WO2023004535A1 - 电路板组件、发光组件及其制作方法 - Google Patents

电路板组件、发光组件及其制作方法 Download PDF

Info

Publication number
WO2023004535A1
WO2023004535A1 PCT/CN2021/108411 CN2021108411W WO2023004535A1 WO 2023004535 A1 WO2023004535 A1 WO 2023004535A1 CN 2021108411 W CN2021108411 W CN 2021108411W WO 2023004535 A1 WO2023004535 A1 WO 2023004535A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
chip
emitting
circuit board
emitting chip
Prior art date
Application number
PCT/CN2021/108411
Other languages
English (en)
French (fr)
Inventor
翟峰
萧俊龙
蔡明达
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2021/108411 priority Critical patent/WO2023004535A1/zh
Priority to US17/986,407 priority patent/US20230073554A1/en
Publication of WO2023004535A1 publication Critical patent/WO2023004535A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/22Connection or disconnection of sub-entities or redundant parts of a device in response to a measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • H01L2221/68322Auxiliary support including means facilitating the selective separation of some of a plurality of devices from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95001Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the present application relates to the field of light-emitting chips, in particular to a circuit board component, a light-emitting component and a manufacturing method thereof.
  • Micro LED is a new generation of display technology. Compared with the existing liquid crystal display, it has higher photoelectric efficiency, higher brightness, higher contrast ratio, and lower power consumption, and can also be combined with a flexible panel to realize flexible display.
  • the Micro LED display panel includes several pixel regions SPR (Subpixel Rendering, sub-pixel rendering), each pixel area SPR includes red Micro LED chip, blue light Micro LED chip, green light Micro LED chips.
  • each pixel area SPR includes red Micro LED chip, blue light Micro LED chip, green light Micro LED chips.
  • WAFER growth substrates
  • the side of the transfer substrate provided with the second adhesive layer is bonded to the side of the temporary substrate carrying the red Micro LED chips, so as to selectively pick up the corresponding red Micro LED chips from the temporary substrate. LED chips;
  • the blue Micro LED chip and the green Micro LED chip are also sequentially transferred to the display backplane by the above chip transfer process.
  • the above chip transfer process it is necessary to select two kinds of adhesive materials to make the first adhesive layer and the second adhesive layer respectively, and it is necessary to ensure that the viscosity of the first adhesive layer is lower than that of the second adhesive layer, so it is difficult to find a suitable adhesive. materials, and the above transfer process requires the Micro LED chips are transferred from the growth substrate to the temporary substrate, and from the temporary substrate to the transfer substrate. The transfer efficiency is low and the temporary substrate and the transfer substrate need to be prepared, and the transfer cost is also high.
  • the purpose of the present application is to provide a circuit board assembly, a light-emitting assembly and a manufacturing method thereof, aiming at solving the problem of how to improve the transfer efficiency of LED chips and reduce the transfer cost in the related art.
  • the application provides a circuit board assembly, comprising:
  • a circuit board the circuit board is provided with a plurality of chip bonding areas, and the chip bonding area is provided with pads corresponding to the electrodes of the light-emitting chip, wherein:
  • the circuit board assembly also includes a weakened layer disposed on the circuit board and formed with a plurality of cavities;
  • the plurality of cavities are isolated from each other by the weakening layer, and one of the chip bonding regions corresponds to one of the cavities, and the weakening layer forms the sidewall and the top wall of each of the cavities;
  • the top wall is used to carry the light-emitting chip detached from the growth substrate, and rupture after receiving pressure, so that the carried light-emitting chip can fall onto the corresponding bonding area of the chip; the top wall is far away from the The distance from one side of the circuit board to the circuit board is greater than or equal to the height of the light-emitting chip.
  • the above-mentioned circuit board assembly is provided with a weakened layer covering each chip bonding area on the circuit board, and the weakened layer is formed with cavities corresponding to each chip bonding area and isolated from each other; when transferring the chip to the circuit board
  • the side of the growth substrate on which the light-emitting chip is grown can be directly bonded to the weakened layer, and the light-emitting chip to be transferred is separated from the growth substrate, so that the light-emitting chip is carried on the top wall of the corresponding cavity, and then the top wall
  • the wall exerts pressure to make it break so that the light-emitting chip directly falls on the corresponding chip bonding area; and since the distance between the top wall away from the circuit board and the circuit board is greater than or equal to the height of the light-emitting chip, it is necessary to When continuing to transfer chips to other chip bonding areas on the circuit board, since the transferred light-emitting chips are located in the cavity, the transferred light-emitting chips will not interfere with other chips on the growth substrate during
  • the present application also provides a light-emitting component, including:
  • a light-emitting chip located in each of the chip-bonding areas the light-emitting chip is detached from the growth substrate and carried on the top wall, and falls onto the corresponding chip-bonding area after the top wall is ruptured by pressure , the electrodes of the light-emitting chip are correspondingly connected to the pads in the bonding area of the chip.
  • the above-mentioned light-emitting component is manufactured by using the above-mentioned circuit board component, because when transferring the light-emitting chip to the circuit board component, it is not necessary to transfer the light-emitting chip from the growth substrate to the temporary substrate, and then from the temporary substrate to the transfer substrate, and it is no longer necessary to prepare
  • the temporary substrate, the transfer substrate, and the chip transfer efficiency are higher, and the transfer cost is lower, so that the manufacturing efficiency of the light-emitting component is higher, and the manufacturing cost is lower.
  • the present application also provides a method for manufacturing the circuit board assembly as described above, including:
  • a sacrificial layer is formed on the circuit board, the sacrificial layer includes a plurality of sacrificial layer units respectively covering each of the chip bonding regions, and the sacrificial layer units are separated from each other;
  • the respective sacrificial layer units are removed, and the space occupied by the respective sacrificial layer units forms the cavity.
  • the circuit board assembly obtained by the above method for manufacturing the circuit board assembly does not need to transfer the light-emitting chip from the growth substrate to the temporary substrate, and then from the temporary substrate to the transfer substrate when transferring the light-emitting chip to the circuit board assembly. It is also necessary to prepare temporary substrates and transfer substrates, so that the chip transfer efficiency is higher and the transfer cost is lower.
  • the present application also provides a method for manufacturing the above-mentioned light-emitting component, including:
  • the side of the growth substrate on which the light-emitting chip is grown is aligned and bonded to the weakened layer on the circuit board, and the light-emitting chip is in contact with the top wall after the alignment and bonding;
  • the electrodes of the light-emitting chip are correspondingly connected to the pads in the bonding area of the chip.
  • a weakened layer covering each chip bonding area is provided on the circuit board, and the weakened layer is formed with voids corresponding to each chip bonding area and isolated from each other.
  • Figure 1-1 is a schematic diagram of Micro LED chips of three colors transferred from the growth substrate to the display backplane in the related art
  • Figure 1-2 is a schematic diagram of the process of transferring red light Micro LED chips in related technologies
  • Figure 1-3 is a schematic diagram of the lamination area of the temporary substrate and the growth substrate in the related art
  • Figures 1-4 are schematic diagrams of temporary substrates carrying red Micro LED chips in the related art
  • Figure 1-5 is a schematic diagram of the temporary substrate after some red Micro LED chips are picked up in the related art
  • Figure 1-6 is a schematic diagram of the display backplane after Micro LED chip transfer and bonding are completed
  • FIG. 2 is a structural schematic diagram of a circuit board assembly provided by an embodiment of the present application.
  • FIG. 3 is a second schematic diagram of the structure of the circuit board assembly provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of the third structure of the circuit board assembly provided by the embodiment of the present application.
  • FIG. 5 is a schematic flow diagram of a method for manufacturing a circuit board assembly provided in another optional embodiment of the present application.
  • Fig. 6 is a schematic diagram 1 of the manufacturing process of the circuit board assembly provided by another optional embodiment of the present application.
  • FIG. 7 is a second schematic diagram of the circuit board assembly manufacturing process provided by another optional embodiment of the present application.
  • Fig. 8 is a first structural schematic diagram of a light-emitting component provided in another optional embodiment of the present application.
  • Fig. 9 is a second structural schematic diagram of a light-emitting component provided in another optional embodiment of the present application.
  • Fig. 10 is a structural schematic diagram III of a light-emitting component provided in another optional embodiment of the present application.
  • Fig. 11 is a schematic flowchart of a method for manufacturing a light-emitting component provided in another optional embodiment of the present application.
  • Fig. 12 is a schematic diagram of the transfer process of the first light-emitting chip provided by another optional embodiment of the present application.
  • Fig. 13 is a schematic diagram of the second light-emitting chip transfer process provided by another optional embodiment of the present application.
  • Fig. 14 is a schematic diagram of a third light-emitting chip transfer process provided by another optional embodiment of the present application.
  • 10-Growth substrate 101-Red Micro LED chip, 102-Chip vacancy, 20-Temporary substrate, 201-First adhesive layer, 30-Transfer substrate, 301-Second adhesive layer, 302-Display backplane, 4-circuit board, 40-chip bonding area, 41-pad, 5-weakened layer, 50-cavity, 51-top wall, 52-side wall, 6-light-emitting chip, 60-electrode, 61-first Light-emitting chip, 62-second light-emitting chip, 63-third light-emitting chip, 7-sacrifice layer unit, 81-first growth substrate, 82-second growth substrate, 83-third growth substrate.
  • S201 Bond the side of the temporary substrate 20 provided with the first adhesive layer 201 with the side of the growth substrate 10 on which the red Micro LED chip 101 is grown; one of the top views after bonding is shown in Fig. 1-3;
  • S202 to S203 Peel off the growth substrate 10, and transfer the red Micro LED chip 201 to the temporary substrate 20; at this time, a top view of the temporary substrate 20 is shown in Fig. 1-4;
  • the blue Micro LED chip and the green Micro LED chip are also transferred to the display backplane by the above chip transfer process in sequence, and the display backplane that completes the transfer of all Micro LED chips is shown in Figure 1-6.
  • This embodiment provides a circuit board assembly, including:
  • the circuit board, the circuit board in this embodiment may be a display backplane, or various circuit boards for lighting, and may be a flexible circuit board or a rigid circuit board.
  • the display backplane may be, but not limited to, a glass backplane or a PCB board.
  • a plurality of chip bonding areas are provided on the circuit board, and bonding pads corresponding to the electrodes of the light-emitting chip are provided in the chip bonding areas.
  • the number of bonding areas of each chip and the distribution on the circuit board can be flexibly set according to application requirements.
  • the bonding areas of each chip can be distributed in an array on the circuit board, or can be flexibly distributed or even It can be flexibly distributed according to requirements; in some application examples, in order to facilitate the transfer of light-emitting chips directly from the growth substrate to the circuit board, the distribution of each chip bonding area on the circuit board can be consistent with the layout and layout of the corresponding light-emitting chips on the growth substrate. The location corresponds to the distribution.
  • chip bonding area in this embodiment is not limited to bonding with the light-emitting chip, and the light-emitting chip can also be replaced with other electronic chips according to application requirements, such as resistor chips, capacitor chips, driver chips, control chips, etc. , which will not be repeated here.
  • the light emitting chip in this embodiment may be a micro light emitting chip, for example, may include but not limited to at least one of a Mini LED chip and a Micro LED chip, or may be a common light emitting chip with a size greater than or equal to 200 microns.
  • the light-emitting chip in this embodiment can be a front-mounted light-emitting chip, a flip-chip light-emitting chip or a vertical light-emitting chip, which can be flexibly set according to application requirements.
  • the light-emitting surface of the light-emitting chip grown on the growth substrate is bonded to the growth substrate.
  • the circuit board assembly in this embodiment also includes a weakened layer with multiple cavities formed on the circuit board, wherein;
  • the multiple cavities formed by the weakened layer are isolated from each other by the weakened layer, and one chip bonding area corresponds to one cavity, and the corresponding area of the weakened layer itself forms the side wall and the top wall of each cavity; the top wall of each cavity Used to carry the light-emitting chip detached from the growth substrate, the top wall is ruptured after being subjected to external pressure, so that the light-emitting chip carried by it falls into the cavity and falls onto the chip bonding area corresponding to the cavity.
  • the distance H between the top wall of each cavity away from the circuit board and the circuit board is set to be greater than or equal to the height of the light emitting chip. Therefore, after transferring the light-emitting chip to the circuit board for the first time, when the chip needs to be transferred to other chip bonding areas on the circuit board in the follow-up, since the light-emitting chip that has been transferred before is located in the cavity, and the top of each cavity
  • the distance H between the side of the wall away from the circuit board and the circuit board is greater than or equal to the height of the light-emitting chip, that is, the height of the side walls of each cavity is greater than the height of the light-emitting chip, so the previously transferred light-emitting chips will not affect the subsequent transfer.
  • circuit board assembly provided in this embodiment will be illustrated below with reference to the accompanying drawings as an example.
  • FIG. 2 An exemplary circuit board assembly is shown in FIG. 2, which includes a circuit board 4, on which a plurality of chip bonding areas 40 are provided, and each chip bonding area 40 is provided with solder corresponding to the electrodes of the light-emitting chip. Disk 41. 2, the circuit board assembly also includes a weakened layer 5 arranged on the circuit board 4, the weakened layer 5 is formed with a plurality of cavities 50, the multiple cavities 50 are isolated from each other by the weakened layer 5, wherein the weakened layer Corresponding areas form the top wall 51 and the side wall 52 of each cavity 50. As shown in FIG. 2 , the distance H between the top wall 51 of each cavity away from the circuit board 4 and the circuit board 4 is greater than or equal to the height of the light emitting chip. In this embodiment, when there are light-emitting chips with different heights among the light-emitting chips transferred to the circuit board 4 , the height of the light-emitting chips in this embodiment is the maximum height among these light-emitting chips.
  • the sidewalls 52 of the cavities 50 are separated from each other, but it should be understood that in this embodiment, the sidewalls 52 of the cavities 50 can also be connected together.
  • the sidewalls 52 of the cavities 50 can also be connected together.
  • a part of the side walls 52 may also be connected together, and a part of the side walls 52 may be separated. That is, in the application example shown in FIG. 3 , a part of the weakened layer is filled in the gap between adjacent chip bonding regions.
  • the shape of the cavity 50 in this embodiment can be flexibly set, for example, it can be set as a rectangle as shown in FIG. 2 and FIG. It is replaced by an irregular shape, which will not be repeated here.
  • the height of the cavity 50 may also be greater than or equal to the height of the light-emitting chip; of course, it may also be slightly smaller than the height of the light-emitting chip. As long as it can be ensured that after the top wall 51 of the cavity 50 is broken, the light-emitting chip can pass through the cavity 50 and fall onto the corresponding chip bonding area 40, that is, as long as the size of the cavity 50 is consistent with the size of the light-emitting chip. Adaptation can achieve the above purpose.
  • the weakening layer 5 can be an opaque light-shielding layer, and at this time, the side walls of the cavity 50 can also play a role of light-shielding, thereby avoiding the bonding of adjacent chips on the circuit board 4 Light crossing interference occurs between the light-emitting chips in the area 40, which improves the display or lighting effect.
  • the weakened layer 5 can be set as a vinyl layer.
  • the area where the weakened layer 5 forms the top wall 51 and the side wall 52 of the cavity 50 may be made of the same material, as shown in FIGS. 2-3 , for example.
  • different materials can also be used.
  • the side wall 52 can be made of a material that is not light enough
  • the top wall 51 can be made of a light-transmitting material or an opaque material.
  • one light-emitting chip can be set in one chip bonding area 40, and multiple light-emitting chips can also be set according to requirements. When multiple light-emitting chips are set, the multiple light-emitting chips The transfer is completed in one chip transfer process.
  • the weakening layer 5 can use a hot-melt glue layer, for example, but not limited to, pyrolytic glue or non-conductive glue, so that the electrodes of the light-emitting chip can be heated to be welded to the corresponding pads later. During the process, the part of the colloid that breaks and falls into the cavity 50 can be melted by heat and gather in the area without solder, without affecting the welding of the electrodes and pads of the light-emitting chip or the light emission of the light-emitting chip.
  • the weakening layer 5 can also use a sacrificial material that can be subsequently removed. The sacrificial material can be a non-conductive material, and the weakening layer can be removed after the electrodes of the light-emitting chip are soldered to the corresponding pads.
  • the hot-melt adhesive layer can be set to have a certain viscosity, so that when the top wall 51 carries the light-emitting chip from the growth substrate, it can use the viscosity to fix the light-emitting chip, which is convenient.
  • the separation of the light-emitting chip from the growth substrate can make the light-emitting chip more stable on the top wall 51 .
  • At least one of the outer and inner sides of the side walls 52 can be set to reflect light.
  • the surface, that is, the cavity 50 and its side wall 52 at this time can form a reflective cup, thereby improving the light extraction efficiency of the light-emitting chip.
  • the thickness and material of the top wall 51 of each cavity 50 can be selected to meet the requirement that the top wall 51 can carry the light-emitting chip, and under the condition that the pressure F is applied to it to make it rupture, there will be no damage to the light-emitting chip. Under the conditions of damage, the setting can be flexibly selected.
  • the thickness of the formed top wall 51 may be less than or equal to 5 microns, for example, it may be set to 5 microns, 4 microns, 3 microns, etc.
  • the side of the growth substrate on which the light-emitting chips are grown can be directly bonded to the weakening layer 5, and the light-emitting chips to be transferred can be aligned with the weakened layer 5.
  • the growth substrate is detached, so that the light-emitting chip is carried on the top wall 51 of the corresponding cavity 50, and then pressure F is applied to the top wall 51 to cause it to break, so that the light-emitting chip directly falls on the corresponding chip bonding area 40; and because the top
  • the distance between the side of the wall 51 far away from the circuit board 4 and the circuit board is greater than or equal to the height of the light-emitting chip, so when it is necessary to continue transferring chips to other chip bonding areas on the circuit board 4, the transferred light-emitting chip Located in the cavity 50 , it will not interfere with other chips on the growth substrate during the subsequent transfer process, thereby ensuring the normal transfer of subsequent light-emitting chips.
  • FIG. 5 An example manufacturing method of the above-mentioned circuit board assembly, as shown in FIG. 5 , which includes but is not limited to:
  • S501 forming a sacrificial layer on the circuit board, the sacrificial layer includes a plurality of sacrificial layer units respectively covering each chip bonding area, and the sacrificial layer units are separated from each other.
  • the size and shape of each sacrificial layer unit basically determine the size and shape of the cavity subsequently formed on the circuit board. Therefore, for the setting of the shape and size of the sacrificial layer unit, reference may be made to the above-mentioned description on the shape and size of the cavity, which will not be repeated here.
  • the formation method and specific material of the sacrificial layer unit can be flexibly selected.
  • the sacrificial layer unit can be but not limited to a photoresist layer unit or a polyvinyl alcohol layer unit. As long as it can be removed after the weakened layer is subsequently formed on it.
  • S502 Form a weakening layer covering each sacrificial layer unit on the circuit board.
  • the weakening layer does not completely cover each sacrificial layer unit, that is, at least one side of each sacrificial layer unit is not covered by the weakening layer, so as to serve as a cleaning channel for subsequent cleaning of the sacrificial layer unit.
  • the photoresist when photoresist is used for the sacrificial layer unit, the photoresist can be washed off to form a cavity, that is, to form a hollow structure.
  • the process of manufacturing the circuit board assembly shown in FIG. 2 and FIG. 3 will be described below by taking the weakened layer as a hot melt adhesive layer and the sacrificial layer unit as a photoresist layer unit respectively.
  • FIG. 6 An example of making the circuit board assembly shown in Figure 2 is shown in Figure 6, which includes but is not limited to:
  • S601 Forming sacrificial layer units 7 on the circuit board 4 to respectively cover each chip bonding area.
  • S602 Form a weakened layer covering each sacrificial layer unit 7 on the circuit board 4, that is, a hot melt adhesive layer; in this embodiment, the weakened layer covering each sacrificial layer unit 7 is discontinuous.
  • a top wall 51 and a side wall 52 are respectively provided on the top surface and side surfaces of each sacrificial layer unit 7 .
  • each sacrificial layer unit 7 is cleaned away, and the space originally occupied by the sacrificial layer unit 7 forms a cavity 50 .
  • FIG. 7 An example of making the circuit board assembly shown in Figure 3 is shown in Figure 7, which includes but is not limited to:
  • S701 Forming sacrificial layer units 7 on the circuit board 4 to respectively cover each chip bonding area.
  • S702 Form a weakening layer covering each sacrificial layer unit 7 on the circuit board 4, that is, a hot melt adhesive layer; in this embodiment, covering each sacrificial layer unit 7 is continuous, that is, the weakening layer covers the adjacent sacrificial layer units The gap between them is filled, and the weakened layer is a whole layer of hot melt adhesive layer.
  • each sacrificial layer unit 7 is cleaned away, and the space originally occupied by the sacrificial layer unit 7 forms a cavity 50 .
  • the manufacturing method of the circuit board assembly provided by this embodiment is simple, convenient and efficient.
  • it is no longer necessary to transfer the light-emitting chip from the growth substrate to the temporary substrate, and then from the temporary substrate to the transfer substrate, and it is no longer necessary to prepare the temporary substrate and the transfer substrate, and the chip transfer efficiency is higher. High, and lower transfer costs.
  • This embodiment provides a light-emitting assembly, which includes the circuit board assembly shown in the above-mentioned embodiments, and also includes light-emitting chips located in the bonding area of each chip.
  • these light-emitting chips are transferred to the circuit board, they are detached from the growth substrate. After that, it is carried on the top wall of the corresponding area, and falls to the corresponding chip bonding area after the top wall is broken by pressure, and the electrodes of each light-emitting chip are correspondingly connected to the pads in the chip bonding area.
  • the light emitting component may be a display panel, and the circuit board in this case is a display backplane.
  • the light-emitting chip can be a light-emitting chip of one color, such as a blue light-emitting chip, and then combined with a corresponding light conversion layer (such as a quantum dot film, etc.) to obtain red light and green light, thereby forming a color display.
  • the light-emitting chip may also include a first light-emitting chip, a second light-emitting chip, and a third light-emitting chip with different light-emitting colors, and the light-emitting colors include red, green and blue; for example, the first light-emitting chip emits red light
  • the second light-emitting chip is a red light-emitting chip that emits blue light
  • the third light-emitting chip is a red light-emitting chip that emits green light, and the like.
  • FIG. 8 An example of a light-emitting component is shown in FIG. 8, which includes a circuit board 4, a light-emitting chip 6 located on the circuit board 4 and falling into each cavity 50, electrodes 60 of the light-emitting chip 6 and electrodes 60 in the corresponding chip bonding area 40.
  • the pads 41 are electrically connected, for example, can be electrically connected by means of welding, conductive glue, and the like.
  • the light emitting assembly shown in FIG. 8 retains the side walls 52 of the cavities 50 , and the side walls 52 can play at least one of functions of light blocking, reflection, refraction and the like. In the light emitting assembly shown in FIG. 8 , the side portions 52 are separated from each other.
  • FIG. 9 Another light-emitting component example is shown in FIG. 9 .
  • the wall 52 fills the gap between adjacent die bonding areas 40 .
  • the side wall 52 can also play at least one of functions of light blocking, reflection, refraction and the like.
  • FIG. 10 Another light-emitting component example is shown in FIG. 10. Compared with the light-emitting component shown in FIG. 8 and FIG. removal, that is, part of the side wall 52 is also removed.
  • the light-emitting assembly provided in this embodiment is manufactured by using the above-mentioned circuit board assembly.
  • the transfer substrate it is no longer necessary to prepare a temporary substrate and a transfer substrate, the chip transfer efficiency is higher, and the transfer cost is lower, so that the manufacturing efficiency of the light-emitting component is higher, and the manufacturing cost is lower.
  • S1101 The side of the growth substrate on which the light-emitting chip is grown is aligned and bonded to the weakened layer on the circuit board, and the light-emitting chip is in contact with the top wall (that is, the area where the weakened layer is formed as the top wall) after the position bonding.
  • S1102 Peel off the corresponding light-emitting chip on the growth substrate from the growth substrate (such as but not limited to laser lift-off), and remove the growth substrate, and carry the peeled light-emitting chip on the top wall; unpeeled light-emitting chip is removed together with the growth substrate;
  • S1104 Correspondingly connect the electrodes of the light-emitting chip to the bonding pads in the chip bonding area.
  • the side of the growth substrate on which the light-emitting chips are grown can be directly bonded to the weakened layer, and the light-emitting chips that need to be transferred are separated from the growth substrate and carried on the top wall of the corresponding cavity.
  • the number of LED chips is basically tens of thousands or more. Therefore, after the Micro LED chip is completed, it is difficult to detect the dead pixels on the display backplane, and even if the bad pixels are detected, it is difficult to repair them. Even if they are repaired, the repair process is complicated.
  • existing Micro When LED chips are transferred, the Micro LED chips on the growth substrate are laser-lifted off the entire surface, and all Micro LED chips are transferred to the temporary substrate, resulting in the final prepared Micro LED chips.
  • the quality of the chip on the LED display device is uncontrollable, and the later maintenance cost is relatively high;
  • the luminous wavelength of the LED chip and the final prepared display device have poor luminous uniformity.
  • the circuit board before transferring the light-emitting chip on the growth substrate to the circuit board, for example, before the side of the growth substrate on which the light-emitting chip grows is aligned with the weakened layer on the circuit board, it also includes: :
  • detecting each light-emitting chip on the growth substrate may include but not limited to at least one of the following:
  • the optical characteristics of each light-emitting chip are detected.
  • the optical specificity and appearance quality of the light-emitting chip on the growth substrate can be generated in advance by not limited to the Micro PL/AOI detection method, and the corresponding mapping data can be generated to determine the unqualified light emission. chip and remove it from the growth substrate.
  • detecting the optical characteristics of each light-emitting chip may include but not limited to: detecting the main wavelength of each light-emitting chip, and if the difference between the main wavelength and the preset standard main wavelength is greater than the preset The light-emitting chip with the difference value is judged as an unqualified light-emitting chip, so that the dominant wavelength consistency of the light-emitting chip remaining on the growth substrate is good, and the uniformity of light emission of the light-emitting component is improved, so that the display effect or lighting effect is better. good.
  • the growth substrate includes a first light-emitting chip (for example, a red light-emitting chip), a second light-emitting chip (for example, a green light-emitting chip) and a third light-emitting chip (for example, a blue light-emitting chip).
  • growing the side of the growth substrate with the light-emitting chip, and aligning and laminating the weakened layer on the circuit board includes:
  • One of the first growth substrate, the second growth substrate, and the third growth substrate is aligned and bonded to the weakened layer on the circuit board in sequence, and the light-emitting chip on the last growth substrate that is aligned and bonded falls to the corresponding After the chip bonding area, the current growth substrate and the weakened layer on the circuit board are aligned and bonded.
  • the corresponding connection between the electrodes of the light-emitting chip and the pads in the chip bonding area includes but is not limited to the following two methods:
  • Method 1 After the first light-emitting chip, the second light-emitting chip and the third light-emitting chip respectively land on the respective corresponding chip bonding areas, the electrodes of the first light-emitting chip, the second light-emitting chip and the third light-emitting chip The corresponding pads are soldered in one soldering process.
  • Method 2 After the light-emitting chip (for example, the first light-emitting chip) on the previous growth substrate that has been aligned and bonded falls to the corresponding chip bonding area, then the current growth substrate is aligned with the weakened layer on the circuit board. Before the bonding, it also includes: welding the electrodes (for example, the first light-emitting chip) of each light-emitting chip that currently lands on the chip-bonding area with the pads corresponding to each electrode.
  • the electrodes for example, the first light-emitting chip
  • the process of sequentially transferring the first light-emitting chip, the second light-emitting chip and the third light-emitting chip to the circuit board is taken as an example to describe below.
  • S1201 The side of the first growth substrate 81 on which the first light-emitting chip 61 is grown is aligned and bonded to the weakened layer 5 on the circuit board 4, and the first light-emitting chip 61 and the weakened layer 5 are formed as a top wall after the alignment and bonding 51 regional contacts.
  • S1202 Peel off the corresponding first light-emitting chip 61 on the first growth substrate 81 (for example, laser lift-off at 248 nm or 266 nm), and remove the first growth substrate 81, and carry the peeled first light-emitting chip 61 on the top On the wall 51; the unpeeled first light-emitting chip 61 is removed together with the first growth substrate 81;
  • the electrodes of the first light-emitting chip 61 may be soldered to the pads 41 in the chip bonding area, or other light-emitting chips may be transferred and soldered together without soldering.
  • the electrodes of the second light-emitting chip 62 may be soldered to the pads 41 in the chip bonding area, or other light-emitting chips may be transferred and soldered together without soldering.
  • S1402 Peel off the corresponding third light-emitting chip 63 on the third growth substrate 83, and remove the third growth substrate 83, the stripped third light-emitting chip 63 is carried on the top wall 51; the unpeeled third light-emitting chip 63 is removed together with the third growth substrate 83;
  • the electrodes of the first light-emitting chip 61 , the second light-emitting chip 62 and the third light-emitting chip 63 can be welded to the pads 41 in the chip bonding area at one time, so as to improve welding efficiency and welding effect.
  • This embodiment also provides a display screen, which can be a flexible display screen or a rigid display screen, and it can be a display screen of a regular shape, such as a rectangle, a circle, an ellipse, etc., or a display screen of a special shape.
  • Screen The display screen includes a display screen frame and a display panel as shown in the above examples, the display panel is made of the above-mentioned light-emitting components, and the display panel is fixed in the display screen frame.
  • the display screen in this embodiment can be applied to various electronic devices, such as monitors, computers, mobile phones, smart watches, vehicle-mounted devices, billboards, and the like.
  • the display screen has higher production efficiency, lower cost, better yield rate, higher light extraction efficiency and better display effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

本申请涉及一种电路板组件、发光组件及其制作方法,发光组件包括电路板组件,电路板组件包括设有多个芯片键合区(40)的电路板(4),以及设于电路板(4)上,并形成有多个空腔(50)的弱化层(5),一个芯片键合区(40)对应一个空腔(50)。

Description

电路板组件、发光组件及其制作方法 技术领域
本申请涉及发光芯片领域,尤其涉及一种电路板组件、发光组件及其制作方法。
背景技术
Micro LED是新一代的显示技术。与现有的液晶显示相比具有更高的光电效率,更高的亮度,更高的对比度,以及更低的功耗, 且还能结合柔性面板实现柔性显示。
Micro LED显示面板上包括了若干像素区域SPR(Subpixel Rendering,子像素呈现),每个像素区域SPR包括红光Micro LED芯片、蓝光Micro LED芯片、绿光Micro LED芯片。在显示面板的制作过程中,需要将红光Micro LED芯片、蓝光Micro LED芯片和绿光Micro LED芯片从各自的生长基板(WAFER)转移到显示背板上;例如,对于Micro LED芯片的转移过程如下:
将临时基板设有第一粘接层的一面与生长基板上生长有红光Micro LED芯片的一面贴合,然后将生长基板剥离,将红光Micro LED芯片转移至临时基板上;
将转移基板设有第二粘接层的一面与临时基板上承载有红光Micro LED芯片的一面贴合,从而从临时基板上选择性的拾取对应的红光Micro LED芯片;
将转移基板拾取的红光Micro LED芯片转移至显示背板上对应的芯片键合区内。
对于蓝光Micro LED芯片和绿光Micro LED芯片也依次采用上述芯片转移过程转移至显示背板上。
在上述芯片转移过程中,需要选择两款胶材来分别制作第一粘接层和第二粘接层,且需要保证第一粘接层的黏性低于第二粘接层,难以找到合适的材料,且上述转移过程需要将Micro LED芯片从生长基板转移至临时基板,从临时基板转移至转移基板,转移效率低且需要制备临时基板和转移基板,转移成本也较高。
因此,如何提升LED芯片的转移效率并降低转移成本是目前亟需解决的问题。
技术问题
鉴于上述现有技术的不足,本申请的目的在于提供一种电路板组件、发光组件及其制作方法,旨在解决相关技术中,如何提升LED芯片的转移效率并降低转移成本的问题。
技术解决方案
本申请提供一种电路板组件,包括:
电路板,所述电路板上设有多个芯片键合区,所述芯片键合区内设有与发光芯片的电极相对应的焊盘,其中:
所述电路板组件还包括设于所述电路板上,并形成有多个空腔的弱化层;
所述多个空腔被所述弱化层相互隔离,且一个所述芯片键合区对应一个所述空腔,所述弱化层形成各所述空腔的侧壁和顶壁;
所述顶壁用于承载从生长基板脱离的所述发光芯片,以及在受到压力后破裂,以供承载的所述发光芯片落至对应的所述芯片键合区上;所述顶壁远离所述电路板的一面到所述电路板之间的距离,大于等于所述发光芯片的高度。
上述电路板组件,其电路板上设有将各芯片键合区覆盖的弱化层,且该弱化层形成有与各芯片键合区分别对应且相互隔离的空腔;在向该电路板转移芯片时,可直接将生长基板生长有发光芯片的一面与弱化层对位贴合,并将需要转移的发光芯片与生长基板脱离,使得发光芯片承载于对应空腔的顶壁上,然后对该顶壁施加压力使其破裂从而使得发光芯片直接落至对应的芯片键合区上;且由于顶壁远离电路板的一面到电路板之间的距离,大于等于发光芯片的高度,因此在后续还需继续向该电路板上的其他芯片键合区转移芯片时,由于已经转移的发光芯片位于空腔内,因此已经转移的发光芯片不会对后续转移过程中生长基板上的其他芯片造成干扰,从而保证后续发光芯片的正常转移。可见,向该电路板组件进行发光芯片转移时,不需要将发光芯片从生长基板转移至临时基板,再从临时基板转移至转移基板,也不再需要制备临时基板、转移基板,转移效率更高,且转移成本更低。
基于同样的发明构思,本申请还提供一种发光组件,包括:
如上所述的电路板组件;
位于各所述芯片键合区内的发光芯片,所述发光芯片从生长基板脱离后承载于所述顶壁,并在所述顶壁受压力破裂后落至对应的所述芯片键合区上,所述发光芯片的电极与所述芯片键合区内的焊盘对应连接。
上述发光组件采用上述电路板组件制作得到,由于向该电路板组件进行发光芯片转移时,不需要将发光芯片从生长基板转移至临时基板,再从临时基板转移至转移基板,也不再需要制备临时基板、转移基板,芯片转移效率更高,且转移成本更低,使得该发光组件的制作效率更高,且制作成本更低。
基于同样的发明构思,本申请还提供一种如上所述的电路板组件的制作方法,包括:
在所述电路板上形成牺牲层,所述牺牲层包括分别将各所述芯片键合区覆盖的多个牺牲层单元,且各牺牲层单元之间相互分离;
在所述电路板上形成将各所述牺牲层单元覆盖的所述弱化层;
去除所述各牺牲层单元,所述各牺牲层单元所占用的空间形成所述空腔。
上述电路板组件的制作方法所制得电路板组件,由于向该电路板组件转移发光芯片时,不再需要将发光芯片从生长基板转移至临时基板,再从临时基板转移至转移基板,也不再需要制备临时基板、转移基板,芯片转移效率更高,且转移成本更低。
基于同样的发明构思,本申请还提供一种如上所述的发光组件的制作方法,包括:
将生长基板生长有所述发光芯片的一面,与所述电路板上的所述弱化层对位贴合,对位贴合后所述发光芯片与所述顶壁接触;
将所述生长基板上对应的所述发光芯片与所述生长基板剥离,并移除所述生长基板,被剥离的所述发光芯片承载于所述顶壁上;
对承载有所述发光芯片的所述顶壁施加压力使其破裂,使得所述顶壁所承载的所述发光芯片落至对应的所述芯片键合区上;
将所述发光芯片的电极与所述芯片键合区内的焊盘对应连接。
以上发光组件的制作方法,在向该电路板组件转移发光芯片时,不再需要将发光芯片从生长基板转移至临时基板,再从临时基板转移至转移基板,也不再需要制备临时基板、转移基板,芯片转移效率更高,且转移成本更低,使得该发光组件的制作效率更高,制作成本更低。
有益效果
本申请提供的电路板组件、发光组件及其制作方法,在电路板上设有将各芯片键合区覆盖的弱化层,该弱化层形成有与各芯片键合区分别对应且相互隔离的空腔;在向电路板转移芯片时,直接将生长基板生长有发光芯片的一面与弱化层对位贴合,并将需要转移的发光芯片与生长基板脱离,使得发光芯片承载于对应空腔的顶壁上,然后对该顶壁施加压力使其破裂从而使得发光芯片直接落至对应的芯片键合区上;由于顶壁远离电路板的一面到电路板之间的距离,大于等于发光芯片的高度,因此在后续还需继续向该电路板上的其他芯片键合区转移芯片时,由于已经转移的发光芯片位于空腔内,不会对后续转移过程中生长基板上的其他芯片造成干扰,从而保证后续发光芯片的正常转移。可见,向电路板组件进行发光芯片转移时,不需要将发光芯片从生长基板转移至临时基板,再从临时基板转移至转移基板,也不再需要制备临时基板、转移基板,转移效率更高,且转移成本更低。
附图说明
图1-1为相关技术中三种颜色的Micro LED芯片从生长基板分别转移至显示背板的示意图;
图1-2为相关技术中转移红光Micro LED芯片的过程示意图;
图1-3为相关技术中临时基板与生长基板的贴合区域示意图;
图1-4为相关技术中承载有红光Micro LED芯片的临时基板的示意图;
图1-5为相关技术中部分红光Micro LED芯片被拾取走后的临时基板的示意图;
图1-6为完成Micro LED芯片转移和键合后的显示背板的示意图;
图2为本申请实施例提供的电路板组件结构示意图一;
图3为本申请实施例提供的电路板组件结构示意图二;
图4为本申请实施例提供的电路板组件结构示意图三;
图5为本申请另一可选实施例提供的电路板组件制作方法流程示意图;
图6为本申请另一可选实施例提供的电路板组件制作过程示意图一;
图7为本申请另一可选实施例提供的电路板组件制作过程示意图二;
图8为本申请又一可选实施例提供的发光组件结构示意图一;
图9为本申请又一可选实施例提供的发光组件结构示意图二;
图10为本申请又一可选实施例提供的发光组件结构示意图三;
图11为本申请另一可选实施例提供的发光组件制作方法流程示意图;
图12为本申请另一可选实施例提供的第一发光芯片转移过程示意图;
图13为本申请另一可选实施例提供的第二发光芯片转移过程示意图;
图14为本申请另一可选实施例提供的第三发光芯片转移过程示意图;
附图标记说明:
10-生长基板,101-红光Micro LED芯片,102-芯片空位,20-临时基板,201-第一粘接层,30-转移基板,301-第二粘接层,302-显示背板,4-电路板,40-芯片键合区,41-焊盘,5-弱化层,50-空腔,51-顶壁,52-侧壁,6-发光芯片,60-电极,61-第一发光芯片,62-第二发光芯片,63-第三发光芯片,7-牺牲层单元,81-第一生长基板,82-第二生长基板,83-第三生长基板。
本发明的实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
在Micro LED显示技术中,参见图1-1所示,需要将红光Micro LED芯片、蓝光Micro LED芯片和绿光Micro LED芯片从各自的生长基板转移到显示背板上。例如,对于红光Micro LED芯片的转移过程参见图1-2至图1-5所示,其包括:
S201:将临时基板20设有第一粘接层201的一面与生长基板10上生长有红光Micro LED芯片101的一面贴合;其中一种贴合后的俯视图参见图1-3所示;
S202至S203:将生长基板10剥离,将红光Micro LED芯片201转移至临时基板20上;此时临时基板20的一种俯视图参见图1-4所示;
S204:将转移基板30设有第二粘接层301的一面与临时基板20上承载有红光Micro LED芯片101的一面贴合,从而从临时基板101上选择性的拾取对应的红光Micro LED芯片101;参见图1-5所示,临时基板20上对应位置的红光Micro LED芯片被拾取后留下对应的芯片空位102;
S205:将转移基板30拾取的红光Micro LED芯片转移至显示背板302上对应的芯片键合区内。
对于蓝光Micro LED芯片和绿光Micro LED芯片也依次采用上述芯片转移过程转移至显示背板上,完成所有的Micro LED芯片转移的显示背板参见图1-6所示。
在上述芯片转移过程中,需要选择两款胶材来分别制作第一粘接层201和第二粘接层301,且需要保证第一粘接层201的黏性低于第二粘接层301,难以找到合适的材料,且上述转移过程需要将Micro LED芯片从生长基板10转移至临时基板20,从临时基板20转移至转移基板30,转移效率低且需要制备临时基板10和转移基板30,转移成本也较高。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
本实施例提供了一种电路板组件,包括:
电路板,本实施例中的电路板可以为显示背板,也可以为照明用的各种电路板,且可以为柔性电路板,也可以为刚性电路板。为显示背板时,该显示背板可以为但不限于玻璃背板或PCB板。
本实施例中的电路板上设有多个芯片键合区,芯片键合区内设有与发光芯片的电极相对应的焊盘。应当理解的是,各芯片键合区的个数以及在电路板上的分布可以根据应用需求灵活设置,例如各芯片键合区可以在电路板上呈阵列分布,也可按其他规则灵活分布甚至根据需求可灵活分布;在一些应用示例中,为了便于直接从生长基板上将发光芯片转移至电路板上,各芯片键合区在电路板上的分布可与生长基板上相应发光芯片的布局和位置对应分布。
应当理解的是,本实施例中的芯片键合区并不限于与发光芯片键合,该发光芯片也可根据应用需求替换为其他电子芯片,例如电阻芯片、电容芯片、驱动芯片、控制芯片等,在此不再一一赘述。
应当理解的是,本实施例中的发光芯片可以为微型发光芯片,例如可包括但不限于Mini LED芯片和Micro LED芯片中的至少一种,也可为尺寸大于等于200微米的普通发光芯片。且本实施例中的发光芯片可以为正装发光芯片、倒装发光芯片或垂直发光芯片,具体可根据应用需求灵活设置。在本实施例中,生长于生长基板上的发光芯片的出光面与生长基板贴合。
本实施例中的电路板组件还包括电路板上,并形成有多个空腔的弱化层,其中;
弱化层所形成的多个空腔被弱化层相互隔离,且一个芯片键合区对应一个空腔,而弱化层自身的相应区域形成各空腔的侧壁和顶壁;各空腔的顶壁用于承载从生长基板脱离的发光芯片,该顶壁在受到外部压力后破裂,使得其承载的所述发光芯片落入空腔从而落至该空腔对应的芯片键合区上。
在本实施例中,为了提升发光芯片的转移效率,设置各空腔的顶壁远离电路板的一面到电路板之间的距离H,大于等于发光芯片的高度。因此在向电路板第一次转移发光芯片后,后续还需继续向该电路板上的其他芯片键合区转移芯片时,由于前面已经转移的发光芯片位于空腔内,而各空腔的顶壁远离电路板的一面到电路板之间的距离H,大于等于发光芯片的高度,也即各空腔的侧壁的高度大于发光芯片的高度,因此前面已经转移的发光芯片不会对后续转移过程中生长基板上的其他芯片造成干扰,从而保证后续发光芯片的正常转移。可见,在向该电路板组件进行发光芯片转移时,不需要将发光芯片从生长基板转移至临时基板,再从临时基板转移至转移基板,也不再需要制备临时基板、转移基板,转移效率更高,且转移成本更低。
为了便于理解,下面结合附图作为示例,对本实施例提供的电路板组件进行示例说明。
一种示例的电路板组件参见图2所示,其包括电路板4,电路板4上设有多个芯片键合区40,各芯片键合区40内设有与发光芯片的电极对应的焊盘41。参见图2所示,电路板组件还包括设置于电路板4上的弱化层5,该弱化层5形成有多个空腔50,这多个空腔50被弱化层5相互隔离,其中弱化层5相应的区域形成各空腔50的顶壁51和侧壁52。如图2所示,各空腔的顶壁51远离电路板4的一面到电路板4之间的距离H,大于等于发光芯片的高度。在本实施例中,当向电路板4转移的发光芯片中存在高度不同的发光芯片时,本实施例中发光芯片的高度取这些发光芯片中的最大高度值。
在图2所示的电路板组件中,各空腔50的侧壁52之间相互分离,但应当理解的是,本实施例中各空腔50的侧壁52也可连接在一起。例如一种示例参见图3所示。且在一些应用示例中,也可一部分侧壁52连接在一起,一部分侧壁52分离。也即在图3所述的应用示例中,弱化层的其中一部分填充于相邻芯片键合区之间的间隙内。
另外,应当理解的是,本实施例中空腔50的形状可以灵活设置,例如可以设置为图2和图3中所示的矩形,也可替换为弧形、梯形等规则形状,还可根据需求替换为非规则形状,在此不再赘述。
在一些示例中,空腔50的高度也可大于等于发光芯片的高度;当然,也可略小于发光芯片的高度。只要能保证在空腔50的顶壁51破裂后,发光芯片能过通过空腔50落至对应的芯片键合区40上即可,也即只要满足空腔50的尺寸与发光芯片的尺寸相适配,能达到上述目的即可。
在本实施例的一些示例中,在将发光芯片转移至电路板上时,空腔50的顶壁51破裂,但空腔50的侧壁52可根据需求进行保留。在保留空腔50的侧壁时,弱化层5可以为不透光的挡光层,此时空腔50的侧壁则还可起到挡光作用,从而避免电路板4上相邻芯片键合区40内的发光芯片之间出现窜光干扰的情况发生,提升显示或照明效果。例如,一些应用场景中,弱化层5可以设置为黑胶层。
应当理解的是,在本实施例的一些示例中,弱化层5形成空腔50的顶壁51和侧壁52的区域可以相同的材质,例如参见图2-图3所示。但在另一些应用示例中,也可采用不同的材质,例如参见图4所示,侧壁52可以采用不够光材质,顶壁51可以采用透光材质或不透光材质。
另外,应当理解的是,在本实施例中,一个芯片键合区40内可以设置一颗发光芯片,也可根据需求设置多颗发光芯片,设置多颗发光芯片时,这多颗发光芯片在一次芯片转移过程中完成转移。
在本实施例的一些示例中,弱化层5可以采用热融胶层,例如可以采用但不限于热解胶或非导电胶,这样在后续对发光芯片的电极加热使其与对应的焊盘焊接的过程中,破裂掉落至空腔50内的胶体部分可以受热融化后也会聚集在无焊料的区域,而不会影响发光芯片的电极与焊盘的焊接,也不影响发光芯片的出光。当然,在一些示例中,弱化层5还可采用可以后续清除的牺牲材料,该牺牲材料可为不导电材料,在发光芯片的电极与对应的焊盘焊接后,可将该弱化层除去。
在本实施例中的一种示例中,可设置热融胶层具有一定的黏性,从而使得顶壁51在承载来自生长基板上的发光芯片时,利用该黏性固定发光芯片,既便于该发光芯片与生长基板的分离,有可使得发光芯片更稳定的承载与顶壁51上。
在本实施例的一些示例中,在发光芯片转移至电路板4上后,保留各空腔50的侧壁52时,侧壁52的外侧面和内侧面之中的至少一个面可以设置为反光面,也即此时的空腔50以及其侧壁52可构成一个反射杯,从而提升发光芯片的出光效率。
在本实施例中,各空腔50的顶壁51的厚度和材质的选择,可在满足顶壁51能承载发光芯片,且对其施加压力F使其破裂的情况下,对发光芯片不会产生损伤的条件下,灵活选择设置。例如,一种应用示例中,弱化层5采用热融胶制成时,所形成的顶壁51的厚度可小于等于5微米,例如可设置为5微米、4微米、3微米等。
可见,本实施例所提供的电路板组件,在向该电路板4转移芯片时,可直接将生长基板生长有发光芯片的一面与弱化层5对位贴合,并将需要转移的发光芯片与生长基板脱离,使得发光芯片承载于对应空腔50的顶壁51上,然后对该顶壁51施加压力F使其破裂从而使得发光芯片直接落至对应的芯片键合区40上;且由于顶壁51远离电路板4的一面到电路板之间的距离大于等于发光芯片的高度,因此在后续还需继续向该电路板4上的其他芯片键合区转移芯片时,由于已经转移的发光芯片位于空腔50内,不会对后续转移过程中生长基板上的其他芯片造成干扰,从而保证后续发光芯片的正常转移。整个芯片转移过程都不再需要将发光芯片从生长基板转移至临时基板,再从临时基板转移至转移基板,也不再需要制备临时基板、转移基板,转移效率更高,且转移成本更低。
另一可选实施例:
为了便于理解,本实施例下面以上述电路板组件的一种示例制作方法进行说明,参见图5所示,其包括但不限于:
S501:在电路板上形成牺牲层,牺牲层包括分别将各芯片键合区覆盖的多个牺牲层单元,且各牺牲层单元之间相互分离。
在本实施例中,各牺牲层单元的尺寸、形状基本决定了后续在电路板上所形成的空腔的尺寸和形状。因此对于牺牲层单元的形状和尺寸的设置,可以参见上述对空腔的形状和尺寸的说明,在此不再赘述。
在本实施例中,牺牲层单元的形成方式,以及具体材质可以灵活选择,例如,一些示例中,牺牲层单元可以为但不限于为光刻胶层单元或聚乙烯醇层单元。只要后续在其上形成弱化层后,能将其清除即可。
S502:在电路板上形成将各牺牲层单元覆盖的弱化层。
在本实施例中,弱化层不完全覆盖各牺牲层单元,也即各牺牲层单元的至少一个侧面不被弱化层覆盖,以作为后续清除牺牲层单元的清除通道。
S503:去除各牺牲层单元,各牺牲层单元所占用的空间形成空腔。
例如当牺牲层单元采用光刻胶时,可将光刻胶洗掉从而形成空腔,也即形成镂空结构。
为了便于理解,下面分别以弱化层为热融胶层,牺牲层单元为光刻胶层单元,对制作图2和图3所示的电路板组件的过程为示例进行说明。
制作图2所示的电路板组件的一种示例参见图6所示,其包括但不限于:
S601:在电路板4上形成分别将各芯片键合区覆盖的牺牲层单元7。
S602:在电路板4上形成将各牺牲层单元7覆盖的弱化层,也即热熔胶层;本实施例中覆盖各牺牲层单元7之间的弱化层不连续。制作图4所示的电路板组件时,则分别在各牺牲层单元7的顶面和侧面设置顶壁51和侧壁52。
S603:在弱化层5固化后,清洗掉各牺牲层单元7,原本由牺牲层单元7所占据的空间则形成空腔50。
制作图3所示的电路板组件的一种示例参见图7所示,其包括但不限于:
S701:在电路板4上形成分别将各芯片键合区覆盖的牺牲层单元7。
S702:在电路板4上形成将各牺牲层单元7覆盖的弱化层,也即热熔胶层;本实施例中覆盖各牺牲层单元7之间连续,也即弱化层将相邻牺牲层单元之间的间隙填充,弱化层为一整层热融胶层。
S703:在弱化层5固化后,清洗掉各牺牲层单元7,原本由牺牲层单元7所占据的空间则形成空腔50。
可见,本实施例提供的电路板组件制作方法简单便捷,且效率高。向制得的电路板组件转移发光芯片时,不再需要将发光芯片从生长基板转移至临时基板,再从临时基板转移至转移基板,也不再需要制备临时基板、转移基板,芯片转移效率更高,且转移成本更低。
又一可选实施例:
本实施例提供了一种发光组件,其包括上述各实施例所示的电路板组件,还包括位于各芯片键合区内的发光芯片,这些发光芯片转移至电路板上时,从生长基板脱离后承载于对应区域的顶壁上,并在顶壁受压力破裂后落至对应的芯片键合区上,各发光芯片的电极与芯片键合区内的焊盘对应连接。
本实施例的一种示例中,发光组件可以是显示面板,此时的电路板为显示背板。此时的发光芯片可以为一种颜色的发光芯片,例如蓝光发光芯片,然后结合对应的光转换层(例如量子点膜等)得到红光和绿光,从而形成彩色显示。在本示例中,发光芯片也可包括发光颜色不同的第一发光芯片、第二发光芯片和第三发光芯片,该发光颜色包括红色、绿色和蓝色;例如,第一发光芯片为发出红光的红光发光芯片,第二发光芯片为发出蓝光的红光发光芯片,第三发光芯片为发出绿光的红光发光芯片等。
为了便于理解,下面结合几种示例的发光组件附图进行示例说明。
一种发光组件示例参见图8所示,其包括电路板4,位于电路板4上且落入各空腔50内的发光芯片6,发光芯片6的电极60与对应芯片键合区40内的焊盘41电连接,例如可以通过焊接、导电胶等方式实现电连接。图8所示的发光组件保留了各空腔50的侧壁52,该侧壁52可以起到挡光、反射、折射等作用中的至少一种。图8所示的发光组件中,各侧部52之间相互分离。
另一种发光组件示例参见图9所示,其与图8所示的发光组件相比,主要区别在于,其包括第一发光芯片61、第二发光芯片62和第三发光芯片63,且侧壁52填充满相邻芯片键合区40之间的间隙。该侧壁52也可以起到挡光、反射、折射等作用中的至少一种。
又一种发光组件示例参见图10所示,其与图8和图9所示的发光组件相比,主要区别在于,在发光芯片6的电极与对应的焊盘41键合后,将弱化层去除,也即将侧壁52部分也进行了去除。
本实施例提供的发光组件,由于采用了上述电路板组件制作得到,在制作过程中,向电路板进行发光芯片转移时,不需要将发光芯片从生长基板转移至临时基板,再从临时基板转移至转移基板,也不再需要制备临时基板、转移基板,芯片转移效率更高,且转移成本更低,使得该发光组件的制作效率更高,且制作成本更低。
另一可选实施例:
为了便于理解,本实施例下面以上述实施例所示的发光组件的制作方法为示例进行说明,参见图11所示,其包括但不限于:
S1101:将生长基板生长有发光芯片的一面,与电路板上的弱化层对位贴合,对位贴合后发光芯片与顶壁(也即弱化层形成为顶壁的区域)接触。
S1102:将生长基板上对应的发光芯片与生长基板剥离(例如可采用但不限于激光剥离的方式),并移除生长基板,被剥离的发光芯片承载于顶壁上;未被剥离的发光芯片则随生长基板被一起移除;
S1103:对承载有发光芯片的顶壁施加压力使其破裂,使得顶壁所承载的发光芯片落至对应的芯片键合区上;
S1104:将发光芯片的电极与芯片键合区内的焊盘对应连接。
可见,在制作发光组件中,可直接将生长基板生长有发光芯片的一面与弱化层对位贴合,并将需要转移的发光芯片与生长基板脱离,让其承载于对应空腔的顶壁上,然后对该顶壁施加压力使其破裂从而使得发光芯片直接落至对应的芯片键合区上即可,且由于顶壁远离电路板的一面到电路板之间的距离大于等于发光芯片的高度,因此在后续还需继续向该电路板上的其他芯片键合区转移芯片时,由于已经转移的发光芯片位于空内,不会对后续转移过程中生长基板上的其他芯片造成干扰,从而整个芯片转移过程都不再需要临时基板、转移基板或转移头,制作效率更高,且制作成本更低。
在Micro LED显示领域, 由于向显示背板上转移的Micro LED芯片数基本都是数万以上级别。因此在完成Micro LED芯片后,对显示背板上出现的坏点难以检测,且即使检测出坏点,也难以对其进行修复,即使对其进行修复,修复过程也比较繁杂。另外,现有进行Micro LED芯片转移时,对生长基板上的Micro LED芯片进行整面性的激光剥离,所有Micro LED芯片均被转移至临时基板,导致最终制备的Micro LED显示器件上芯片的质量不可控,后期维修成本比较高;另外由于不能预先挑选Micro LED芯片的发光波长,最终制备的显示器件发光均匀性不佳。针对该问题,在本实施例中,在将生长基板上的发光芯片转移至电路板上之前,例如将生长基板生长有发光芯片的一面,与电路板上弱化层对位贴合之前,还包括:
对生长基板上的各发光芯片进行检测,将检测不合格的发光芯片从生长基板上去除;从而使得留在生长基板上的发光芯片都是合格的发光芯片,尽量避免转移至电路板上的发光芯片出现坏点的情况发生,从而尽量避免后续进行坏点的检测和修复,提升产品质量并降低维护成本。
在本实施例中,对生长基板上的各发光芯片进行检测可包括但不限于以下至少之一:
对各发光芯片的外观进行检测;
对各发光芯片的光学特性进行检测。
例如,在一种示例中,可以通过先不限于通过Micro PL/AOI检测方式,提前对生长基板上的发光芯片的光学特定和外观质量,生成相应的mapping data,从而从中确定出不合格的发光芯片并将其从生长基板上移除。
在本实施例的一些示例中,对各发光芯片的光学特性进行检测可包括但不限于:对各发光芯片的主波长main wavelength进行检测,对于主波长与预设标准主波长的差值大于预设差值的发光芯片判定为不合格的发光芯片,从而使得保留在生长基板上的发光芯片的主波长一致性好,进而提升发光组件的发光均匀性更高,使其显示效果或照明效果更佳。
为了便于理解,本实施例下面结合一种应用场景为示例进行说明。在本示例中,生长基板包括分别生长有第一发光芯片(例如为红光发光芯片)、第二发光芯片(例如为绿光发光芯片)和第三发光芯片(例如为蓝光发光芯片)的第一生长基板、第二生长基板和第三生长基板, 在本示例中,将生长基板生长有发光芯片的一面,与电路板上弱化层对位贴合包括:
依次将第一生长基板、第二生长基板和第三生长基板中的其中一个与电路板上的弱化层对位贴合,在上一个对位贴合的生长基板上的发光芯片落至对应的芯片键合区后,再将当前的生长基板与电路板上的弱化层对位贴合。
而将发光芯片的电极与芯片键合区内的焊盘对应连接包括但不限于以下两种方式:
方式一:在第一发光芯片、第二发光芯片和第三发光芯片分别落至各自对应的芯片键合区上后,对各第一发光芯片、第二发光芯片和第三发光芯片的电极与各自对应的焊盘在一次焊接制程中进行焊接。
方式二:在上一个对位贴合的生长基板上的发光芯片(例如第一发光芯片)落至对应的芯片键合区后,再将当前的生长基板与电路板上的弱化层对位贴合之前,还包括:将当前落至芯片键合区的各发光芯片的电极(例如第一发光芯片),与各电极各自对应的焊盘焊接。
下面以依次分别向电路板转移第一发光芯片、第二发光芯片和第三发光芯片的过程为示例进行说明。
向电路板转移第一发光芯片的过程参见图12所示,包括:
S1201:将第一生长基板81生长有第一发光芯片61的一面,与电路板4上的弱化层5对位贴合,对位贴合后第一发光芯片61与弱化层5形成为顶壁51的区域接触。
S1202:将第一生长基板81上对应的第一发光芯片61剥离(例如在248纳米或者266纳米下激光剥离),并移除第一生长基板81,被剥离的第一发光芯片61承载于顶壁51上;未被剥离的第一发光芯片61则随第一生长基板81被一起移除;
S1203:对承载有第一发光芯片61的顶壁51施加压力F使其破裂。
S1204:顶壁51破裂后,顶壁51所承载的第一发光芯片61落至对应的芯片键合区上。
在本步骤中,可将第一发光芯片61的电极与芯片键合区内的焊盘41焊接,也可不焊接等其他发光芯片转移后一起焊接。
向电路板转移第二发光芯片的过程参见图13所示,包括:
S1301:将第二生长基板82生长有第二发光芯片62的一面,与电路板4上的弱化层5对位贴合,对位贴合后第二发光芯片62与弱化层5形成为顶壁51的区域接触。在本步骤中,之前转移的第一发光芯片61位于空腔50内,不会对第二生长基板82上的第二发光芯片62造成阻挡或干扰。
S1302:将第二生长基板82上对应的第二发光芯片62剥离,并移除第二生长基板82,被剥离的第二发光芯片62承载于顶壁51上;未被剥离的第二发光芯片62则随第二生长基板82被一起移除;
S1303:对承载有第二发光芯片62的顶壁51施加压力F使其破裂。
S1304:顶壁51破裂后,顶壁51所承载的第二发光芯片62落至对应的芯片键合区上。
在本步骤中,可将第二发光芯片62的电极与芯片键合区内的焊盘41焊接,也可不焊接等其他发光芯片转移后一起焊接。
向电路板转移第三发光芯片的过程参见图14所示,包括:
S1401:将第三生长基板83生长有第三发光芯片63的一面,与电路板4上的弱化层5对位贴合,对位贴合后第三发光芯片63与弱化层5形成为顶壁51的区域接触。在本步骤中,之前转移的第一发光芯片61和第二发光芯片62分别位于各自对应的空腔50内,不会对第三生长基板83上的第三发光芯片63造成阻挡或干扰。
S1402:将第三生长基板83上对应的第三发光芯片63剥离,并移除第三生长基板83,被剥离的第三发光芯片63承载于顶壁51上;未被剥离的第三发光芯片63则随第三生长基板83被一起移除;
S1403:对承载有第三发光芯片63的顶壁51施加压力F使其破裂。
S1404:顶壁51破裂后,顶壁51所承载的第三发光芯片63落至对应的芯片键合区上。
在本步骤中,可将第一发光芯片61、第二发光芯片62和第三发光芯片63的电极与芯片键合区内的焊盘41进行一次性焊接,从而提升焊接效率和焊接效果。
可见,在上述芯片转移过程中,不需要将发光芯片从生长基板转移至临时基板,再从临时基板转移至转移基板,也不再需要制备临时基板、转移基板,芯片转移效率更高,且转移成本更低,使得该发光组件的制作效率更高,且制作成本更低。
本实施例还提供了一种显示屏,其可为柔性显示屏,也可为刚性显示屏,且其可为规则形状的显示屏,例如矩形、圆形、椭圆形等,也可为异形显示屏。该显示屏包括显示屏框架,以及如上各示例所示的显示面板,该显示面板由上述发光组件制得,且该显示面板固设于显示屏框架内。应当理解的是,本实施例中的显示屏可以应用于各种电子设备,例如显示器、电脑、手机、智能手表、车载设备、广告牌等。该显示屏制作效率更高,成本更低,良品率更好,出光效率更高且显示效果更好。
应当理解的是,本申请的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (20)

  1. 一种电路板组件,包括:
    电路板,所述电路板上设有多个芯片键合区,所述芯片键合区内设有与发光芯片的电极相对应的焊盘,其中:
    所述电路板组件还包括设于所述电路板上,并形成有多个空腔的弱化层;
    所述多个空腔被所述弱化层相互隔离,且一个所述芯片键合区对应一个所述空腔,所述弱化层形成各所述空腔的侧壁和顶壁;
    所述顶壁用于承载从生长基板脱离的所述发光芯片,以及在受到压力后破裂,以供承载的所述发光芯片落至对应的所述芯片键合区上;所述顶壁远离所述电路板的一面到所述电路板之间的距离,大于等于所述发光芯片的高度。
  2. 如权利要求1所述的电路板组件,其中,所述电路板为显示背板。
  3. 如权利要求1所述的电路板组件,其中,所述弱化层为热融胶层。
  4. 如权利要求1所述的电路板组件,其中,所述弱化层为不透光的挡光层。
  5. 如权利要求1所述的电路板组件,其中,所述侧壁的内侧面和/或外侧面为反光面。
  6. 如权利要求1所述的电路板组件,其中,所述顶壁的厚度小于等于5微米。
  7. 如权利要求1所述的电路板组件,其中,所述弱化层的一部分填充于相邻所述的芯片键合区之间的间隙内。
  8. 如权利要求3所述的电路板组件,其中,所述热融胶层具有黏性。
  9. 一种发光组件,包括:
    如权利要求1所述的电路板组件;
    位于各所述芯片键合区内的发光芯片,所述发光芯片从生长基板脱离后承载于所述顶壁,并在所述顶壁受压力破裂后落至对应的所述芯片键合区上,所述发光芯片的电极与所述芯片键合区内的焊盘对应连接。
  10. 如权利要求9所述的发光组件,其中,所述发光芯片包括Mini LED芯片和Micro LED芯片中的至少一种。
  11. 如权利要求10所述的发光组件,其中,所述电路板为显示背板,所述发光芯片包括发光颜色不同的第一发光芯片、第二发光芯片和第三发光芯片,所述发光颜色包括红色、绿色和蓝色。
  12. 一种如权利要求1所述的电路板组件的制作方法,包括:
    在所述电路板上形成牺牲层,所述牺牲层包括分别将各所述芯片键合区覆盖的多个牺牲层单元,且各牺牲层单元之间相互分离;
    在所述电路板上形成将各所述牺牲层单元覆盖的所述弱化层;
    去除所述各牺牲层单元,所述各牺牲层单元所占用的空间形成所述空腔。
  13. 如权利要求12所述的电路板组件的制作方法,其中,所述牺牲层单元为光刻胶层单元或聚乙烯醇层单元。
  14. 一种如权利要求9所述的发光组件的制作方法,包括:
    将生长基板生长有所述发光芯片的一面,与所述电路板上的所述弱化层对位贴合,对位贴合后所述发光芯片与所述顶壁接触;
    将所述生长基板上对应的所述发光芯片与所述生长基板剥离,并移除所述生长基板,被剥离的所述发光芯片承载于所述顶壁上;
    对承载有所述发光芯片的所述顶壁施加压力使其破裂,使得所述顶壁所承载的所述发光芯片落至对应的所述芯片键合区上;
    将所述发光芯片的电极与所述芯片键合区内的焊盘对应连接。
  15. 如权利要求14所述的发光组件的制作方法,其中,所述将生长基板生长有所述发光芯片的一面,与所述电路板上所述弱化层对位贴合之前,还包括:
    对所述生长基板上的各所述发光芯片进行检测;
    将检测不合格的所述发光芯片从所述生长基板上去除。
  16. 如权利要求15所述的发光组件的制作方法,其中,所述对所述生长基板上的各所述发光芯片进行检测包括以下至少之一:
    对各所述发光芯片的外观进行检测;
    对各所述发光芯片的光学特性进行检测。
  17. 如权利要求16所述的发光组件的制作方法,其中,所述对各所述发光芯片的光学特性进行检测包括:
    对各所述发光芯片的主波长进行检测,对于主波长与预设标准主波长的差值大于预设差值的发光芯片判定为不合格的发光芯片。
  18. 如权利要求14所述的发光组件的制作方法,其中,所述生长基板包括分别生长有第一发光芯片、第二发光芯片和第三发光芯片的第一生长基板、第二生长基板和第三生长基板,所述第一发光芯片、第二发光芯片和第三发光芯片的发光颜色不同,所述发光颜色包括红色、绿色和蓝色;
    所述将生长基板生长有所述发光芯片的一面,与所述电路板上所述弱化层对位贴合包括:
    依次将所述第一生长基板、所述第二生长基板和所述第三生长基板中的其中一个与所述电路板上的所述弱化层对位贴合,在上一个对位贴合的生长基板上的所述发光芯片落至对应的所述芯片键合区后,再将当前所述生长基板与所述电路板上的所述弱化层对位贴合。
  19. 如权利要求18所述的发光组件的制作方法,其中,所述将所述发光芯片的电极与所述芯片键合区内的焊盘对应连接包括:
    在所述第一发光芯片、所述第二发光芯片和所述第三发光芯片分别落至各自对应的所述芯片键合区上后,对各所述第一发光芯片、所述第二发光芯片和所述第三发光芯片的电极与各自对应的焊盘在一次焊接制程中进行焊接。
  20. 如权利要求18所述的发光组件的制作方法,其中,所述在上一个对位贴合的生长基板上的所述发光芯片落至对应的所述芯片键合区后,再将当前所述生长基板与所述电路板上的所述弱化层对位贴合之前,还包括:
    将当前落至所述芯片键合区的各发光芯片的电极,与所述各电极各自对应的焊盘焊接。
PCT/CN2021/108411 2021-07-26 2021-07-26 电路板组件、发光组件及其制作方法 WO2023004535A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/108411 WO2023004535A1 (zh) 2021-07-26 2021-07-26 电路板组件、发光组件及其制作方法
US17/986,407 US20230073554A1 (en) 2021-07-26 2022-11-14 Circuit-board component and manufacturing method thereof, and light-emitting component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108411 WO2023004535A1 (zh) 2021-07-26 2021-07-26 电路板组件、发光组件及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/986,407 Continuation US20230073554A1 (en) 2021-07-26 2022-11-14 Circuit-board component and manufacturing method thereof, and light-emitting component and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2023004535A1 true WO2023004535A1 (zh) 2023-02-02

Family

ID=85086067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108411 WO2023004535A1 (zh) 2021-07-26 2021-07-26 电路板组件、发光组件及其制作方法

Country Status (2)

Country Link
US (1) US20230073554A1 (zh)
WO (1) WO2023004535A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200075560A1 (en) * 2017-06-15 2020-03-05 Goertek Inc. Method for transferring micro-light emitting diodes, micro-light emitting diode device and electronic device
US20200119223A1 (en) * 2018-10-15 2020-04-16 Samsung Electronics Co., Ltd. Light emitting diode and manufacturing method of light emitting diode
CN211605118U (zh) * 2020-03-06 2020-09-29 重庆康佳光电技术研究院有限公司 一种激光剥离的巨量转移系统
CN112185988A (zh) * 2019-06-17 2021-01-05 成都辰显光电有限公司 显示面板及显示面板的制备方法
CN112864287A (zh) * 2021-01-11 2021-05-28 深圳市华星光电半导体显示技术有限公司 转移方法、微型器件阵列及其制备方法
CN112992757A (zh) * 2020-07-03 2021-06-18 重庆康佳光电技术研究院有限公司 微发光二极管芯片巨量转移方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200075560A1 (en) * 2017-06-15 2020-03-05 Goertek Inc. Method for transferring micro-light emitting diodes, micro-light emitting diode device and electronic device
US20200119223A1 (en) * 2018-10-15 2020-04-16 Samsung Electronics Co., Ltd. Light emitting diode and manufacturing method of light emitting diode
CN112185988A (zh) * 2019-06-17 2021-01-05 成都辰显光电有限公司 显示面板及显示面板的制备方法
CN211605118U (zh) * 2020-03-06 2020-09-29 重庆康佳光电技术研究院有限公司 一种激光剥离的巨量转移系统
CN112992757A (zh) * 2020-07-03 2021-06-18 重庆康佳光电技术研究院有限公司 微发光二极管芯片巨量转移方法
CN112864287A (zh) * 2021-01-11 2021-05-28 深圳市华星光电半导体显示技术有限公司 转移方法、微型器件阵列及其制备方法

Also Published As

Publication number Publication date
US20230073554A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
TWI768248B (zh) 拼接顯示裝置
US10886257B2 (en) Micro LED display device and method for manufacturing same
JP5652252B2 (ja) 発光装置、照明装置および表示装置
WO2020248750A1 (zh) 一种微型led的转移方法和显示面板
CN106663721A (zh) 使用半导体发光器件的显示装置
CN101350160B (zh) 发光二极管显示屏及其封装方法
US10403611B2 (en) Manufacturing method of micro LED display module
TW201904050A (zh) 具有透光基材之微發光二極體顯示模組及其製造方法
CN111725197B (zh) 微发光二极管基板及其制作方法、显示面板及其制作方法
CN112652617A (zh) 一种Micro-LED新型显示器件的制备方法
TWI611573B (zh) 微發光二極體顯示模組的製造方法
CN114613743A (zh) 微发光二极管显示面板及其制备方法、显示装置
WO2023004535A1 (zh) 电路板组件、发光组件及其制作方法
TW202226572A (zh) 微發光二極體顯示器及其封裝方法
KR100759896B1 (ko) 적어도 하나의 발광소자가 장착된 백라이트 모듈 및 그제작 방법
CN214428633U (zh) 一种灯板
CN115692450A (zh) 电路板组件、发光组件及其制作方法
TWI792486B (zh) 顯示面板、顯示背板及其製作方法
CN115377256A (zh) 一种有色转换led芯片及其制备方法
WO2023005672A1 (zh) 生长基板组件及其制作方法、发光组件的制作方法
CN114975712A (zh) 一种微型led芯片质量检测结构及其检测方法
CN112802944A (zh) 一种高对比度的led显示器件及其制造方法和模组
CN114256397B (zh) 显示面板及其制备方法和显示装置
CN115719755A (zh) 电路板组件及其制作方法、芯片转移方法
CN215418184U (zh) 转移头及转移头模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE