter value corresponding to the moment.
  • the so-called optimal matching path refers to a matching path that satisfies conditions such as no extinction phenomenon, the highest repeatability, and the best stability.
  • the pre-stored optimal matching paths are used for matching in the start-up stage, that is, the matching paths used in the process of processing different workpieces are roughly the same in the start-up stage, and at the same time Matching according to the optimal matching path can avoid the phenomenon of extinction, thereby improving the repeatability and stability of the process, and further improving the consistency of the process results.
  • the obtaining methods include:
  • Step 1 Adjust the parameter value of the adjustable element to the initial value
  • the initial value may be the same as the initial value in the above-mentioned step S1.
  • Step 2 Turn on the radio frequency power supply, and use an automatic matching algorithm to adjust the parameter values of the adjustable elements until impedance matching is achieved; record the parameter values of the adjustable elements corresponding to different times in the entire matching process to obtain the matching path;
  • the above automatic matching algorithm refers to using the sensor 11 to detect the voltage signal and the current signal on the radio frequency transmission line in real time, and according to the voltage signal and the current signal, calculate the adjustment amount of the parameter value of the adjustable element, and automatically adjust the adjustable value according to the adjustment amount. Adjust the parameter value of the component (such as the capacitance value or capacitance position of the adjustable capacitor) until the impedance matching state is achieved.
  • n times (t1, t2,..., tn-1, tn) are selected from the preset matching period, and each time The corresponding parameter values are recorded.
  • the number of times n can be set according to the specific process conditions.
  • a set of parameter values corresponding to n times constitutes a matching path.
  • Figure 3 shows three sets of parameter values. There are three matching paths, namely path 1, path 2 and path 3. Taking the parameter value of the adjustable element as an example of the capacitance values of the two adjustable capacitors C1 and C2, the following table 1 shows the representation of each matching path. Correspondence table between time and capacitance value.
  • the parameter values (C11, C21) corresponding to the starting point time t1 of the three matching paths are the same, and the parameter value is, for example, equal to the initial value set to satisfy the plasma ignition condition.
  • the starting point time t1 can be called the initiation point.
  • the parameter values (C1n, C2n) corresponding to the end time tn of the three paths are the same, and impedance matching is achieved at the end time tn, and the end time tn can be called a matching point.
  • the period between the start point time t1 and the end point time tn is the preset matching period in the above step S2, and the preset matching period is the entire process of impedance matching according to the matching path.
  • Step 3 Repeat the step of obtaining the matching path for N times (that is, the above-mentioned step 2), where N is an integer greater than or equal to a specified value;
  • the above specified value can be set according to specific process conditions, as long as the number N of matching paths obtained is sufficient to select an optimal matching path, and the specified value is greater than or equal to 20, for example.
  • Step 4 Select a matching path from the N matching paths as the optimal matching path, and store it.
  • step 4 specifically includes:
  • Step 41 Select a matching path without the extinction phenomenon from the N matching paths
  • Step 42 Select the matching path with the most repeated occurrences from the matching paths without the extinction phenomenon as the optimal matching path, and store it.
  • the above automatic matching algorithm refers to using the sensor 11 to detect the voltage signal and the current signal on the radio frequency transmission line in real time, and according to the voltage signal and the current signal, calculate the adjustment amount of the parameter value of the adjustable element, and automatically adjust the adjustable value according to the adjustment amount. Adjust the parameter value of the component (such as the capacitance value or capacitance position of the adjustable capacitor) until the impedance matching state is achieved.
  • the process from turning on the RF power supply to turning off the RF power supply is the entire process, and the process includes a first matching period T1 and a second matching period T2, Taking the parameter value of the adjustable element as an example of the capacitance values of the two adjustable capacitors C1 and C2, in the first matching period T1, the capacitance values of the two adjustable capacitors C1 and C2 are adjusted according to the optimal matching path.
  • the power-on time is the start time t1 of the optimal matching path, and the corresponding capacitance values are (C11, C21) respectively; the capacitance values corresponding to the end time tn of the optimal matching path are (C1n, C2n), and Impedance matching is achieved at the end point time tn.
  • the control unit 13 adjusts the capacitances of the two adjustable capacitors C1 and C2 according to the capacitance values corresponding to each time between the start point time t1 and the end point time tn.
  • the automatic matching algorithm is used for automatic matching, so that the plasma impedance can be monitored in real time due to the change of the process time. Subtle changes, so that fine adjustment of plasma impedance can be achieved.
  • the impedance matching method for semiconductor process equipment provided by the second embodiment of the present invention is a specific implementation manner of the above-mentioned first embodiment. Specifically, the impedance matching method includes the following steps:
  • step S102 If yes, go to step S102; if not, go to step S107;
  • step S104 If yes, go to step S104; if no, go back to step S103;
  • step S109 If yes, go to step S109; if no, go back to step S108;
  • step S111 If yes, go to step S111; if no, troubleshoot the problem that impedance matching is not achieved;
  • step S114 If yes, go to step S114; if no, go back to step S101;
  • S114 Select one matching path from the N matching paths as the optimal matching path, and store it.
  • the impedance matching method applied to the semiconductor process equipment provided by this embodiment can automatically obtain the optimal matching path when the current process does not store the corresponding optimal matching path, thereby being applicable to impedance matching of all processes.
  • an embodiment of the present invention further provides an impedance matcher.
  • the impedance matcher 1 includes a sensor 11, an adjustable element (for example, two adjustable capacitors C1 and C2), the execution unit 14, the storage unit (not shown in the figure) and the control unit 13.
  • the execution unit 14 is used to adjust the parameter value of the adjustable element.
  • the execution unit 14 is a motor.
  • the execution unit 14 includes two motors M1 and M2. It is used to adjust the capacitance of the two adjustable capacitors C1 and C2 by adjusting their capacitance positions respectively.
  • the storage unit is used to store the initial value of the parameter value of the adjustable element and the optimal matching path corresponding to different processes; the optimal matching path includes the parameter value of the adjustable element corresponding to different times within the preset matching period; the sensor 11 uses After reaching the end point of the preset matching period, the voltage signal and the current signal on the radio frequency transmission line are detected in real time, and sent to the control unit 13; the control unit 13 is used to call the initial value stored in the storage unit when the process starts, And control the execution unit 14 to adjust the parameter value of the adjustable element to the initial value; and, when the radio frequency power supply 3 is turned on, call the optimal matching path corresponding to the current process stored in the storage unit, and control the execution according to the optimal matching path.
  • the unit 14 adjusts the parameter value of the adjustable element; after reaching the end time of the preset matching period, the control unit 13 adopts the automatic matching algorithm to control the execution unit 14 to adjust the parameter value of the adjustable element according to the received voltage signal and current signal, until impedance matching is achieved.
  • the parameter values of the adjustable elements are adjusted according to the pre-stored optimal matching path corresponding to the process. Then, after reaching the end point of the preset matching period, an automatic matching algorithm is used to adjust the parameter value of the adjustable element until the impedance matching is achieved. Because when the same process is used to process different workpieces, the pre-stored optimal matching path is used for matching in the start-up stage, which can make the matching paths used in the start-up stage of the process for processing different workpieces to be roughly the same.
  • matching according to the optimal matching path can avoid the phenomenon of extinction, thereby improving the repeatability and stability of the process, and further improving the consistency of the process results.
  • the subtle changes of the plasma impedance with the process time can be monitored in real time, so that the fine adjustment of the plasma impedance can be realized.
  • an embodiment of the present invention further provides a semiconductor process equipment, including a process chamber and a radio frequency power supply for loading radio frequency power to the process chamber through an impedance matcher, the impedance matcher being provided by the embodiment of the present invention of the above impedance matchers.
  • the plasma source used by the above-mentioned semiconductor processing equipment is an inductively coupled plasma source or a capacitively coupled plasma source.
  • the semiconductor process equipment provided by the embodiment of the present invention by using the impedance matcher provided by the embodiment of the present invention, can not only improve the repeatability and stability of the process, thereby improving the consistency of the process results, but also can achieve the equivalent of plasma Fine tuning of bulk impedance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • General Induction Heating (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种应用于半导体工艺设备的阻抗匹配方法、阻抗匹配器和半导体工艺设备。该阻抗匹配方法包括:在工艺开始时,将阻抗匹配器的可调元件的参数值调节为预设的初始值;当射频电源开启时,按照预先存储的与工艺对应的最优匹配路径,调节可调元件的参数值;最优匹配路径包括预设匹配时段内的不同时刻对应的可调元件的参数值;在到达预设匹配时段的终点时刻之后,采用自动匹配算法调节可调元件的参数值,直至达到阻抗匹配。本发明提供的上述阻抗匹配方法、阻抗匹配器和半导体工艺设备,不仅可以提高工艺的可重复性和稳定性,而且可以达到对等离子体阻抗的精细化调节。

Description

阻抗匹配方法、阻抗匹配器和半导体工艺设备 技术领域
本发明涉及半导体技术领域,具体地,涉及一种应用于半导体工艺设备的阻抗匹配方法、阻抗匹配器和半导体工艺设备。
背景技术
在等离子体处理设备中,射频电源将射频能量通过阻抗匹配器传输至工艺腔室中,以将工艺腔室中的工艺气体激发形成等离子体,等离子体中含有大量的电子、离子、激发态的原子、分子和自由基等活性粒子,这些活性粒子和晶圆相互作用,使晶圆材料表面发生各种物理和化学反应,从而完成晶圆的刻蚀或者沉积等的工艺过程。
在射频能量传输的过程中,由于射频电源的输出阻抗一般为50欧姆,工艺腔室的输入阻抗一般为一个具有实部阻抗和虚部阻抗的非50欧姆的阻抗值,导致阻抗不匹配,在这种情况下,若直接将射频能量传输至工艺腔室,会发生射频能量的反射,即,没有足够的射频能量传输至工艺腔室中,从而无法正常激发形成等离子体,这就需要在射频电源和工艺腔室之间接入一个阻抗匹配器,以将射频电源后端的输入阻抗调节至50欧姆,从而实现射频能量的正常传输,即,实现阻抗匹配。
现有的阻抗匹配器包括传感器、可调元件、执行单元和控制单元,其中,传感器用于实时检测射频传输线上的电压信号和电流信号,并发送至控制单元;控制单元用于根据传感器检测的信号采用自动匹配算法计算获得可调元件的参数值的调整量,并根据该调整量控制执行单元调节可调元件的参数值(例如可调电容的电容值),直至达到阻抗匹配状态,以将最大的射频功率传送至工艺腔室以激发形成等离子体。
但是,在上述匹配过程中,尤其对于ICP(Inductively Coupled Plasma,电感耦合等离子体)而言,由于等离子体在启辉过程中处于E-H模式跳变(即,由E模式跳变为H模式)的不稳定状态,导致不同工艺的匹配路径存在差异及不重复性,从而造成加工不同晶片的工艺所使用的匹配时间存在差异,进而可能造成晶片间的工艺结果不同,尤其对于工艺时间较短的工艺来说,这种工艺结果差异更加明显。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种应用于半导体工艺设备的阻抗匹配方法、阻抗匹配器和半导体工艺设备,其不仅可以提高工艺的可重复性和稳定性,从而可以提高工艺结果的一致性,而且可以实现对等离子体阻抗的精细化调节。
为实现上述目的,本发明实施例提供了一种应用于半导体工艺设备的阻抗匹配方法,包括:
在工艺开始时,将阻抗匹配器的可调元件的参数值调节为预设的初始值;
当射频电源开启时,按照预先存储的与所述工艺对应的最优匹配路径,调节所述可调元件的参数值;所述最优匹配路径包括预设匹配时段内的不同时刻对应的所述可调元件的参数值;
在到达所述预设匹配时段的终点时刻之后,采用自动匹配算法调节所述可调元件的参数值,直至达到阻抗匹配。
可选的,所述最优匹配路径的获取方法包括:
将所述可调元件的参数值调节为所述初始值;
开启所述射频电源,并采用自动匹配算法调节所述可调元件的参数值,直至达到阻抗匹配;记录整个匹配过程中不同时刻对应的所述可调元件的参 数值,以获得匹配路径;
重复进行N次所述获得匹配路径的步骤,N为大于等于指定数值的整数;
从N条所述匹配路径中选择一条匹配路径作为所述最优匹配路径,并进行存储。
可选的,所述从N条所述匹配路径中选择一条匹配路径作为所述最优匹配路径,并进行存储,具体包括:
从N条所述匹配路径中选择无灭辉现象的匹配路径;
从所述无灭辉现象的匹配路径中选择重复出现次数最多的匹配路径作为所述最优匹配路径,并进行存储。
可选的,在所述将阻抗匹配器的可调元件的参数值调节为预设的初始值的步骤之前,还包括:
判断是否已存储有与所述工艺对应的所述最优匹配路径;
若是,则进行所述将阻抗匹配器的可调元件的参数值调节为预设的初始值的步骤;
若否,则执行所述最优匹配路径的获取方法,并返回所述判断是否已存储与所述工艺对应的所述最优匹配路径的步骤。
可选的,所述指定数值大于等于20。
可选的,所述初始值为满足等离子体启辉条件对应的所述可调元件的参数值。
可选的,在采用相同的所述工艺加工不同的被加工工件时,预设的所述初始值相同。
可选的,所述可调元件为可调电容,所述可调元件的参数值为所述可调电容的容值或者电容位置。
作为另一个技术方案,本发明实施例还提供一种阻抗匹配器,包括用于检测射频传输线上的电压信号和电流信号的传感器、可调元件、执行单元、 存储单元和控制单元,所述执行单元用于调节所述可调元件的参数值;
所述存储单元用于存储所述可调元件的参数值的初始值以及不同工艺对应的最优匹配路径;所述最优匹配路径包括预设匹配时段内的不同时刻对应的所述可调元件的参数值;
所述传感器用于在到达所述预设匹配时段的终点时刻之后,实时检测射频传输线上的电压信号和电流信号,并发送至所述控制单元;
所述控制单元用于在工艺开始时,调用所述存储单元中存储的所述初始值,并控制所述执行单元将所述可调元件的参数值调节为所述初始值;当射频电源开启时,调用所述存储单元中存储的当前工艺对应的最优匹配路径,并按照所述最优匹配路径控制所述执行单元调节所述可调元件的参数值;在到达所述预设匹配时段的终点时刻之后,根据所述电压信号和电流信号,采用自动匹配算法控制所述执行单元调节所述可调元件的参数值,直至达到阻抗匹配。
作为另一个技术方案,本发明实施例还提供一种半导体工艺设备,包括工艺腔室和用于通过阻抗匹配器向所述工艺腔室加载射频功率的射频电源,所述阻抗匹配器采用本发明实施例提供的上述阻抗匹配器。
可选的,所述半导体工艺设备采用的等离子体源为电感耦合等离子体源或者电容耦合等离子体源。
本发明实施例的有益效果:
本发明实施例提供的应用于半导体工艺设备的阻抗匹配方法和阻抗匹配器的技术方案中,首先按照预先存储的与工艺对应的最优匹配路径调节可调元件的参数值,然后在到达预设匹配时段的终点时刻之后,采用自动匹配算法调节可调元件的参数值,直至达到阻抗匹配。由于在采用相同工艺加工不同被加工工件时,在启辉阶段均采用预先存储的最优匹配路径进行匹配,这可以使加工不同被加工工件的工艺在启辉阶段所采用的匹配路径大致相 同,同时按照最优匹配路径进行匹配可以避免产生灭辉现象,从而可以提高工艺的可重复性和稳定性,进而可以提高工艺结果的一致性。此外,在完成最优匹配路径之后,通过切换至自动匹配算法进行自动匹配,可以实时监控等离子体阻抗随工艺时间变化而产生的细微变化,从而可以达到对等离子体阻抗的精细化调节。
本发明实施例提供的半导体工艺设备,其通过采用本发明实施例提供的上述阻抗匹配器,不仅可以提高工艺的可重复性和稳定性,从而可以提高工艺结果的一致性,而且可以达到对等离子体阻抗的精细化调节。
附图说明
图1为本发明第一实施例提供的应用于半导体工艺设备的阻抗匹配方法的流程框图;
图2为一种阻抗匹配器的原理图;
图3为本发明第一实施例采用的匹配路径的示意图;
图4为本发明第一实施例采用的匹配过程图;
图5为本发明第二实施例提供应用于半导体工艺设备的阻抗匹配方法的流程框图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明实施例提供的应用于半导体工艺设备的阻抗匹配方法、阻抗匹配器和半导体工艺设备进行详细描述。
请参阅图1,本发明第一实施例提供的应用于半导体工艺设备的阻抗匹配方法,其包括以下步骤:
S1、在工艺开始时,将阻抗匹配器的可调元件的参数值调节为预设的初始值;
以图2所示的阻抗匹配器1为例,该阻抗匹配器1连接在射频电源3和工艺腔室2之间,用以调节射频电源3后端的输入阻抗,以实现射频能量的正常传输,即,达到阻抗匹配。具体地,阻抗匹配器1包括传感器11、匹配网络12、执行单元14和控制单元13,其中,传感器11用于实时检测射频传输线上的电压信号和电流信号,并发送至控制单元13;匹配网络12包括两个可调电容(C1,C2),二者用作可调元件,二者的电容值或者电容位置即为可调元件的参数值,控制单元13用于控制两个电机(M1,M2)分别调节两个可调电容(C1,C2)的电容位置,不同的电容位置对应不同的电容值,以调节射频电源3后端的输入阻抗,达到阻抗匹配的目的。当然,在实际应用中,阻抗匹配器的结构并不局限于图2所示的上述阻抗匹配器的结构,其可调元件也可以采用能够调节射频电源3后端的输入阻抗的其他任意结构,例如可调电感或者可调电容与可调电感的组合等。匹配网络12例如为L型、π型、T型等等。
在一些可选的实施例中,上述可调元件的参数值的初始值满足等离子体启辉条件,即,实现等离子体启辉所需的可调元件的参数值。该等离子体启辉条件为:使加载至工艺腔室的射频功率足以使腔室谐振产生的电场强度最大,从而可以加速电子碰撞激发形成等离子体。
通常情况下,当工艺腔室的硬件条件固定时,该工艺腔室实现等离子体启辉的条件同样固定,基于此,可选的,在采用相同工艺加工不同的被加工工件时,预设的初始值相同,即,在加工不同被加工工件的工艺开始时,将可调元件的参数值均调节为相同的初始值,这样有助于提高工艺的可重复性,进而可以提高工艺结果的一致性。
S2、当射频电源3开启时,按照预先存储的与工艺对应的最优匹配路径,调节上述可调元件的参数值;
上述最优匹配路径包括预设匹配时段内的不同时刻对应的可调元件的 参数值。
所谓按照最优匹配路径调节上述可调元件的参数值,是指预设匹配时段内,在什么时刻将参数值调节至什么数值均是预先设定好的,即,各个时刻对应的可调元件的参数值均是预先设定好的,按时间顺序设定的这些参数值构成了匹配路径。在按照该匹配路径进行匹配的过程中,控制单元13只需在各个时刻直接调节可调元件的参数值,以使其等于与该时刻对应的预先设定好的参数值即可。
所谓最优匹配路径,是指满足诸如无灭辉现象、重复性最高、稳定性最好等条件的匹配路径。
在采用相同工艺加工不同被加工工件时,由于在启辉阶段均采用预先存储的最优匹配路径进行匹配,即,加工不同被加工工件的工艺在启辉阶段所采用的匹配路径大致相同,同时按照最优匹配路径进行匹配可以避免产生灭辉现象,从而可以提高工艺的可重复性和稳定性,进而可以提高工艺结果的一致性。
上述最优匹配路径的获取方法有多种,例如,该获取方法包括:
步骤1、将可调元件的参数值调节为初始值;
该初始值可以与上述步骤S1中的初始值相同。
步骤2、开启射频电源,采用自动匹配算法调节可调元件的参数值,直至达到阻抗匹配;记录整个匹配过程中不同时刻对应的可调元件的参数值,以获得匹配路径;
上述自动匹配算法是指利用传感器11实时检测射频传输线上的电压信号和电流信号,且根据该电压信号和电流信号,计算获得可调元件的参数值的调整量,并根据该调整量自动调节可调元件的参数值(例如可调电容的电容值或者电容位置),直至达到阻抗匹配状态。
如图3所示,在按匹配路径进行阻抗匹配的整个匹配过程中,从预设的 匹配时段中选取n个时刻(t1,t2,...,tn-1,tn),并对各个时刻对应的参数值进行记录,时刻的数量n可以根据具体工艺情况进行设定,n个时刻对应的一组参数值构成了一条匹配路径,例如,图3中示出了三组参数值所构成的三条匹配路径,分别为路径1、路径2和路径3,以可调元件的参数值为两个可调电容C1和C2的电容值为例,下述表1示出了每条匹配路径表示的时刻与电容值的对应关系表。
表1,每条匹配路径表示的时刻与电容值的对应关系表。
时刻 C1电容值 C2电容值  
t1 C11 C21 起点时刻
t2 C12 C22
t3 C13 C23
t4 C14 C24
t5 C15 C25
t6 C16 C26
... ... ...
tn-1 C1n-1 C2n-1  
tn C1n C2n 终点时刻
由上述表1和图3可知,三条匹配路径的起点时刻t1所对应的参数值(C11,C21)相同,该参数值例如等于满足等离子体启辉条件所设定的初始值,此时起点时刻t1可称为启辉点。这三条路径的终点时刻tn所对应的参数值(C1n,C2n)相同,且在该终点时刻tn均达到阻抗匹配,此时终点时刻tn可称为匹配点。容易理解,上述起点时刻t1和终点时刻tn之间的时段即为上述步骤S2中的预设匹配时段,该预设匹配时段为按匹配路径进行阻抗匹配的整个过程。
步骤3、重复进行N次获得匹配路径的步骤(即,上述步骤2),N为大于等于指定数值的整数;
上述指定数值可根据具体工艺情况而设定,只要所获得的匹配路径的数量N足以选择出一条最优匹配路径,该指定数值例如大于等于20。
步骤4、从N条匹配路径中选择一条匹配路径作为最优匹配路径,并进行存储。
选择最优匹配路径的方式可以有多种,例如,上述步骤4具体包括:
步骤41、从N条匹配路径中选择无灭辉现象的匹配路径;
步骤42、从无灭辉现象的匹配路径中选择重复出现次数最多的匹配路径作为最优匹配路径,并进行存储。
S3、在到达最优匹配路径的终点时刻(即,tn)之后,采用自动匹配算法调节可调元件的参数值,直至达到阻抗匹配。
上述自动匹配算法是指利用传感器11实时检测射频传输线上的电压信号和电流信号,且根据该电压信号和电流信号,计算获得可调元件的参数值的调整量,并根据该调整量自动调节可调元件的参数值(例如可调电容的电容值或电容位置),直至达到阻抗匹配状态。
在一些实施例中,如图4所示,在时间轴T上,从射频电源开启至射频电源关闭的过程即为整个工艺过程,该工艺过程包括第一匹配时段T1和第二匹配时段T2,以可调元件的参数值为两个可调电容C1和C2的电容值为例,在第一匹配时段T1,按照最优匹配路径调节两个可调电容C1和C2的电容值,其中,射频电源的开启时刻即为该最优匹配路径的起点时刻t1,其对应的电容值分别为(C11,C21);最优匹配路径的终点时刻tn所对应的电容值为(C1n,C2n),且在该终点时刻tn均达到阻抗匹配。并且,控制单元13按照在起点时刻t1与终点时刻tn之间的各个时刻所对应的电容值调节两个可调电容C1和C2的电容大小。
在第二匹配时段T2,通过实时检测射频传输线上的电压信号和电流信号,且根据该电压信号和电流信号,采用自动匹配算法进行自动匹配,可以 实时监控等离子体阻抗随工艺时间变化而产生的细微变化,从而可以实现对等离子体阻抗的精细化调节。
请参阅图5,本发明第二实施例提供的用于半导体工艺设备的阻抗匹配方法,其是上述第一实施例的一个具体实施方式。具体地,阻抗匹配方法包括以下步骤:
S101、判断是否已存储有与当前工艺对应的最优匹配路径;
若是,则进行步骤S102;若否,则进行步骤S107;
S102、将可调元件的参数值调节为预设的初始值;
S103、判断射频电源是否开启;
若是,则进行步骤S104;若否,则返回步骤S103;
S104、按照预先存储的与当前工艺对应的最优匹配路径,调节上述可调元件的参数值;
S105、在到达预设匹配时段的终点时刻(即,tn)之后,采用自动匹配算法调节可调元件的参数值。
S106、判断是否达到阻抗匹配;
若是,则流程结束;若否,则排查未达到阻抗匹配的问题;
S107、将可调元件的参数值调节为初始值;
S108、判断射频电源是否开启;
若是,则进行步骤S109;若否,则返回步骤S108;
S109、采用自动匹配算法调节可调元件的参数值;
S110、判断是否达到阻抗匹配;
若是,则进行步骤S111;若否,则排查未达到阻抗匹配的问题;
S111、记录整个匹配过程中不同时刻对应的可调元件的参数值,以获得匹配路径;
S112、关闭射频电源;
S113、判断是否进行N次获得匹配路径的步骤(即,上述步骤2);
若是,则进行步骤S114;若否,则返回步骤S101;
S114、从N条匹配路径中选择一条匹配路径作为最优匹配路径,并进行存储。
本实施例提供的应用于半导体工艺设备的阻抗匹配方法,在当前的工艺没有存储对应的最优匹配路径时,可以自动进行最优匹配路径的获取,从而可以适用于所有工艺的阻抗匹配。
作为另一个技术方案,本发明实施例还提供一种阻抗匹配器,以图2示出的阻抗匹配器1为例,该阻抗匹配器1包括传感器11、可调元件(例如为两个可调电容C1和C2)、执行单元14、存储单元(图中未示出)和控制单元13。
其中,执行单元14用于调节可调元件的参数值,该执行单元14例如为电机,以可调元件为两个可调电容C1和C2为例,执行单元14包括两个电机M1和M2,用于通过分别调节两个可调电容C1和C2的电容位置来调节二者的电容大小。存储单元用于存储可调元件的参数值的初始值以及不同工艺对应的最优匹配路径;该最优匹配路径包括预设匹配时段内的不同时刻对应的可调元件的参数值;传感器11用于在到达预设匹配时段的终点时刻之后,实时检测射频传输线上的电压信号和电流信号,并发送至控制单元13;控制单元13用于在工艺开始时,调用存储单元中存储的初始值,并控制执行单元14将可调元件的参数值调节为初始值;以及,当射频电源3开启时,调用存储单元中存储的当前工艺对应的最优匹配路径,并按照该最优匹配路径控制执行单元14调节可调元件的参数值;在到达预设匹配时段的终点时刻之后,控制单元13根据接收到的电压信号和电流信号,采用自动匹配算法控制执行单元14调节可调元件的参数值,直至达到阻抗匹配。
综上所述,本发明实施例提供的应用于半导体工艺设备的阻抗匹配方法 和阻抗匹配器的技术方案中,首先按照预先存储的与工艺对应的最优匹配路径调节可调元件的参数值,然后在到达预设匹配时段的终点时刻之后,采用自动匹配算法调节可调元件的参数值,直至达到阻抗匹配。由于在采用相同工艺加工不同被加工工件时,在启辉阶段均采用预先存储的最优匹配路径进行匹配,这可以使加工不同被加工工件的工艺在启辉阶段所采用的匹配路径大致相同,同时按照最优匹配路径进行匹配可以避免产生灭辉现象,从而可以提高工艺的可重复性和稳定性,进而可以提高工艺结果的一致性。此外,在完成最优匹配路径之后,通过切换至自动匹配算法进行自动匹配,可以实时监控等离子体阻抗随工艺时间变化而产生的细微变化,从而可以实现对等离子体阻抗的精细化调节。
作为另一个技术方案,本发明实施例还提供一种半导体工艺设备,包括工艺腔室和用于通过阻抗匹配器向工艺腔室加载射频功率的射频电源,该阻抗匹配器采用本发明实施例提供的上述阻抗匹配器。
在一些实施例中,上述半导体工艺设备采用的等离子体源为电感耦合等离子体源或者电容耦合等离子体源。
本发明实施例提供的半导体工艺设备,其通过采用本发明实施例提供的上述阻抗匹配器,不仅可以提高工艺的可重复性和稳定性,从而可以提高工艺结果的一致性,而且可以达到对等离子体阻抗的精细化调节。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (11)

  1. 一种应用于半导体工艺设备的阻抗匹配方法,其特征在于,包括:
    在工艺开始时,将阻抗匹配器的可调元件的参数值调节为预设的初始值;
    当射频电源开启时,按照预先存储的与所述工艺对应的最优匹配路径,调节所述可调元件的参数值;所述最优匹配路径包括预设匹配时段内的不同时刻对应的所述可调元件的参数值;
    在到达所述预设匹配时段的终点时刻之后,采用自动匹配算法调节所述可调元件的参数值,直至达到阻抗匹配。
  2. 如权利要求1所述的阻抗匹配方法,其特征在于,所述最优匹配路径的获取方法包括:
    将所述可调元件的参数值调节为所述初始值;
    开启所述射频电源,并采用自动匹配算法调节所述可调元件的参数值,直至达到阻抗匹配;记录整个匹配过程中不同时刻对应的所述可调元件的参数值,以获得匹配路径;
    重复进行N次所述获得匹配路径的步骤,N为大于等于指定数值的整数;
    从N条所述匹配路径中选择一条匹配路径作为所述最优匹配路径,并进行存储。
  3. 如权利要求2所述的阻抗匹配方法,其特征在于,所述从N条所述匹配路径中选择一条匹配路径作为所述最优匹配路径,并进行存储,具体包括:
    从N条所述匹配路径中选择无灭辉现象的匹配路径;
    从所述无灭辉现象的匹配路径中选择重复出现次数最多的匹配路径作 为所述最优匹配路径,并进行存储。
  4. 如权利要求2所述的阻抗匹配方法,其特征在于,在所述将阻抗匹配器的可调元件的参数值调节为预设的初始值的步骤之前,还包括:
    判断是否已存储有与所述工艺对应的所述最优匹配路径;
    若是,则进行所述将阻抗匹配器的可调元件的参数值调节为预设的初始值的步骤;
    若否,则执行所述最优匹配路径的获取方法,并返回所述判断是否已存储有与所述工艺对应的所述最优匹配路径的步骤。
  5. 如权利要求2所述的阻抗匹配方法,其特征在于,所述指定数值大于等于20。
  6. 如权利要求1-5任意一项所述的阻抗匹配方法,其特征在于,所述初始值为满足等离子体启辉条件对应的所述可调元件的参数值。
  7. 如权利要求1-5任意一项所述的阻抗匹配方法,其特征在于,在采用相同的所述工艺加工不同的被加工工件时,预设的所述初始值相同。
  8. 如权利要求1-5任意一项所述的阻抗匹配方法,其特征在于,所述可调元件为可调电容,所述可调元件的参数值为所述可调电容的容值或者电容位置。
  9. 一种阻抗匹配器,包括用于检测射频传输线上的电压信号和电流信号的传感器、可调元件、执行单元、存储单元和控制单元,其特征在于,
    所述执行单元用于调节所述可调元件的参数值;
    所述存储单元用于存储所述可调元件的参数值的初始值以及不同工艺 对应的最优匹配路径;所述最优匹配路径包括预设匹配时段内的不同时刻对应的所述可调元件的参数值;
    所述传感器用于在到达所述预设匹配时段的终点时刻之后,实时检测射频传输线上的电压信号和电流信号,并发送至所述控制单元;
    所述控制单元用于在工艺开始时,调用所述存储单元中存储的所述初始值,并控制所述执行单元将所述可调元件的参数值调节为所述初始值;当射频电源开启时,调用所述存储单元中存储的当前工艺对应的最优匹配路径,并按照所述最优匹配路径控制所述执行单元调节所述可调元件的参数值;在到达所述预设匹配时段的终点时刻之后,根据所述电压信号和电流信号,采用自动匹配算法控制所述执行单元调节所述可调元件的参数值,直至达到阻抗匹配。
  10. 一种半导体工艺设备,包括工艺腔室和用于通过阻抗匹配器向所述工艺腔室加载射频功率的射频电源,其特征在于,所述阻抗匹配器采用权利要求9所述的阻抗匹配器。
  11. 如权利要求10所述的半导体工艺设备,其特征在于,所述半导体工艺设备采用的等离子体源为电感耦合等离子体源或者电容耦合等离子体源。
PCT/CN2021/123317 2020-10-13 2021-10-12 阻抗匹配方法、阻抗匹配器和半导体工艺设备 WO2022078336A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023521609A JP7478906B2 (ja) 2020-10-13 2021-10-12 インピーダンス整合方法、インピーダンス整合器及び半導体プロセス装置
US18/248,870 US20230386790A1 (en) 2020-10-13 2021-10-12 Impedance-matching method, impedance-matching device, and semiconductor process apparatus
KR1020237009075A KR20230049741A (ko) 2020-10-13 2021-10-12 임피던스 매칭 방법, 임피던스 매처 및 반도체 공정 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011089179.4 2020-10-13
CN202011089179.4A CN112259433B (zh) 2020-10-13 2020-10-13 阻抗匹配方法、阻抗匹配器和半导体工艺设备

Publications (1)

Publication Number Publication Date
WO2022078336A1 true WO2022078336A1 (zh) 2022-04-21

Family

ID=74243147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123317 WO2022078336A1 (zh) 2020-10-13 2021-10-12 阻抗匹配方法、阻抗匹配器和半导体工艺设备

Country Status (6)

Country Link
US (1) US20230386790A1 (zh)
JP (1) JP7478906B2 (zh)
KR (1) KR20230049741A (zh)
CN (2) CN112259433B (zh)
TW (1) TWI813037B (zh)
WO (1) WO2022078336A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190190A (zh) * 2023-04-25 2023-05-30 季华实验室 自动阻抗匹配方法、装置、系统、电子设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259433B (zh) * 2020-10-13 2023-08-18 北京北方华创微电子装备有限公司 阻抗匹配方法、阻抗匹配器和半导体工艺设备
CN113066712A (zh) * 2021-03-23 2021-07-02 北京北方华创微电子装备有限公司 阻抗匹配方法、半导体工艺设备
CN113921366A (zh) * 2021-09-30 2022-01-11 北京北方华创微电子装备有限公司 半导体工艺设备及其阻抗匹配方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478856A (zh) * 2008-01-04 2009-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种射频自动阻抗匹配器及其实现方法
CN107992689A (zh) * 2017-12-07 2018-05-04 上海斐讯数据通信技术有限公司 一种阻抗匹配的方法及系统
CN110299279A (zh) * 2019-08-22 2019-10-01 中微半导体设备(上海)股份有限公司 一种射频电源系统、等离子体处理器及其调频匹配方法
US20200035461A1 (en) * 2017-07-10 2020-01-30 Reno Technologies, Inc. Impedance matching with multi-level power setpoint
CN111430211A (zh) * 2020-04-02 2020-07-17 上海理想万里晖薄膜设备有限公司 用于等离子体处理设备的射频系统及其调节方法
CN112259433A (zh) * 2020-10-13 2021-01-22 北京北方华创微电子装备有限公司 阻抗匹配方法、阻抗匹配器和半导体工艺设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326192A (ja) * 2000-05-16 2001-11-22 Applied Materials Inc 成膜方法及び装置
CN101374381B (zh) * 2007-08-20 2011-07-27 清华大学 实现射频阻抗匹配的方法及射频阻抗匹配系统
JP2009188152A (ja) 2008-02-06 2009-08-20 Panasonic Corp 半導体装置の製造方法
US8416008B2 (en) * 2011-01-20 2013-04-09 Advanced Energy Industries, Inc. Impedance-matching network using BJT switches in variable-reactance circuits
CN106376168B (zh) * 2015-07-20 2019-11-29 北京北方华创微电子装备有限公司 阻抗匹配器、阻抗匹配方法及半导体加工设备
CN108271308A (zh) 2016-12-30 2018-07-10 中微半导体设备(上海)有限公司 一种在电感耦合等离子体处理装置内点燃等离子体的方法
CN108471666B (zh) * 2017-02-23 2021-06-08 北京北方华创微电子装备有限公司 一种等离子体产生方法及装置和半导体处理设备
US10714314B1 (en) * 2017-07-10 2020-07-14 Reno Technologies, Inc. Impedance matching network and method
US10854427B2 (en) * 2018-08-30 2020-12-01 Applied Materials, Inc. Radio frequency (RF) pulsing impedance tuning with multiplier mode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478856A (zh) * 2008-01-04 2009-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种射频自动阻抗匹配器及其实现方法
US20200035461A1 (en) * 2017-07-10 2020-01-30 Reno Technologies, Inc. Impedance matching with multi-level power setpoint
CN107992689A (zh) * 2017-12-07 2018-05-04 上海斐讯数据通信技术有限公司 一种阻抗匹配的方法及系统
CN110299279A (zh) * 2019-08-22 2019-10-01 中微半导体设备(上海)股份有限公司 一种射频电源系统、等离子体处理器及其调频匹配方法
CN111430211A (zh) * 2020-04-02 2020-07-17 上海理想万里晖薄膜设备有限公司 用于等离子体处理设备的射频系统及其调节方法
CN112259433A (zh) * 2020-10-13 2021-01-22 北京北方华创微电子装备有限公司 阻抗匹配方法、阻抗匹配器和半导体工艺设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190190A (zh) * 2023-04-25 2023-05-30 季华实验室 自动阻抗匹配方法、装置、系统、电子设备及存储介质
CN116190190B (zh) * 2023-04-25 2023-07-25 季华实验室 自动阻抗匹配方法、装置、系统、电子设备及存储介质

Also Published As

Publication number Publication date
TW202215565A (zh) 2022-04-16
KR20230049741A (ko) 2023-04-13
CN112259433B (zh) 2023-08-18
CN112259433A (zh) 2021-01-22
JP7478906B2 (ja) 2024-05-07
CN116779407A (zh) 2023-09-19
JP2023544855A (ja) 2023-10-25
US20230386790A1 (en) 2023-11-30
TWI813037B (zh) 2023-08-21

Similar Documents

Publication Publication Date Title
WO2022078336A1 (zh) 阻抗匹配方法、阻抗匹配器和半导体工艺设备
US9947513B2 (en) Edge ramping
US6818562B2 (en) Method and apparatus for tuning an RF matching network in a plasma enhanced semiconductor wafer processing system
US6305316B1 (en) Integrated power oscillator RF source of plasma immersion ion implantation system
KR101902427B1 (ko) 펄스 라디오 주파수 전원에 대한 임피던스 정합 방법 및 장치
JPS60211517A (ja) 高周波インピーダンス整合制御装置
TWI708277B (zh) 射頻阻抗匹配的方法及裝置、半導體處理設備
JP3236216B2 (ja) 半導体ウェーハ製造用プラズマ処理装置
TW201435964A (zh) 用於真空處理腔室的射頻脈衝功率匹配的方法及其裝置
US20210066041A1 (en) System and method for pulse modulation of radio frequency power supply and reaction chamber thereof
US6954033B2 (en) Plasma processing apparatus
TWI641293B (zh) 用於多變阻抗負載之射頻電漿電源供應系統及其自動匹配器與匹配方法
EP4379088A1 (en) Susceptor bias adjustment apparatus and method, and semiconductor process device
US11929236B2 (en) Methods of tuning to improve plasma stability
CN113066712A (zh) 阻抗匹配方法、半导体工艺设备
JPH01106432A (ja) 半導体製造装置及び半導体装置の製造方法
CN112735935A (zh) 多重电压控制方法及多重电压控制方式的高频电源装置
CN115376969A (zh) 射频阻抗匹配方法及系统、半导体工艺设备
CN116759284A (zh) 半导体工艺设备及最优阻抗值获取方法、扫频匹配方法
CN116364513A (zh) 等离子体控制装置和等离子体处理系统
KR20010076954A (ko) 고주파 정합장치
CN115050626A (zh) 阻抗匹配方法和装置、半导体工艺设备
KR20220060387A (ko) 기판 처리 장치 및 기판 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237009075

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023521609

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18248870

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21879380

Country of ref document: EP

Kind code of ref document: A1