WO2018010562A1 - 电流控制方法、装置及供电电源 - Google Patents

电流控制方法、装置及供电电源 Download PDF

Info

Publication number
WO2018010562A1
WO2018010562A1 PCT/CN2017/091493 CN2017091493W WO2018010562A1 WO 2018010562 A1 WO2018010562 A1 WO 2018010562A1 CN 2017091493 W CN2017091493 W CN 2017091493W WO 2018010562 A1 WO2018010562 A1 WO 2018010562A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
unit
current value
output
current
Prior art date
Application number
PCT/CN2017/091493
Other languages
English (en)
French (fr)
Inventor
周平森
张滨
蒋思东
王新军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018010562A1 publication Critical patent/WO2018010562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present application relates to, but is not limited to, the field of communications, and more particularly to a current control method, apparatus, and power supply.
  • the traditional partitioned power supply scheme has many disadvantages such as a large number of partitioned roads, high requirements for power distribution in the front stage, and large configuration restrictions on the system boards.
  • Another common solution is to use a power pool solution to parallel the outputs of multiple power supplies. Powering the communication device solves the problem of partition power supply.
  • One solution is to connect the variable resistance impedance in series on the power supply line, and achieve the current sharing of each supply current by adjusting the impedance.
  • the solution has large loss and low power supply efficiency;
  • the second solution is to adopt a non-isolated conversion scheme.
  • the duty cycle of the converter achieves output regulation and current sharing.
  • the second solution since the input and output of the common non-isolated converter are common, there is a problem of ground current sharing. If the power line and the inductor are connected in series on the ground to achieve ground current sharing, there is a problem that the loss is large and the efficiency is low.
  • Embodiments of the present invention provide a current control method, device, and power supply to reduce power loss and improve power efficiency.
  • a power supply including: a non-isolated unit and an isolation conversion unit, the non-isolated unit and the isolation conversion unit are connected in parallel at an input end, and the non-isolation is connected in series at the output end.
  • a sum of a first output voltage of the unit and a second output voltage of the isolation conversion unit is an output voltage of the power supply, wherein
  • the isolation conversion unit is configured to set a current value according to an output current of the power supply source, and a preset current value for performing current sharing on each of the power supply sources in the power supply source in which the power supply source is located. Adjusting the second output voltage to adjust a current value of the output current of the power supply to the preset current value.
  • the isolation conversion unit includes: a current collection unit configured to collect the current value of an output current of the power supply; and a current sharing control unit configured to collect the current collected by the current collection unit The current value is compared with the preset current value to obtain a deviation; the power conversion unit is configured to adjust the second output voltage of the isolation conversion unit according to the deviation obtained by the current sharing control unit.
  • a ratio of an output power of the isolation transform unit to a total output power of the power supply is less than a predetermined threshold, wherein the predetermined threshold is less than or equal to 50%.
  • the non-isolated unit is at least one of the following: a through circuit, a Buck non-isolated conversion circuit, a Boost non-isolated conversion circuit, and a BuckBoost non-isolated conversion circuit.
  • a current control method includes: collecting a current value of an output current of a power supply, wherein the power supply includes: a non-isolated unit and an isolation conversion unit, the non-isolated unit And the isolation conversion unit is connected in parallel at the input end, and is connected in series at the output end, wherein a sum of a first output voltage of the non-isolated unit and a second output voltage of the isolation conversion unit is an output voltage of the power supply;
  • the current value, and a preset current value for currentizing each of the power supply cells in which the power supply is located, by adjusting the second output voltage, the power supply is The current value of the output current is adjusted to the preset current value.
  • the second output is adjusted according to the collected current value and a preset current value for currentizing each of the power supply sources in the power supply source in which the power supply is located.
  • adjusting a current value of the output current of the power supply to the preset current value comprises: comparing the collected current value with the preset current value to obtain a deviation; according to the obtained deviation, The output current of the power supply is adjusted to the preset current value by adjusting the second output voltage.
  • the ratio of the output power of the isolation transform unit to the total output power of the power supply is less than a predetermined threshold, wherein the predetermined threshold is less than 50%.
  • the non-isolated unit is at least one of the following: a through circuit, a Buck non-isolated conversion circuit, a Boost non-isolated conversion circuit, and a BuckBoost non-isolated conversion circuit.
  • a current control apparatus includes: an acquisition module that collects a current value of an output current of a power supply, wherein the power supply includes: a non-isolated unit and an isolation conversion unit, a non-isolated unit is connected in parallel with the isolation conversion unit at an input end, and is connected in series at an output end, and a sum of a first output voltage of the non-isolated unit and a second output voltage of the isolation conversion unit is an output voltage of the power supply And an adjustment module configured to adjust the second output according to the collected current value and a preset current value for currentizing each of the power supply sources in the power supply source in which the power supply is located a voltage that adjusts a current value of an output current of the power supply to the preset current value.
  • a power supply comprising the apparatus of any of the above embodiments.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the following steps: collecting a current value of an output current of the power supply, wherein the power supply includes: a non-isolated unit and an isolation conversion unit, the non-isolated unit is isolated from the The conversion unit is connected in parallel at the input end, and is connected in series at the output end, and the sum of the first output voltage of the non-isolated unit and the second output voltage of the isolation conversion unit is an output voltage of the power supply; according to the collected current a value, and a preset current value for currentizing each of the power supply cells in which the power supply is located, and adjusting a current of the output current of the power supply by adjusting the second output voltage The value is adjusted to the preset current value.
  • the storage medium is further configured to store program code for performing the following steps: according to the collected current value, and for each power supply in the power supply pool in which the power supply is located
  • Presetting the current value adjusting the current value of the output current of the power supply to the preset current value by adjusting the second output voltage comprises: performing the collected current value and the preset current value Comparing, obtaining a deviation; adjusting the output current of the power supply to the preset current value by adjusting the second output voltage according to the obtained deviation.
  • the storage medium is further configured to store program code for performing: the ratio of the output power of the isolation transform unit to the total output power of the power supply is small And a predetermined threshold, wherein the predetermined threshold is less than 50%.
  • the storage medium is further configured to store program code for performing the following steps: the non-isolated unit is at least one of: a pass-through circuit, a Buck non-isolated conversion circuit, a Boost non-isolated conversion circuit, and a BuckBoost non-isolated Transform circuit.
  • the embodiment of the present invention by adding an isolation conversion unit connected in parallel with the input end of the non-isolated unit and the output end in series, according to the current value of the output current of the power supply, and each power supply in the power supply pool in which the power supply is located
  • the preset current value of the current sharing is adjusted by adjusting the output voltage of the isolation conversion unit to adjust the current value of the output current of the power supply to a preset current value, and the current is reduced by adjusting the output voltage of the isolated isolation unit. Power loss, improve power efficiency.
  • FIG. 1 is a block diagram showing the structure of a power supply according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view 1 of a power supply according to an embodiment of the present invention.
  • FIG. 3 is a second schematic structural diagram of a power supply according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view 1 of a non-isolated unit 12 according to an embodiment of the present invention.
  • FIG. 5 is a second schematic structural diagram of a non-isolated unit 12 according to an embodiment of the present invention.
  • FIG. 6 is a third schematic structural diagram of a non-isolated unit 12 according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram 4 of a non-isolation unit 12 according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram 5 of a non-isolation unit 12 according to an embodiment of the present invention.
  • FIG. 9 is a flow chart of a current control method according to an embodiment of the present invention.
  • Figure 10 is a block diagram showing the structure of a current control device according to an embodiment of the present invention.
  • FIG. 11 is a block diagram showing the structure of an adjustment module 104 of a current control device according to an embodiment of the present invention.
  • Figure 12 is a block diagram showing the structure of a power supply according to an embodiment of the present invention.
  • the power supply provided by Embodiment 1 of the present application may be any type of power supply in a power supply pool that needs to be currentized.
  • 1 is a block diagram showing the structure of a power supply according to an embodiment of the present invention.
  • the power supply may include a non-isolated unit 12 and one or more (only one shown) isolation transform unit 14.
  • the non-isolation unit 12 and the isolation conversion unit 14 are connected in parallel at the input end, and are connected in series at the output end.
  • the sum of the first output voltage of the non-isolation unit 12 and the second output voltage of the isolation conversion unit 14 is the output voltage of the power supply, wherein ,
  • the isolation conversion unit 14 is configured to set a current value according to an output current of the power supply source, and a preset current value for performing current sharing on each of the power supply sources in the power supply source in which the power supply source is located, by adjusting the second output
  • the voltage is used to adjust the current value of the output current of the power supply to a preset current value.
  • the current value of the output current of the power supply is adjusted to a preset current value, which is reduced. Power loss increases power efficiency.
  • the preset current value may be at least one of the following: an average current value of the power supply source in which the power supply is located, and a maximum output current of each power supply in the power supply pool where the power supply is located.
  • Current value preset output current value of the main unit (the main unit can be a certain power supply, or it can be other devices than the power supply pool where the power supply is located).
  • Other current values that can be used to average the power supply in the power supply pool in which the power supply is located can be used as the preset current value.
  • the isolation transform unit 14 may include a unit: a current collecting unit configured to collect a current value of an output current of the power supply; and a current sharing control unit configured to The current value collected by the current collecting unit is compared with the preset current value to obtain a deviation; and the power conversion unit is configured to adjust the second output voltage of the isolation conversion unit according to the deviation obtained by the current sharing control unit.
  • the output voltage of the isolation conversion unit is adjusted, and the output current of the power supply can be output according to the actual output current. Adjustments are made to improve the effectiveness of current sharing adjustment and avoid waste of resources.
  • the ratio of the output power of the isolation transform unit to the total output power of the power supply may be less than a predetermined threshold, and the predetermined threshold may be equal to 50%, or may be any value less than 50%, eg, 5%, 10%, 15%, 20%, 25%, etc.
  • the output power of the isolation transform unit accounts for a small portion of the total output power of the power supply, the need for the isolation transform unit volume, loss, and/or efficiency is reduced.
  • the non-isolated unit may take various forms.
  • the non-isolated unit may be one of the following non-isolated conversion circuits: a straight-through circuit, a Buck non-isolated conversion circuit, a Boost non-isolated conversion circuit, and a BuckBoost non-isolated conversion.
  • the circuit may also be a circuit composed of two or more Buck non-isolated conversion circuits, Boost non-isolated conversion circuits or BuckBoost non-isolated conversion circuits, and may also be other forms of non-isolated conversion circuits.
  • a power supply is provided.
  • 2 is a first schematic structural view of a power supply according to an embodiment of the present invention.
  • the power supply includes: a non-isolated unit 12, an isolation conversion unit 14, the input of the power supply is Vi, the output is Vo, the output Vo1 of the non-isolation unit 12, and the output Vo2 of the isolation conversion unit 14 are both
  • the stream bus is Is, wherein the non-isolated unit 12 and the isolation converter unit 14 are connected in parallel at the input port and in series at the output port.
  • the isolation transform unit 14 includes a power conversion unit 22, a current sampling unit 24, and a current sharing control unit 26.
  • the isolation conversion unit 14 will be described below.
  • the power conversion unit 22 is configured to complete the voltage conversion of the input voltage to the output voltage and realize mutual isolation of the input and output.
  • the power conversion unit 22 may include at least one of the following: Device, power tube.
  • the current sampling unit 24 is connected to the output of the power conversion unit 22, set to the magnitude of the sampled output current, and sent to the current sharing control unit 26.
  • the current sharing control unit 26 is connected to the current sampling unit 24, and is configured to receive the current sampled by the current sampling unit 24 and the current sharing bus information Is, and after comparison, determine whether the power supply is current-averaged. If the power supply does not flow uniformly, the output voltage Vo2 of the power conversion unit 22 is adjusted, thereby adjusting the total output voltage Vo of the power supply, and changing the output current of the power supply.
  • each power supply is finally balanced.
  • the current sharing bus information Is may be hardware interface information or software information.
  • the current sharing bus information Is is used for current sharing of each power supply in the power pool, and may be a preset current value of the actual output current of each power supply, or a maximum current value of the actual output current of each power supply. It is also possible to output the current value of the current for the main unit.
  • the main unit can be a power supply in the power supply pool or other devices than the power supply pool.
  • FIG. 3 is a second schematic structural diagram of a power supply according to an embodiment of the present invention.
  • the power supply includes: a non-isolated unit 12, a first isolation sub-unit 32, and a second isolation sub-unit 34.
  • the input of the power supply is Vi, and the output is Vo.
  • the output Vo1 of the isolation unit 12, the output Vo3 of the first isolation transform sub-unit 32, the output Vo4 of the second isolation transform sub-unit 34, and the current sharing bus is Is, wherein the non-isolation unit 12 and the first isolation transform sub-unit 32,
  • the second isolation transformer sub-unit 34 is connected in parallel at the input ports and in series at the output ports.
  • the structures of the first isolation transform sub-unit 32 and the second isolation transform sub-unit 34 are similar to those of the above-described isolation transform unit 14, and the current-isolation control unit in the first isolation transform sub-unit 32 and the second isolated transform sub-unit 34 may be combined.
  • Into a current sharing control unit The manner of judging the current sharing is similar to the manner of determining the isolation isolation unit 14: the current of the current isolation unit of the first isolation conversion sub-unit 32 and the second isolation conversion sub-unit 34 and the current sharing bus information Is are compared to determine whether the power supply is Current flow.
  • the manner of adjusting the current sharing is similar to the manner of adjusting the isolation transform unit 14: if the power supply is not evenly flowed, the output voltage Vo3 of the adjusted power conversion unit of the first isolation transform subunit 32 and the adjustment of the second isolation transform subunit 34 are respectively adjusted.
  • the output voltage Vo4 of the power conversion unit thereby adjusting the total output voltage Vo of the power supply, changing the output current of the power supply, and finally making each power supply positive line Both current and negative lines achieve current sharing.
  • the non-isolated unit 12 for the power supply will be described below. It should be noted that, in the power supply source in which each of the isolation conversion units is located, the structure of the isolation conversion unit of the power supply and the manner of achieving steady current are similar to the foregoing.
  • FIG. 4 is a first schematic structural diagram of a non-isolated unit 12 according to an embodiment of the invention
  • FIG. 5 is a second schematic structural view of a non-isolated unit 12 according to an embodiment of the invention.
  • the non-isolated unit 12 is a through circuit, and includes: an input Vi, a capacitor C1, and an output Vo1.
  • the DC circuit and isolation conversion unit 14 (or the first isolation conversion sub-unit 32 and the second isolation conversion sub-unit 34) are connected in parallel at the input port and in series with the output port.
  • FIG. 6 is a third schematic structural diagram of a non-isolated unit 12 according to an embodiment of the invention.
  • the non-isolated unit 12 is a Buck non-isolated conversion circuit, and includes: an input Vi, a switch tube Q1, a switch tube Q2, an inductor L1, a capacitor C1, and an output Vo1.
  • the Buck non-isolated conversion circuit and isolation conversion unit 14 are connected in parallel at the input port and in series at the output port.
  • the Buck non-isolated conversion circuit is a step-down type circuit, and the switching state of the switching transistors Q1 and Q2 is controlled to complete the input-to-output step-down conversion function.
  • the switching transistors Q1 and Q2 may be composed of one or two switching devices, and the switching device may be at least one of the following: a triode, a MOS (Metal-Oxide-Semiconductor), a diode, an IGBT (Insulated Gate Bipolar Transistor, Insulated Gate Bipolar Transistor), GAN (GaN), SIC (Silicon Carbide) and other power semiconductor devices.
  • MOS Metal-Oxide-Semiconductor
  • IGBT Insulated Gate Bipolar Transistor
  • GAN GaN
  • SIC Silicon Carbide
  • FIG. 7 is a fourth structural diagram of a non-isolated unit 12 according to an embodiment of the invention.
  • the non-isolated unit 12 is a Boost non-isolated conversion circuit, including: an input Vi, a switch tube Q1, a switch tube Q2, an inductor L1, a capacitor C1, an output Vo1, a Boost non-isolated conversion circuit, and an isolation transform.
  • Unit 14 is connected in parallel at the input ports and in series at the output ports.
  • the Boost non-isolated conversion circuit is a boost type circuit, and the input switching to the output is completed by controlling the switching transistors Q1 and Q2 to operate in a switching state.
  • the switch tubes Q1 and Q2 may be composed of one or two switching devices, and the switching device may be at least one of the following: triode, MOS tube, diode, IGBT, GAN, SIC, etc. Semiconductor device.
  • FIG. 8 is a schematic structural diagram 5 of the non-isolated unit 12 according to an embodiment of the present invention.
  • the non-isolated unit 12 is a Buckboost non-isolated conversion circuit, including: an input Vi, a switch tube Q1, a switch tube Q2, an inductor L1, a capacitor C1, and an output Vo1, wherein the Buckboost non-isolated conversion circuit and the isolation transform Unit 14 is connected in parallel at the input ports and in series at the output ports.
  • the Buckboost non-isolated conversion circuit is a buck-boost type circuit, and the switch-mode Q1 and Q2 are operated in the switch state to complete the input-to-output buck-boost conversion function.
  • the switch tubes Q1 and Q2 may be composed of one or two switching devices, and the switching device may be at least one of the following: a power semiconductor device such as a triode, a MOS transistor, a diode, an IGBT, a GAN, or an SIC.
  • a power semiconductor device such as a triode, a MOS transistor, a diode, an IGBT, a GAN, or an SIC.
  • the non-isolated unit of the power supply transmits most of the output power (for example, more than 50% of the output power), and the isolation transform unit transmits a small portion of the output power.
  • the output voltage of the isolation conversion unit is adjusted, thereby adjusting the total output voltage of the power supply, changing the output current of the power supply, and finally achieving current sharing for each power supply. Since the output power of the isolation transform unit is small, the area of the isolation conversion unit is small, and the loss ratio is small.
  • the current sharing is realized by adding an isolation conversion unit to reduce the power loss and improve the power efficiency.
  • the embodiment of the present application further provides a current control method, which is used to implement the foregoing embodiments and implementation manners, and has not been described again.
  • FIG. 9 is a flow chart of a current control method according to an embodiment of the present invention. As shown in FIG. 9, the method includes the following steps:
  • Step S902 collecting a current value of the output current of the power supply, wherein the power supply comprises: a non-isolated unit and an isolation conversion unit, the non-isolated unit and the isolation conversion unit are connected in parallel at the input end, and are connected in series at the output end, and the first of the non-isolated unit The sum of the output voltage and the second output voltage of the isolation converter unit is the output voltage of the power supply;
  • Step S904 according to the collected current value, and a preset current value for currentizing each of the power supply sources in the power supply source in which the power supply is located, by adjusting the second output voltage, The current value of the output current of the power supply is adjusted to a preset current value.
  • the power supply is Adjusting the current value of the output current to the preset current value may include: comparing the collected current value with the preset current value to obtain a deviation; and adjusting the output current of the power supply by adjusting the second output voltage according to the obtained deviation Adjust to the preset current value.
  • the ratio of the output power of the isolation transform unit to the total output power of the power supply may be less than a predetermined threshold, wherein the predetermined threshold is less than 50%.
  • the non-isolated unit may be at least one of the following: a through circuit, a Buck non-isolated conversion circuit, a Boost non-isolated conversion circuit, and a BuckBoost non-isolated conversion circuit.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product stored in a storage medium (such as a ROM/RAM, a magnetic disk, an optical disk), and includes a plurality of instructions for making a A terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) performs the methods described in various embodiments of the present invention.
  • a current control device is also provided, which is used to implement the above-mentioned embodiments and implementation manners, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 10 is a structural block diagram of a current control apparatus according to an embodiment of the present invention. As shown in FIG. 10, the apparatus includes: an acquisition module 102 (similar to the function of the current collection unit 24), and an adjustment module 104 (and the power conversion unit described above). 22 and the current sharing control unit 26 function similarly). The device will be described below.
  • the collecting module 102 is configured to collect a current value of an output current of the power supply, wherein the power is supplied
  • the power supply comprises: a non-isolated unit and an isolation conversion unit, wherein the non-isolated unit and the isolation conversion unit are connected in parallel at the input end, and are connected in series at the output end, and the sum of the first output voltage of the non-isolated unit and the second output voltage of the isolation conversion unit is a power supply.
  • the adjusting module 104 is connected to the collecting module 102, and is configured to adjust the second current according to the collected current value and the current value for currentizing each power supply in the power supply pool where the power supply is located.
  • the output voltage adjusts the current value of the output current of the power supply to a preset current value.
  • FIG. 11 is a structural block diagram of an adjustment module 104 of a current control device according to an embodiment of the present invention. As shown in FIG. 11, the adjustment module 104 includes an obtaining unit 112 and an adjusting unit 114. The adjustment module 104 will be described below.
  • the obtaining unit 112 is configured to compare the collected current value with the preset current value to obtain a deviation
  • the adjusting unit 114 is connected to the obtaining unit 112, and adjusts the output current of the power supply to the preset current value by adjusting the second output voltage according to the obtained deviation.
  • the ratio of the output power of the isolation transform unit to the total output power of the power supply may be less than a predetermined threshold, wherein the predetermined threshold is less than 50%.
  • the non-isolated unit may be at least one of the following: a through circuit, a Buck non-isolated conversion circuit, a Boost non-isolated conversion circuit, and a BuckBoost non-isolated conversion circuit.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • FIG. 12 is a structural block diagram of a power supply according to an embodiment of the present invention. As shown in FIG. 12, the system includes the current control device 122 in the above embodiment.
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be configured to store program code for performing the following steps:
  • the power supply comprises: a non-isolated unit and an isolation conversion unit, the non-isolated unit and the isolation conversion unit are connected in parallel at the input end, and the first output of the non-isolated unit is connected in series at the output end.
  • the sum of the voltage and the second output voltage of the isolation conversion unit is the output voltage of the power supply;
  • the storage medium is also arranged to store program code for performing the following steps:
  • Adjusting the current value of the output current of the power supply by adjusting the second output voltage according to the collected current value and the preset current value for equalizing each power supply in the power supply pool in which the power supply is located The preset current values include:
  • the storage medium is further arranged to store program code for performing the step of: the ratio of the output power of the isolation transform unit to the total output power of the power supply is less than a predetermined threshold, wherein the predetermined threshold is less than 50%.
  • the storage medium is further configured to store program code for performing the following steps: the non-isolated unit is at least one of: a pass-through circuit, a Buck non-isolated transform circuit, a Boost non-isolated transform circuit, and a BuckBoost non-isolated transform. Circuit.
  • the foregoing storage medium may include, but not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk a magnetic disk
  • magnetic disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • the processor performs: collecting a current value of an output current of the power supply according to the stored program code in the storage medium, wherein the power supply includes: a non-isolated unit and an isolation conversion unit, The isolation unit and the isolation conversion unit are connected in parallel at the input end, and are connected in series at the output end. The sum of the first output voltage of the non-isolated unit and the second output voltage of the isolation conversion unit is the output voltage of the power supply; according to the collected current value, On the power supply Each power supply in the power supply pool is subjected to a current-sequence preset current value, and the current value of the output current of the power supply is adjusted to a preset current value by adjusting the second output voltage.
  • the processor executes according to the stored program code in the storage medium: according to the collected current value, and for each power supply in the power supply pool in which the power supply is located.
  • the preset current value of the current sharing, by adjusting the second output voltage, adjusting the current value of the output current of the power supply to the preset current value comprises: comparing the collected current value with the preset current value to obtain a deviation; The deviation of the power supply is adjusted to a preset current value by adjusting the second output voltage.
  • the processor executes, according to the stored program code in the storage medium, that the ratio of the output power of the isolation transform unit to the total output power of the power supply is less than a predetermined threshold, wherein the predetermined threshold is less than 50. %.
  • the processor executes according to the stored program code in the storage medium: the non-isolated unit is at least one of the following: a straight-through circuit, a Buck non-isolated conversion circuit, a Boost non-isolated conversion circuit, and a BuckBoost Non-isolated conversion circuit.
  • the examples in this embodiment may refer to the examples described in the foregoing embodiments and the optional embodiments, and details are not described herein again.
  • the modules or steps of the above embodiments of the present invention may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices, which may be implemented by computing devices.
  • the executed program code is implemented such that they can be stored in a storage device by a computing device, and in some cases, the steps shown or described can be performed in a different order than here, or they can be
  • Each of the integrated circuit modules is fabricated separately, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • the embodiment of the present invention by adding an isolation conversion unit connected in parallel with the input end of the non-isolated unit and the output end in series, according to the current value of the output current of the power supply, and each power supply in the power supply pool in which the power supply is located
  • the preset current value of the current sharing is adjusted by adjusting the output voltage of the isolation conversion unit to adjust the current value of the output current of the power supply to a preset current value, and the current is reduced by adjusting the output voltage of the isolated isolation unit. Power loss, improve power efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电流控制方法、装置及供电电源,其中,该方法包括:采集供电电源的输出电流的电流值(S902),其中,所述供电电源包括:非隔离单元(12)和隔离变换单元(14,32,34),所述非隔离单元(12)与所述隔离变换单元(14,32,34)在输入端并联,在输出端串联,所述非隔离单元(12)的第一输出电压与所述隔离变换单元(14,32,34)的第二输出电压之和为所述供电电源的输出电压;根据采集的所述电流值,以及用于对所述供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整所述第二输出电压,将所述供电电源的输出电流的电流值调整至所述预设电流值(S904)。

Description

电流控制方法、装置及供电电源 技术领域
本申请涉及但不限于通信领域,尤指一种电流控制方法、装置及供电电源。
背景技术
随着通信设备带宽越来越大,通信设备容量不断增加,对供电电源的功率需求越来越大。采用传统分区供电方案,存在分区路数多、对前级配电要求高和系统单板配置制约大等缺点;另一种常用方案是采用电源池方案,对多个供电电源的输出进行并联后给通信设备进行供电,这样就解决了分区供电问题。
采用电源池方案,需要解决每个供电电源的均流。一种解决方案是在供电线路上串联可变电阻阻抗,通过调节阻抗实现每个供电电流的均流,该方案损耗大,供电效率低;第二种解决方案是采用非隔离变换方案,通过调节变换器的占空比实现输出稳压和均流。对于第二种解决方案,由于普通非隔离变换器的输入和输出共地,存在地线均流的问题。如果在地线上串接功率器件和电感等实现地线均流,则存在损耗大、效率低的问题。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种电流控制方法、装置及供电电源,以降低电源损耗,提高电源效率。
根据本发明的一个实施例,提供了一种供电电源,包括:非隔离单元和隔离变换单元,所述非隔离单元与所述隔离变换单元在输入端并联,在输出端串联,所述非隔离单元的第一输出电压与所述隔离变换单元的第二输出电压之和为所述供电电源的输出电压,其中,
所述隔离变换单元,设置为根据所述供电电源的输出电流的电流值,以及用于对所述供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整所述第二输出电压,将所述供电电源的所述输出电流的电流值调整至所述预设电流值。
在一实施方式中,所述隔离变换单元包括:电流采集单元,设置为采集所述供电电源的输出电流的所述电流值;均流控制单元,设置为对所述电流采集单元采集的所述电流值与所述预设电流值进行比较,获得偏差;功率变换单元,设置为根据所述均流控制单元获得的所述偏差,调整所述隔离变换单元的所述第二输出电压。
在一实施方式中,所述隔离变换单元的输出功率占所述供电电源的总输出功率的比例小于预定阈值,其中,所述预定阈值小于等于50%。
在一实施方式中,所述非隔离单元为以下至少之一:直通电路、Buck非隔离变换电路、Boost非隔离变换电路、BuckBoost非隔离变换电路。
根据本发明的另一个实施例,提供了一种电流控制方法,包括:采集供电电源的输出电流的电流值,其中,所述供电电源包括:非隔离单元和隔离变换单元,所述非隔离单元与所述隔离变换单元在输入端并联,在输出端串联,所述非隔离单元的第一输出电压与所述隔离变换单元的第二输出电压之和为所述供电电源的输出电压;根据采集的所述电流值,以及用于对所述供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整所述第二输出电压,将所述供电电源的输出电流的电流值调整至所述预设电流值。
在一实施方式中,根据采集的所述电流值,以及用于对所述供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整所述第二输出电压,将所述供电电源的输出电流的电流值调整至所述预设电流值包括:对采集的所述电流值与所述预设电流值进行比较,获得偏差;根据获得的所述偏差,通过对所述第二输出电压进行调整,将所述供电电源的输出电流调整至所述预设电流值。
在一实施方式中,所述隔离变换单元的输出功率占所述供电电源的总输出功率的比例小于预定阈值,其中,所述预定阈值小于50%。
在一实施方式中,所述非隔离单元为以下至少之一:直通电路、Buck非隔离变换电路、Boost非隔离变换电路、BuckBoost非隔离变换电路。
根据本发明的又一个实施例,提供了一种电流控制装置,包括:采集模块,采集供电电源的输出电流的电流值,其中,所述供电电源包括:非隔离单元和隔离变换单元,所述非隔离单元与所述隔离变换单元在输入端并联,在输出端串联,所述非隔离单元的第一输出电压与所述隔离变换单元的第二输出电压之和为所述供电电源的输出电压;调整模块,设置为根据采集的所述电流值,以及用于对所述供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整所述第二输出电压,将所述供电电源的输出电流的电流值调整至所述预设电流值。
根据本发明的又一个实施例,提供了一种供电电源,该供电电源包括上述实施例中任一项所述的装置。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:采集供电电源的输出电流的电流值,其中,所述供电电源包括:非隔离单元和隔离变换单元,所述非隔离单元与所述隔离变换单元在输入端并联,在输出端串联,所述非隔离单元的第一输出电压与所述隔离变换单元的第二输出电压之和为所述供电电源的输出电压;根据采集的所述电流值,以及用于对所述供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整所述第二输出电压,将所述供电电源的输出电流的电流值调整至所述预设电流值。
在一实施方式中,存储介质还设置为存储用于执行以下步骤的程序代码:根据采集的所述电流值,以及用于所述供电电源所处的供电电源池中每个供电电源均流的预设电流值,通过调整所述第二输出电压,将所述供电电源的输出电流的电流值调整至所述预设电流值包括:对采集的所述电流值与所述预设电流值进行比较,获得偏差;根据获得的所述偏差,通过对所述第二输出电压进行调整,将所述供电电源的输出电流调整至所述预设电流值。
在一实施方式中,存储介质还设置为存储用于执行以下步骤的程序代码:所述隔离变换单元的输出功率占所述供电电源的总输出功率的比例小 于预定阈值,其中,所述预定阈值小于50%。
在一实施方式中,存储介质还设置为存储用于执行以下步骤的程序代码:所述非隔离单元为以下至少之一:直通电路、Buck非隔离变换电路、Boost非隔离变换电路、BuckBoost非隔离变换电路。
通过本发明实施例,通过增加与非隔离单元输入端并联、输出端串联的隔离变换单元,根据供电电源的输出电流的电流值,以及用于供电电源所处的供电电源池中每个供电电源均流的预设电流值,通过调整隔离变换单元的输出电压,将供电电源的输出电流的电流值调整至预设电流值,由于通过调整增加的隔离变化单元的输出电压实现均流,达到降低电源损耗,提高电源效率的效果。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是本发明实施例的供电电源的结构框图;
图2是根据本发明实施例的供电电源的结构示意图一;
图3是根据本发明实施例的供电电源的结构示意图二;
图4是根据本发明实施例的非隔离单元12的结构示意图一;
图5是根据本发明实施例的非隔离单元12的结构示意图二;
图6是根据本发明实施例的非隔离单元12的结构示意图三;
图7是根据本发明实施例的非隔离单元12的结构示意图四;
图8是根据本发明实施例的非隔离单元12的结构示意图五;
图9是根据本发明实施例的电流控制方法的流程图;
图10是根据本发明实施例的电流控制装置的结构框图;
图11是根据本发明实施例的电流控制装置的调整模块104的结构框图;
图12是根据本发明实施例的供电电源的结构框图。
详述
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本文的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例1所提供供电电源可以是任意类型的需要均流的电源池中的供电电源。图1是本发明实施例的供电电源的结构框图。如图1所示,供电电源可以包括:非隔离单元12和一个或多个(图中仅示出一个)隔离变换单元14。非隔离单元12与隔离变换单元14在输入端并联,在输出端串联,非隔离单元12的第一输出电压与隔离变换单元14的第二输出电压之和为所述供电电源的输出电压,其中,
隔离变换单元14,设置为根据供电电源的输出电流的电流值,以及用于对供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整该第二输出电压,将该供电电源的输出电流的电流值调整至预设电流值。
通过本发明实施例的上述技术方案,由于通过调整增加的隔离变化单元的输出电压来调整非隔离单元某一输出端的电位,将供电电源的输出电流的电流值调整为预设电流值,降低了电源损耗,提高了电源效率。
在一实施方式中,上述预设电流值可以为以下至少之一:该供电电源所处的供电电源池的平均电流值、该供电电源所处的供电电源池中每个供电电源输出电流的最大电流值、预设主单元的输出电流值(主单元可以为某一供电电源,也可以为该供电电源所处供电电源池以外的其他装置)。其他可以用于对该供电电源所处的供电电源池中的每个供电电源进行均流的电流值,均可作为预设电流值。
在一实施方式中,隔离变换单元14可以包括如下单元:电流采集单元,设置为采集该供电电源的输出电流的电流值;均流控制单元,设置为 对该电流采集单元采集的电流值与该预设电流值进行比较,获得偏差;功率变换单元,设置为根据均流控制单元获得的偏差,调整该隔离变换单元的第二输出电压。
通过本发明实施例的上述技术方案,根据供电电源的实际输出电流的电流值与预设电流值的偏差,对隔离变换单元的输出电压进行调整,可以根据实际的输出电流对供电电源的输出电流进行调整,提高了均流调节的有效性,避免了资源浪费。
在一实施方式中,该隔离变换单元的输出功率占该供电电源的总输出功率的比例可以小于预定阈值,预定阈值可以等于50%,也可以为小于50%的任意值,如,5%、10%、15%、20%、25%等。
通过本发明实施例的上述技术方案,由于隔离变换单元的输出功率占供电电源总的输出功率的少部分,降低了隔离变换单元体积、损耗和/或效率的需要。
在一实施方式中,非隔离单元可以采用多种形式,例如,非隔离单元可以为以下之一的非隔离变换电路:直通电路、Buck非隔离变换电路、Boost非隔离变换电路、BuckBoost非隔离变换电路,也可以为2个或者2个以上的Buck非隔离变换电路、Boost非隔离变换电路或BuckBoost非隔离变换电路并联组成的电路,还可以为其他形式的非隔离变换电路。
基于上述实施例及可选实施方式,为说明整个均流方案,在本实施例中,提供了一种供电电源。图2是根据本发明实施例的供电电源的结构示意图一。如图2所示,该供电电源包括:非隔离单元12、隔离变换单元14,该供电电源的输入为Vi、输出为Vo,非隔离单元12的输出Vo1,隔离变换单元14的输出Vo2,均流母线为Is,其中,非隔离单元12和隔离变换单元14在输入端口并联,在输出端口串联。
该隔离变换单元14包括:功率变换单元22、电流采样单元24和均流控制单元26,下面对隔离变换单元14进行说明。
功率变换单元22,设置为完成输入电压到输出电压的电压变换,并实现输入输出的相互隔离,该功率变换单元22可以包括以下至少之一:变压 器、功率管。
电流采样单元24,与该功率变换单元22的输出相连,设置为采样输出电流的大小,并送到均流控制单元26。
均流控制单元26,与该电流采样单元24相连,设置为接收电流采样单元24采样的电流和均流母线信息Is,经过比较后判断该供电电源是否均流。如果该供电电源不均流,则调整功率变换单元22的输出电压Vo2,从而调整该供电电源的总输出电压Vo,改变该供电电源的输出电流。
通过调节电源池中的每个供电电源的输出电流,最终使每个供电电源实现均流。
均流母线信息Is,可以是硬件接口信息,也可以是软件信息。该均流母线信息Is用于电源池中每个供电电源进行均流,可以为每个供电电源的实际输出电流的预设电流值,也可以每个供电电源的实际输出电流的最大电流值,还可以为主单元输出电流的电流值,主单元可以为电源池中某一供电电源,也可以为电源池以外的其他装置。
图3是根据本发明实施例的供电电源的结构示意图二。如图3所示,该供电电源包括:该供电电源包括:非隔离单元12、第一隔离变换子单元32、第二隔离变换子单元34,该供电电源的输入为Vi、输出为Vo,非隔离单元12的输出Vo1,第一隔离变换子单元32的输出Vo3,第二隔离变换子单元34的输出Vo4,均流母线为Is,其中,非隔离单元12和第一隔离变换子单元32、第二隔离变换子单元34在输入端口并联,在输出端口串联。
第一隔离变换子单元32与第二隔离变换子单元34的结构与上述隔离变换单元14的结构类似,第一隔离变换子单元32与第二隔离变换子单元34中的均流控制单元可以合并成一个均流控制单元。均流的判断方式与调整隔离变换单元14的判断方式类似:第一隔离变换子单元32与第二隔离变换子单元34的电流采样单元的电流和均流母线信息Is,经过比较后判断电源是否均流。均流的调整方式与调整隔离变换单元14的方式类似:如果供电电源不均流,则分别第一隔离变换子单元32的调整功率变换单元的输出电压Vo3和第二隔离变换子单元34的调整功率变换单元的输出电压Vo4,从而调整电源的总输出电压Vo,改变电源的输出电流,最终使每个电源正线 和负线均实现均流。
下面对给供电电源的非隔离单元12进行说明。需要说明的是,下述每个隔离变换单元所在的供电电源中,供电电源的隔离变换单元的结构与实现稳流的方式与前述类似。
图4是根据本发明实施例的非隔离单元12的结构示意图一,图5是根据本发明实施例的非隔离单元12的结构示意图二。如图4和图5所示,该非隔离单元12为直通电路,包括:输入Vi、电容C1、输出Vo1。该直流电路和隔离变换单元14(或第一隔离变换子单元32和第二隔离变换子单元34)在输入端口并联,在输出端口串联。
图6是根据本发明实施例的非隔离单元12的结构示意图三。如图6所示,该非隔离单元12为Buck非隔离变换电路,包括:输入Vi、开关管Q1、开关管Q2、电感L1、电容C1、输出Vo1。该Buck非隔离变换电路和隔离变换单元14在输入端口并联,在输出端口串联。
该Buck非隔离变换电路为降压型电路,通过控制开关管Q1和Q2工作在开关状态,完成输入到输出的降压转换功能。
开关管Q1和Q2,可以是一个或两个开关器件组成的,开关器件可以是以下至少之一:三极管、MOS(Metal-Oxide-Semiconductor,金属-氧化物-半导体场效应晶体管)、二极管、IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)、GAN(氮化镓)、SIC(碳化硅)等功率半导体器件。
图7是根据本发明实施例的非隔离单元12的结构示意图四。如图7所示,该非隔离单元12为Boost非隔离变换电路,包括:输入Vi、开关管Q1、开关管Q2、电感L1、电容C1、输出Vo1、其中,Boost非隔离变换电路和隔离变换单元14在输入端口并联,在输出端口串联。
该Boost非隔离变换电路为升压型电路,通过控制开关管Q1和Q2工作在开关状态,完成输入到输出的升压转换功能。
开关管管Q1和Q2,可以是一个或两个开关器件组成的,开关器件可以是以下至少之一:三极管、MOS管、二极管、IGBT、GAN、SIC等功率 半导体器件。
图8是根据本发明实施例的非隔离单元12的结构示意图五。如图8所示,该非隔离单元12为Buckboost非隔离变换电路,包括:输入Vi、开关管Q1、开关管Q2、电感L1、电容C1、输出Vo1、其中,Buckboost非隔离变换电路和隔离变换单元14在输入端口并联,在输出端口串联。
该Buckboost非隔离变换电路为升降压型电路,通过控制开关管Q1和Q2工作在开关状态,完成输入到输出的升降压转换功能。
该开关管Q1和Q2,可以是一个或两个开关器件组成的,开关器件可以是以下至少之一:三极管、MOS管、二极管、IGBT、GAN、SIC等功率半导体器件。
通过本发明实施例的上述各技术方案,供电电源的非隔离单元传输大部分输出功率(例如,超过50%的输出功率),隔离变换单元传输小部分输出功率。当供电电源不均流时,通过调整隔离变换单元的输出电压,从而调整供电电源的总输出电压,改变电源的输出电流,最终使每个电源实现均流。由于隔离变换单元输出功率小,所以隔离变换单元的占板面积小,损耗占比小。通过外加隔离变换单元来实现均流,达到降低电源损耗,提高电源效率的效果。
实施例2
本申请实施例还提供了一种电流控制方法,该方法用于实现上述实施例及实施方式,已经进行过说明的不再赘述。
图9是根据本发明实施例的电流控制方法的流程图,如图9所示,该方法包括如下步骤:
步骤S902,采集供电电源的输出电流的电流值,其中,供电电源包括:非隔离单元和隔离变换单元,非隔离单元与隔离变换单元在输入端并联,在输出端串联,非隔离单元的第一输出电压与隔离变换单元的第二输出电压之和为供电电源的输出电压;
步骤S904,根据采集的电流值,以及用于对供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整第二输出电压,将 供电电源的输出电流的电流值调整至预设电流值。
在一实施方式中,根据采集的电流值,以及用于对供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整第二输出电压,将供电电源的输出电流的电流值调整至预设电流值可以包括:对采集的电流值与预设电流值进行比较,获得偏差;根据获得的偏差,通过对第二输出电压进行调整,将供电电源的输出电流调整至预设电流值。
在一实施方式中,隔离变换单元的输出功率占供电电源的总输出功率的比例可以小于预定阈值,其中,预定阈值小于50%。
在一实施方式中,非隔离单元可以为以下至少之一:直通电路、Buck非隔离变换电路、Boost非隔离变换电路、BuckBoost非隔离变换电路。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例3
在本实施例中还提供了一种电流控制装置,该装置用于实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图10是根据本发明实施例的电流控制装置的结构框图,如图10所示,该装置包括:采集模块102(与上述电流采集单元24的作用类似)、调整模块104(与上述功率变换单元22和均流控制单元26的作用类似)。下面对该装置进行说明。
采集模块102,设置为采集供电电源的输出电流的电流值,其中,供电 电源包括:非隔离单元和隔离变换单元,非隔离单元与隔离变换单元在输入端并联,在输出端串联,非隔离单元的第一输出电压与隔离变换单元的第二输出电压之和为供电电源的输出电压;
调整模块104,与上述采集模块102相连,设置为根据采集的电流值,以及用于对供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整第二输出电压,将供电电源的输出电流的电流值调整至预设电流值。
图11是根据本发明实施例的电流控制装置的调整模块104的结构框图,如图11所示,该调整模块104包括:获得单元112、调整单元114。下面对该调整模块104进行说明。
获得单元112,设置为对采集的电流值与预设电流值进行比较,获得偏差;
调整单元114,与上述获得单元112相连,根据获得的偏差,通过对第二输出电压进行调整,将供电电源的输出电流调整至预设电流值。
在一实施方式中,隔离变换单元的输出功率占供电电源的总输出功率的比例可以小于预定阈值,其中,预定阈值小于50%。
在一实施方式中,非隔离单元可以为以下至少之一:直通电路、Buck非隔离变换电路、Boost非隔离变换电路、BuckBoost非隔离变换电路。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例4
在本实施例中还提供了一种供电电源,图12是根据本发明实施例的供电电源的结构框图,如图12所示,该系统包括上述实施例中的电流控制装置122。
实施例5
本发明的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,采集供电电源的输出电流的电流值,其中,供电电源包括:非隔离单元和隔离变换单元,非隔离单元与隔离变换单元在输入端并联,在输出端串联,非隔离单元的第一输出电压与隔离变换单元的第二输出电压之和为供电电源的输出电压;
S2,根据采集的电流值,以及用于对供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整第二输出电压,将供电电源的输出电流的电流值调整至预设电流值。
存储介质还被设置为存储用于执行以下步骤的程序代码:
根据采集的电流值,以及用于对供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整第二输出电压,将供电电源的输出电流的电流值调整至预设电流值包括:
S1,对采集的电流值与预设电流值进行比较,获得偏差;
S2,根据获得的偏差,通过对第二输出电压进行调整,将供电电源的输出电流调整至预设电流值。
在一实施方式中,存储介质还被设置为存储用于执行以下步骤的程序代码:隔离变换单元的输出功率占供电电源的总输出功率的比例小于预定阈值,其中,预定阈值小于50%。
在一实施方式中,存储介质还被设置为存储用于执行以下步骤的程序代码:非隔离单元为以下至少之一:直通电路、Buck非隔离变换电路、Boost非隔离变换电路、BuckBoost非隔离变换电路。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在一实施方式中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:采集供电电源的输出电流的电流值,其中,供电电源包括:非隔离单元和隔离变换单元,非隔离单元与隔离变换单元在输入端并联,在输出端串联,非隔离单元的第一输出电压与隔离变换单元的第二输出电压之和为供电电源的输出电压;根据采集的电流值,以及用于对供电电源 所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整第二输出电压,将供电电源的输出电流的电流值调整至预设电流值。
在一实施方式中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:根据采集的电流值,以及用于对供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整第二输出电压,将供电电源的输出电流的电流值调整至预设电流值包括:对采集的电流值与预设电流值进行比较,获得偏差;根据获得的偏差,通过对第二输出电压进行调整,将供电电源的输出电流调整至预设电流值。
在一实施方式中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:隔离变换单元的输出功率占供电电源的总输出功率的比例小于预定阈值,其中,预定阈值小于50%。
在一实施方式中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:非隔离单元为以下至少之一:直通电路、Buck非隔离变换电路、Boost非隔离变换电路、BuckBoost非隔离变换电路。
在一实施方式中,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
通过本发明实施例,通过增加与非隔离单元输入端并联、输出端串联的隔离变换单元,根据供电电源的输出电流的电流值,以及用于供电电源所处的供电电源池中每个供电电源均流的预设电流值,通过调整隔离变换单元的输出电压,将供电电源的输出电流的电流值调整至预设电流值,由于通过调整增加的隔离变化单元的输出电压实现均流,达到降低电源损耗,提高电源效率的效果。

Claims (10)

  1. 一种供电电源,包括:非隔离单元和隔离变换单元,所述非隔离单元与所述隔离变换单元在输入端并联,在输出端串联,所述非隔离单元的第一输出电压与所述隔离变换单元的第二输出电压之和为所述供电电源的输出电压,其中,
    所述隔离变换单元,设置为根据所述供电电源的输出电流的电流值,以及用于对所述供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整所述第二输出电压,将所述供电电源的所述输出电流的电流值调整至所述预设电流值。
  2. 根据权利要求1所述的供电电源,其中,所述隔离变换单元包括:
    电流采集单元,设置为采集所述供电电源的输出电流的所述电流值;
    均流控制单元,设置为对所述电流采集单元采集的所述电流值与所述预设电流值进行比较,获得偏差;
    功率变换单元,设置为根据所述均流控制单元获得的所述偏差,调整所述隔离变换单元的所述第二输出电压。
  3. 根据权利要求1所述的供电电源,其中,所述隔离变换单元的输出功率占所述供电电源的总输出功率的比例小于预定阈值,其中,所述预定阈值小于等于50%。
  4. 根据权利要求1至3中任一项所述的供电电源,其中,所述非隔离单元为以下至少之一:直通电路、Buck非隔离变换电路、Boost非隔离变换电路、BuckBoost非隔离变换电路。
  5. 一种电流控制方法,包括:
    采集供电电源的输出电流的电流值,其中,所述供电电源包括:非隔离单元和隔离变换单元,所述非隔离单元与所述隔离变换单元在输入端并联,在输出端串联,所述非隔离单元的第一输出电压与所述隔离变换单元的第二输出电压之和为所述供电电源的输出电压;
    根据采集的所述电流值,以及用于对所述供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整所述第二输出电压,将所 述供电电源的输出电流的电流值调整至所述预设电流值。
  6. 根据权利要求5所述的方法,其中,根据采集的所述电流值,以及用于对所述供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整所述第二输出电压,将所述供电电源的输出电流的电流值调整至所述预设电流值包括:
    对采集的所述电流值与所述预设电流值进行比较,获得偏差;
    根据获得的所述偏差,通过对所述第二输出电压进行调整,将所述供电电源的输出电流调整至所述预设电流值。
  7. 根据权利要求5所述的方法,其中,所述隔离变换单元的输出功率占所述供电电源的总输出功率的比例小于预定阈值,其中,所述预定阈值小于50%。
  8. 根据权利要求5至7中任一项所述的方法,其中,所述非隔离单元为以下至少之一:直通电路、Buck非隔离变换电路、Boost非隔离变换电路、BuckBoost非隔离变换电路。
  9. 一种电流控制装置,包括:
    采集模块,设置为采集供电电源的输出电流的电流值,其中,所述供电电源包括:非隔离单元和隔离变换单元,所述非隔离单元与所述隔离变换单元在输入端并联,在输出端串联,所述非隔离单元的第一输出电压与所述隔离变换单元的第二输出电压之和为所述供电电源的输出电压;
    调整模块,设置为根据采集的所述电流值,以及用于对所述供电电源所处的供电电源池中的每个供电电源进行均流的预设电流值,通过调整所述第二输出电压,将所述供电电源的输出电流的电流值调整至所述预设电流值。
  10. 一种供电电源,包括权利要求9中所述的装置。
PCT/CN2017/091493 2016-07-15 2017-07-03 电流控制方法、装置及供电电源 WO2018010562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610559824.1 2016-07-15
CN201610559824.1A CN107634639B (zh) 2016-07-15 2016-07-15 电流控制方法、装置及供电电源

Publications (1)

Publication Number Publication Date
WO2018010562A1 true WO2018010562A1 (zh) 2018-01-18

Family

ID=60951950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091493 WO2018010562A1 (zh) 2016-07-15 2017-07-03 电流控制方法、装置及供电电源

Country Status (2)

Country Link
CN (1) CN107634639B (zh)
WO (1) WO2018010562A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106758B (zh) * 2018-10-26 2021-03-30 立锜科技股份有限公司 电源供应装置及其主、从属电源供应电路以及控制方法
CN113258752B (zh) * 2021-06-07 2021-10-01 深圳市永联科技股份有限公司 一种电路信号的动态控制方法、系统及电源模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635505A (zh) * 2008-07-25 2010-01-27 台达电子工业股份有限公司 输入并联输出串联的多个变换器的结构的控制方法
CN101777840A (zh) * 2010-02-25 2010-07-14 北京航空航天大学 一种升降压复合dc/dc变换器
CN202094798U (zh) * 2011-06-13 2011-12-28 珠海泰坦新能源系统有限公司 一种交错串联dc/dc变换器均压控制电路
US8300438B1 (en) * 2008-11-16 2012-10-30 Edward Herbert Power factor corrected 3-phase Ac-dc power converter using natural modulation
CN202997936U (zh) * 2012-05-03 2013-06-12 无锡联动太阳能科技有限公司 一种高升压电路、太阳能逆变器与太阳能电池系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548100B (zh) * 2010-12-27 2014-01-15 英飞特电子(杭州)股份有限公司 一种负载驱动装置及系统
CN203251224U (zh) * 2013-04-24 2013-10-23 深圳市中电华星电子技术有限公司 具有并联移相交错均流控制的同步整流升降压电路及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635505A (zh) * 2008-07-25 2010-01-27 台达电子工业股份有限公司 输入并联输出串联的多个变换器的结构的控制方法
US8300438B1 (en) * 2008-11-16 2012-10-30 Edward Herbert Power factor corrected 3-phase Ac-dc power converter using natural modulation
CN101777840A (zh) * 2010-02-25 2010-07-14 北京航空航天大学 一种升降压复合dc/dc变换器
CN202094798U (zh) * 2011-06-13 2011-12-28 珠海泰坦新能源系统有限公司 一种交错串联dc/dc变换器均压控制电路
CN202997936U (zh) * 2012-05-03 2013-06-12 无锡联动太阳能科技有限公司 一种高升压电路、太阳能逆变器与太阳能电池系统

Also Published As

Publication number Publication date
CN107634639A (zh) 2018-01-26
CN107634639B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
US11289906B2 (en) Multi-port converter structure for DC/DC power conversion
CN109617148B (zh) 一种飞跨电容的充电方法及装置
US11646657B2 (en) DC-DC transformer with inductor for the facilitation of adiabatic inter-capacitor charge transport
US10756623B1 (en) Low loss power converter
EP2911282B1 (en) Power source and power source voltage regulating method
US20200350821A1 (en) Hybrid DC-DC Power Converter with Small Voltage Conversion Ratio
CN104052275B (zh) 用于具有快速瞬态响应的两级降压升压转换器的系统和方法
DE112007000698T5 (de) Nicht-lineare adaptive Gradienten-Stromversorgungsarchitektur und Schema
US10291123B2 (en) Multi-port converter structure for DC/DC power conversion
WO2019128661A1 (zh) 一种谐振变换器、谐振变换器的控制方法及系统
CN104104248B (zh) 双电源光伏逆变器及其控制方法
US20200328675A1 (en) Hybrid Converter with Reduced Inductor Loss
CA2983789C (en) Multi-port converter structure for dc/dc power conversion
WO2021017390A1 (zh) Dcdc环流控制装置、控制方法、电子设备、介质
CN106487226B (zh) IPOP三电平Buck变换器、级联系统及其控制方法
US20220337078A1 (en) Battery management circuit for a mobile device
WO2018010562A1 (zh) 电流控制方法、装置及供电电源
CN107707102A (zh) Dc‑dc变换器及其控制方法
WO2022241035A1 (en) Multi-phase hybrid power converter architecture with large conversion ratios
CN207664872U (zh) 一种新颖的宽范围输入功率变换电路
US20230216413A1 (en) Hybrid dc-dc variable switched capacitor converter and method of operation
CN104065268A (zh) 一种片上供电网络
Ahsanuzzaman et al. A low-volume power management module for portable applications based on a multi-output switched-capacitor circuit
WO2021017389A1 (zh) Dcdc环流控制装置、控制方法、电子设备及介质
WO2021017388A1 (zh) Dcdc环流控制装置、控制方法、电子设备以及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826899

Country of ref document: EP

Kind code of ref document: A1