WO2023005645A1 - 电压转换电路、控制方法、电源装置及存储介质 - Google Patents

电压转换电路、控制方法、电源装置及存储介质 Download PDF

Info

Publication number
WO2023005645A1
WO2023005645A1 PCT/CN2022/104725 CN2022104725W WO2023005645A1 WO 2023005645 A1 WO2023005645 A1 WO 2023005645A1 CN 2022104725 W CN2022104725 W CN 2022104725W WO 2023005645 A1 WO2023005645 A1 WO 2023005645A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch module
duty cycle
module
switching device
capacitor
Prior art date
Application number
PCT/CN2022/104725
Other languages
English (en)
French (fr)
Inventor
刘润东
王鸿
周建平
周净轩
李哲旭
易凌松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22848250.1A priority Critical patent/EP4362310A1/en
Publication of WO2023005645A1 publication Critical patent/WO2023005645A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking

Definitions

  • the present application relates to the field of power supply technology, in particular to a voltage conversion circuit, a control method, a power supply device and a storage medium.
  • the voltage conversion circuit is an integral part of the power supply device.
  • Common voltage conversion circuits include BOOST circuit (boost chopper circuit) or BUCK circuit (step-down chopper circuit).
  • BOOST circuit boost chopper circuit
  • BUCK circuit step-down chopper circuit.
  • Traditional voltage conversion circuits generally use multiple switching tubes to For power control, however, since the electrical properties of the switching tubes cannot be completely the same, during the working process of the voltage conversion circuit, the synchronization of the actions of each switching tube will be reduced, resulting in a decrease in the stability of the voltage conversion circuit.
  • Embodiments of the present application provide a voltage conversion circuit, a control method, a power supply device, and a storage medium.
  • the embodiment of the present application provides a voltage conversion circuit, including a first switch module, a second switch module, a third switch module and a fourth switch module, the fourth switch module, the third switch module , the first switch module, the second switch module and the ground wire are connected in series in sequence; and a first capacitor, the first capacitor is respectively connected to a first common terminal and a second common terminal, and the first common terminal is The common terminal of the first switch module and the second switch module, the second common terminal is the common terminal of the third switch module and the fourth switch module; a second capacitor, the second capacitor connected to the output terminal of the power supply and the ground wire respectively; the drive module is configured to adjust the first switch module, the second switch module, the third switch module and the first switch module according to the voltage value at both ends of the first capacitor
  • the initial duty cycle of the drive signal of the four switch modules, the drive modules are respectively connected to the first switch module, the second switch module, the third switch module and the fourth switch module; the inductance device, the The inductance device is respectively connected to the
  • an embodiment of the present application further provides a control method of a voltage conversion circuit, which is applied to the voltage conversion circuit described in the first aspect, and the control method includes: acquiring a capacitance voltage value at both ends of the second capacitor; Adjusting initial duty ratios of driving signals of the first switch module, the second switch module, the third switch module and the fourth switch module according to the capacitor voltage value.
  • the embodiment of the present application also provides a power supply device, including the voltage conversion circuit described in the first aspect; or, including a memory and a processor, the memory stores a computer program, and the processor executes the The computer program realizes the control method as described in the second aspect.
  • the embodiment of the present application further provides a computer-readable storage medium, the storage medium stores a program, and the program is executed by a processor to implement the control method according to the second aspect.
  • Fig. 1 is the circuit schematic diagram of the voltage conversion circuit that the embodiment of the present application provides;
  • Fig. 2 is the schematic circuit diagram of the driving module provided by the embodiment of the present application.
  • FIG. 3 is a schematic circuit diagram of another voltage conversion circuit provided in the embodiment of the present application.
  • FIG. 4 is a flowchart of a control method for a voltage conversion circuit provided in an embodiment of the present application
  • Fig. 5 is a specific flow chart of adjusting the initial duty ratios of the driving signals of the first switch module, the second switch module, the third switch module and the fourth switch module according to the capacitance voltage value provided by the embodiment of the present application;
  • FIG. 6 is a specific flow chart for obtaining the initial duty ratios of the driving signals of the first switch module, the second switch module, the third switch module and the fourth switch module provided by the embodiment of the present application;
  • FIG. 7 is a schematic diagram of initial duty cycle calculation and adjustment provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a small signal model provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the relationship between the duty cycle of the first switch module and the second switch module and the inductor current according to the embodiment of the present application.
  • Fig. 10 is a schematic diagram of another relationship between the duty cycle of the first switch module and the second switch module and the inductor current according to the embodiment of the present application;
  • FIG. 11 is another schematic structural diagram of the small signal model provided by the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a power supply device provided by an embodiment of the present application.
  • multiple means more than two, greater than, less than, exceeding, etc. are understood as not including the original number, and above, below, within, etc. are understood as including the original number. If there is a description of "first”, “second”, etc., it is only for the purpose of distinguishing technical features, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features or implicitly indicating the indicated The sequence relationship of the technical characteristics.
  • the voltage conversion circuit may include multiple flying capacitors.
  • the voltage across each flying capacitor needs to be kept at a certain voltage value, because the electrical performance of the switch tube cannot It is exactly the same, so during the working process of the voltage conversion circuit, the synchronization of the actions of each switch tube will be reduced, so that the voltage across the multiple flying capacitors cannot be kept stable, thereby reducing the stability of the voltage conversion circuit.
  • embodiments of the present application provide a voltage conversion circuit, a control method, a power supply device, and a storage medium.
  • the voltage conversion circuit has the advantage of high working stability.
  • FIG. 1 is a circuit schematic diagram of a voltage conversion circuit provided in an embodiment of the present application
  • the voltage conversion circuit includes a first switch module, a second switch module, a third switch module, a fourth switch module, a first capacitor
  • the second capacitor, the drive module and the inductance device, the fourth switch module, the third switch module, the first switch module, the second switch module and the ground wire are connected in series in sequence, and the first capacitor is respectively connected to the first common terminal and the second common terminal
  • the first common terminal is the common terminal of the first switch module and the second switch module
  • the second common terminal is the common terminal of the third switch module and the fourth switch module
  • the second capacitor is respectively connected to the output terminal of the power supply and the ground wire
  • the drive module It is set to adjust the initial duty cycle of the drive signals of the first switch module, the second switch module, the third switch module and the fourth switch module according to the voltage values at both ends of the first capacitor, and the drive modules are respectively connected to the first switch module, the second switch module, and the second switch
  • the inductance device is respectively connected to the power input terminal and the third common terminal, so that the voltage conversion circuit shown in FIG. 1 is a BOOST circuit.
  • the voltage conversion circuit shown in FIG. 1 may also include a return switch Qn and a return switch Qp , the return switch tube Qn and the return switch tube Qp are used to form a current loop in the positive and negative half cycles of the input AC signal, and by setting the first capacitor between the first common terminal and the second common terminal, the first capacitor becomes The flying capacitor, and by setting the driving module, the driving module is set to adjust the initial duty of the driving signals of the first switching module, the second switching module, the third switching module and the fourth switching module according to the voltage value at both ends of the first capacitor ratio, the balance and stability of the voltage across the first capacitor can be improved during the operation of the voltage conversion circuit, thereby improving the stability of the voltage conversion circuit; and the number of the first capacitor is one, which is beneficial to reduce the control difficulty, and can reduce the volume of the voltage conversion circuit.
  • the first switch module, the second switch module, the third switch module, and the fourth switch module respectively include a plurality of first switch devices connected in series, and the first switch devices may be switch tubes, for example Each MOS transistor also includes a corresponding body diode and parasitic capacitance.
  • the first switch module includes switch tubes Q11 to Q1N
  • the second switch module includes switch tubes Q21 to Q2N
  • the third switch module includes switch tubes Q31 to Q3N
  • the fourth switch module includes switch tubes Q41 to Q4N
  • the number of first switching devices in the first switching module is equal to the number of first switching devices in the second switching module, and the number of first switching devices in the third switching module is equal to the number of first switching devices in the fourth switching module.
  • the number of the first switching devices is equal.
  • one end of the first capacitor is connected to the midpoint of Q11 to Q2N, and the other end of the first capacitor is connected to the midpoint of Q31 to Q4N, so that the first switching module can be improved.
  • the synchronization with the control of the second switch module improves the working stability of the voltage conversion circuit.
  • FIG. 2 is a schematic circuit diagram of a driving module provided in an embodiment of the present application.
  • the driving module includes a pulse generating unit, a first transformer, a second switching device, a second transformer, and a second switching device.
  • the pulse generating unit includes a turn-on pulse output terminal and a turn-off pulse output terminal
  • the first transformer includes a first primary winding and a plurality of first secondary windings, and the two ends of the first primary winding are connected in parallel with a first two pole tube, the anode of the first diode is connected to the opposite end of the first primary winding, and the opposite end of each first secondary winding is connected to the first switching device through the second diode and the first resistor in turn.
  • the grid The grid, the terminal with the same name of each first secondary winding is connected to the source of the first switching device, the gate of the second switching device is connected to the turn-on pulse output terminal, and the drain of the second switching device is connected to the first diode
  • the anode the source of the second switching device is connected to the ground wire
  • the second transformer includes a second primary winding and a plurality of second secondary windings, a third diode is connected in parallel at both ends of the second primary winding, and the third two
  • the anode of the pole tube is connected to the opposite end of the second primary winding, and the same end of each second secondary winding is correspondingly connected to the first switching device through the third switching device and the fourth switching device.
  • the terminal with the same name is connected to the gate of the third switching device, the drain of the third switching device is connected to the base of the fourth switching device, the source of the third switching device is connected to the source of the first switching device, and the emitter of the fourth switching device connected to the gate of the first switching device, the collector of the fourth switching device is connected to the source of the first switching device, the gate of the fifth switching device is connected to the off pulse output terminal, and the drain of the fifth switching device is connected to the third and second the anode of the pole tube, and the source of the fifth switching device is connected to the ground wire.
  • the first transformer is used to sense the turn-on pulse
  • the second transformer is used to sense the turn-off pulse
  • the number of the first secondary winding and the second secondary winding can be determined according to the number of the first switching devices, for example, assuming that there are 10
  • the first switching device there are 10 first secondary windings and 10 second secondary windings, and each of the first switching devices is connected correspondingly, so as to control the turn-on or turn-off of multiple first switching devices. It can be understood that only two first switching devices are used in FIG. 2 to exemplarily illustrate the control principle of turning on and turning off the first switching device.
  • the pulse generation unit generates the turn-on pulse and outputs it to the second switching device through the turn-on pulse output terminal, so that the second switch device is turned on, and the first secondary winding induces a pulse corresponding to the turn-on pulse, which passes through the first diode and the first A resistance is applied to the gates of the first switching devices so that the plurality of first switching devices are simultaneously turned on.
  • the first diode and the first resistor can prevent the current from flowing back and improve the stability of the voltage conversion circuit.
  • the pulse generation unit generates a turn-off pulse and outputs it to the fifth switching device through the turn-off pulse output terminal, so that the fifth switching device is turned on, and the second secondary winding induces a pulse corresponding to the turn-off pulse, which is applied to the third switching device
  • the gate of the third switching device is turned on, so that the fourth switching device is turned on, and a discharge circuit is provided for the parasitic capacitance of the first switching device, so that multiple first switching devices are turned off at the same time.
  • the driving module further includes a second resistor and a third capacitor, the second resistor is respectively connected to the base and the collector of the fourth switching device, and the third capacitor is respectively connected to the fourth switching device base and collector.
  • a discharge circuit can be provided for the parasitic capacitance of the first switching device, thereby improving the turn-off stability of the first switching device.
  • FIG. 3 is a circuit schematic diagram of another voltage conversion circuit provided in the embodiment of the present application.
  • the difference from the circuit schematic diagram shown in FIG. make the voltage conversion circuit shown in FIG. 1 be a BUCK circuit, wherein the structures of the first switch module, the second switch module, the third switch module, the fourth switch module and the driving module in the voltage conversion circuit shown in FIG. 3 are the same as The similarity of FIG. 1 is omitted here.
  • FIG. 4 is a flowchart of a control method for a voltage conversion circuit provided by an embodiment of the present application.
  • the control method includes but is not limited to the following steps 401 to 402 .
  • Step 401 Obtain the capacitance voltage value at both ends of the second capacitor
  • Step 402 Adjust the initial duty ratios of the driving signals of the first switch module, the second switch module, the third switch module and the fourth switch module according to the capacitor voltage value.
  • step 401 to step 402 by adjusting the initial duty cycle of the driving signal of the first switch module, the second switch module, the third switch module and the fourth switch module according to the voltage value at both ends of the first capacitor, the voltage conversion can be During the working process of the circuit, the balance and stability of the voltage at both ends of the first capacitor are improved, thereby improving the stability of the voltage conversion circuit.
  • the above step 402 may include the following steps 501 to 503 .
  • Step 501 Input the capacitor voltage value and the first voltage threshold into the voltage equalizing loop to obtain the duty cycle adjustment
  • Step 502 Obtain the initial duty ratios of the driving signals of the first switch module, the second switch module, the third switch module and the fourth switch module;
  • Step 503 Adjust the initial duty cycle according to the adjusted duty cycle.
  • step 501 by introducing a voltage equalizing loop, using the first voltage threshold to compare with the capacitance voltage value of the first capacitor, and outputting the adjusted duty cycle to control the first switch module, the second switch module, and the third switch
  • the initial duty cycle of the drive signal of the module and the fourth switch module is adjusted, which has the advantages of simple control and high efficiency.
  • the first voltage threshold may be set according to actual conditions, which is not limited in this embodiment of the present application.
  • step 502 may include the following steps 601 to 605.
  • Step 601 Input the output voltage signal of the voltage conversion circuit and the second voltage threshold into the voltage outer loop to obtain a voltage comparison signal
  • Step 602 Obtain a reference current signal according to the voltage comparison signal and the input voltage signal of the voltage conversion circuit
  • Step 603 Input the reference current signal and the inductance current signal of the inductance device into the current inner loop to obtain the first duty cycle;
  • Step 604 Obtain a second duty ratio according to the input voltage signal and the output voltage signal
  • Step 605 Summing the first duty ratio and the second duty ratio to obtain initial duty ratios of the driving signals of the first switch module, the second switch module, the third switch module and the fourth switch module.
  • FIG. 7 is a schematic diagram of the calculation and adjustment of the initial duty ratio provided by the embodiment of the present application.
  • V ref represents the second voltage threshold
  • V BUS represents the output voltage signal of the voltage conversion circuit
  • Vin represents the voltage conversion
  • V cmp represents the voltage comparison signal
  • I ref represents the reference current signal
  • I L represents the inductor current signal
  • V C1ref represents the first voltage threshold
  • V C1 represents the capacitor voltage value
  • D 1 represents the first duty cycle
  • D 2 represents the second duty cycle
  • D represents the initial duty cycle
  • d represents the adjusted duty cycle.
  • D2 can be obtained by the following formula :
  • k is a constant between 0 and 1.
  • the input voltage signal is an AC signal
  • the first switch module or the second switch module is adjusted according to the duty cycle
  • the initial duty ratio of the third switch module or the fourth switch module is adjusted according to the adjusted duty ratio.
  • FIG. 8 is a schematic structural diagram of a small signal model provided by the embodiment of the present application, and V 3 is the third switch module V 4 is the voltage value of the body diode of the fourth switch module, I Q1 is the current value of the first switch module, I Q2 is the current value of the second switch module, and can be obtained by KVL and KCL theorem out:
  • G represents a ratio
  • s represents the S domain
  • D represents the initial duty cycle
  • L is the inductance value of the inductance device
  • C1 is the capacitance value of the first capacitor
  • C BUS is the capacitance value of the first capacitor
  • R is the small signal model
  • the capacitor voltage value when the capacitor voltage value is less than or equal to the first voltage threshold, the difference between the initial duty cycle and the adjusted duty cycle is used as the first target duty cycle of the first switch module, and the The sum of the initial duty cycle and the adjusted duty cycle is used as the second target duty cycle of the second switch module. That is, when the capacitor voltage value is less than or equal to the first voltage threshold, the first target duty cycle of the first switch module is D-d, and the second target duty cycle of the second switch module is D+d, so that the capacitor voltage value increases, Thus, the capacitor voltage value remains stable.
  • the capacitor voltage value When the capacitor voltage value is greater than the first voltage threshold, the sum of the initial duty cycle and the adjusted duty cycle is used as the first target duty cycle of the first switch module, and the difference between the initial duty cycle and the adjusted duty cycle is used as the second The second target duty cycle of the switch module. That is, when the capacitor voltage value is less than or equal to the first voltage threshold, the first target duty cycle of the first switch module is D+d, and the second target duty cycle of the second switch module is D-d, so that the capacitor voltage value decreases, Thus, the capacitor voltage value remains stable.
  • the phase difference between the first target duty cycle and the second target duty cycle may be 180 degrees, thereby improving the control stability.
  • the duty ratio of the third switch module is complementary to the first target duty ratio
  • the duty ratio of the fourth switch module is complementary to the second target duty ratio. The third switch module and the fourth switch module are not described in detail here. The duty cycle of the module.
  • FIG. 9 is a schematic diagram of the relationship between the duty cycle of the first switch module and the second switch module and the inductor current provided by the embodiment of the present application, wherein, when V in is less than When , the duty cycles of the first switch module and the second switch module are both greater than Thereby prolonging the discharge time of the inductance device;
  • FIG. 10 is a schematic diagram of another relationship between the duty cycle of the first switch module and the second switch module and the inductor current provided by the embodiment of the present application, wherein, when V in is greater than When , the duty cycles of the first switch module and the second switch module are both less than Thereby shortening the discharge time of the inductance device. It can be understood that the duty cycles of the first switch module and the second switch module may also be different.
  • the capacitor voltage value when the capacitor voltage value is less than or equal to the first voltage threshold, the difference between the initial duty cycle and the adjusted duty cycle is used as the third target duty cycle of the third switch module, and the initial duty cycle The sum of the adjusted duty ratio and the adjusted duty ratio is used as the fourth target duty ratio of the fourth switch module. That is, when the capacitor voltage value is less than or equal to the first voltage threshold, the first target duty cycle of the third switch module is D-d, and the second target duty cycle of the fourth switch module is D+d, so that the capacitor voltage value increases, Thus, the capacitor voltage value remains stable.
  • the capacitor voltage value When the capacitor voltage value is greater than the first voltage threshold, the sum of the initial duty cycle and the adjusted duty cycle is used as the third target duty cycle of the third switch module, and the difference between the initial duty cycle and the adjusted duty cycle is used as the fourth The fourth target duty cycle of the switch module. That is, when the capacitor voltage value is less than or equal to the first voltage threshold, the first target duty cycle of the third switch module is D+d, and the second target duty cycle of the fourth switch module is D-d, so that the capacitor voltage value decreases, Thus, the capacitor voltage value remains stable.
  • the phase difference between the third target duty cycle and the fourth target duty cycle may be 180 degrees, so as to improve the control stability.
  • the duty cycle of the first switch module is complementary to the third target duty cycle
  • the duty cycle of the second switch module is complementary to the fourth target duty cycle. The duty cycle of the module.
  • the relationship between the duty cycle of the first switch module and the second switch module and the inductor current is similar to that in the positive half cycle of the input voltage signal, and will not be repeated here.
  • the input voltage signal of the voltage conversion circuit is a DC signal, which is also applicable to the method steps shown in Figure 4, Figure 5 and Figure 6, the difference is that the initial The duty cycle, specifically, adjusts the initial duty cycle of the third switch module or the fourth switch module according to the adjusted duty cycle, but does not adjust the initial duty cycle of the first switch module and the second switch module.
  • FIG. 11 is another schematic structural diagram of the small signal model provided by the embodiment of the present application, wherein V 1 is the voltage value of the body diode of the first switching module, and V 2 is the voltage value of the body diode of the second switching module.
  • voltage value I Q3 is the current value of the third switch module
  • I Q4 is the current value of the fourth switch module
  • the voltage conversion circuit shown in Figure 3 can be analyzed by using the small signal model shown in Figure 11, and can also be obtained with Similar to the previous conclusions, therefore, adjusting the initial duty cycle of the third switch module or the fourth switch module according to the adjustment duty cycle can be:
  • the difference between the initial duty cycle and the adjusted duty cycle is used as the third target duty cycle of the third switch module, and the sum of the initial duty cycle and the adjusted duty cycle is used as The fourth target duty cycle of the fourth switch module; that is, when the capacitor voltage value is less than or equal to the first voltage threshold, the first target duty cycle of the third switch module is D-d, and the second target duty cycle of the fourth switch module The ratio is D+d, so that the capacitor voltage value increases, so that the capacitor voltage value remains stable.
  • the sum of the initial duty cycle and the adjusted duty cycle is used as the third target duty cycle of the third switch module, and the difference between the initial duty cycle and the adjusted duty cycle is used as the fourth
  • the fourth target duty cycle of the switch module that is, when the capacitor voltage value is less than or equal to the first voltage threshold, the first target duty cycle of the third switch module is D-d, and the second target duty cycle of the fourth switch module is D+d makes the voltage value of the capacitor rise, so that the voltage value of the capacitor remains stable.
  • FIG. 12 shows a power supply device 1200 provided by an embodiment of the present application.
  • the power supply device 1200 includes: a memory 1201, a processor 1202, and a computer program stored in the memory 1201 and operable on the processor 1202. When the computer program is running, it is used to execute the above-mentioned control method of the voltage conversion circuit.
  • the processor 1202 and the memory 1201 may be connected through a bus or in other ways.
  • the memory 1201 as a non-transitory computer-readable storage medium, can be used to store non-transitory software programs and non-transitory computer-executable programs, such as the control method of the voltage conversion circuit described in the embodiment of the present application.
  • the processor 1202 executes the non-transitory software programs and instructions stored in the memory 1201 to implement the above-mentioned control method of the voltage conversion circuit.
  • the memory 1201 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store a control method for executing the voltage conversion circuit described above.
  • the memory 1201 may include a high-speed random access memory 1201, and may also include a non-transitory memory 1201, such as at least one storage device, a flash memory device or other non-transitory solid-state storage devices.
  • the memory 1201 may include memory 1201 located remotely relative to the processor 1202 , and these remote memories 1201 may be connected to the power supply device 1200 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to realize the control method of the above-mentioned voltage conversion circuit are stored in the memory 1201, and when executed by one or more processors 1202, the above-mentioned control method of the voltage conversion circuit is executed, for example, executing Method steps 401 to 402 in FIG. 4 , method steps 501 to 503 in FIG. 5 , and method steps 601 to 605 in FIG. 6 .
  • the embodiment of the present application also provides a computer-readable storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the above antenna control method.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors, for example, performing method steps 401 to 402 in FIG. Method steps 501 to 503 of , and method steps 601 to 605 in FIG. 6 .
  • the embodiments of the present application at least include the following beneficial effects: by setting the first capacitor between the first common terminal and the second common terminal, the first capacitor becomes a flying capacitor, and by setting the driving module, the driving module is set according to the first
  • the voltage value at both ends of a capacitor adjusts the initial duty cycle of the driving signals of the first switch module, the second switch module, the third switch module and the fourth switch module, which can increase the voltage at both ends of the first capacitor during the operation of the voltage conversion circuit.
  • the balance and stability of the voltage further improves the stability of the voltage conversion circuit; moreover, the number of the first capacitor is one, which is beneficial to reduce the control difficulty of the voltage conversion circuit and reduce the volume of the voltage conversion circuit.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • Computer storage media including, but not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, storage device storage or other magnetic storage devices, or Any other medium that can be used to store desired information and that can be accessed by a computer.
  • communication media typically embody computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Abstract

一种电压转换电路、控制方法、电源装置(1200)及存储介质,其中,在第一公共端(106)和第二公共端(107)之间设置第一电容(C1),使得第一电容(C1)成为飞跨电容,并且设置驱动模块(105),驱动模块(105)被设置为根据第一电容(C1)两端的电压值调节第一开关模块(101)、第二开关模块(102)、第三开关模块(103)和第四开关模块(104)的驱动信号的初始占空比;并且,第一电容(101)的数量为一个。

Description

电压转换电路、控制方法、电源装置及存储介质
相关申请的交叉引用
本申请基于申请号为202110842593.6、申请日为2021年07月26的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电源技术领域,特别是涉及一种电压转换电路、控制方法、电源装置及存储介质。
背景技术
电压转换电路是电源装置不可或缺的一部分,常见的电压转换电路有BOOST电路(升压斩波电路)或者BUCK电路(降压斩波电路),传统的电压转换电路一般通过多个开关管来进行功率控制,然而,由于开关管的电气性能无法完全相同,因而在电压转换电路的工作过程中,各个开关管的动作同步性会降低,使得电压转换电路的稳定性下降。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种电压转换电路、控制方法、电源装置及存储介质。
第一方面,本申请实施例提供了一种电压转换电路,包括第一开关模块、第二开关模块、第三开关模块和第四开关模块,所述第四开关模块、所述第三开关模块、所述第一开关模块、所述第二开关模块和地线依次串联;以及,第一电容,所述第一电容分别连接第一公共端和第二公共端,所述第一公共端为所述第一开关模块和所述第二开关模块的公共端,所述第二公共端为所述第三开关模块和所述第四开关模块的公共端;第二电容,所述第二电容分别连接电源输出端和地线;驱动模块,被设置为根据所述第一电容两端的电压值调节所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块的驱动信号的初始占空比,所述驱动模块分别连接所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块;电感器件,所述电感器件分别连接电源输入端和第三公共端,或者,所述电感器件分别连接第三公共端和电源输出端;其中,所述第三公共端为所述第一开关模块与所述第三开关模块的公共端。
第二方面,本申请实施例还提供了一种电压转换电路的控制方法,应用于第一方面所述的电压转换电路,所述控制方法包括:获取所述第二电容两端的电容电压值;根据所述电容电压值调节所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块的驱动信号的初始占空比。
第三方面,本申请实施例还提供了一种电源装置,包括第一方面所述的电压转换电路;或者,包括存储器、处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现如第二方面所述的控制方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质存储有程序,所述程序被处理器执行实现如第二方面所述的控制方法。
本申请的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请实施例提供的电压转换电路的电路原理图;
图2为本申请实施例提供的驱动模块的电路原理图;
图3为本申请实施例提供的另一种电压转换电路的电路原理图;
图4为本申请实施例提供的电压转换电路的控制方法的流程图;
图5为本申请实施例提供的根据电容电压值调节第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比的具体流程图;
图6为本申请实施例提供的获取第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比的具体流程图;
图7为本申请实施例提供的初始占空比计算及调节的示意图;
图8为本申请实施例提供的小信号模型的一种结构示意图;
图9为本申请实施例提供的第一开关模块和第二开关模块的占空比与电感电流的关系示意图;
图10为本申请实施例提供的第一开关模块和第二开关模块的占空比与电感电流的另一种关系示意图;
图11为本申请实施例提供的小信号模型的另一种结构示意图;
图12为本申请实施例提供的电源装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
在一些情形下的电压转换电路可能会包括多个飞跨电容,为了使多个飞跨电容正常运行,每个飞跨电容两端的电压需要保持在一定的电压值,由于开关管的电气性能无法完全相同,因而在电压转换电路的工作过程中,各个开关管的动作同步性会降低,使得多个飞跨电容两端的电压无法保持稳定,从而使得电压转换电路的稳定性下降。
基于此,本申请实施例提供了一种电压转换电路、控制方法、电源装置及存储介质,该 电压转换电路具有工作稳定性高的优点。
参照图1,图1为本申请实施例提供的电压转换电路的电路原理图,该电压转换电路包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第一电容、第二电容、驱动模块和电感器件,第四开关模块、第三开关模块、第一开关模块、第二开关模块和地线依次串联,第一电容分别连接第一公共端和第二公共端,第一公共端为第一开关模块和第二开关模块的公共端,第二公共端为第三开关模块和第四开关模块的公共端,第二电容分别连接电源输出端和地线,驱动模块被设置为根据第一电容两端的电压值调节第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比,驱动模块分别连接第一开关模块、第二开关模块、第三开关模块和第四开关模块,电感器件分别连接电源输入端和第三公共端,其中,第三公共端为第一开关模块与第三开关模块的公共端。
其中,电感器件分别连接电源输入端和第三公共端,使得图1所示的电压转换电路为BOOST电路,另外,图1所示的电压转换电路还可以包括回流开关管Qn和回流开关管Qp,回流开关管Qn和回流开关管Qp用于在输入交流电信号的正负半周期中形成电流回路,通过在第一公共端和第二公共端之间设置第一电容,使得第一电容成为飞跨电容,并且通过设置驱动模块,驱动模块被设置为根据第一电容两端的电压值调节第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比,可以在电压转换电路工作的过程中提高第一电容两端的电压的平衡性与稳定性,进而提高电压转换电路的稳定性;并且,第一电容的数量为一个,有利于降低电压转换电路的控制难度,并且能够缩小电压转换电路的体积。
在一种可能的实现方式中,第一开关模块、第二开关模块、第三开关模块、第四开关模块分别包括多个相互串联的第一开关器件,第一开关器件可以为开关管,例如MOS管,每个MOS关还包括对应的体二极管和寄生电容。参照图1,即第一开关模块包括开关管Q11至Q1N,第二开关模块包括开关管Q21至Q2N,第三开关模块包括开关管Q31至Q3N,第四开关模块包括开关管Q41至Q4N,其中,通过设置多个相互串联的第一开关器件,可以采用低压的开关管来适配较高的输入电压,提高开关管的控制效率。
在一种可能的实现方式中,第一开关模块的第一开关器件的数量与第二开关模块的第一开关器件的数量相等,第三开关模块的第一开关器件的数量与第四开关模块的第一开关器件的数量相等,此时,相当于第一电容的一端连接在Q11至Q2N的中点,第一电容的另一端连接在Q31至Q4N的中点,从而可以提高第一开关模块和第二开关模块控制的同步性,提高电压转换电路工作的稳定性。
在一种可能的实现方式中,参照图2,图2为本申请实施例提供的驱动模块的电路原理图,驱动模块包括脉冲发生单元、第一变压器、第二开关器件、第二变压器和第五开关器件,脉冲发生单元包括开通脉冲输出端和关断脉冲输出端,第一变压器包括第一原边绕组和多个第一副边绕组,第一原边绕组的两端并联有第一二极管,第一二极管的阳极连接第一原边绕组的异名端,每个第一副边绕组的异名端依次通过第二二极管、第一电阻对应连接第一开关器件的栅极,每个第一副边绕组的同名端对应连接第一开关器件的源极,第二开关器件的栅极连接开通脉冲输出端,第二开关器件的漏极连接第一二极管的阳极,第二开关器件的源极连接地线,第二变压器包括第二原边绕组和多个第二副边绕组,第二原边绕组的两端并联有第三二极管,第三二极管的阳极连接第二原边绕组的异名端,每个第二副边绕组的同名端通 过第三开关器件、第四开关器件对应连接第一开关器件,每个第二副边绕组的同名端连接第三开关器件的栅极,第三开关器件的漏极连接第四开关器件的基极,第三开关器件的源极连接第一开关器件的源极,第四开关器件的发射极连接第一开关器件的栅极,第四开关器件的集电极连接第一开关器件的源极,第五开关器件的栅极连接关断脉冲输出端,第五开关器件的漏极连接第三二极管的阳极,第五开关器件的源极连接地线。
其中,第一变压器用于感应开通脉冲,第二变压器用于感应关断脉冲,第一副边绕组和第二副边绕组的数量可以根据第一开关器件的数量决定,例如,假设有10个第一开关器件,则第一副边绕组和第二副边绕组的数量均为10个,并分别对应连接每一个第一开关器件,从而控制多个第一开关器件的导通或者关断。可以理解,图2中仅以两个第一开关器件来示例性地说明第一开关器件导通和关断的控制原理。
脉冲发生单元产生开通脉冲并通过开通脉冲输出端输出到第二开关器件,使得第二开关器件导通,第一副边绕组感应出与开通脉冲对应的脉冲,通过第一二极管和第一电阻施加到第一开关器件的栅极,使得多个第一开关器件同时导通。其中,第一二极管和第一电阻可以起到防止电流回流的作用,提高电压转换电路的稳定性。
脉冲发生单元产生关断脉冲并通过关断脉冲输出端输出到第五开关器件,使得第五开关器件导通,第二副边绕组感应出与关断脉冲对应的脉冲,施加到第三开关器件的栅极,使得第三开关器件导通,从而使得第四开关器件导通,为第一开关器件的寄生电容提供一个放电回路,从而使多个第一开关器件同时关断。
在一种可能的实现方式中,参照图2,驱动模块还包括第二电阻和第三电容,第二电阻分别连接第四开关器件的基极和集电极,第三电容分别连接第四开关器件的基极和集电极。其中,通过设置第二电阻和第三电容,即使第四开关器件出现故障导通失败,也可以为第一开关器件的寄生电容提供一个放电回路,从而提高第一开关器件关断的稳定性。
参照图3,图3为本申请实施例提供的另一种电压转换电路的电路原理图,与图1所示的电路原理图的区别在于,电感器件分别连接第三公共端和电源输出端,使得图1所示的电压转换电路为BUCK电路,其中,图3所示的电压转换电路中的第一开关模块、第二开关模块、第三开关模块、第四开关模块和驱动模块的结构与图1的类似,在此不再赘述。
下面结合方法实施例来说明图1所示的电压转换电路的工作原理。基于图1所示的电压转换电路,参照图4,图4为本申请实施例提供的电压转换电路的控制方法的流程图,该控制方法包括但不限于以下步骤401至步骤402。
步骤401:获取第二电容两端的电容电压值;
步骤402:根据电容电压值调节第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比。
上述步骤401至步骤402中,通过根据第一电容两端的电压值调节第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比,可以在电压转换电路工作的过程中提高第一电容两端的电压的平衡性与稳定性,进而提高电压转换电路的稳定性。
在一种可能的实现方式中,参照图5,图5为本申请实施例提供的根据电容电压值调节第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比的具体流程图,上述步骤402可以包括以下步骤501至步骤503。
步骤501:将电容电压值以及第一电压阈值输入至均压环,得到调节占空比;
步骤502:获取第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比;
步骤503:根据调节占空比调节初始占空比。
其中,上述步骤501中,通过引入均压环,利用第一电压阈值与第一电容的电容电压值进行比对,输出调节占空比来对第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比进行调节,具有控制简单、效率高的优点。
可以理解,第一电压阈值可以根据实际情况设置,本申请实施例不做限定。
在一种可能的实现方式中,参照图6,图6为本申请实施例提供的获取第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比的具体流程图,上述步骤502可以包括以下步骤601至步骤605。
步骤601:将电压转换电路的输出电压信号以及第二电压阈值输入至电压外环,得到电压比较信号;
步骤602:根据电压比较信号和电压转换电路的输入电压信号得到参考电流信号;
步骤603:将参考电流信号以及电感器件的电感电流信号输入至电流内环,得到第一占空比;
步骤604:根据输入电压信号和输出电压信号得到第二占空比;
步骤605:对第一占空比和第二占空比求和,得到第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比。
参照图7,图7为本申请实施例提供的初始占空比计算及调节的示意图,图7中V ref代表第二电压阈值,V BUS代表电压转换电路的输出电压信号,V in代表电压转换电路的输入电压信号,V cmp代表电压比较信号,I ref代表参考电流信号,I L代表电感电流信号,V C1ref代表第一电压阈值,V C1代表电容电压值,D 1表示第一占空比,D 2表示第二占空比,D表示初始占空比,d表示调节占空比。
其中,D 2可以通过以下公式得到:
Figure PCTCN2022104725-appb-000001
其中,k为0到1之间的常数。
得到第二占空比后,初始占空比为:D=D 1+D 2
可以理解,上述第二电压阈值可以根据实际情况设置,本申请实施例不做限定。
在一种可能的实现方式中,基于图1所示的电压转换电路,输入电压信号为交流信号,在输入电压信号的正半周期,根据调节占空比调节第一开关模块或者第二开关模块的初始占空比;在输入电压信号的负半周期,根据调节占空比调节第三开关模块或者第四开关模块的初始占空比。
以交流信号的正半周期为例,采用小信号模型对电压转换电路进行分析,参照图8,图8为本申请实施例提供的小信号模型的一种结构示意图,V 3为第三开关模块的体二极管的电压值,V 4为第四开关模块的体二极管的电压值,I Q1为第一开关模块的电流值,I Q2为第二开关模块的电流值,通过KVL、KCL定理可以得出:
Figure PCTCN2022104725-appb-000002
Figure PCTCN2022104725-appb-000003
Figure PCTCN2022104725-appb-000004
Figure PCTCN2022104725-appb-000005
其中,G代表一个比值,s代表S域,
Figure PCTCN2022104725-appb-000006
代表电压转换电路的输入电压变化值,
Figure PCTCN2022104725-appb-000007
代表电压转换电路的输出电压的变化值,D代表初始占空比,
Figure PCTCN2022104725-appb-000008
代表第一开关模块的驱动信号的占空比的变化量,
Figure PCTCN2022104725-appb-000009
代表第二开关模块的驱动信号的占空比的变化量,L为电感器件的电感值,C 1为第一电容的电容值,C BUS为第一电容的电容值,R为小信号模型中的电阻的电阻值,通过小信号分析可知,当第一开关模块的导通时间增加,第二开关模块的导通时间减少时,第一电容的电压会上升而电压转换电路的输出电压保持不变;反之,当第一开关模块的导通时间减少,第二开关模块的导通时间增加时,第一电容的电压会下降而电压转换电路的输出电压保持不变。
基于此,在输入电压信号的正半周期,当电容电压值小于或者等于第一电压阈值,将初始占空比和调节占空比之差作为第一开关模块的第一目标占空比,将初始占空比和调节占空比之和作为第二开关模块的第二目标占空比。即,当电容电压值小于或者等于第一电压阈值,第一开关模块的第一目标占空比为D-d,第二开关模块的第二目标占空比为D+d,使电容电压值上升,从而电容电压值保持稳定。
当电容电压值大于第一电压阈值,将初始占空比和调节占空比之和作为第一开关模块的第一目标占空比,将初始占空比和调节占空比之差作为第二开关模块的第二目标占空比。即,当电容电压值小于或者等于第一电压阈值,第一开关模块的第一目标占空比为D+d,第二开关模块的第二目标占空比为D-d,使电容电压值下降,从而电容电压值保持稳定。
其中,在输入电压信号的正半周期,第一目标占空比和第二目标占空比之间的相位差可以为180度,从而提高控制的稳定性。另外,第三开关模块的占空比与第一目标占空比互补,第四开关模块的占空比与第二目标占空比互补,在此不再具体说明第三开关模块和第四开关模块的占空比。
参照图9,图9为本申请实施例提供的第一开关模块和第二开关模块的占空比与电感电流的关系示意图,其中,当V in小于
Figure PCTCN2022104725-appb-000010
时,第一开关模块和第二开关模块的占空比均大于
Figure PCTCN2022104725-appb-000011
从而延长电感器件的放电时间;参照图10,图10为本申请实施例提供的第一开关模块和第二开关模块的占空比与电感电流的另一种关系示意图,其中,当V in大于
Figure PCTCN2022104725-appb-000012
时,第一开关模块和第二开关模块的占空比均小于
Figure PCTCN2022104725-appb-000013
从而缩短电感器件的放电时间。可以理解,第一开关模块和第二开关模块的占空比也可以不相同。
在输入电压信号的负半周期,当电容电压值小于或者等于第一电压阈值,将初始占空比和调节占空比之差作为第三开关模块的第三目标占空比,将初始占空比和调节占空比之和作为第四开关模块的第四目标占空比。即,当电容电压值小于或者等于第一电压阈值,第三开关模块的第一目标占空比为D-d,第四开关模块的第二目标占空比为D+d,使电容电压值上升,从而电容电压值保持稳定。
当电容电压值大于第一电压阈值,将初始占空比和调节占空比之和作为第三开关模块的 第三目标占空比,将初始占空比和调节占空比之差作为第四开关模块的第四目标占空比。即,当电容电压值小于或者等于第一电压阈值,第三开关模块的第一目标占空比为D+d,第四开关模块的第二目标占空比为D-d,使电容电压值下降,从而电容电压值保持稳定。
其中,在输入电压信号的负半周期,第三目标占空比和第四目标占空比之间的相位差可以为180度,从而提高控制的稳定性。另外,第一开关模块的占空比与第三目标占空比互补,第二开关模块的占空比与第四目标占空比互补,在此不再具体说明第一开关模块和第二开关模块的占空比。
类似地,在输入电压信号的负半周期,第一开关模块和第二开关模块的占空比与电感电流的关系与输入电压信号的正半周期相类似,在此不再赘述。
另外,基于图3所示的电压转换电路,电压转换电路的输入电压信号为直流信号,其同样适用图4、图5以及图6所示的方法步骤,区别在于,根据调节占空比调节初始占空比,具体是根据调节占空比调节第三开关模块或者第四开关模块的初始占空比,而不调节第一开关模块和第二开关模块的初始占空比。
基于图3所示的初始占空比计算及调节的示意图,图3所示的电压转换电路与图1所示的电压转换电路的区别在于,图3所示的电压转换电路中的D 2可以通过以下公式得到:
Figure PCTCN2022104725-appb-000014
参照图11,图11为本申请实施例提供的小信号模型的另一种结构示意图,其中,V 1为第一开关模块的体二极管的电压值,V 2为第二开关模块的体二极管的电压值,I Q3为第三开关模块的电流值,I Q4为第四开关模块的电流值,图3所示的电压转换电路可以采用图11所示的小信号模型进行分析,同样可以得到与前面相类似的结论,因此,根据调节占空比调节第三开关模块或者第四开关模块的初始占空比,可以是:
当电容电压值小于或者等于第一电压阈值,将初始占空比和调节占空比之差作为第三开关模块的第三目标占空比,将初始占空比和调节占空比之和作为第四开关模块的第四目标占空比;即,当电容电压值小于或者等于第一电压阈值,第三开关模块的第一目标占空比为D-d,第四开关模块的第二目标占空比为D+d,使电容电压值上升,从而电容电压值保持稳定。
当电容电压值大于第一电压阈值,将初始占空比和调节占空比之和作为第三开关模块的第三目标占空比,将初始占空比和调节占空比之差作为第四开关模块的第四目标占空比;即,当电容电压值小于或者等于第一电压阈值,第三开关模块的第一目标占空比为D-d,第四开关模块的第二目标占空比为D+d,使电容电压值上升,从而电容电压值保持稳定。
可以理解的是,虽然上述各个流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本实施例中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,上述流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
图12示出了本申请实施例提供的电源装置1200。电源装置1200包括:存储器1201、处理器1202及存储在存储器1201上并可在处理器1202上运行的计算机程序,计算机程序运行时用于执行上述的电压转换电路的控制方法。
处理器1202和存储器1201可以通过总线或者其他方式连接。
存储器1201作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请实施例描述的电压转换电路的控制方法。处理器1202通过运行存储在存储器1201中的非暂态软件程序以及指令,从而实现上述的电压转换电路的控制方法。
存储器1201可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的电压转换电路的控制方法。此外,存储器1201可以包括高速随机存取存储器1201,还可以包括非暂态存储器1201,例如至少一个储存设备存储器件、闪存器件或其他非暂态固态存储器件。在一些实施方式中,存储器1201可包括相对于处理器1202远程设置的存储器1201,这些远程存储器1201可以通过网络连接至该电源装置1200。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的电压转换电路的控制方法所需的非暂态软件程序以及指令存储在存储器1201中,当被一个或者多个处理器1202执行时,执行上述的电压转换电路的控制方法,例如,执行图4中的方法步骤401至402、图5中的方法步骤501至503、图6中的方法步骤601至605。
本申请实施例还提供了计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述的天线控制方法。
在一实施例中,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,执行图4中的方法步骤401至402、图5中的方法步骤501至503、图6中的方法步骤601至605。
本申请实施例至少包括以下有益效果:通过在第一公共端和第二公共端之间设置第一电容,使得第一电容成为飞跨电容,并且通过设置驱动模块,驱动模块被设置为根据第一电容两端的电压值调节第一开关模块、第二开关模块、第三开关模块和第四开关模块的驱动信号的初始占空比,可以在电压转换电路工作的过程中提高第一电容两端的电压的平衡性与稳定性,进而提高电压转换电路的稳定性;并且,第一电容的数量为一个,有利于降低电压转换电路的控制难度,并且能够缩小电压转换电路的体积。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、储存设备存储或其他磁存储装置、或者 可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
还应了解,本申请实施例提供的各种实施方式可以任意进行组合,以实现不同的技术效果。
以上是对本申请的若干实施方式进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (14)

  1. 一种电压转换电路,包括第一开关模块、第二开关模块、第三开关模块和第四开关模块,所述第四开关模块、所述第三开关模块、所述第一开关模块、所述第二开关模块和地线依次串联;
    以及,
    第一电容,所述第一电容分别连接第一公共端和第二公共端,所述第一公共端为所述第一开关模块和所述第二开关模块的公共端,所述第二公共端为所述第三开关模块和所述第四开关模块的公共端;
    第二电容,所述第二电容分别连接电源输出端和地线;
    驱动模块,被设置为根据所述第一电容两端的电压值调节所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块的驱动信号的初始占空比,所述驱动模块分别连接所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块;
    电感器件,所述电感器件分别连接电源输入端和第三公共端,或者,所述电感器件分别连接第三公共端和电源输出端;其中,所述第三公共端为所述第一开关模块与所述第三开关模块的公共端。
  2. 根据权利要求1所述的电压转换电路,其中:
    所述第一开关模块、所述第二开关模块、所述第三开关模块、所述第四开关模块分别包括多个相互串联的第一开关器件。
  3. 根据权利要求2所述的电压转换电路,其中:
    所述第一开关模块的第一开关器件的数量与所述第二开关模块的第一开关器件的数量相等,所述第三开关模块的第一开关器件的数量与所述第四开关模块的第一开关器件的数量相等。
  4. 根据权利要求2或3所述的电压转换电路,其中,所述驱动模块包括:
    脉冲发生单元,包括开通脉冲输出端和关断脉冲输出端;
    第一变压器,包括第一原边绕组和多个第一副边绕组,所述第一原边绕组的两端并联有第一二极管,所述第一二极管的阳极连接所述第一原边绕组的异名端,每个所述第一副边绕组的异名端依次通过第二二极管、第一电阻对应连接所述第一开关器件的栅极,每个所述第一副边绕组的同名端对应连接所述第一开关器件的源极;
    第二开关器件,所述第二开关器件的栅极连接所述开通脉冲输出端,所述第二开关器件的漏极连接所述第一二极管的阳极,所述第二开关器件的源极连接地线;
    第二变压器,包括第二原边绕组和多个第二副边绕组,所述第二原边绕组的两端并联有第三二极管,所述第三二极管的阳极连接所述第二原边绕组的异名端,每个所述第二副边绕组的同名端通过第三开关器件、第四开关器件对应连接所述第一开关器件,每个所述第二副边绕组的同名端连接所述第三开关器件的栅极,所述第三开关器件的漏极连接所述第四开关器件的基极,所述第三开关器件的源极连接所述第一开关器件的源极,所述第四开关器件的发射极连接所述第一开关器件的栅极,所述第四开关器件的集电极连接所述第一开关器件的源极;
    第五开关器件,所述第五开关器件的栅极连接所述关断脉冲输出端,所述第五开关器件 的漏极连接所述第三二极管的阳极,所述第五开关器件的源极连接地线。
  5. 根据权利要求4所述的电压转换电路,其中,所述驱动模块还包括第二电阻和第三电容,所述第二电阻分别连接所述第四开关器件的基极和集电极,所述第三电容分别连接所述第四开关器件的基极和集电极。
  6. 一种电压转换电路的控制方法,应用于权利要求1至5任意一项所述的电压转换电路,所述控制方法包括:
    获取所述第二电容两端的电容电压值;
    根据所述电容电压值调节所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块的驱动信号的初始占空比。
  7. 根据权利要求6所述的控制方法,其中,所述根据所述电容电压值调节所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块的驱动信号的初始占空比,包括:
    将所述电容电压值以及第一电压阈值输入至均压环,得到调节占空比;
    获取所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块的驱动信号的初始占空比;
    根据所述调节占空比调节所述初始占空比。
  8. 根据权利要求7所述的控制方法,其中,所述获取所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块的驱动信号的初始占空比,包括:
    将所述电压转换电路的输出电压信号以及第二电压阈值输入至电压外环,得到电压比较信号;
    根据所述电压比较信号和所述电压转换电路的输入电压信号得到参考电流信号;
    将所述参考电流信号以及所述电感器件的电感电流信号输入至电流内环,得到第一占空比;
    根据所述输入电压信号和所述输出电压信号得到第二占空比;
    对所述第一占空比和所述第二占空比求和,得到所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块的驱动信号的初始占空比。
  9. 根据权利要求7所述的控制方法,其中,所述根据所述调节占空比调节所述初始占空比,包括:
    当所述电感器件分别连接电源输入端和第三公共端,所述电压转换电路的输入电压信号为交流信号,在所述输入电压信号的正半周期,根据所述调节占空比调节所述第一开关模块或者所述第二开关模块的所述初始占空比;在所述输入电压信号的负半周期,根据所述调节占空比调节所述第三开关模块或者所述第四开关模块的所述初始占空比;
    或者,当所述电感器件分别连接第三公共端和电源输出端,所述电压转换电路的输入电压信号为直流信号,根据所述调节占空比调节所述第三开关模块或者所述第四开关模块的所述初始占空比。
  10. 根据权利要求9所述的控制方法,其中,当所述电感器件分别连接电源输入端和第三公共端,所述根据所述调节占空比调节所述第一开关模块或者所述第二开关模块的所述初始占空比,包括以下至少之一:
    当所述电容电压值小于或者等于所述第一电压阈值,将所述初始占空比和所述调节占空 比之差作为所述第一开关模块的第一目标占空比,将所述初始占空比和所述调节占空比之和作为所述第二开关模块的第二目标占空比;或
    当所述电容电压值大于所述第一电压阈值,将所述初始占空比和所述调节占空比之和作为所述第一开关模块的第一目标占空比,将所述初始占空比和所述调节占空比之差作为所述第二开关模块的第二目标占空比。
  11. 根据权利要求9所述的控制方法,其中,当所述电感器件分别连接电源输入端和第三公共端,所述根据所述调节占空比调节所述第三开关模块或者所述第四开关模块的所述初始占空比,包括以下至少之一:
    当所述电容电压值小于或者等于所述第一电压阈值,将所述初始占空比和所述调节占空比之差作为所述第三开关模块的第三目标占空比,将所述初始占空比和所述调节占空比之和作为所述第四开关模块的第四目标占空比;或
    当所述电容电压值大于所述第一电压阈值,将所述初始占空比和所述调节占空比之和作为所述第三开关模块的第三目标占空比,将所述初始占空比和所述调节占空比之差作为所述第四开关模块的第四目标占空比。
  12. 根据权利要求9所述的控制方法,其中,当所述电感器件分别连接第三公共端和电源输出端,所述根据所述调节占空比调节所述第三开关模块或者所述第四开关模块的所述初始占空比,包括以下至少之一:
    当所述电容电压值小于或者等于所述第一电压阈值,将所述初始占空比和所述调节占空比之差作为所述第三开关模块的第三目标占空比,将所述初始占空比和所述调节占空比之和作为所述第四开关模块的第四目标占空比;或
    当所述电容电压值大于所述第一电压阈值,将所述初始占空比和所述调节占空比之和作为所述第三开关模块的第三目标占空比,将所述初始占空比和所述调节占空比之差作为所述第四开关模块的第四目标占空比。
  13. 一种电源装置,包括权利要求1至5任意一项所述的电压转换电路;
    或者,包括存储器、处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现如权利要求6至12中任意一项所述的控制方法。
  14. 一种计算机可读存储介质,其中,所述存储介质存储有程序,所述程序被处理器执行实现如权利要求6至12中任意一项所述的控制方法。
PCT/CN2022/104725 2021-07-26 2022-07-08 电压转换电路、控制方法、电源装置及存储介质 WO2023005645A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22848250.1A EP4362310A1 (en) 2021-07-26 2022-07-08 Voltage conversion circuit, control method, power supply device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110842593.6 2021-07-26
CN202110842593.6A CN115694192B (zh) 2021-07-26 2021-07-26 电压转换电路、控制方法、电源装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023005645A1 true WO2023005645A1 (zh) 2023-02-02

Family

ID=85044708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104725 WO2023005645A1 (zh) 2021-07-26 2022-07-08 电压转换电路、控制方法、电源装置及存储介质

Country Status (3)

Country Link
EP (1) EP4362310A1 (zh)
CN (1) CN115694192B (zh)
WO (1) WO2023005645A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389971A (zh) * 2002-07-16 2003-01-08 艾默生网络能源有限公司 一种多路输出直流/直流变换器及变换方法
US20140266135A1 (en) * 2013-03-15 2014-09-18 Maxim Integrated Products, Inc. Multi-level step-up converter topologies, control and soft start systems and methods
US9866113B1 (en) * 2016-12-15 2018-01-09 Texas Instruments Incorporated Multilevel buck converter with a flying capacitor and charge pump
US20190190373A1 (en) * 2017-12-19 2019-06-20 Apple Inc. Multi Output Three Level Buck Converter
US20210152100A1 (en) * 2019-11-19 2021-05-20 Infineon Technologies Ag Multilevel Power Converter and Control Method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807172B2 (ja) * 2010-09-27 2015-11-10 パナソニックIpマネジメント株式会社 電源装置および、これを用いた照明器具
CN107276417A (zh) * 2017-08-09 2017-10-20 广州金升阳科技有限公司 一种电源系统
CN111869072B (zh) * 2018-08-01 2021-10-01 华为技术有限公司 一种电压转换电路的控制电路
CN110190732B (zh) * 2019-04-15 2020-06-09 华中科技大学 一种驱动芯片的供电电源及驱动电路
CN210867509U (zh) * 2019-11-04 2020-06-26 河北电立方新能源科技有限公司 双向dc/dc变换器和系统
CN111371323A (zh) * 2020-04-03 2020-07-03 宁波锦浪新能源科技股份有限公司 一种boost升压功率变换电路及其控制方法
CN112152464A (zh) * 2020-09-04 2020-12-29 东南大学 具备故障阻断能力的器件串联式直流变压器及其控制方法
CN112737335B (zh) * 2020-12-29 2021-12-07 广州大学 一种升压转换电路的过零检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389971A (zh) * 2002-07-16 2003-01-08 艾默生网络能源有限公司 一种多路输出直流/直流变换器及变换方法
US20140266135A1 (en) * 2013-03-15 2014-09-18 Maxim Integrated Products, Inc. Multi-level step-up converter topologies, control and soft start systems and methods
US9866113B1 (en) * 2016-12-15 2018-01-09 Texas Instruments Incorporated Multilevel buck converter with a flying capacitor and charge pump
US20190190373A1 (en) * 2017-12-19 2019-06-20 Apple Inc. Multi Output Three Level Buck Converter
US20210152100A1 (en) * 2019-11-19 2021-05-20 Infineon Technologies Ag Multilevel Power Converter and Control Method

Also Published As

Publication number Publication date
CN115694192A (zh) 2023-02-03
CN115694192B (zh) 2024-04-26
EP4362310A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
US10298124B2 (en) Hybrid DCDC power converter with increased efficiency
CN109617148B (zh) 一种飞跨电容的充电方法及装置
US20190190281A1 (en) Charging circuit, system and method, and electronic device
TW202002485A (zh) 功率轉換器
US10067166B2 (en) Circuit for sampling current and system for sampling current of Totem-Pole bridgeless circuit
WO2014090044A1 (zh) 一种电压调节方法、预稳压电源电路及系统
CN109756111A (zh) 用于开关模式电源的电路
US20170093286A1 (en) Dc/dc conversion apparatus
CN114337267A (zh) 一种基于cot架构的电压控制电路、方法及电源设备
CN104682727A (zh) 带有电流补偿电路的原边恒压反馈ac/dc转换器
CN102570798B (zh) 正激开关电源恒定伏秒积辅助电源电路
WO2023005645A1 (zh) 电压转换电路、控制方法、电源装置及存储介质
Freitas et al. Analysis of high voltage step-up nonisolated DC–DC boost converters
CN210380337U (zh) 一种支持灵活输入输出的充电芯片
CN219181412U (zh) 一种电源升压电路
Chao et al. A soft-switching coupled inductor bidirectional DC–DC converter with high-conversion ratio
WO2018010562A1 (zh) 电流控制方法、装置及供电电源
CN108933517A (zh) 开关变换器的输出电压反馈电路及温度补偿电路
Divya Navamani et al. Reliability and performance analysis of a high step-up DC–DC converter with a coupled inductor for standalone PV application
CN104253955A (zh) 一种低功耗的恒流与稳压控制电路及电视机
Shokati Asl et al. A class of quasi-Cuk DC/DC converters: Steady-state analysis and design
Alcazar et al. Modelling of nonisolated high-voltage gain boost converters using the PWM switch model
CN109728711B (zh) 一种接触器节电器电路及其控制方法
Sathyan et al. Low switching stress DC-DC converter with capability of high voltage gain for low voltage energy sources
Pakdel et al. A novel soft switching DC–DC boost converter with higher efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848250

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022848250

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022848250

Country of ref document: EP

Effective date: 20240124

NENP Non-entry into the national phase

Ref country code: DE