WO2023005055A1 - 一种等离子体处理方法 - Google Patents

一种等离子体处理方法 Download PDF

Info

Publication number
WO2023005055A1
WO2023005055A1 PCT/CN2021/130029 CN2021130029W WO2023005055A1 WO 2023005055 A1 WO2023005055 A1 WO 2023005055A1 CN 2021130029 W CN2021130029 W CN 2021130029W WO 2023005055 A1 WO2023005055 A1 WO 2023005055A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion source
etching
ionization
cavity
gas
Prior art date
Application number
PCT/CN2021/130029
Other languages
English (en)
French (fr)
Inventor
韩大健
李娜
彭泰彦
车东晨
许开东
Original Assignee
江苏鲁汶仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器有限公司 filed Critical 江苏鲁汶仪器有限公司
Priority to EP21951627.5A priority Critical patent/EP4378598A1/en
Publication of WO2023005055A1 publication Critical patent/WO2023005055A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like

Definitions

  • the present application relates to the technical field of semiconductor technology, and in particular to a plasma processing method.
  • the gas is ionized in the ion source cavity to generate plasma, and the plasma is accelerated and bombarded by the accelerating electrode.
  • the etched material causes atoms in the bombarded etched material to be sputtered out and sucked away by a vacuum pump to achieve the purpose of etching.
  • Ion beam etching usually uses an inert gas, such as Ar, Kr or Xe, etc., because the molecular weight of this type of gas is large, the collision force is strong after acceleration, and it basically does not react with the etching material. Therefore, the etching The anisotropy effect of the eclipse is better.
  • ion beam etching is purely physical etching, and the reaction speed is slow. If the reaction gas is introduced, it can chemically react with the etched material, speed up the etching speed, and adjust the etched morphology more easily. This forms reactive ion beam etching.
  • the present application provides a plasma treatment method to clean the deposits in the cavity of the ion source.
  • the plasma processing device also includes an etching chamber, and the method also includes:
  • the step of injecting cleaning gas into the ion source cavity for ionization is performed.
  • the step of injecting cleaning gas into the ion source cavity for ionization is performed.
  • performing the step of passing a cleaning gas into the ion source chamber for ionization includes :
  • the step of injecting etching gas into the cavity of the ion source for ionization and the step of injecting cleaning gas into the cavity of the ion source for ionization are performed simultaneously.
  • performing the step of passing a cleaning gas into the ion source chamber for ionization includes :
  • the step of injecting etching gas into the cavity of the ion source for ionization and the step of injecting cleaning gas into the cavity of the ion source for ionization are performed alternately.
  • performing the step of passing a cleaning gas into the ion source chamber for ionization includes :
  • the step of injecting cleaning gas into the ion source cavity for ionization is performed intermittently.
  • the plasma processing apparatus further includes a baffle located at the connection between the ion source chamber and the etching chamber, and the method further includes:
  • the baffle When the etching gas is passed into the ion source chamber for ionization, the baffle is placed in a first state, so that the ion source chamber communicates with the etching chamber;
  • the barrier After stopping the flow of etching gas into the ion source cavity or after the etching is finished, the barrier is placed in the second state, so that the ion source cavity and the etching cavity are covered by the barrier board partition.
  • the etching gas is a fluorine-based gas.
  • the cleaning gas is oxygen.
  • the plasma processing method provided in the present application is applied to a plasma processing device, the plasma processing device includes an ion source cavity, and deposits exist in the ion source cavity, and the method includes: passing a cleaning gas into the ion Ionization is carried out in the source cavity to generate the first plasma, so that the first plasma reacts with the deposits in the ion source cavity, and gas compounds are generated and then discharged, thereby achieving the purpose of cleaning the deposits in the ion source cavity , compared with the prior art method of manually opening the ion source chamber to clean the inner chamber, this method is more efficient, saves time and cost, and is beneficial to increase production.
  • Fig. 1 is a structural schematic diagram of a plasma processing device
  • FIG. 2 is a schematic flow diagram of a plasma treatment method provided by an embodiment of the present application.
  • Fig. 3 is a process in which the step of passing the etching gas into the ion source chamber for ionization and the step of passing the cleaning gas into the ion source chamber for ionization are carried out simultaneously in the plasma processing method provided by another embodiment of the present application Schematic diagram of the process;
  • FIG. 4 is a schematic flow diagram of a plasma treatment method provided in another embodiment of the present application.
  • Fig. 5 is a process in which the step of passing the etching gas into the ion source chamber for ionization and the step of passing the cleaning gas into the ion source chamber for ionization are carried out simultaneously in the plasma processing method provided by another embodiment of the present application Schematic diagram of the process;
  • FIG. 6 is a schematic flow diagram of a plasma treatment method provided in another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a plasma treatment method provided by another embodiment of the present application.
  • Fig. 1 provides a schematic structural diagram of a plasma processing device, specifically a schematic structural diagram of a reactive ion beam etching device. As shown in Fig. 1, the plasma processing device includes:
  • Ion source cavity 10 the exterior of the ion source cavity 10 is provided with a coil 11 wound on the side wall of the ion source cavity 10, and a housing 12 for protecting the ion source cavity 10 and the coil 11;
  • the process gas enters the ion source cavity 10 through the air inlet 13 of the ion source cavity 10, and is then ionized by the electromagnetic field generated by the energized coil 11 to generate plasma, which is generated by the ion source cavity After the acceleration grid 14 in the body 10 is accelerated, it rushes out of the ion source cavity 10 .
  • the etching chamber 20 is provided with a stage 21, the stage 21 is used to carry the object to be etched 22, and when the process starts, it rotates from the initial position with the object to be etched 22 to the process position; after the process is finished, carry the object to be etched 22 and rotate from the process position to the initial position.
  • the connection between the ion source cavity 10 and the etching cavity 20 is provided with a baffle 30, and when the process starts, the baffle 30 will fall, so that the ion source cavity 10 and the etching cavity 20 are connected, and the objects to be etched 22 is exposed to the ion beam emitted by the ion source cavity 10, so that the ion beam emitted by the ion source cavity 10 etches the object 22 to be etched; when the process is finished, the baffle 30 will rise , so as to block the ion beam emitted by the ion source cavity 10 and prevent the object to be etched 22 from being over-etched;
  • a vacuum pump 40 is also installed at the bottom of the etching chamber 10 to provide high vacuum for the etching process, and at the same time suck away by-products generated during the process.
  • the reactive gas introduced is usually fluorine-based gas, such as CF4, CHF3 and other gases.
  • the fluorine-based gas contains elements such as C and H
  • the fluorine-based gas is easily deposited when it is ionized in the ion source cavity, forming deposits, as shown by 15 in Figure 1, causing the inner wall of the ion source cavity to Dirt affects the ionization effect of the reaction gas in the ion source cavity, causing the reactive ion beam etching process to be unable to be repeated.
  • the existing solution is to manually open the ion source cavity to clean the internal cavity after the ion source cavity has been used for a period of time, which will waste a lot of time and affect the output, and secondly, human resources need to be invested and the cost is high .
  • an embodiment of the present application provides a plasma processing method, which is applied to a plasma processing device.
  • the plasma processing device includes an ion source cavity, and deposits exist in the ion source cavity.
  • the method Including: passing cleaning gas into the ion source cavity for ionization, generating a first plasma, causing the first plasma to react with deposits in the ion source cavity, generating a gas compound and then discharging it, thereby realizing
  • the purpose of cleaning the deposits in the ion source cavity is that compared with the prior art method of manually opening the ion source cavity for internal cavity cleaning, this method is more efficient, saves time and cost, and is conducive to improving production.
  • the embodiment of the present application provides a plasma processing method, which is applied to a plasma processing device.
  • the plasma processing device includes an ion source cavity 10, and deposits 15 exist in the ion source cavity 10 , the method includes:
  • the present application does not limit the type of the cleaning gas.
  • the corresponding cleaning gas can be selected according to the type of deposits in the ion source cavity, so that the cleaning gas is passed into the ion
  • the first plasma generated after ionization in the source cavity can react with the deposits in the ion source cavity to generate a gas compound and then discharge it.
  • the plasma processing device used in the plasma processing method includes but is not limited to a reactive ion beam etching device, and the plasma processing device can also be other plasma processing devices such as ion beam etching devices. Apparatus for processing, as the case may be.
  • the plasma processing apparatus further includes an etching chamber 20, and the method further includes:
  • the etching gas is passed into the ion source chamber 10 for ionization to generate a second plasma, so that the second plasma enters the etching chamber 20 to etch the object 22 to be etched.
  • the deposit 15 in the ion source cavity 10 may be generated when the etching gas is ionized in the ion source cavity.
  • the present application does not limit this, and in other embodiments of the present application, the deposits in the ion source chamber may also be caused by other reasons, depending on the circumstances.
  • the etching gas is a fluorine-based gas, such as CHF3, CF4, C4F8, etc., and this type of gas contains elements such as C and H, and it is very easy for the ions to Deposits are formed when the source chamber is ionized.
  • the cleaning gas is oxygen, and the oxygen is ionized in the ion source cavity Oxygen ions are generated after ionization, and these oxygen ions are very easy to react with elements such as C and H in the sediment to generate CO2, CO, H2O and other gas compounds and then discharged, so that the inner wall of the ion source cavity is cleaned.
  • the cleaning gas can also be other gases that can react with elements such as C and H in the deposits produced when the fluorine-based gas is ionized to form gas compounds. It depends.
  • the object to be etched 22 may be a wafer, but this application does not limit it, and it depends on the situation.
  • the step of passing the etching gas into the ion source cavity for ionization realizes the process of etching the object to be etched; the step of passing the cleaning gas into the ion source cavity for ionization
  • the ionization step realizes the process of cleaning the deposits in the cavity of the ion source.
  • the cleaning gas is injected into the ion source cavity.
  • the ionization step takes place inside the source chamber.
  • the cleaning gas is injected into the ion source cavity.
  • the ionization steps in the ion source cavity include:
  • the cleaning method provided in this embodiment is to pass cleaning gas into the ion source chamber after an etching process is performed to clean the deposits in the ion source chamber to prevent The impact of these deposits on the next etching process.
  • the deposits in the ion source cavity may be generated when the etching gas is ionized, when the etching process is performed for a long time, the etching gas is ionized in the ion source cavity. There are more and more deposits, which may affect the ionization effect of the etching gas in the ion source chamber during this etching process. If the cleaning gas is passed into the ion source cavity after the etching process is completed Cleaning in the cavity of the ion source may be difficult due to the large amount of deposits in the cavity of the ion source.
  • the process of passing the cleaning gas through into the ion source chamber for ionization to remove the deposits generated during the etching process in time, and reduce the ionization of the deposits in the ion source chamber to the etching gas in the ion source chamber The impact of the effect.
  • the step of passing the cleaning gas into the ion source chamber include:
  • the step of injecting etching gas into the cavity of the ion source for ionization and the step of injecting cleaning gas into the cavity of the ion source for ionization are performed simultaneously.
  • the etching gas and cleaning gas are simultaneously introduced into the ion source cavity 10 for ionization, wherein the etching gas is in the ion source cavity 10 is ionized to generate the second plasma, and the cleaning gas is ionized in the ion source cavity 10 to generate the first plasma 16, that is, the plasma in the ion source cavity 10 is the first plasma body and the mixed plasma of the second plasma, a part of the mixed plasma enters the etching chamber 20 to etch the object 22 to be etched, and the other part remains in the ion source chamber 10, and The first plasma 16 in the part of the mixed plasma remaining in the ion source cavity 10 will react with the deposit 15 in the ion source cavity, generate gaseous compounds and discharge them, thereby cleaning the ion source cavity.
  • the purpose of the deposit 15 in the ion source cavity 10 is the ion source cavity 10 for ionization, wherein the etching gas is in the ion source cavity 10 is ionized to generate the second plasma, and the
  • the cleaning method provided in this embodiment can realize the synchronous progress of the etching process and the cleaning process of the inner wall of the ion source cavity, ensuring that the inner wall of the ion source cavity is always in a clean state, and there is no need to clean the inner wall of the ion source cavity.
  • the step of cleaning the inner wall of the ion source cavity is added, which saves the time of the entire process.
  • the first plasma generated by the ionization of the cleaning gas in the ion source chamber It will also enter the etching cavity to etch the object to be etched, which may have a good impact on the etching effect, for example, make the etching straightness better, the etched edge cleaner, etc.; It may also consume the mask for etching quickly, but such an effect can be easily improved by adjusting the mask in the actual process, that is, the cleaning gas is ionized and generated in the ion source cavity for the first time.
  • a plasma basically does not affect the etching effect of the object to be etched.
  • the step of passing the cleaning gas into the ion source chamber is performed.
  • the ionization steps in the ion source cavity include:
  • the step of injecting etching gas into the cavity of the ion source for ionization and the step of injecting cleaning gas into the cavity of the ion source for ionization are performed alternately.
  • the step of passing the etching gas into the cavity of the ion source for ionization can be performed first, and then the step of passing the cleaning gas into the cavity of the ion source for ionization can be performed.
  • the steps are alternately cycled in this way; it is also possible to first perform the step of passing the cleaning gas into the ion source cavity for ionization, and then perform the step of passing the etching gas into the ion source cavity for ionization, This cycle alternately.
  • the step of passing the etching gas into the ion source cavity for ionization can be performed last, or the step of passing the cleaning gas into the ion source cavity for ionization can be performed last.
  • the steps of this application are not limited, and it depends on the specific situation.
  • this application specifies the time for passing the etching gas into the cavity of the ion source for ionization, the time for passing the cleaning gas into the cavity of the ion source for ionization, and the interval between the two None are limited, as the case may be.
  • the step of passing the etching gas into the ion source chamber for ionization is performed first, and then the step of passing the cleaning gas into the ion source chamber for ionization is performed, and this alternate cycle is taken as an example.
  • the step of passing the etching gas into the ion source chamber for ionization and the step of passing the cleaning gas into the ion source chamber for ionization will be described alternately.
  • the plasma treatment method specifically includes:
  • the step of passing the cleaning gas into the ion source chamber is performed.
  • the ionization steps in the ion source cavity include:
  • the step of injecting cleaning gas into the ion source cavity for ionization is performed intermittently.
  • the etching gas is continuously fed into the ion source chamber, and the etching gas is ionized in the ion source chamber to generate the second plasma.
  • the intermittent Pass cleaning gas into the cavity of the ion source.
  • the cleaning gas is introduced into the ion source cavity, the cleaning gas is ionized in the ion source cavity to generate the first plasma, and the plasma in the ion source cavity is the first plasma.
  • the mixed plasma of the body and the second plasma, a part of the mixed plasma enters the etching chamber to etch the object to be etched, the other part remains in the ion source chamber, and the remaining part remains in the ion source chamber.
  • the first plasma in this part of the mixed plasma in the source cavity will react with the deposits in the ion source cavity, generate a gas compound and then discharge it, so as to achieve the purpose of cleaning the deposits in the ion source cavity;
  • the etching gas is still continuously fed into the ion source chamber, so that the second plasma generated by the etching gas in the ion source chamber continues to enter the ion source chamber.
  • the object to be etched is etched in the etching chamber.
  • the specific time when the cleaning gas is injected into the ion source cavity, and how to inject the etching gas into the ion source cavity twice adjacently The time interval for passing the cleaning gas into the source cavity is not limited, and it depends on the situation.
  • the plasma processing apparatus further includes The baffle plate 30 at the communication place of the body 20, the method also includes:
  • the baffle plate 30 When the etching gas is passed into the ion source chamber 10 for ionization, the baffle plate 30 is placed in the first state, so that the ion source chamber 10 and the etching chamber 20 communicate;
  • the baffle plate 30 After stopping the flow of etching gas into the ion source chamber 10 or after the etching is finished, the baffle plate 30 is placed in the second state, so that the ion source chamber 10 and the etching chamber 20 is cut off by the baffle.
  • the baffle 30 can be stretchable up and down, stretchable left and right, or folded. Specifically, taking the baffle plate 30 as an example that is retractable up and down, when the file 30 is placed in the first state, the baffle plate 30 telescopically falls down, as shown in FIG. 1 or FIG. 3 , so that The ion source cavity 10 communicates with the etching cavity 20; when the baffle 30 is placed in the second state, the baffle 30 is expanded and raised, as shown in the baffle 30 in FIG. 5 , so that The ion source cavity 10 and the etching cavity 20 are separated by the baffle 30 . But the present application does not limit the specific form of the baffle 30, as long as the baffle 30 can make the ion source chamber 10 and the etching chamber 20 communicate or isolate.
  • the step of introducing the etching gas into the ion source cavity for ionization and the step of injecting the cleaning gas into the ion source cavity for ionization can be performed in cooperation with the baffle
  • the state change of the ion source cavity is carried out, and the following specific examples illustrate the execution of the step of passing the etching gas into the ion source cavity for ionization and the step of passing the cleaning gas into the ion source cavity for ionization How to cooperate with the state change of the baffle.
  • the step of injecting cleaning gas into the ion source cavity for ionization is performed, as shown in Figure 6, the method specifically includes:
  • S31 Pass the etching gas into the ion source chamber for ionization to generate a second plasma, and place the baffle in the first state, as shown in FIG. 1 or 30 in FIG. 3 , so that the The ion source cavity communicates with the etching cavity, so that the second plasma enters the etching cavity to etch the object to be etched, that is, an etching process is performed;
  • the baffle is first placed in the second state, so that the ion source chamber and the etching chamber are separated by the baffle, Then stop feeding the etching gas into the ion source cavity, and then pass the cleaning gas into the ion source cavity for ionization.
  • the first plasma 16 After being blocked and reflected by the baffle plate 30, the first plasma 16 will return to the inside of the ion source cavity 10, and the remaining first plasma 16 that has not been completely accelerated out of the ion source cavity 10 , react with the deposit 15 in the ion source chamber 10 together, generate a gaseous compound and discharge it, so as to achieve the purpose of cleaning the deposit 15 in the ion source chamber 10 .
  • the cleaning method provided in this embodiment combined with the state change of the baffle, enables the first plasma generated by the ionization of the cleaning gas in the ion source cavity to be fully compatible with the plasma in the ion source cavity.
  • the deposit reacts to generate a gas compound and then discharges it, so that the cleaning effect on the inner wall of the ion source cavity is better.
  • the state change of the baffle is also different, which will be described in specific embodiments below.
  • the step of passing the etching gas into the ion source chamber for ionization and the step of passing the cleaning gas into the ion source chamber for ionization are carried out simultaneously, and when the etching gas is passed through into the ion source chamber for ionization, and in the process of etching the object to be etched, in the embodiment in which the step of passing the cleaning gas into the ion source chamber for ionization is performed intermittently, because the etching
  • the etchant gas is continuously passed into the ion source chamber, therefore, when the etchant gas is passed into the ion source chamber for ionization, the baffle is placed in the first state, as shown in Figure 1 or As shown in the baffle plate 30 in Fig.
  • the ion source cavity communicates with the etching cavity, so that the second plasma generated by the ionization of the etching gas in the ion source cavity can enter the ion source cavity.
  • the object to be etched is etched in the etching chamber; after the etching is completed, the baffle is placed in the second state, as shown in the baffle 30 in Figure 5, so that the ion source chamber and the The etching cavity is blocked by the baffle plate, so as to block the ion beam emitted from the ion source cavity, and prevent the object to be etched from being over-etched.
  • the method specifically includes:
  • step S42 when step S42 is performed to carry out the cleaning process cycle, a part of the first plasma 16 generated by the ionization of the cleaning gas in the ion source cavity will be accelerated out of the ion source cavity.
  • the baffle 30 is placed in the second state, as shown by the baffle 30 in FIG.
  • the first plasma 16 of the ion source cavity 10 will bombard the baffle 30, be blocked by the baffle 30 and reflected back, and the first plasma 16 reflected back by the baffle 30 and
  • the remaining first plasma 16 in the ion source cavity 10 reacts with the deposit 15 in the ion source cavity 10 to generate a gas compound and then discharge it.
  • the cleaning method provided in this embodiment combined with the state change of the baffle, enables the first plasma generated by the ionization of the cleaning gas in the ion source cavity to be fully compatible with the plasma in the ion source cavity.
  • the deposit reacts to generate a gas compound and then discharges it, so that the cleaning effect on the inner wall of the ion source cavity is better.
  • the baffle when the etching gas is passed into the ion source chamber for ionization, the baffle is placed in the first state, so that the The communication between the ion source chamber and the etching chamber includes:
  • the baffle When the etching gas is passed into the ion source cavity for ionization, and after the ion beam emitted by the ion source cavity satisfies a preset condition, the baffle is placed in the first state, so that the The ion source cavity communicates with the etching cavity.
  • the baffle 30 is placed in the second state, so that the ion source chamber 10 and the etching chamber 20 are separated by the baffle 30; After feeding the etching gas and the cleaning gas into the ion source chamber 10 simultaneously, the baffle 30 is still placed in the second state, at this time, the etching gas is drawn into the ion source chamber 10 The ionization generates the second plasma, and the cleaning gas is ionized in the ion source chamber 10 to generate the first plasma 16, and the mixed first plasma and the second plasma are extracted by the ion source Accelerated by the acceleration grid 14 in the cavity 10, the formed ion beam rushes out of the ion source cavity 10, bombards on the baffle 30, is blocked and reflected by the baffle 30, and then returns to the ion source In the cavity 10; after the ion beam emitted by the ion source cavity 10 satisfies the preset condition, the baffle 30 is placed in the first state, as shown in FIG. 5, before the process starts, the baffle 30 is placed
  • the ion source cavity 10 communicates with the etching cavity 20 so that the ion beam emitted from the ion source cavity 10 can etch the object to be etched.
  • the first plasma and the second plasma remaining in the ion source cavity 10, especially the first plasma 16 therein, will be in harmony with the deposition in the ion source cavity 10
  • the substance 15 reacts to form a gaseous compound and discharge it.
  • the preset condition specifically refers to that the density and speed of the ion beam emitted by the ion source cavity 10 meet the etching requirements.
  • the plasma processing device further includes a vacuum pump located at the bottom of the etching chamber 10 40.
  • a vacuum pump located at the bottom of the etching chamber 10 40.
  • cleaning is passed into the cavity of the ion source for ionization to generate a first plasma, so that the first plasma reacts with the deposits in the cavity of the ion source to generate a gas compound, which can be obtained by The vacuum pump discharges.
  • the method also includes:
  • the stage 21 carrying the object to be etched 22 is rotated from the initial position (such as the position of the stage 21 in FIG. 5 ) to the process position (such as the position of the stage in FIG. 3 ), so that The second plasma generated by the ionization of the etching gas in the ion source chamber can enter the etching chamber to etch the object to be etched;
  • the stage 21 carrying the object to be etched 22 is returned to the initial position, so as to prevent the object to be etched from being over-etched.
  • the plasma processing method provided by the embodiment of the present application is applied to a plasma processing device, the plasma processing device includes an ion source cavity, and deposits exist in the ion source cavity, and the method includes: injecting a cleaning gas Pass into the ion source cavity for ionization, generate the first plasma, make the first plasma react with the deposits in the ion source cavity, generate gas compounds and discharge them, so as to realize the cleaning of the ion source cavity Compared with the prior art method of manually opening the ion source chamber for internal chamber cleaning, this method is more efficient, saves time and cost, and is conducive to improving production.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

一种等离子体处理方法,应用于等离子体处理装置,等离子体处理装置包括离子源腔体(10),离子源腔体(10)内存在沉积物,等离子体处理方法包括:将清洗气体通入离子源腔体(10)内进行电离,生成第一等离子体,使得第一等离子体和离子源腔体(10)内的沉积物进行反应,生成气体化合物后排出,从而实现清洗离子源腔体(10)内的沉积物的目的。

Description

一种等离子体处理方法
本申请要求于2021年07月30日提交中国专利局、申请号为202110873631.4、发明名称为“一种等离子体处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体工艺技术领域,尤其涉及一种等离子体处理方法。
背景技术
随着半导体集成电路、集成光路和其它光电子器件向微形化和高密度化的方向发展,对刻蚀工艺的要求也越来越高。传统的湿法刻蚀由于其刻蚀时各向同性而产生严重的钻蚀,使得图形刻蚀后的边缘比较粗糙,刻蚀3μm以下线宽的图形十分困难,因此,干法刻蚀应运而生。干法刻蚀由于其良好的各向异性的刻蚀特性和可灵活控制的工艺因素,能够将刻蚀图形精确地转移到刻蚀材料上,是今后微细图形刻蚀的主要发展方向。在干法刻蚀中,离子束刻蚀作为重要的刻蚀工艺被大规模采用,具体刻蚀时,气体在离子源腔体内被电离生成等离子体,等离子体在加速电极的作用下加速轰击要刻蚀的材料,使得被轰击的刻蚀材料中的原子被溅射出来,由真空泵抽走,从而达到刻蚀目的。
离子束刻蚀通常通入的气体为惰性气体,比如Ar、Kr或Xe等,由于这一类气体的分子质量较大,加速后碰撞力度大,而且基本不与刻蚀材料反应,因此,刻蚀的各向异性效果较好。但离子束刻蚀属于纯物理刻蚀,反应速度慢,如果通入反应气体,就可以与被刻蚀材料进行化学反应,加快刻蚀速度,并且对刻蚀的形貌也会更容易调整,这样就形成了反应离子束刻蚀。
然而,在进行反应离子束刻蚀时,反应气体在离子源腔体内被电离时容易在离子源腔体内形成沉积物,导致离子源腔体内壁脏污,影响反应气体在离子源腔体内的电离效果。因此,如何清洗离子源腔体内的沉积物,成为本领域技术人员亟待解决的技术问题。
发明内容
为解决上述技术问题,本申请提供了一种等离子体处理方法,以清洗离子源腔体内的沉积物。
为实现上述目的,本申请提供了如下技术方案:
一种等离子体处理方法,应用于等离子体处理装置,该等离子体处理装置包括离子源腔体,所述离子源腔体内存在沉积物,该方法包括:
将清洗气体通入所述离子源腔体内进行电离,生成第一等离子体,使得所述第一等离子体和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出。
可选的,所述等离子体处理装置还包括刻蚀腔体,该方法还包括:
将刻蚀气体通入所述离子源腔体内进行电离,生成第二等离子体,使得所述第二等离子体进入所述刻蚀腔体内对待刻蚀物进行刻蚀。
可选的,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物完成刻蚀之后,再执行所述将清洗气体通入所述离子源腔体内进行电离的步骤。
可选的,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤。
可选的,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤包括:
所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤同时进行。
可选的,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤包括:
所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤交替进行。
可选的,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物 进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤包括:
在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,间歇式执行所述将清洗气体通入所述离子源腔体内进行电离的步骤。
可选的,所述等离子体处理装置还包括位于所述离子源腔体和所述刻蚀腔体连通处的挡板,该方法还包括:
在将刻蚀气体通入所述离子源腔体内进行电离时,将所述挡板置于第一状态,使得所述离子源腔体和所述刻蚀腔体连通;
在停止将刻蚀气体通入所述离子源腔体内后或刻蚀结束后,将所述挡板置于第二状态,使得所述离子源腔体和所述刻蚀腔体被所述挡板隔断。
可选的,所述刻蚀气体为氟基气体。
可选的,所述清洗气体为氧气。
与现有技术相比,上述技术方案具有以下优点:
本申请所提供的等离子体处理方法,应用于等离子体处理装置,该等离子体处理装置包括离子源腔体,所述离子源腔体内存在沉积物,该方法包括:将清洗气体通入所述离子源腔体内进行电离,生成第一等离子体,使得所述第一等离子体和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出,从而实现清洗离子源腔体内的沉积物的目的,与现有技术利用人工打开离子源腔体进行内部腔室清洗的方法相比,该方法更加高效,节约时间和成本,有利于提高产量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种等离子体处理装置的结构示意图;
图2为本申请一个实施例所提供的等离子体处理方法的流程示意图;
图3为本申请另一个实施例所提供的等离子体处理方法中,将刻蚀气体通入离子源腔体内进行电离的步骤和将清洗气体通入离子源腔体内进行电离的步骤同时进行的工艺过程示意图;
图4为本申请又一个实施例所提供的等离子体处理方法的流程示意图;
图5为本申请再一个实施例所提供的等离子体处理方法中,将刻蚀气体通入离子源腔体内进行电离的步骤和将清洗气体通入离子源腔体内进行电离的步骤同时进行的工艺过程示意图;
图6为本申请又一个实施例所提供的等离子体处理方法的流程示意图;
图7为本申请再一个实施例所提供的等离子体处理方法的流程示意图。
具体实施方式
为方便理解本申请各实施例所提供的等离子体处理方法,首先对等离子体处理装置的基本结构及其工作原理进行说明。
图1给出了一种等离子体处理装置的结构示意图,具体为反应离子束刻蚀装置的结构示意图,如图1所示,该等离子处理装置包括:
离子源腔体10,该离子源腔体10的外部设有缠绕在该离子源腔体10侧壁上的线圈11,以及用于保护该离子源腔体10和该线圈11的壳体12;具体工作时,工艺气体通过离子源腔体10的进气口13进入离子源腔体10内,然后被通电的线圈11所产生的电磁场电离,生成等离子体,这些生成的等离子体被离子源腔体10内的加速栅14加速后,冲出离子源腔体10。
刻蚀腔体20,该刻蚀腔体20内设有载物台21,该载物台21用于承载待刻蚀物22,并在工艺开始时,携带待刻蚀物22由初始位置旋转至工艺位置;在工艺结束后,携带待刻蚀物22由工艺位置旋转至初始位置。
离子源腔体10和刻蚀腔体20的连通处设有挡板30,当工艺开始时,该挡板30会落下,使得离子源腔体10和刻蚀腔体20连通,待刻蚀物22暴露在由离子源腔体10发射出的离子束下,从而使得由离子源腔体10发射出的离子束对待刻蚀物22进行刻蚀;当工艺结束后,该挡板30会升起, 从而挡住由离子源腔体10发射出的离子束,防止对待刻蚀物22进行过刻蚀;
在刻蚀腔体10的底部还安装有真空泵40,用于对刻蚀工艺提供高真空度,同时抽走工艺过程中产生的副产物。
正如背景技术部分所述,离子源腔体10内容易存在沉积物,因此,如何清洗离子源腔体内的沉积物,成为本领域技术人员亟待解决的技术问题。
发明人研究发现,在进行反应离子束刻蚀时,尤其是对闪耀光栅、斜齿光栅等光栅材料进行反应离子束刻蚀时,因为光栅材料一般是硅或者石英材料,所以向离子源腔体内通入的反应气体通常为氟基气体,比如CF4、CHF3等气体。然而,由于氟基气体中含有C、H等元素,因此,氟基气体极易在离子源腔体内被电离时发生沉积,形成沉积物,如图1中15所示,导致离子源腔体内壁脏污,影响反应气体在离子源腔体内的电离效果,造成反应离子束刻蚀工艺不能重复进行。
现有的解决方法为在离子源腔体使用一段时间后,人工打开离子源腔体进行内部腔室清洗,这样一来会浪费大量的时间,影响产量,二来需要投入人力资源,成本较高。
基于上述研究的基础上,本申请实施例提供了一种等离子体处理方法,应用于等离子体处理装置,该等离子体处理装置包括离子源腔体,所述离子源腔体内存在沉积物,该方法包括:将清洗气体通入所述离子源腔体内进行电离,生成第一等离子体,使得所述第一等离子体和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出,从而实现清洗离子源腔体内的沉积物的目的,与现有技术利用人工打开离子源腔体进行内部腔室清洗的方法相比,该方法更加高效,节约时间和成本,有利于提高产量。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员 可以在不违背本申请内涵的情况下做类似推广,因此本申请不受下面公开的具体实施例的限制。
其次,本申请结合示意图进行详细描述,在详述本申请实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本申请保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
本申请实施例提供了一种等离子体处理方法,应用于等离子体处理装置,如图1所示,该等离子体处理装置包括离子源腔体10,所述离子源腔体10内存在沉积物15,该方法包括:
将清洗气体通入所述离子源腔体10内进行电离,生成第一等离子体,使得所述第一等离子体和所述离子源腔体10内的沉积物15进行反应,生成气体化合物后排出。
需要说明的是,本申请对所述清洗气体的类型并不做限定,具体可以根据所述离子源腔体内的沉积物类型选择相应的清洗气体,以使得将所述清洗气体通入所述离子源腔体内进行电离后生成的第一等离子体能够和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出。
还需要说明的是,该等离子处理方法所应用的等离子体处理装置,包括但不限于反应离子束刻蚀装置,所述等离子体处理装置也可以是其他如离子束刻蚀装置等利用等离子体进行处理的装置,具体视情况而定。
由此可见,本申请实施例所提供的等离子体处理方法,通过向所述离子源腔体内通入清洗气体,使得清洗气体在所述离子源腔体内被电离生成的第一等离子体和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出,从而清除所述离子源腔体内的沉积物,实现所述离子源腔体内壁清洗的目的,与现有技术利用人工打开离子源腔体进行内部腔室清洗的方法相比,该方法更加高效,节约时间和成本,有利于提高产量。
在上述实施例的基础上,在本申请的一个实施例中,如图1所示,所述等离子体处理装置还包括刻蚀腔体20,该方法还包括:
将刻蚀气体通入所述离子源腔体10内进行电离,生成第二等离子体,使得所述第二等离子体进入所述刻蚀腔体20内对待刻蚀物22进行刻蚀。
需要说明的是,所述离子源腔体10内的沉积物15可以是由所述刻蚀 气体在所述离子源腔体内被电离时所产生的。但本申请对此并不做限定,在本申请的其他实施例中,所述离子源腔体内的沉积物也可以是其他原因所产生的,具体视情况而定。
可选的,在本申请的一个实施例中,所述刻蚀气体为氟基气体,如CHF3、CF4、C4F8等,这一类的气体中含有C、H等元素,极易在所述离子源腔体内被电离时形成沉积物。
为清洗所述离子源腔体内由氟基气体被电离时所产生的沉积物,可选的,在本申请的一个实施例中,所述清洗气体为氧气,氧气在所述离子源腔体内被电离后生成氧离子,这些氧离子极易跟沉积物中的C、H等元素发生反应,生成CO2、CO、H2O等气体化合物后排出,从而使得所述离子源腔体的内壁被清理干净。但本申请对所述清洗气体并不做限定,所述清洗气体也可以是其他能够和氟基气体被电离时所产生的沉积物中的C、H等元素发生反应生成气体化合物的气体,具体视情况而定。
还需要说明的是,所述待刻蚀物22可以是晶圆,但本申请对此并不做限定,具体视情况而定。
由前述可知,所述将刻蚀气体通入所述离子源腔体内进行电离的步骤,实现的是对待刻蚀物进行刻蚀的过程;所述将清洗气体通入所述离子源腔体内进行电离的步骤,实现的是对所述离子源腔体内沉积物进行清洗的过程。那么,在将刻蚀气体通入所述离子源腔体内进行电离,以对待刻蚀物进行刻蚀的基础上,何时执行所述将清洗气体通入所述离子源腔体内进行电离的步骤,以对所述离子源腔体内的沉积物进行清洗,存在多种可能情况,下面分具体实施例进行说明。
可选的,在本申请的一个实施例中,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物完成刻蚀之后,再执行所述将清洗气体通入所述离子源腔体内进行电离的步骤。
具体的,在本实施例中,如图2所示,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物完成刻蚀之后,再执行所述将清洗气体通入所述离子源腔体内进行电离的步骤包括:
S11:将刻蚀气体通入所述离子源腔体内进行电离,生成第二等离子体,使得所述第二等离子体进入所述刻蚀腔体内对待刻蚀物进行刻蚀;
S12:待刻蚀结束后,停止向所述离子源腔体内通入刻蚀气体,转而将清洗气体通入所述离子源腔体内进行电离,生成第一等离子体,使得所述第一等离子体和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出。
由此可见,本实施例所提供的清洗方式,是在进行完一次刻蚀工艺后,再向所述离子源腔体内通入清洗气体,对所述离子源腔体内的沉积物进行清洗,防止这些沉积物对下一次刻蚀工艺的影响。
考虑到所述离子源腔体内的沉积物可能是由刻蚀气体被电离时所产生的,当刻蚀工艺进行的时间较长时,刻蚀气体在所述离子源腔体内被电离而产生的沉积物越来越多,这可能会对本次刻蚀工艺过程中刻蚀气体在所述离子源腔体内的电离效果产生影响,如果在本次刻蚀工艺完成后再将清洗气体通入所述离子源腔体内进行清洗,可能由于所述离子源腔体内的沉积物较多而造成清洗困难。因此,可选的,在本申请的另一个实施例中,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤,以及时清除刻蚀工艺过程中所产生的沉积物,减小所述离子源腔体内的沉积物对刻蚀气体在所述离子源腔体内的电离效果的影响。
在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,具体何时执行所述将清洗气体通入所述离子源腔体内进行电离的步骤,也存在多种可能情况,下面分具体实施例进行说明。
可选的,在本申请的一个实施例中,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤包括:
所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤同时进行。
具体的,在本实施例中,如图3所示,将刻蚀气体和清洗气体同时通入所述离子源腔体10内进行电离,其中,所述刻蚀气体在所述离子源腔体10内被电离生成第二等离子体,所述清洗气体在所述离子源腔体10内被电离生成第一等离子体16,即所述离子源腔体10内的等离子体为所述第一等离子体和所述第二等离子体的混合等离子体,该混合等离子体一部分 进入所述刻蚀腔体20内对待刻蚀物22进行刻蚀,另一部分剩余在所述离子源腔体10内,而剩余在所述离子源腔体10内的这部分混合等离子体中的第一等离子体16,会和所述离子源腔体内的沉积物15进行反应,生成气体化合物后排出,从而实现清洗所述离子源腔体10内沉积物15的目的。
由此可见,本实施例所提供的清洗方式,可以实现刻蚀工艺和离子源腔体内壁清洗工艺的同步进行,保证了所述离子源腔体的内壁始终处于干净状态,并且,无需在刻蚀工艺完成后再增加对离子源腔体内壁进行清洗工艺的步骤,节省了整个工艺流程时间。
需要说明的是,在上述实施例中,将刻蚀气体和清洗气体同时通入所述离子源腔体内进行电离时,所述清洗气体在所述离子源腔体内被电离生成的第一等离子体也会进入所述刻蚀腔体内对待刻蚀物进行刻蚀,这样可能会对刻蚀效果产生好的影响,例如,使得刻蚀的走直度更好,刻蚀的边缘更干净等等;也可能会对刻蚀的掩膜消耗较快,但这样的影响,在实际工艺中,很容易通过调整掩膜等方式而得到改善,即清洗气体在所述离子源腔体内被电离生成的第一等离子体基本不会影响对待刻蚀物的刻蚀效果。
可选的,在本申请的另一个实施例中,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤包括:
所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤交替进行。
需要说明的是,在本实施例中,可以先执行所述将刻蚀气体通入所述离子源腔体内进行电离的步骤,再执行所述将清洗气体通入所述离子源腔体内进行电离的步骤,如此交替循环;也可以先执行所述将清洗气体通入所述离子源腔体内进行电离的步骤,再执行所述将刻蚀气体通入所述离子源腔体内进行电离的步骤,如此交替循环。
同理,在本实施例中,可以最后执行所述将刻蚀气体通入所述离子源腔体内进行电离的步骤,也可以最后执行所述将清洗气体通入所述离子源腔体内进行电离的步骤,本申请对此并不做限定,具体视情况而定。
还需要说明的是,本申请对将刻蚀气体通入所述离子源腔体内进行电 离的时间、将清洗气体通入所述离子源腔体内进行电离的时间,以及两者之间的间隔时间均不做限定,具体视情况而定。
下面以先执行所述将刻蚀气体通入所述离子源腔体内进行电离的步骤,再执行所述将清洗气体通入所述离子源腔体内进行电离的步骤,如此交替循环为例,对所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤交替进行的过程进行说明。如图4所示,该等离子体处理方法具体包括:
S21:在第一时间段内,将刻蚀气体通入所述离子源腔体内进行电离,生成第二等离子体,使得所述第二等离子体进入所述刻蚀腔体内对待刻蚀物进行刻蚀,进行刻蚀工艺周期,此时记为第一个刻蚀工艺周期;
S22:之后在第二时间段内,停止向所述离子源腔体内通入刻蚀气体,转而将清洗气体通入所述离子源腔体内进行电离,生成第一等离子体,使得所述第一等离子体和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出,进行清洗工艺周期,此时记为第一个清洗工艺周期;
S23:之后在第三时间段内,停止向所述离子源腔体内通入清洗气体,转而将刻蚀气体通入所述离子源腔体内进行电离,生成第二等离子体,使得所述第二等离子体进入所述刻蚀腔体内对待刻蚀物进行刻蚀,进行刻蚀工艺周期,此时记为第二个刻蚀工艺周期;
第二个刻蚀工艺周期完成后,返回执行S22和S23,执行第二个清洗工艺周期和第三个刻蚀工艺周期,以此类推,S22和S23如此交替循环进行,即经过一个刻蚀工艺周期后,再进行一个清洗工艺周期,两个周期交替进行,从而及时清除所述离子源腔体内的沉积物,减小所述离子源腔体内的沉积物对刻蚀气体在所述离子源腔体内的电离效果的影响,也防止由于长时间进行刻蚀工艺造成所述离子源腔体内沉积物较多而清洗困难。
可选的,在本申请的又一个实施例中,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤包括:
在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,间歇式执行所述将清洗气体通入所述离子源腔体内进行电离的步骤。
具体的,在本实施例中,持续向所述离子源腔体内通入刻蚀气体,所述刻蚀气体在所述离子源腔体内被电离生成第二等离子体,在此过程中,间歇式地向所述离子源腔体内通入清洗气体。当向所述离子源腔体内通入清洗气体时,所述清洗气体在所述离子源腔体内被电离生成第一等离子体,此时所述离子源腔体内的等离子体为所述第一等离子体和所述第二等离子体的混合等离子体,该混合等离子体一部分进入所述刻蚀腔体内对待刻蚀物进行刻蚀,另一部分剩余在所述离子源腔体内,而剩余在所述离子源腔体内的这部分混合等离子体中的第一等离子体,会和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出,从而实现清洗所述离子源腔体内沉积物的目的;当停止向所述离子源腔体内通入清洗气体时,仍持续向所述离子源腔体内通入刻蚀气体,使得刻蚀气体在所述离子源腔体内生成的第二等离子体继续进入所述刻蚀腔体内对待刻蚀物进行刻蚀。
需要说明的是,本申请对在持续向所述离子源腔体内通入刻蚀气体的过程中,具体何时向所述离子源腔体内通入清洗气体,以及相邻两次向所述离子源腔体内通入清洗气体的间隔时间均不做限定,具体视情况而定。
在上述任一实施例的基础上,在本申请的一个实施例中,如图1或图3所示,所述等离子体处理装置还包括位于所述离子源腔体10和所述刻蚀腔体20连通处的挡板30,该方法还包括:
在将刻蚀气体通入所述离子源腔体10内进行电离时,将所述挡板30置于第一状态,使得所述离子源腔体10和所述刻蚀腔体20连通;
在停止将刻蚀气体通入所述离子源腔体10内后或刻蚀结束后,将所述挡板30置于第二状态,使得所述离子源腔体10和所述刻蚀腔体20被所述挡板隔断。
需要说明的是,所述挡板30可以是上下伸缩的,也可以是左右伸缩的,还可以是翻折形式的。具体的,以所述挡板30为上下伸缩的为例,当所述档案30置于第一状态时,所述挡板30伸缩落下,如图1或图3中挡板30所示,使得所述离子源腔体10和所述刻蚀腔体20连通;当所述挡板30置于第二状态时,所述挡板30展开升起,如图5中挡板30所示,使得所述离子源腔体10和所述刻蚀腔体20被所述挡板30隔断。但本申请对所述挡板30的具体形式并不做限定,只要所述挡板30可以使得所述离子源腔 体10和所述刻蚀腔体20连通或隔断即可。
还需要说明的是,所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤的执行可以配合所述挡板的状态变化来进行,下面分具体实施例说明所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤的执行如何配合所述挡板的状态变化而进行。
对应在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物完成刻蚀之后,再执行所述将清洗气体通入所述离子源腔体内进行电离的步骤的实施例中,如图6所示,该方法具体包括:
S31:将刻蚀气体通入所述离子源腔体内进行电离,生成第二等离子体,并将所述挡板置于第一状态,如图1或图3中挡板30所示,使得所述离子源腔体和所述刻蚀腔体连通,从而使得所述第二等离子体进入所述刻蚀腔体内对待刻蚀物进行刻蚀,即进行刻蚀工艺;
S32:待刻蚀结束后,将所述挡板置于第二状态,如图5中挡板30所示,使得所述离子源腔体和所述刻蚀腔体被所述挡板隔断,以便于挡住从所述离子源腔体发射出的离子束,防止对待刻蚀物进行过刻蚀;
S33:停止向所述离子源腔体内通入刻蚀气体,转而将清洗气体通入所述离子源腔体内进行电离,生成第一等离子体,使得所述第一等离子体和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出,即进行清洗工艺。
需要说明的是,在本实施例中,待刻蚀结束后,先将所述挡板置于第二状态,使得所述离子源腔体和所述刻蚀腔体被所述挡板隔断,再停止向所述离子源腔体内通入刻蚀气体,转而将清洗气体通入所述离子源腔体内进行电离,一方面是为了防止对待刻蚀物进行过刻蚀;另一方面,在后续将清洗气体通入所述离子源腔体内进行电离时,清洗气体在所述离子源腔体内被电离生成的第一等离子体一部分会被加速冲出所述离子源腔体,但由于此时所述挡板置于第二状态,使得所述离子源腔体和所述刻蚀腔体被所述挡板隔断,因此,继续如图5所示,被加速冲出所述离子源腔体的第一等离子体16经过所述挡板30的阻挡和反射,会返回到所述离子源腔体10内部,与未完全被加速冲出所述离子源腔体10的剩余第一等离子体16, 一起和所述离子源腔体10内的沉积物15进行反应,生成气体化合物后排出,从而实现清洗所述离子源腔体10内沉积物15的目的。
由此可见,本实施例所提供的清洗方式,结合所述挡板的状态变化,使得清洗气体在所述离子源腔体内被电离生成的第一等离子体能够充分和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出,对所述离子源腔体内壁的清洗效果更好。
对应在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤的各实施例中,所述挡板的状态变化情况也不同,下面分具体实施例进行说明。
对应所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤同时进行的实施例,以及在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,间歇式执行所述将清洗气体通入所述离子源腔体内进行电离的步骤的实施例中,由于所述刻蚀气体均是被持续通入所述离子源腔体内的,因此,在将刻蚀气体通入所述离子源腔体内进行电离时,将所述挡板置于第一状态,如图1或图3中挡板30所示,使得所述离子源腔体和所述刻蚀腔体连通即可,以便于刻蚀气体在所述离子源腔体内被电离生成的第二等离子体能够进入所述刻蚀腔体内对待刻蚀物进行刻蚀;待刻蚀结束后,将所述挡板置于第二状态,如图5中挡板30所示,使得所述离子源腔体和所述刻蚀腔体被所述挡板隔断,以便于挡住从所述离子源腔体发射出的离子束,防止对待刻蚀物进行过刻蚀。
对应所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤交替进行的实施例中,如图7所示,该方法具体包括:
S41:在第一时间段内,将刻蚀气体通入所述离子源腔体内进行电离,生成第二等离子体,并将所述挡板置于第一状态,如图1或图3中挡板30所示,使得所述离子源腔体和所述刻蚀腔体连通,从而使得所述第二等离子体进入所述刻蚀腔体内对待刻蚀物进行刻蚀,进行刻蚀工艺周期,此时记为第一个刻蚀工艺周期;
S42:之后在第二时间段内,停止向所述离子源腔体内通入刻蚀气体,并将所述挡板置于第二状态,如图5中挡板30所示,使得所述离子源腔体和所述刻蚀腔体被所述挡板隔断,转而将清洗气体通入所述离子源腔体内进行电离,生成第一等离子体,使得所述第一等离子体和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出,进行清洗工艺周期,此时记为第一个清洗工艺周期;
S43:之后在第三时间段内,停止向所述离子源腔体内通入清洗气体,转而将刻蚀气体通入所述离子源腔体内进行电离,生成第二等离子体,并将所述挡板置于第一状态,如图1或图3中挡板30所示,使得所述离子源腔体和所述刻蚀腔体连通,从而使得所述第二等离子体进入所述刻蚀腔体内对待刻蚀物进行刻蚀,进行刻蚀工艺周期,此时记为第二个刻蚀工艺周期;
第二个刻蚀工艺周期完成后,返回执行S42和S43,执行第二个清洗工艺周期和第三个刻蚀工艺周期,以此类推,S42和S43如此交替循环进行,即经过一个刻蚀工艺周期后,再进行一个清洗工艺周期,两个周期交替进行。
需要说明的是,在执行步骤S42进行清洗工艺周期时,清洗气体在所述离子源腔体内被电离生成的第一等离子体16一部分会被加速冲出所述离子源腔体,但由于此时所述挡板30置于第二状态,如图5中挡板30所示,使得所述离子源腔体10和所述刻蚀腔体20被所述挡板隔断,因此,被加速冲出所述离子源腔体10的第一等离子体16会轰击到所述挡板30上,被所述挡板30阻挡并反射回去,这些被所述挡板30反射回去的第一等离子体16和剩余在所述离子源腔体10内的第一等离子体16一起和所述离子源腔体10内的沉积物15进行反应,生成气体化合物后排出。
由此可见,本实施例所提供的清洗方式,结合所述挡板的状态变化,使得清洗气体在所述离子源腔体内被电离生成的第一等离子体能够充分和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出,对所述离子源腔体内壁的清洗效果更好。
在上述任一实施例的基础上,在本申请的一个实施例中,在将刻蚀气体通入所述离子源腔体内进行电离时,将所述挡板置于第一状态,使得所 述离子源腔体和所述刻蚀腔体连通包括:
在将刻蚀气体通入所述离子源腔体内进行电离时,且由所述离子源腔体发射出的离子束满足预设条件后,将所述挡板置于第一状态,使得所述离子源腔体和所述刻蚀腔体连通。
下面结合所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤同时进行的情况对本实施例进行说明。
具体的,如图5所示,在工艺开始前,所述挡板30置于第二状态,使得所述离子源腔体10和所述刻蚀腔体20被所述挡板30隔断;在向所述离子源腔体10内同时通入刻蚀气体和清洗气体后,所述挡板30仍置于第二状态,此时,所述刻蚀气体在所述离子源腔体10内被电离生成第二等离子体,且所述清洗气体在所述离子源腔体10内被电离生成第一等离子体16,混合的所述第一等离子体和所述第二等离子体被所述离子源腔体10内的加速栅14所加速,形成离子束冲出所述离子源腔体10,轰击到所述挡板30上,经所述挡板30阻挡并反射后又返回到所述离子源腔体10内;等到由所述离子源腔体10发射出的离子束满足预设条件后,将所述挡板30置于第一状态,参考如图3挡板30所示,使得所述离子源腔体10和所述刻蚀腔体20连通,以便于由所述离子源腔体10发射出的离子束对待刻蚀物进行刻蚀。在上述过程中,所述离子源腔体内10剩余的所述第一等离子体和所述第二等离子体,尤其是其中的第一等离子体16,会和所述离子源腔体10内的沉积物15进行反应,形成气体化合物排出。
需要说明的是,所述预设条件具体指由所述离子源腔体10发射出的离子束的密度、速度等满足刻蚀要求。
在上述任一实施例的基础上,在本申请的一个实施例中,如图1、图3或图5所示,所述等离子体处理装置还包括位于所述刻蚀腔体10底部的真空泵40,该方法将清洗通入所述离子源腔体内进行电离,生成第一等离子体,使得所述第一等离子体和所述离子源腔体内的沉积物进行反应,生成气体化合物后,可以由所述真空泵排出。
在上述任一实施例的基础上,在本申请的一个实施例中,如图1、图3或图5所示,所述等离子体处理装置还包括位于所述刻蚀腔体20内的载物 台21,该方法还包括:
在刻蚀开始前,将承载待刻蚀物22的载物台21由初始位置(例如图5中载物台21所在位置)旋转至工艺位置(例如图3中载物台所在位置),以便于刻蚀气体在所述离子源腔体内被电离生成的第二等离子体,能够进入所述刻蚀腔体内对待刻蚀物进行刻蚀;
在刻蚀结束后,将承载待刻蚀物22的载物台21返回至初始位置,以防止对待刻蚀物进行过刻蚀。
综上,本申请实施例所提供的等离子体处理方法,应用于等离子体处理装置,该等离子体处理装置包括离子源腔体,所述离子源腔体内存在沉积物,该方法包括:将清洗气体通入所述离子源腔体内进行电离,生成第一等离子体,使得所述第一等离子体和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出,从而实现清洗离子源腔体内的沉积物的目的,与现有技术利用人工打开离子源腔体进行内部腔室清洗的方法相比,该方法更加高效,节约时间和成本,有利于提高产量。
本说明书中各个部分采用并列和递进相结合的方式描述,每个部分重点说明的都是与其他部分的不同之处,各个部分之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,本说明书中各实施例中记载的特征可以相互替换或组合,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种等离子体处理方法,其特征在于,应用于等离子体处理装置,该等离子体处理装置包括离子源腔体,所述离子源腔体内存在沉积物,该方法包括:
    将清洗气体通入所述离子源腔体内进行电离,生成第一等离子体,使得所述第一等离子体和所述离子源腔体内的沉积物进行反应,生成气体化合物后排出。
  2. 根据权利要求1所述的方法,其特征在于,所述等离子体处理装置还包括刻蚀腔体,该方法还包括:
    将刻蚀气体通入所述离子源腔体内进行电离,生成第二等离子体,使得所述第二等离子体进入所述刻蚀腔体内对待刻蚀物进行刻蚀。
  3. 根据权利要求2所述的方法,其特征在于,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物完成刻蚀之后,再执行所述将清洗气体通入所述离子源腔体内进行电离的步骤。
  4. 根据权利要求2所述的方法,其特征在于,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤。
  5. 根据权利要求4所述的方法,其特征在于,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤包括:
    所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤同时进行。
  6. 根据权利要求4所述的方法,其特征在于,在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤包括:
    所述将刻蚀气体通入所述离子源腔体内进行电离的步骤和所述将清洗气体通入所述离子源腔体内进行电离的步骤交替进行。
  7. 根据权利要求4所述的方法,其特征在于,在将刻蚀气体通入所述 离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,执行所述将清洗气体通入所述离子源腔体内进行电离的步骤包括:
    在将刻蚀气体通入所述离子源腔体内进行电离,对待刻蚀物进行刻蚀的过程中,间歇式执行所述将清洗气体通入所述离子源腔体内进行电离的步骤。
  8. 根据权利要求2-7任一项所述的方法,其特征在于,所述等离子体处理装置还包括位于所述离子源腔体和所述刻蚀腔体连通处的挡板,该方法还包括:
    在将刻蚀气体通入所述离子源腔体内进行电离时,将所述挡板置于第一状态,使得所述离子源腔体和所述刻蚀腔体连通;
    在停止将刻蚀气体通入所述离子源腔体内后或刻蚀结束后,将所述挡板置于第二状态,使得所述离子源腔体和所述刻蚀腔体被所述挡板隔断。
  9. 根据权利要求2所述的方法,其特征在于,所述刻蚀气体为氟基气体。
  10. 根据权利要求9所述的方法,其特征在于,所述清洗气体为氧气。
PCT/CN2021/130029 2021-07-30 2021-11-11 一种等离子体处理方法 WO2023005055A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21951627.5A EP4378598A1 (en) 2021-07-30 2021-11-11 Plasma treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110873631.4 2021-07-30
CN202110873631.4A CN115672874A (zh) 2021-07-30 2021-07-30 一种等离子体处理方法

Publications (1)

Publication Number Publication Date
WO2023005055A1 true WO2023005055A1 (zh) 2023-02-02

Family

ID=85059471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130029 WO2023005055A1 (zh) 2021-07-30 2021-11-11 一种等离子体处理方法

Country Status (4)

Country Link
EP (1) EP4378598A1 (zh)
CN (1) CN115672874A (zh)
TW (1) TWI809575B (zh)
WO (1) WO2023005055A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379583A (zh) * 2005-12-20 2009-03-04 艾克塞利斯科技公司 基于氟的离子源清洁
CN102113094A (zh) * 2008-06-20 2011-06-29 瓦里安半导体设备公司 离子源清洁方法及其装置
CN102549705A (zh) * 2009-10-01 2012-07-04 普莱克斯技术有限公司 用于离子源组件清洗的方法
CN109935513A (zh) * 2019-03-29 2019-06-25 江苏鲁汶仪器有限公司 一种离子束刻蚀系统
CN111069192A (zh) * 2018-10-22 2020-04-28 北京北方华创微电子装备有限公司 原位清洗装置和半导体处理设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181111A1 (en) * 2014-12-19 2016-06-23 Lam Research Corporation Silicon etch and clean
CN106611690A (zh) * 2015-10-22 2017-05-03 中芯国际集成电路制造(北京)有限公司 减少或防止在离子注入机的离子源内形成沉积物的方法
JP6854600B2 (ja) * 2016-07-15 2021-04-07 東京エレクトロン株式会社 プラズマエッチング方法、プラズマエッチング装置、および基板載置台
CN110571121B (zh) * 2019-09-17 2022-08-26 江苏鲁汶仪器有限公司 采用远程等离子体源自清洗离子束刻蚀装置及清洗方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379583A (zh) * 2005-12-20 2009-03-04 艾克塞利斯科技公司 基于氟的离子源清洁
CN102113094A (zh) * 2008-06-20 2011-06-29 瓦里安半导体设备公司 离子源清洁方法及其装置
CN102549705A (zh) * 2009-10-01 2012-07-04 普莱克斯技术有限公司 用于离子源组件清洗的方法
CN111069192A (zh) * 2018-10-22 2020-04-28 北京北方华创微电子装备有限公司 原位清洗装置和半导体处理设备
CN109935513A (zh) * 2019-03-29 2019-06-25 江苏鲁汶仪器有限公司 一种离子束刻蚀系统

Also Published As

Publication number Publication date
TWI809575B (zh) 2023-07-21
EP4378598A1 (en) 2024-06-05
TW202304608A (zh) 2023-02-01
CN115672874A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
TWI667707B (zh) Dry etching method
KR101274382B1 (ko) 에칭 프로세스를 위한 안정화된 포토레지스트 구조
KR101445299B1 (ko) 반도체 구조물을 에칭하기 위한 펄스화된 샘플 바이어스를 가지는 펄스화된 플라즈마 시스템
JP4674368B2 (ja) シリコンの異方性エッチングのための方法
WO2011009413A1 (zh) 一种深硅刻蚀方法
US20060205220A1 (en) Stabilized photoresist structure for etching process
JP5686747B2 (ja) ドライエッチング方法
CN101148765B (zh) 硅片蚀刻方法
JPH0982687A (ja) 半導体装置の製造方法
US11398386B2 (en) Plasma etch processes
CN103715065B (zh) 一种平缓光滑侧壁形貌的SiC刻蚀方法
WO2023005055A1 (zh) 一种等离子体处理方法
JP5538959B2 (ja) 基板の洗浄方法及び半導体製造装置
JP6173086B2 (ja) シリコン基板のエッチング方法
JP2009206130A (ja) ドライエッチング方法及びドライエッチング装置
CN108133888B (zh) 一种深硅刻蚀方法
KR101366429B1 (ko) 에칭 방법 및 장치
KR100778871B1 (ko) 건식 에칭 장비의 펌핑 라인 장치
CN118116788A (zh) 一种离子束刻蚀设备及刻蚀方法
TWI834289B (zh) 一種等離子刻蝕腔的清洗方法及應用
CN117293023A (zh) 一种等离子刻蚀碳化硅的方法
KR100263611B1 (ko) 트렌치 형성 방법
CN116969412A (zh) 半导体mems器件的制备方法
Darnon et al. Characterization of silicon etching in synchronized pulsed plasma
JP3176312B2 (ja) アルミ合金膜のドライエッチング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18293322

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021951627

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021951627

Country of ref document: EP

Effective date: 20240229