WO2023004848A1 - 铝合金铸锭的均匀化退火的工艺方法 - Google Patents

铝合金铸锭的均匀化退火的工艺方法 Download PDF

Info

Publication number
WO2023004848A1
WO2023004848A1 PCT/CN2021/110633 CN2021110633W WO2023004848A1 WO 2023004848 A1 WO2023004848 A1 WO 2023004848A1 CN 2021110633 W CN2021110633 W CN 2021110633W WO 2023004848 A1 WO2023004848 A1 WO 2023004848A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
ingot
temperature
alloy ingot
annealing
Prior art date
Application number
PCT/CN2021/110633
Other languages
English (en)
French (fr)
Inventor
陶诚
付晓
Original Assignee
广东铭利达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东铭利达科技有限公司 filed Critical 广东铭利达科技有限公司
Publication of WO2023004848A1 publication Critical patent/WO2023004848A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D31/00Cutting-off surplus material, e.g. gates; Cleaning and working on castings
    • B22D31/002Cleaning, working on castings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum

Definitions

  • the invention relates to the technical field of metal processing, in particular to a process method for homogenizing annealing of aluminum alloy ingots.
  • the existing homogenization annealing process of aluminum alloy ingots can basically meet the production requirements, but there are still some deficiencies: First, the existing aluminum alloy ingots do not have surface treatment before heat treatment.
  • Quality treatment affects the grain structure on the surface of the ingot during annealing, thereby reducing the surface quality of the ingot after annealing;
  • the existing homogenization treatment only carries out a process of heating up and standing at a high temperature, and it is necessary to eliminate residual Stress needs to prolong the standing time, which affects production efficiency;
  • the ingot is not treated again after the existing homogenization annealing process, and the crystal grains in the alloy after the homogenization annealing are coarse, resulting in the aluminum alloy ingot Increased hardness is not conducive to subsequent processing.
  • the object of the present invention is to provide a process method for homogenizing annealing of aluminum alloy ingots, so as to solve the problems raised in the above-mentioned background technology.
  • the present invention provides the following technical solution: the process method of homogenizing annealing of aluminum alloy ingots, comprising the following steps: Step 1, grinding and cleaning; Step 2, vacuum drying; Step 3, slowly heating up; Step 4, Insulation before making; step five, diffusion annealing; step six, secondary treatment; step seven, air cooling;
  • the surface of the aluminum alloy ingot is polished and cleaned, and then placed in a super cleaner for negative pressure cleaning, and the polished and cleaned aluminum alloy ingot is obtained after cleaning;
  • the ingot polished and cleaned in the step 1 is baked in a vacuum oven, and the baked aluminum alloy ingot is obtained after baking;
  • step three the baked aluminum alloy ingot obtained in step two is placed in a vacuum furnace filled with an inert gas and slowly heated to obtain an aluminum alloy ingot to be kept warm;
  • step 4 continue to place the aluminum alloy ingot to be insulated in the vacuum furnace, keep the temperature in the vacuum furnace constant, keep the aluminum alloy ingot to be insulated at a constant temperature, and then obtain the aluminum alloy ingot to be annealed ;
  • step five the aluminum alloy ingot to be annealed is continued to be placed in the vacuum furnace, the vacuum furnace is slowly heated up, after the temperature is raised, it is left to stand, and then the temperature is slowly lowered, and the aluminum alloy ingot after the initial annealing is obtained after cooling ;
  • step six the aluminum alloy ingot after the initial annealing is put into a high-temperature furnace to heat up and then kept for heat preservation, and then the aluminum alloy ingot after secondary treatment is obtained;
  • step 7 the secondary treated aluminum alloy ingot obtained in step 6 is cooled in the air, and after cooling, a homogenized annealed aluminum alloy ingot is obtained.
  • the working frequency of the ultrasonic cleaner is 30-40KHz
  • the cleaning pressure is 60-70KPa
  • the cleaning temperature is 20-30°C
  • the cleaning time is 20-30min.
  • the temperature of the vacuum oven is 110-120° C.
  • the pressure is 60-70 KPa
  • the baking time is 100-120 minutes.
  • the temperature raising rate of the vacuum furnace is 4-5°C/min, and the temperature is raised to 418-422°C.
  • the temperature for standing at constant temperature is 418-422° C.
  • the standing time is 100-120 minutes.
  • the temperature rise rate of the vacuum furnace is 4-5°C/min, the temperature is raised to 528-532°C, and then left to stand for 600-650min.
  • the cooling rate after standing at constant temperature is 9-10°C/min, and the temperature is lowered to 200-300°C.
  • the heating rate in the high-temperature furnace is 9-10° C./min
  • the temperature is raised to 540-550° C.
  • the standing time is 45-60 minutes.
  • the aluminum alloy ingot after the secondary treatment needs to be cooled to 30-50° C. in air.
  • the beneficial effect of the present invention is: the homogenization annealing process of the aluminum alloy ingot basically eliminates the surface defects of the ingot after casting by grinding and cleaning the ingot, and at the same time removes the The oxides and impurities on the surface of the ingot avoid the surface defects of the ingot and the residual impurities that affect the grain changes on the surface of the ingot during annealing, thereby improving the surface quality of the ingot after annealing; through heat preservation before making, it reduces the The non-equilibrium eutectic structure in the ingot enhances the aging strengthening and dispersion strengthening of alloying elements, shortens the time required to eliminate residual stress, thereby improving production efficiency; The ingot grain reduces the hardness of the aluminum alloy ingot, thereby improving the machinability of the ingot.
  • Fig. 1 is process flow chart of the present invention.
  • the process method for uniform annealing of aluminum alloy ingots comprises the following steps: Step 1, grinding and cleaning; Step 2, vacuum drying; Step 3, slowly heating up; Step 4, heat preservation before manufacturing; Step 5, diffusion annealing; Step 6 , secondary treatment; step seven, air cooling;
  • the surface of the aluminum alloy ingot is polished and cleaned, and then placed in an ultra-cleaner for negative pressure cleaning.
  • the working frequency of the ultrasonic cleaner is 35KHz
  • the pressure during cleaning is 65KPa
  • the cleaning temperature is 25°C.
  • the cleaning time is 25min
  • the aluminum alloy ingot after grinding and cleaning is obtained;
  • step 2 the ingot polished and cleaned in step 1 is baked in a vacuum oven, the temperature of the vacuum oven is 115°C, the pressure is 66KPa, and the baked ingot is baked for 110 minutes, and then the baked aluminum alloy ingot;
  • step three the baked aluminum alloy ingot obtained in step two is placed in a vacuum furnace filled with inert gas, and the temperature is slowly raised to 420°C at a rate of 5°C/min to obtain an aluminum alloy ingot to be kept warm ;
  • step 4 continue to place the aluminum alloy ingot to be kept warm in the vacuum furnace, and let it stand at a constant temperature of 420° C. for 110 minutes, and then obtain the aluminum alloy ingot to be annealed;
  • the aluminum alloy ingot to be annealed is continued to be placed in the vacuum furnace, and the vacuum furnace is slowly heated to 530°C at a rate of 5°C/min, and then the temperature is kept constant for 620min, and then Gradually lower the temperature to 250°C at a rate of 10°C/min to obtain an aluminum alloy ingot after initial annealing;
  • the aluminum alloy ingot after the initial annealing is put into a high-temperature furnace to gradually raise the temperature to 550° C. at a rate of 10° C./min, and then stand for 50 minutes to obtain the aluminum alloy ingot after secondary treatment;
  • the aluminum alloy ingot after the secondary treatment obtained in the step 6 is placed in the air to cool down to 40° C. to obtain a homogenized annealed aluminum alloy ingot.
  • the process method for uniform annealing of aluminum alloy ingots comprises the following steps: Step 1, grinding and cleaning; Step 2, vacuum drying; Step 3, slowly heating up; Step 4, heat preservation before manufacturing; Step 5, diffusion annealing; Step 6 , secondary treatment; step seven, air cooling;
  • the surface of the aluminum alloy ingot is polished and cleaned, and then placed in an ultra-cleaner for negative pressure cleaning.
  • the working frequency of the ultrasonic cleaner is 40KHz
  • the pressure during cleaning is 68KPa
  • the cleaning temperature is 28°C.
  • the cleaning time is 20min
  • the aluminum alloy ingot after grinding and cleaning is obtained;
  • step 2 the ingot polished and cleaned in step 1 is baked in a vacuum oven, the temperature of the vacuum oven is 118°C, the pressure is 70KPa, baked for 110min, and then the baked aluminum alloy ingot;
  • step three the baked aluminum alloy ingot obtained in step two is placed in a vacuum furnace filled with inert gas, and the temperature is slowly raised to 420°C at a rate of 5°C/min to obtain an aluminum alloy ingot to be kept warm ;
  • step 4 continue to place the aluminum alloy ingot to be kept warm in the vacuum furnace, and let it stand at a constant temperature of 420° C. for 110 minutes, and then obtain the aluminum alloy ingot to be annealed;
  • step five continue to place the aluminum alloy ingot to be annealed in the vacuum furnace, slowly raise the temperature of the vacuum furnace to 530°C at a rate of 5°C/min, then keep the temperature constant and let it stand for 620min, then Gradually lower the temperature to 250°C at a rate of 10°C/min to obtain an aluminum alloy ingot after initial annealing;
  • the aluminum alloy ingot after the initial annealing is put into a high-temperature furnace and gradually heated up to 545°C at a rate of 10°C/min, and then kept at the same temperature for 50min to obtain the aluminum alloy after secondary treatment.
  • step 7 the aluminum alloy ingot after the secondary treatment obtained in step 6 is placed in the air to cool down to 35° C. to obtain a homogenized annealed aluminum alloy ingot.
  • the process method for uniform annealing of aluminum alloy ingots comprises the following steps: Step 1, grinding and cleaning; Step 2, vacuum drying; Step 3, slowly heating up; Step 4, heat preservation before manufacturing; Step 5, diffusion annealing; Step 6 , secondary treatment; step seven, air cooling;
  • the surface of the aluminum alloy ingot is polished and cleaned, and then placed in an ultra-cleaner for negative pressure cleaning.
  • the working frequency of the ultrasonic cleaner is 40KHz
  • the pressure during cleaning is 70KPa
  • the cleaning temperature is 30°C.
  • the cleaning time is 30min
  • the aluminum alloy ingot after grinding and cleaning is obtained;
  • step 2 the ingot polished and cleaned in step 1 is baked in a vacuum oven with a temperature of 120°C and a pressure of 70KPa for 120 minutes, and then the baked ingot is obtained.
  • aluminum alloy ingot
  • step three the baked aluminum alloy ingot obtained in step two is placed in a vacuum furnace filled with inert gas, and the temperature is slowly raised to 422°C at a rate of 5°C/min to obtain an aluminum alloy ingot to be kept warm ;
  • step 4 continue to place the aluminum alloy ingot to be kept warm in the vacuum furnace, and let it stand at a constant temperature of 422° C. for 120 minutes, and then obtain the aluminum alloy ingot to be annealed;
  • step five continue to place the aluminum alloy ingot to be annealed in the vacuum furnace, slowly raise the temperature of the vacuum furnace to 532°C at a rate of 5°C/min, then keep the temperature constant and let it stand for 650min, then Gradually lower the temperature to 300°C at a rate of 10°C/min to obtain an aluminum alloy ingot after initial annealing;
  • the aluminum alloy ingot after the initial annealing is put into a high-temperature furnace to gradually raise the temperature to 550° C. at a rate of 10° C./min, and then stand for 60 minutes to obtain the aluminum alloy ingot after secondary treatment;
  • the aluminum alloy ingot after the secondary treatment obtained in the step 6 is placed in the air to cool down to 40° C. to obtain a homogenized annealed aluminum alloy ingot.
  • Example 1 278MPa 130MPa 80HBW
  • Example 2 260MPa 125MPa 78HBW
  • Example 3 274MPa 136MPa 87HBW comparative example 180MPa 90MPa 125HBW
  • the advantage of the present invention is that, by grinding the surface of the ingot before heat treatment, the remaining defects on the surface of the ingot are removed, and then by ultrasonic cleaning, the oxides and impurities on the surface of the ingot are removed, ensuring that the heat treatment
  • the grain state on the surface of the ingot after annealing improves the surface quality of the ingot after annealing, and the non-equilibrium eutectic structure in the ingot is reduced by pre-heating before diffusion annealing, and the aging strengthening and strengthening of alloying elements are enhanced.
  • Dispersion strengthening which shortens the homogenization annealing time and improves production efficiency.
  • Through secondary treatment the grains after annealing are refined, the surface hardness of the ingot is reduced, and the mechanical properties are optimized. Ingot Machinability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种铝合金铸锭的均匀化退火的工艺方法,包括以下步骤:步骤一,打磨清洗;步骤二,真空烘干;步骤三,缓慢升温;步骤四,制前保温;步骤五,扩散退火;步骤六,二次处理;步骤七,空气冷却。通过在热处理之前对铸锭表面进行打磨,之后进行超声波清洗,消除了铸锭的表面缺陷,除去了氧化物等杂质,确保了热处理时铸锭的表面不受影响,从而提高了退火后的表面质量,通过制前保温减少了铸锭内部的非平衡共晶组织,缩短了消除残余应力所需要的时间,从而提高了生产效率,通过对退火后的铝合金铸进行二次处理,细化了铸锭内部的晶粒,降低了表面硬度,提升了铸锭的力学性能,从而提升了退火后铸锭的可加工性。

Description

铝合金铸锭的均匀化退火的工艺方法 技术领域
本发明涉及金属加工技术领域,具体为铝合金铸锭的均匀化退火的工艺方法。
背景技术
铝合金铸锭铸造后因液体金属凝固而产生非平衡结晶,造成铸锭的化学成分、组织的不均匀性,即所谓的不平衡状态,使铸锭内部存在着铸造时产生的残余应力,铝合金铸锭的均匀化退火就是为了消除铸锭内部的残余应力,减少或消除铸锭的化学成分和组织的不均匀性,以达到改善铸锭的压力、加工性和制品的某些最终性能的目的,现有的铝合金铸锭的均匀化退火的工艺方法基本可以满足生产要求,但仍然存在一定的不足之处:其一,现有的铝合金铸锭在热处理之前没有对铸锭的表面质量进行处理,影响了退火时铸锭表面的晶粒结构,从而降低了退火后铸锭的表面质量;其二,现有的均匀化处理只进行一次升温以及高温静置的过程,要消除残余应力就需要延长静置的时间,影响了生产效率;其三,现有的均匀化退火过程之后没有对铸锭进行再次处理,均匀化退火后合金中的晶粒粗大,导致铝合金铸锭的硬度提升,不利于接下来的加工。
发明内容
本发明的目的在于提供铝合金铸锭的均匀化退火的工艺方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:铝合金铸锭的均匀化退火的工艺方法,包括以下步骤:步骤一,打磨清洗;步骤二,真空烘干;步骤三,缓慢升温;步骤四,制前保温;步骤五,扩散退火;步骤六,二次处理;步骤七,空气冷却;
其中在上述步骤一中,对铝合金铸锭的表面进行打磨清洗,之后放在超清洗器中负压清洗,清洗后得到打磨清洗后的铝合金铸锭;
其中在上述步骤二中,将步骤一中打磨清洗后的铸锭放在真空烘烤箱中烘烤,烘烤后得到经过烘烤后铝合金铸锭;
其中在上述步骤三中,将步骤二得到的烘烤后的铝合金铸锭放在充满惰性气体的真空炉中缓慢升温,得到待保温铝合金铸锭;
其中在上述步骤四中,将待保温铝合金铸锭继续放置在真空炉中,保持真空炉中的温度不变,对待保温铝合金铸锭进行恒温静置,之后得到待退火的铝合金铸锭;
其中在上述步骤五中,将待退火的铝合金铸锭继续放置在真空炉中,使真空炉缓慢升温,升温之后进行静置,然后再缓慢降温,降温后得到初始退火后的铝合金铸锭;
其中在上述步骤六中,将初始退火后的铝合金铸锭放入高温炉中升温后静置保温,之后得到二次处理后的铝合金铸锭;
其中在上述步骤七中,将步骤六中得到的二次处理后的铝合金铸锭,放在空气中冷却,冷却后得到均匀化退火后的铝合金铸锭。
优选的,所述步骤一中,超声波清洗器的工作频率为30~40KHz,清洗时的压强为60~70KPa,清洗温度为20~30℃,清洗时间为20~30min。
优选的,所述步骤二中,真空烘烤箱的温度为110~120℃,压强为60~70KPa,烘烤时间为100~120min。
优选的,所述步骤三中,真空炉的温度提升速率为4~5℃/min,升温到418~422℃。
优选的,所述步骤四中,恒温静置的温度为418~422℃,静置时间为100~120min。
优选的,所述步骤五中,真空炉的升温速率为4~5℃/min,升温到528~532℃,之后静置600~650min。
优选的,所述步骤五中,恒温静置后的降温速率为9~10℃/min,降温至200~300℃。
优选的,所述步骤六中,高温炉内的升温速率为9~10℃/min,升温至540~550℃,静置时间为45~60min。
优选的,所述步骤七中,二次处理后的铝合金铸锭需在空气中冷却至30~50℃。
与现有技术相比,本发明的有益效果是:该铝合金铸锭的均匀化退火的工艺方法,通过对铸锭进行打磨清洗,基本消除了铸造后铸锭的表面缺陷,同时去除了了铸锭表面的氧化物和杂质,避免了铸锭表面缺陷和残留的杂质在退火时影响铸锭表面的晶粒变化,从而提高了退火后铸锭的表面质量;通过制前保温,减少了铸锭内的非平衡共晶组织,增强了合金元素的时效强化和弥散强化,缩短了消除残余应力所需要的时间,从而提高了生产效率;通过设置的二次处理步骤,细化了退火后的铸锭晶粒,降低了铝合金铸锭的硬度,从而提高了铸锭的可加工性。
附图说明
图1为本发明的工艺方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供的一种技术方案:
实施例1:
铝合金铸锭的均匀化退火的工艺方法,包括以下步骤:步骤一,打磨清洗;步骤二,真空烘干;步骤三,缓慢升温;步骤四,制前保温;步骤五,扩散退火;步骤六,二次处理;步骤七,空气冷却;
其中在上述步骤一中,对铝合金铸锭的表面进行打磨清洗,之后放在超清洗器中负压清洗,超声波清洗器的工作频率为35KHz,清洗时的压强为65KPa,清洗温度为25℃,清洗时间为25min,得到打磨清洗后的铝合金铸锭;
其中在上述步骤二中,将步骤一中打磨清洗后的铸锭放在真空烘烤箱中烘烤,真空烘烤箱的温度为115℃,压强为66KPa,烘烤110min,之后得到烘烤后铝合金铸锭;
其中在上述步骤三中,将步骤二得到的烘烤后的铝合金铸锭放在充满惰性气体的真空炉中,以5℃/min的速率缓慢升温至420℃,得到待保温铝合金铸锭;
其中在上述步骤四中,将待保温铝合金铸锭继续放置在真空炉中,420℃恒温静置110min,之后得到待退火的铝合金铸锭;
其中在上述步骤五中,将待退火的铝合金铸锭继续放置在真空炉中,使真空炉以5℃/min的速率缓慢升温至530℃,然后保持温度不变,静置620min,之后以10℃/min的速率逐渐降温至250℃,得到初始退火后的铝合金铸锭;
其中在上述步骤六中,将初始退火后的铝合金铸锭放入高温炉中以10℃/min的速率逐渐升温至550℃,然后静置50min,得到二次处理后的铝合金铸锭;
其中在上述步骤七中,将步骤六中得到的二次处理后的铝合金铸锭放置在空气中冷却降温至40℃,得到均匀化退火后的铝合金铸锭。
实施例2:
铝合金铸锭的均匀化退火的工艺方法,包括以下步骤:步骤一,打磨清洗;步骤二,真空烘干;步骤三,缓慢升温;步骤四,制前保温;步骤五,扩散退火;步骤六,二次处理;步骤七,空气冷却;
其中在上述步骤一中,对铝合金铸锭的表面进行打磨清洗,之后放在超清洗器中负压清洗,超声波清洗器的工作频率为40KHz,清洗时的压强为68KPa,清洗温度为28℃,清洗时间为20min,得到打磨清洗后的铝合金铸锭;
其中在上述步骤二中,将步骤一中打磨清洗后的铸锭放在真空烘烤箱中烘烤,真空烘烤箱的温度为118℃,压强为70KPa,烘烤110min,之后得到烘烤后铝合金铸锭;
其中在上述步骤三中,将步骤二得到的烘烤后的铝合金铸锭放在充满惰性气体的真空炉中,以5℃/min的速率缓慢升温至420℃,得到待保温铝合金铸锭;
其中在上述步骤四中,将待保温铝合金铸锭继续放置在真空炉中,420℃恒温静置110min,之后得到待退火的铝合金铸锭;
其中在上述步骤五中,将待退火的铝合金铸锭继续放置在真空炉中,使真空炉以以5℃/min的速率缓慢升温至530℃,然后保持温度不变,静置620min,之后以10℃/min的速率逐渐降温至250℃,得到初始退火后的铝合金铸锭;
其中在上述步骤六中,将初始退火后的铝合金铸锭放入高温炉中以10℃/min的速率逐渐升温至545℃,然后保持温度不变静置50min,得到二次处理后的铝合金铸锭;
其中在上述步骤七中,将步骤六中得到的二次处理后的铝合金铸锭放置在空气中冷却降温至35℃,得到均匀化退火后的铝合金铸锭。
实施例3:
铝合金铸锭的均匀化退火的工艺方法,包括以下步骤:步骤一,打磨清 洗;步骤二,真空烘干;步骤三,缓慢升温;步骤四,制前保温;步骤五,扩散退火;步骤六,二次处理;步骤七,空气冷却;
其中在上述步骤一中,对铝合金铸锭的表面进行打磨清洗,之后放在超清洗器中负压清洗,超声波清洗器的工作频率为40KHz,清洗时的压强为70KPa,清洗温度为30℃,清洗时间为30min,得到打磨清洗后的铝合金铸锭;
其中在上述步骤二中,将步骤一中打磨清洗后的铸锭放在真空烘烤箱中烘烤,真空烘烤箱的温度为120℃,压强为70KPa,烘烤120min,之后得到烘烤后铝合金铸锭;
其中在上述步骤三中,将步骤二得到的烘烤后的铝合金铸锭放在充满惰性气体的真空炉中,以5℃/min的速率缓慢升温至422℃,得到待保温铝合金铸锭;
其中在上述步骤四中,将待保温铝合金铸锭继续放置在真空炉中,422℃恒温静置120min,之后得到待退火的铝合金铸锭;
其中在上述步骤五中,将待退火的铝合金铸锭继续放置在真空炉中,使真空炉以以5℃/min的速率缓慢升温至532℃,然后保持温度不变,静置650min,之后以10℃/min的速率逐渐降温至300℃,得到初始退火后的铝合金铸锭;
其中在上述步骤六中,将初始退火后的铝合金铸锭放入高温炉中以10℃/min的速率逐渐升温至550℃,然后静置60min,得到二次处理后的铝合金铸锭;
其中在上述步骤七中,将步骤六中得到的二次处理后的铝合金铸锭放置在空气中冷却降温至40℃,得到均匀化退火后的铝合金铸锭。
将上述实施例所得均匀化退火后的铝合金铸锭分别进行性能检测,并与采用一般工艺方法制备后的铝合金铸锭进行对比,所得结果如下表:
  R m R p0.2 表面硬度
实施例1 278MPa 130MPa 80HBW
实施例2 260MPa 125MPa 78HBW
实施例3 274MPa 136MPa 87HBW
对比例 180MPa 90MPa 125HBW
基于上述,本发明的优点在于,通过在热处理制前对铸锭的表面进行打磨,去除了铸锭表面残留的缺陷,之后通过超声清洗,除去了铸锭表面的氧化物和杂质,确保了热处理后铸锭表面的晶粒状态,从而提高了退火后铸锭的表面质量,通过在扩散退火之前进行制前保温,减少了铸锭内的非平衡共晶组织,增强了合金元素的时效强化和弥散强化,从而缩短了均匀化退火的时间,提高了生产效率,通过二次处理,细化了退火之后的晶粒,减小了铸锭的表面硬度,优化了力学性能,从而提高了退火后铸锭的可加工性。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (9)

  1. 铝合金铸锭的均匀化退火的工艺方法,包括以下步骤:步骤一,打磨清洗;步骤二,真空烘干;步骤三,缓慢升温;步骤四,制前保温;步骤五,扩散退火;步骤六,二次处理;步骤七,空气冷却;其特征在于:
    其中在上述步骤一中,对铝合金铸锭的表面进行打磨清洗,之后放在超清洗器中负压清洗,清洗后得到打磨清洗后的铝合金铸锭;
    其中在上述步骤二中,将步骤一中打磨清洗后的铸锭放在真空烘烤箱中烘烤,烘烤后得到经过烘烤后铝合金铸锭;
    其中在上述步骤三中,将步骤二得到的烘烤后的铝合金铸锭放在充满惰性气体的真空炉中缓慢升温,得到待保温铝合金铸锭;
    其中在上述步骤四中,将待保温铝合金铸锭继续放置在真空炉中,保持真空炉中的温度不变,对待保温铝合金铸锭进行恒温静置,之后得到待退火的铝合金铸锭;
    其中在上述步骤五中,将待退火的铝合金铸锭继续放置在真空炉中,使真空炉缓慢升温,升温之后进行静置,然后再缓慢降温,降温后得到初始退火后的铝合金铸锭;
    其中在上述步骤六中,将初始退火后的铝合金铸锭放入高温炉中升温后静置保温,之后得到二次处理后的铝合金铸锭;
    其中在上述步骤七中,将步骤六中得到的二次处理后的铝合金铸锭,放在空气中冷却,冷却后得到均匀化退火后的铝合金铸锭。
  2. 根据权利要求1所述的铝合金铸锭的均匀化退火的工艺方法,其特征在于:所述步骤一中,超声波清洗器的工作频率为30~40KHz,清洗时的压强为60~70KPa,清洗温度为20~30℃,清洗时间为20~30min。
  3. 根据权利要求1所述的铝合金铸锭的均匀化退火的工艺方法,其特征在于:所述步骤二中,真空烘烤箱的温度为110~120℃,压强为60~70KPa,烘烤时间为100~120min。
  4. 根据权利要求1所述的铝合金铸锭的均匀化退火的工艺方法,其特征在于:所述步骤三中,真空炉的温度提升速率为4~5℃/min,升温到418~422℃。
  5. 根据权利要求1所述的铝合金铸锭的均匀化退火的工艺方法,其特征在于:所述步骤四中,恒温静置的温度为418~422℃,静置时间为100~120min。
  6. 根据权利要求1所述的铝合金铸锭的均匀化退火的工艺方法,其特征在于:所述步骤五中,真空炉的升温速率为4~5℃/min,升温到528~532℃,之后静置600~650min。
  7. 根据权利要求1所述的铝合金铸锭的均匀化退火的工艺方法,其特征在于:所述步骤五中,恒温静置后的降温速率为9~10℃/min,降温至200~300℃。
  8. 根据权利要求1所述的铝合金铸锭的均匀化退火的工艺方法,其特征在于:所述步骤六中,高温炉内的升温速率为9~10℃/min,升温至540~550℃,静置时间为45~60min。
  9. 根据权利要求1所述的铝合金铸锭的均匀化退火的工艺方法,其特征在于:所述步骤七中,二次处理后的铝合金铸锭需在空气中冷却至30~50℃。
PCT/CN2021/110633 2021-07-27 2021-08-04 铝合金铸锭的均匀化退火的工艺方法 WO2023004848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110852489.5A CN113604758A (zh) 2021-07-27 2021-07-27 铝合金铸锭的均匀化退火的工艺方法
CN202110852489.5 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023004848A1 true WO2023004848A1 (zh) 2023-02-02

Family

ID=78305659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110633 WO2023004848A1 (zh) 2021-07-27 2021-08-04 铝合金铸锭的均匀化退火的工艺方法

Country Status (2)

Country Link
CN (1) CN113604758A (zh)
WO (1) WO2023004848A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993573A (en) * 1997-06-04 1999-11-30 Golden Aluminum Company Continuously annealed aluminum alloys and process for making same
CN104404416A (zh) * 2014-12-12 2015-03-11 西南铝业(集团)有限责任公司 一种7a85铝合金的均匀化热处理工艺及7a85铝合金铸锭
CN109439982A (zh) * 2018-12-10 2019-03-08 徐州特普勒金属科技有限公司 一种轻质抗老化铝合金及其加工方法
CN110714174A (zh) * 2019-09-23 2020-01-21 四川阳光坚端铝业有限公司 一种铝合金铸锭的均匀化处理工艺
CN112301241A (zh) * 2020-10-20 2021-02-02 中国兵器科学研究院宁波分院 一种含钪铝合金焊丝铸锭的制备方法
CN112981288A (zh) * 2021-05-12 2021-06-18 中国航发北京航空材料研究院 一种铝合金铸锭的退火方法
CN112981289A (zh) * 2021-04-21 2021-06-18 中国航发北京航空材料研究院 一种7000系铝合金铸锭去应力退火及均匀化退火的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993573A (en) * 1997-06-04 1999-11-30 Golden Aluminum Company Continuously annealed aluminum alloys and process for making same
CN104404416A (zh) * 2014-12-12 2015-03-11 西南铝业(集团)有限责任公司 一种7a85铝合金的均匀化热处理工艺及7a85铝合金铸锭
CN109439982A (zh) * 2018-12-10 2019-03-08 徐州特普勒金属科技有限公司 一种轻质抗老化铝合金及其加工方法
CN110714174A (zh) * 2019-09-23 2020-01-21 四川阳光坚端铝业有限公司 一种铝合金铸锭的均匀化处理工艺
CN112301241A (zh) * 2020-10-20 2021-02-02 中国兵器科学研究院宁波分院 一种含钪铝合金焊丝铸锭的制备方法
CN112981289A (zh) * 2021-04-21 2021-06-18 中国航发北京航空材料研究院 一种7000系铝合金铸锭去应力退火及均匀化退火的方法
CN112981288A (zh) * 2021-05-12 2021-06-18 中国航发北京航空材料研究院 一种铝合金铸锭的退火方法

Also Published As

Publication number Publication date
CN113604758A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN106191574B (zh) 一种6系铝合金及其预拉伸板材的制备工艺
US11525175B2 (en) Aluminum alloy and preparation method thereof
CN111496161A (zh) 一种高温合金棒材的制备方法
KR20200118420A (ko) 알루미늄 전해 커패시터용 1xxx계 음극 포일의 제조 방법
CN111074185A (zh) 能有效降低激光增材制造钛合金各向异性的热处理方法
CN113235023B (zh) 一种电容器用低压电子铝箔及其制备工艺
CN106350713A (zh) 一种Al‑Mg‑Si合金及其板材的制备工艺
CN109290371B (zh) 一种铜铝复合板带的冷轧制造方法
CN105039882B (zh) 一种制备析出强化型高强高导CuZr合金的设备
WO2023004848A1 (zh) 铝合金铸锭的均匀化退火的工艺方法
CN106591555B (zh) 一种无取向冷轧硅钢片冷轧后的退火工艺
CN109879589A (zh) 一种提高玻璃力学性能的退火工艺
CN113231467B (zh) 一种铂片靶材的制备方法
CN110117702A (zh) 巨型铬钼圆锭的退火方法
CN113981349A (zh) 一种高晶粒度旋压阴极辊钛筒的退火工艺
CN110747418B (zh) Gh4738合金及其均匀化方法、涡轮盘锻件和燃气轮机
CN108838206B (zh) 提高铝不锈钢复合板材性能的方法及铝不锈钢复合板材
CN114000073A (zh) 一种改善高纯镍靶材内部组织的工艺方法
CN113444928A (zh) 一种重卡轮毂用高强铝合金及其制备方法
CN110423961A (zh) 一种金属旋压件的制作方法
CN114561533B (zh) 一种纯钛薄板表面晶花的加工方法
CN118222947A (zh) 一种铝合金冷轧带材退火的方法
CN115354138B (zh) 提高20CrNiMo压延辊全截面硬度均匀性的热处理工艺
CN110877050A (zh) 一种锆合金热轧板材的制备方法
CN116143512B (zh) 一种高纯二氧化钛平面靶材及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE