WO2023002965A1 - 抗マラリア活性を有するヘテロ環化合物の塩及びその結晶 - Google Patents

抗マラリア活性を有するヘテロ環化合物の塩及びその結晶 Download PDF

Info

Publication number
WO2023002965A1
WO2023002965A1 PCT/JP2022/027971 JP2022027971W WO2023002965A1 WO 2023002965 A1 WO2023002965 A1 WO 2023002965A1 JP 2022027971 W JP2022027971 W JP 2022027971W WO 2023002965 A1 WO2023002965 A1 WO 2023002965A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
crystals
trifluoromethyl
triazol
oxy
Prior art date
Application number
PCT/JP2022/027971
Other languages
English (en)
French (fr)
Inventor
郁雄 櫛田
英恵 小村
奈央 澁口
Original Assignee
エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーザイ・アール・アンド・ディー・マネジメント株式会社 filed Critical エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority to CN202280044088.XA priority Critical patent/CN117545747A/zh
Priority to JP2023536744A priority patent/JPWO2023002965A1/ja
Priority to US18/572,025 priority patent/US20240294491A1/en
Priority to EP22845898.0A priority patent/EP4342889A1/en
Publication of WO2023002965A1 publication Critical patent/WO2023002965A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/455Nicotinic acids, e.g. niacin; Derivatives thereof, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/13Dicarboxylic acids
    • C07C57/145Maleic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a salt of a heterocyclic compound having antimalarial activity and a crystal thereof.
  • the invention also relates to pharmaceutical compositions comprising said salts or said crystals.
  • Non-Patent Documents 1 and 2 Malaria is a life-threatening infection caused by Plasmodium falciparum. It is estimated that more than 200 million people were infected and more than 400,000 died in 2018, many of them children in African countries. Many countries, companies and scientists are actively working together to eradicate malaria.
  • the current standard treatment for malaria is combination therapy with artemisinin. It has been reported that combination therapy with artemisinin results in a high incidence of resistance (Non-Patent Documents 1 and 2). Therefore, there is a need for new compounds with new mechanisms of action.
  • Glycosylphosphatidylinositol (GPI) is a common part of all eukaryotes and plays a role in anchoring many proteins to the cell surface.
  • Gwt1p one of the essential enzymes in the GPI biosynthetic pathway, has been reported to acylate inositol (see Non-Patent Documents 3 to 6).
  • Patent Document 1 is a prior art regarding an antimalarial drug based on such a mechanism.
  • Patent Document 1 describes a heterocyclic compound having antimalarial activity by inhibiting the activity of GWT1 gene product derived from malaria parasite, thereby inhibiting GPI biosynthesis.
  • the compounds disclosed in Patent Document 1 have 2-benzylpyridine as a common structure, and are clearly different in structure from the compounds according to the present invention.
  • Patent Document 2 is a prior art that is structurally most similar to the compound according to the present invention.
  • Patent Document 2 discloses N-unsubstituted diaminopyridine derivatives.
  • Patent Document 2 does not disclose any 5-substituted diaminopyridine derivative as well as the compound according to the present invention.
  • compound (I) has antimalarial activity. Therefore, compound (I) has potential as a preventive and/or therapeutic agent for malaria.
  • an object of the present specification is to provide pharmaceutically acceptable salts and crystals thereof of compound (I) having applicability as drug substances for pharmaceuticals.
  • ⁇ 1> Formula (I) below 2,6-diamino-5-[3-(trifluoromethyl)-1H-1,2,4-triazol-1-yl]-N-(4- ⁇ [(2R)-1,1 ,1-trifluoropropan-2-yl]oxy ⁇ benzyl)pyridine-3-carboxamide monophosphate or monomaleate.
  • a prophylactic or therapeutic agent for malaria comprising the salt according to ⁇ 1> or the crystal according to any one of ⁇ 2> to ⁇ 26>.
  • a method for preventing malaria in a mammal comprising administering to the mammal an effective amount of the salt of ⁇ 1> above or the crystal of any one of ⁇ 2> to ⁇ 26> above. or treatment method.
  • the salt according to ⁇ 1> or the crystal according to any one of ⁇ 2> to ⁇ 26> for use in a method for preventing or treating malaria.
  • FIG. 1 is a powder X-ray diffraction pattern of ⁇ crystals of compound (I) monophosphate obtained in Example 1.
  • FIG. The horizontal axis indicates the diffraction angle (2 ⁇ ), and the vertical axis indicates the peak intensity.
  • 2 is a powder X-ray diffraction pattern of the ⁇ crystal form of compound (I) monophosphate obtained in Example 2.
  • FIG. The horizontal axis indicates the diffraction angle (2 ⁇ ), and the vertical axis indicates the peak intensity.
  • 3 is a powder X-ray diffraction pattern of crystals of compound (I) monomaleate obtained in Example 3.
  • FIG. The horizontal axis indicates the diffraction angle (2 ⁇ ), and the vertical axis indicates the peak intensity.
  • FIG. 4 is a 13 C solid-state NMR spectrum of ⁇ -crystal of compound (I) monophosphate obtained in Example 1.
  • FIG. The horizontal axis indicates chemical shift ( ⁇ ), and the vertical axis indicates peak intensity.
  • 5 is a 13 C solid-state NMR spectrum of the ⁇ crystal of compound (I) monophosphate obtained in Example 2.
  • FIG. The horizontal axis indicates chemical shift ( ⁇ ), and the vertical axis indicates peak intensity.
  • 6 is a 13 C solid-state NMR spectrum of the compound (I) monomaleate crystal obtained in Example 3.
  • FIG. The horizontal axis indicates chemical shift ( ⁇ ), and the vertical axis indicates peak intensity.
  • 7 is a thermal analysis TG-DTA chart of ⁇ crystals of compound (I) monohydrochloride obtained in Example 1.
  • the horizontal axis indicates the temperature, the left vertical axis indicates the weight change of the TG, and the right vertical axis indicates the heat flow of the DTA.
  • 8 is a thermal analysis TG-DTA chart of ⁇ crystals of compound (I) monophosphate obtained in Example 2.
  • FIG. The horizontal axis indicates the temperature, the left vertical axis indicates the weight change of the TG, and the right vertical axis indicates the heat flow of the DTA.
  • 9 is a thermal analysis TG-DTA chart of crystals of compound (I) monomaleate obtained in Example 3.
  • FIG. The horizontal axis indicates the temperature, the left vertical axis indicates the weight change of the TG, and the right vertical axis indicates the heat flow of the DTA.
  • salt means a chemical substance consisting of compound (I), which is a basic component, and a specific equivalent number of acid relative to compound (I).
  • salts with inorganic acids includes, for example, salts with inorganic acids, salts with organic acids, salts with acidic amino acids, etc. Among them, pharmaceutically acceptable salts are preferred.
  • salts with inorganic acids include salts with hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, etc.
  • salts with organic acids include salts with acetic acid, succinic acid, fumaric acid, and the like.
  • Acids, salts with organic carboxylic acids such as maleic acid, tartaric acid, malic acid, citric acid, lactic acid, stearic acid, and benzoic acid, methanesulfonic acid (mesylic acid), ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid (tosylic acid) and other salts with organic sulfonic acids, among which phosphoric acid and maleic acid are preferred.
  • organic carboxylic acids such as maleic acid, tartaric acid, malic acid, citric acid, lactic acid, stearic acid, and benzoic acid, methanesulfonic acid (mesylic acid), ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid (tosylic acid) and other salts with organic sulfonic acids, among which phosphoric acid and maleic acid are preferred.
  • salts with acidic amino acids include salts with aspartic acid, glutamic acid, and the like.
  • the salts herein may be anhydrides, hydrates or solvates.
  • the term hydrate or solvate refers to a solid formed by combining compound (I) or a salt thereof with water molecules or solvent molecules, and the solid may be a crystal.
  • Commonly used solvents for solvates include ketone solvents such as acetone, 2-butanone and cyclohexanone; ester solvents such as methyl acetate and ethyl acetate; ether solvents; alcohol solvents such as methanol, ethanol, 1-propanol and isopropanol; and polar solvents such as N-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethylsulfoxide.
  • the number of water molecules or solvent molecules for compound (I) or a salt thereof is not particularly limited, and may be, for example, one or two.
  • crystal means an anhydride or hydrate crystal of compound (I) or a salt thereof.
  • preferred crystals of monophosphate and monomaleate of compound (I) are: ⁇ crystals of compound (I) monophosphate having a diffraction peak at a diffraction angle (2 ⁇ 0.2°) of 6.2° in powder X-ray diffraction using CuK ⁇ as an X-ray source; Compound (I) monophosphate having diffraction peaks at diffraction angles (2 ⁇ 0.2°) of 6.2°, 12.5° and 14.3° in powder X-ray diffraction using CuK ⁇ as an X-ray source alpha crystals of salt; Diffraction peaks at diffraction angles (2 ⁇ 0.2°) of 6.2°, 11.1°, 12.5°, 14.3° and 24.9° in powder X-ray diffraction using CuK ⁇ as an X-ray source ⁇ crystals of compound (I) monophosphate, having In powder X-ray diffraction using CuK ⁇ as an X-ray source, diffraction angles (2 ⁇ ⁇ 0.2°)
  • the diffraction angle (2 ⁇ ) in powder X-ray diffraction can have an error within the range of ⁇ 0.2°, so the above diffraction angle values include values within the range of about ⁇ 0.2°. need to be understood. Therefore, in a specific compound or a salt thereof, not only crystals in which the diffraction angles of peaks in powder X-ray diffraction completely match, but also crystals in which the diffraction angles of peaks match with an error of about ⁇ 0.2° are identical. , are included in the present invention.
  • the peak intensity or half-value width of the diffraction angle (2 ⁇ ) in powder X-ray diffraction varies depending on the difference in measurement conditions and the size and shape of each particle of the powder crystal used as the measurement sample, even if the crystal form is the same. Due to variability, measurements do not always exhibit constant peak intensities or half-height widths, which vary from one measurement to the next. Therefore, even if there is a difference in peak intensity or half-value width at the same diffraction angle (2 ⁇ ) in comparison of powder X-ray diffraction patterns, the difference does not mean that the difference originates from a different crystal form. Therefore, with respect to diffraction peaks characteristic of a particular crystal of the present invention, it means that the crystal of the powder X-ray diffraction pattern having such a difference is of the same crystal form as the crystal of the present invention.
  • the powder X-ray diffraction pattern having a characteristic diffraction peak is Not only when the powder X-ray diffraction pattern shown in 1 completely matches, but also when the peak intensity or half width is different, or the diffraction angle of the characteristic diffraction peak matches within an error range of ⁇ 0.2 ° , meaning the same powder X-ray diffraction pattern as the powder X-ray diffraction pattern shown in FIG. Therefore, it means that all crystals having such powder X-ray diffraction patterns are the same crystals as the crystals of the present invention.
  • the chemical shift ⁇ in the 13 C solid-state NMR spectrum can generally have an error within ⁇ 0.5 ppm, so the above chemical shift value should be understood to include values within the range of about ⁇ 0.5 ppm. Therefore, the present invention includes not only crystals whose chemical shifts in the 13 C solid-state NMR spectrum match perfectly, but also crystals whose chemical shifts match with an error of about ⁇ 0.5 ppm. Therefore, in this specification, for example, “having a chemical shift ( ⁇ ⁇ 0.5 ppm) peak at 157.2 ppm” means “having a chemical shift ( ⁇ ) peak in the range of 156.7 ppm to 157.7 ppm". The same is true for chemical shifts in other 13 C solid-state NMR spectra.
  • a crystal having a 13 C solid-state NMR spectrum substantially identical to the 13 C solid-state NMR spectrum shown in FIG. 4" means that the 13 C solid-state NMR spectrum having a certain chemical shift peak is
  • the 13 C solid state shown in FIG. 4 not only has perfect agreement with the 13 C solid state NMR spectrum, but also has different peak intensities or matches characteristic peaks within a chemical shift of ⁇ 0.5 ppm or so. It is meant to be a crystal with a 13 C solid-state NMR spectrum identical to the NMR spectrum. Therefore, all crystals having such a 13 C solid-state NMR spectrum are the same crystals as the crystals of the present invention.
  • Compound (I) may be produced by a method well known to those skilled in the art.
  • compound (I) can be synthesized by the method described in Reference Examples below.
  • the salt of compound (I) according to the present specification can be obtained by a conventional method for producing a salt. Specifically, for example, compound (I) is heated as necessary to suspend or dissolve in a solvent, and then an acid is added to the resulting suspension or solution, which is then cooled at room temperature or cooled. It can be produced by stirring or standing for several minutes to several days while stirring. By these production methods, the salt of compound (I) can be obtained as a crystal or amorphous. Amorphous materials can also be obtained by subjecting these production methods to further operations such as freeze-drying, if necessary.
  • solvents used here include alcohol solvents such as ethanol, 1-propanol and isopropanol; acetonitrile; ketone solvents such as acetone and 2-butanone; ester solvents such as ethyl acetate; Hydrogen-based solvent; ether-based solvents such as t-butyl methyl ether, and water can be mentioned. These solvents may be used alone or in combination of two or more.
  • Crystals of compound (I) or a salt thereof can be produced by the above-described method for producing compound (I) or a method for producing a salt thereof, or the compound ( It can also be produced by dissolving I) or a salt thereof in a solvent by heating and cooling with stirring to crystallize.
  • Compound (I) or a salt thereof used for crystallization may be in any form, may be a solvate, hydrate or anhydrate, and may be amorphous or crystalline (from multiple crystal polymorphs). or a mixture thereof.
  • Solvents used for crystallization include alcohol solvents such as methanol, ethanol, isopropanol and 1-propanol; acetonitrile; amide solvents such as N,N-dimethylformamide; ester solvents such as ethyl acetate; ketone solvents such as acetone and 2-butanone; ether solvents such as t-butyl methyl ether; and water. Moreover, these solvents may be used alone, or two or more of them may be mixed and used.
  • the amount of the solvent to be used can be appropriately selected with the lower limit being the amount at which compound (I) or a salt thereof dissolves by heating or the amount at which the suspension can be stirred, and the upper limit being the amount at which the yield of crystals does not significantly decrease. .
  • seed crystals may or may not be added.
  • the temperature at which seed crystals are added is not particularly limited, but is preferably 0 to 80°C.
  • the temperature at which compound (I) or a salt thereof dissolves may be appropriately selected depending on the solvent. It is the range of temperature at which reflux starts, more preferably 55 to 80°C.
  • Cooling during crystallization may give crystals with different forms (polymorphs) if quenched, so it is desirable to adjust the cooling rate as appropriate in consideration of the effect on crystal quality, particle size, etc. , preferably cooling at a rate of, for example, 5 to 40° C./hour. Cooling at a rate of, for example, 5 to 25° C./hour is more preferred.
  • the final crystallization temperature can be appropriately selected depending on the yield and quality of crystals, but is preferably -25 to 30°C.
  • Crystallized crystals are separated by a normal filtration operation, and if necessary, the filtered crystals are washed with a solvent and further dried to obtain the desired crystals.
  • the solvent used for washing the crystals may be the same as the crystallization solvent.
  • Preferred examples include ethanol, acetone, 2-butanone, ethyl acetate, diethyl ether, t-butyl methyl ether, hexane and the like.
  • these solvents may be used alone, or two or more of them may be mixed and used.
  • the crystals separated by filtration can be dried by leaving them in the atmosphere or under a nitrogen stream, or by heating.
  • the drying time may be appropriately selected according to the amount of production, drying equipment, drying temperature, etc. until the amount of residual solvent drops below a predetermined amount. Moreover, drying can be performed under ventilation or under reduced pressure. The degree of pressure reduction may be appropriately selected according to the amount of production, the drying apparatus, the drying temperature, and the like. The obtained crystals can be left in the atmosphere after drying, if necessary.
  • the salt of compound (I) and its crystals obtained by the production method described above have the potential to be used as prophylactic and/or therapeutic agents for malaria, as demonstrated by the activity data in the pharmacological test examples described later. have.
  • [Pharmaceutical composition] Another embodiment of the present invention is a pharmaceutical composition containing a salt of compound (I) or a crystal thereof and a pharmaceutically acceptable additive.
  • a pharmaceutical composition can be produced by mixing a pharmaceutically acceptable additive with a salt of compound (I) or a crystal thereof.
  • the pharmaceutical composition according to the present invention can be produced according to known methods such as those described in the General Rules for Pharmaceutical Preparations of the Japanese Pharmacopoeia 17th Edition.
  • the pharmaceutical composition according to this embodiment can be appropriately administered to a patient according to its dosage form.
  • the pharmaceutical composition can be orally administered in the form of solid formulations such as tablets, granules, fine granules, powders, and capsules, or liquid formulations, jelly formulations, syrup formulations, and the like.
  • Pharmaceutical compositions may also be administered parenterally in the form of injections, suppositories, ointments, poultices, and the like.
  • a salt of compound (I) or a crystal thereof may be added as additives such as excipients, binders, disintegrants, lubricants, coloring agents, flavoring agents, etc.
  • additives such as excipients, binders, disintegrants, lubricants, coloring agents, flavoring agents, etc.
  • tablets, granules, fine granules, powders, capsules, etc. can be prepared by a conventional method.
  • the above-mentioned additives can be appropriately combined into a formulation.
  • these tablets, granules and the like may be coated as necessary.
  • Excipients include, for example, lactose, white sugar, glucose, corn starch, mannitol, sorbitol, starch, pregelatinized starch, dextrin, crystalline cellulose, and calcium hydrogen phosphate.
  • binders examples include methylcellulose, ethylcellulose, gum arabic, hydroxypropylmethylcellulose, and hydroxypropylcellulose.
  • disintegrants include low-substituted hydroxypropylcellulose, carboxymethylcellulose, carboxymethylcellulose calcium, croscarmellose sodium, carboxymethylstarch sodium, crospovidone, and the like.
  • lubricants examples include talc, silica, magnesium stearate, calcium stearate, sodium stearyl fumarate, and polyethylene glycol.
  • coloring agents include iron sesquioxide, yellow iron sesquioxide, carmine, ⁇ -carotene, titanium oxide, sodium riboflavin phosphate, yellow aluminum lake, and cochineal.
  • Flavoring agents include, for example, cocoa powder, ascorbic acid, tartaric acid, peppermint oil, borneol, and cinnamon powder.
  • pH adjusters When preparing injections, pH adjusters, buffers, suspending agents, solubilizers, stabilizing agents, tonicity agents, preservatives, etc. are added to the main drug, if necessary.
  • Subcutaneous, intramuscular injections, and intravenous infusions can be used. At that time, if necessary, it can be lyophilized by a conventional method.
  • pH adjusters and buffers examples include hydrochloric acid, sodium carbonate, sodium hydrogen carbonate, citric acid, sodium citrate, sodium dihydrogen citrate, glycine, phosphoric acid, sodium dihydrogen phosphate, sodium monohydrogen phosphate, Examples include sodium hydroxide, acetic acid, sodium acetate, and meglumine.
  • Suspending agents include, for example, sodium alginate, sucrose fatty acid ester, polysorbate 80, gum arabic, tragacanth powder, and polyoxyethylene sorbitan monolaurate.
  • solubilizing agents include polyoxyethylene hydrogenated castor oil, polysorbate 80, nicotinamide, polyoxyethylene sorbitan monolaurate, glycerin fatty acid ester, polyethylene glycol, propylene glycol, benzyl benzoate, ethanol, triethanolamine, etc.
  • stabilizers examples include sodium sulfite and sodium metasulfite.
  • tonicity agents examples include glucose, mannitol, and sorbitol.
  • preservatives examples include methyl paraoxybenzoate, ethyl parahydroxybenzoate, sorbic acid, phenol, cresol, and chlorocresol.
  • the dose of compound (I) according to the present invention varies depending on the degree of symptoms, age, sex, body weight, dosage form/type of salt, specific type of disease, etc., but usually 1 About 30 ⁇ g to 10 g, preferably 100 ⁇ g to 5 g, more preferably 100 ⁇ g to 1 g per day for oral administration, and about 30 ⁇ g to 1 g, preferably 100 ⁇ g to 500 mg, more preferably 100 ⁇ g to 300 mg for injection administration, once or several times per day. Administer in divided doses.
  • Crystals of compound (I) of the present invention can be produced, for example, by the methods described in the following Examples, and the effects of the compound can be confirmed by the methods described in the following Test Examples. can.
  • Root temperature in the following examples and reference examples usually indicates about 10°C to about 35°C. % indicates percent by weight unless otherwise specified.
  • the optical purity ee was calculated using Shimadzu Chiral HPLC.
  • Compound (I) can be produced, for example, by the method described in the Reference Examples below, and its effects can be confirmed by the methods described in the Test Examples below.
  • Step 1 Synthesis of (R)-4-((1,1,1-trifluoropropan-2-yl)oxy)benzonitrile Potassium tert-butoxide (3.47 g, 30.9 mmol) suspended in THF (35 mL) To the turbid solution was added (R)-1,1,1-trifluoropropan-2-ol (2.00 mL, 21.7 mmol) at 0° C. under a nitrogen stream with stirring. After 10 minutes, a THF solution (35 mL) of 4-fluorobenzonitrile (2.5 g, 20.6 mmol) was added dropwise, and after stirring for 1 hour, the temperature was returned to room temperature.
  • Step 2 Synthesis of (R)-(4-((1,1,1-trifluoropropan-2-yl)oxy)phenyl)methanamine (R)-4-((1,1,1-trifluoropropane
  • 2-yl)oxy)benzonitrile 4.1 g, 19.1 mmol
  • 1M borane tetrahydrofuran complex 38.1 mL, 38.1 mmol
  • Step 3 Synthesis of 2,6-diamino-5-iodonicotinic acid NIS (1.63 g, 7.24 mmol) was added in portions over 5 minutes. The starting material was crushed into small pieces by heating and sonication and utilized. The reaction solution was diluted with 1M NaOH and then partitioned with EtOAc. The aqueous layer was acidified to pH 6 with concentrated hydrochloric acid. The precipitate was filtered and washed with water and EtOAc. After drying under reduced pressure, the title compound (1.28 g) was obtained.
  • 1H NMR 600MHz, DMSO-d6) ⁇ ppm 6.35(br s, 2H) 6.97(br s, 2H) 8.01(s, 1H) 12.15(br s, 1H)
  • Step 4 Synthesis of (R)-2,6-diamino-5-iodo-N-(4-((1,1,1-trifluoropropan-2-yl)oxy)benzyl)nicotinamide 2,6- HOBT ⁇ H 2 O (0.659 g, 4.30 mmol) and EDC ⁇ HCl (0.824 g, 4.30 mmol) were added to a solution of diamino-5-iodonicotinic acid (1 g, 3.58 mmol) in DMSO (10 mL) with stirring. ) was added.
  • Step 5 2,6-diamino-5-[3-(trifluoromethyl)-1H-1,2,4-triazol-1-yl]-N-(4- ⁇ [(2R)-1,1, Synthesis of 1-trifluoropropan-2-yl]oxy ⁇ benzyl)pyridine-3-carboxamide (compound (I)) (R)-2,6-diamino-5-iodo-N-(4-((1, 1,1-trifluoropropan-2-yl)oxy)benzyl)nicotinamide (120 mg, 0.25 mmol), 3-(trifluoromethyl)-1H-1,2,4-triazole (47.9 mg, 0.25 mmol).
  • Step 1 Synthesis of 3-(trifluoromethyl)-1H-1,2,4-triazole Into a solution of hydrazine monohydrate (100 mL, 2052 mmol) in EtOH (2.6 L) was stirred at 10° C. trifluoro Ethyl acetate (257 mL, 2161 mmol) (CAS 383-63-1, Fluorochem) was added dropwise and the reaction was stirred at room temperature for 16 hours. Iminoformamidoacetic acid (247 g, 2377 mmol) was added and the reaction was heated to reflux for 9 hours. After adding AcOH (148 mL, 2585 mmol), EtOH was removed by an evaporator.
  • Step 2 Synthesis of (2,6-dipivalamidopyridin-3-yl)boronic acid N,N'-(pyridine-2,6-diyl)bis(2,2-dimethylpropanamide) (80g, 288mmol) ) in THF (1 L), n-BuLi (2.5 M hexane solution, 400 mL, 1000 mmol) was added dropwise at ⁇ 70° C. under nitrogen stream. The reaction solution was heated to 0° C., stirred for 16 hours, cooled to ⁇ 60° C., and triisopropyl borate (233 mL, 1009 mmol) was added dropwise. The mixture was warmed to room temperature and stirred for 90 minutes, then cooled to 0° C.
  • n-BuLi 2.5 M hexane solution, 400 mL, 1000 mmol
  • Step 3 N,N'-(3-(3-(trifluoromethyl)-1H-1,2,4-triazol-1-yl)pyridine-2,6-diyl)bis(2,2-dimethylpropane
  • (2,6-dipivalamidopyridin-3-yl)boronic acid 30 g, 93.4 mmol
  • DMF 600 mL
  • copper(II) acetate (1.70 g, 9.34 mmol
  • pyridine 18.9 mL, 234 mmol
  • Step 4 N,N′-(3-bromo-5-(3-(trifluoromethyl)-1H-1,2,4-triazol-1-yl)pyridine-2,6-diyl)bis(2, Synthesis of N,N'-(3-(3-(trifluoromethyl)-1H-1,2,4-triazol-1-yl)pyridine-2,6-diyl)bis(2-dimethylpropanamide) ,2-dimethylpropanamide) (76.1 g, 184 mmol) in DMF (1 L) was added with NBS (34.5 g, 194 mmol) at room temperature with stirring. The reaction mixture was stirred at 70° C.
  • Step 5 Synthesis of ethyl 2,6-dipivalamido-5-(3-(trifluoromethyl)-1H-1,2,4-triazol-1-yl)nicotinic acid EtOH (152 mL), toluene (1.1 L) and Et 3 N (443 mL, 3176 mmol) solution was gas-exchanged with nitrogen bubbling for 1 hour. N,N'-(3-bromo-5-(3-(trifluoromethyl)-1H-1,2,4-triazol-1-yl)pyridine-2,6-diyl)bis(2,6-diyl) was added to this solution.
  • Step 6 Synthesis of 2,6-diamino-5-(3-(trifluoromethyl)-1H-1,2,4-triazol-1-yl)nicotinic acid Ethyl 2,6-dipivalamido-5-(3- To a solution of (trifluoromethyl)-1H-1,2,4-triazol-1-yl)nicotinic acid (84 g, 174 mmol) in IMS (432 mL) was added 4 M NaOH aqueous solution (867 mL, 3467 mmol) at 80° C. with stirring. rice field.
  • Step 7 2,6-diamino-5-[3-(trifluoromethyl)-1H-1,2,4-triazol-1-yl]-N-(4- ⁇ [(2R)-1,1, Synthesis of 1-trifluoropropan-2-yl]oxy ⁇ benzyl)pyridine-3-carboxamide (compound (I)) 2,6-diamino-5-(3-(trifluoromethyl)-1H-1,2, To a solution of 4-triazol-1-yl)nicotinic acid (44.6 g, 155 mmol) and TBTU (52.2 g, 163 mmol) in DMF (650 mL) was added DIPEA (108 mL, 619 mmol) under stirring at room temperature.
  • Example 1 Preparation of ⁇ -type Crystals of Monophosphate of Compound (I) To an acetonitrile solution (150 mL) of compound (I) (5 g) was added an acetonitrile solution (50 mL) of phosphoric acid (1.20 g) at room temperature for 10 minutes. Dripped. After dropwise addition, the mixture was stirred overnight at room temperature, and the precipitated solid was collected by filtration, washed with acetonitrile (20 mL), and air-dried to obtain the title crystal (5.68 g).
  • Fig. 1 shows the powder X-ray diffraction pattern of the ⁇ -type crystal of monophosphate of compound (I) obtained by the above method
  • Fig. 4 shows the 13C solid-state NMR spectrum
  • Fig. 7 shows the thermal analysis TG-DTA chart. each shown.
  • Example 2 Preparation of ⁇ -type crystals of monophosphate of compound (I)
  • Compound (I) (about 300 mg) was dissolved in acetone (3.5 mL), and 42 ⁇ L of phosphoric acid (1 equivalent to compound (I)) was added. was added dropwise, and the mixture was stirred overnight at room temperature. Thereafter, 1 mL of heptane was added and the mixture was stirred overnight at room temperature, and the precipitated solid was collected by filtration to obtain the title crystals.
  • Powder X-ray diffraction peaks (transmission method, 2 ⁇ 0.2°): 5.6°, 9.0°, 16.0°, 18.5°, 19.5°, 19.9°, 22.8 °, 23.9 ° 13 C-NMR (100 MHz, solid state) ⁇ ( ⁇ 0.5 ppm): 11.2 ppm, 73.2 ppm, 103.2 ppm, 115.0 ppm, 117.9 ppm, 127.7 ppm, 129.3 ppm, 165.5 ppm
  • the powder X-ray diffraction pattern of the ⁇ -type crystal of monophosphate of compound (I) obtained by the above method is shown in FIG. 2, the 13 C solid-state NMR spectrum is shown in FIG. 5, and the thermal analysis TG-DTA chart is shown in FIG. each shown.
  • Example 3 Preparation of Monomaleic Acid Crystals of Compound (I) To a methyl tert-butyl ether solution (200 mL) of compound (I) (6.5 g) was added a methyl tert-butyl ether solution (60 mL) of maleic acid (1.573 g) at room temperature. It was added dropwise over a period of 15 minutes. After the dropwise addition, the mixture was stirred overnight at room temperature, and the precipitated salt was collected by filtration using filter paper (5 ⁇ m), washed with methyl tert-butyl ether (26 mL), and air-dried on the filter paper to obtain the title crystals (6. 52g).
  • Powder X-ray diffraction peaks (transmission method, 2 ⁇ 0.2°): 8.5°, 9.9°, 17.0°, 18.2°, 19.8°, 20.8°, 22.2 °, 22.8 °, 24.3 °, 25.3 °.
  • the powder X-ray diffraction pattern of crystals of the monomaleate salt of compound (I) obtained by the above method is shown in FIG. 3, the 13 C solid-state NMR spectrum is shown in FIG. 6, and the thermal analysis TG-DTA chart is shown in FIG. .
  • X-ray source Cu-K ⁇ Voltage: 45kV Current: 200mA
  • Optical system Condensing optical system
  • Solar slit 2.5°
  • Detector D/teX Ultra 250 (one-dimensional semiconductor detector)
  • Sample holder aluminum holder and mylar film
  • the protozoan-infected red blood cells were diluted with RPMI1640 medium supplemented with 10% human plasma and 2% human fresh red blood cells (percentage of protozoan-infected red blood cells: 0.25-1%). Culturing was performed under a mixed gas of 5% O 2 -5% CO 2 -90% N 2 at , and continuous culture was performed by exchanging the medium and adding fresh erythrocytes every 2 to 3 days. The protozoan infection rate was maintained in the range of 0.25-10%.
  • the drug susceptibility test was carried out according to the method of Desjardins et al. (1979)) was modified.
  • test compounds in addition to compound (I), artemisinin and chloroquine, which are existing antimalarial agents, were used as control compounds.
  • the protozoan suspension pre-cultured in each well of a 96-well plate (hematocrit value: 2%, protozoan-infected red blood cell rate: 0.75-1%) is 199 ⁇ L, and the final concentration is 1-0.001 ⁇ g/mL.
  • DMSO solution test compound solution serially diluted in concentration as described above and mixing
  • culture was performed for 72 hours under the aforementioned mixed gas.
  • Protozoan proliferation was measured by the method of Makler et al. Am. J. Med.
  • Hyg., 48:739-741 (1993)) was modified to use a method for colorimetric determination of protozoan lactate dehydrogenase (p-LDH). Specifically, after 72 hours of culture, the 96-well plate was directly frozen at ⁇ 20° C. for one day and night, and then thawed at 37° C. to hemolyze protozoan-infected erythrocytes and destroy the protozoa to prepare a crude enzyme solution.
  • p-LDH protozoan lactate dehydrogenase
  • enzyme reaction solution 110 mM lithium lactate, 0.5 mM acetylpyridine-adenine dinucleotide, 50 mM Tris (pH 7.5), 10 mM EDTA, 50 mM KCl and 15 g/L PEG6000
  • enzyme reaction solution 110 mM lithium lactate, 0.5 mM acetylpyridine-adenine dinucleotide, 50 mM Tris (pH 7.5), 10 mM EDTA, 50 mM KCl and 15 g/L PEG6000
  • 20 ⁇ L of the solution was added and mixed, and after reacting at room temperature for 30 minutes, 20 ⁇ L of a 1:1 mixture of nitroblue tetrazolium 2 mg/mL solution and phenazine ethosulfate 0.1 mg/mL solution was added to each well, and the reaction was performed under light-shielding conditions. , at room temperature for 1.5 hours.
  • a blue formazan product produced by the reaction was detected by measuring absorbance at a measurement wavelength of 660 nm using a microplate reader, and the presence or absence of protozoan proliferation was quantified colorimetrically.
  • the 50% protozoan growth inhibitory concentration ( IC50 value) of the compound was determined from the compound concentration-effect curve.
  • Compound (I) exhibited IC 50 values of 0.026 ⁇ g/mL (0.053 ⁇ M) and 0.043 ⁇ g/mL (0.089 ⁇ M) against Plasmodium falciparum strains 3D7 and K1, respectively.
  • the Plasmodium falciparum Pf3D7 0087/N9 strain used in this test was derived from the research described in Reference Document (1) below.
  • Female NSG (NOD-scid IL-2R ⁇ null) immunodeficient mice were transplanted with human erythrocytes and maintained at 40% or more human erythrocytes in total erythrocytes in peripheral blood throughout the study period. Suspend human erythrocytes in RP1640 medium supplemented with 25% inactivated human serum and 3.1 mM hypoxanthine to a concentration of 50 to 75%, and administer 1 mL intraperitoneally or 0.7 mL intravenously to each mouse.
  • a second possibility is that stopping the proliferation of the protozoa during the first infection cycle during the blood stage could eliminate the parasites before the onset of malaria symptoms.
  • the preventive effect in the blood stage it is reported in the following reference (5) that it can be confirmed in a mouse model using rodent malaria parasites. It is considered that the preventive effect targeting the period can be demonstrated.
  • Hovlid ML, Winzeler EA Phenotypic screens in antimalarial drug discovery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

下記式(I)で表される化合物の塩及びその結晶は、医薬品の原薬としての利用可能性を有する。

Description

抗マラリア活性を有するヘテロ環化合物の塩及びその結晶
 本発明は、抗マラリア活性を有するヘテロ環化合物の塩及びその結晶に関する。本発明は、上記塩又は上記結晶を含む医薬組成物にも関する。
 マラリアは熱帯性マラリア原虫によって引き起こされる生命を脅かす感染症である。2018年には2億人以上が感染し、40万人以上が死亡したと推定され、その多くはアフリカ諸国の子供である。マラリアを根絶するために多くの国、企業、科学者が積極的に協力している。現在のマラリアの標準治療はアルテミシニンとの併用療法である。アルテミシニンとの併用療法では耐性が高い確率で起こることが報告されている(非特許文献1及び2)。そのため新しい作用機序を持つ新しい化合物が求められている。
 グリコシルホスファチジルイノシトール(GPI)は、すべての真核生物に共通の部分であり、多くのタンパク質を細胞表面に固定する役割を果たしている。GPIの生合成経路において、必須酵素の1つであるGwt1pがイノシトールをアシル化することが報告されている(非特許文献3~6を参照)。
 生物学的研究の過程で、Gwt1p酵素をコードするGWT1遺伝子は、マラリアの病原菌である熱帯熱マラリア原虫を含む真核生物の間で高度に保存されていることが報告された。プラスモディアルGwt1pに対する阻害活性を有する予備的ヒット化合物は、インビトロ及びインビボで抗マラリア原虫活性を示した。したがって、GPIの生合成、特にイノシトール環のアシル化を選択的に阻害する化合物は、非常に有用な抗マラリア剤となりうる。
 特許文献1は、このようなメカニズムに基づく抗マラリア剤に関する先行技術である。特許文献1には、マラリア原虫由来のGWT1遺伝子産物の活性を阻害することにより、GPIの生合成を阻害することにより、抗マラリア活性を有する複素環化合物が記載されている。しかしながら、特許文献1に開示された化合物は、2-ベンジルピリジンを共通構造としており、本発明に係る化合物とは明らかに構造が異なる。
 なお、特許文献2は、本発明に係る化合物と構造的に最も類似した先行技術である。特許文献2には、N-無置換ジアミノピリジン誘導体が開示されている。しかしながら、特許文献2には、本発明に係る化合物のみならず、5-置換ジアミノピリジン誘導体についても全く開示されていない。
国際公開第2004/048567号 国際公開第2006/016548号
Yeung S, Socheat D, Moorthy VS et al. Artemisinin resistance on the Thai-Cambodian border. Lancet 2009; 374: 1418-9. Hawkes M, Conroy AL, Kain KC. Spread of artemisinin resistance in malaria. The New England journal of medicine 2014; 371: 1944-5. Okamoto M, Yoko-o T, Umemura M et al. Glycosylphosphatidylinositol-anchored proteins are required for the transport of detergent-resistant microdomain-associated membrane proteins Tat2p and Fur4p. The Journal of biological chemistry 2006; 281: 4013-23. Sagane K, Umemura M, Ogawa-Mitsuhashi K et al. Analysis of membrane topology and identification of essential residues for the yeast endoplasmic reticulum inositol acyltransferase Gwt1p. The Journal of biological chemistry 2011; 286: 14649-58. Tsukahara K, Hata K, Nakamoto K et al. Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly. Mol Microbiol 2003; 48: 1029-42. Umemura M, Okamoto M, Nakayama K et al. GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast. The Journal of biological chemistry 2003; 278: 23639-47.
 下記式(I)で表される化合物(以下、「化合物(I)」ともいう)が抗マラリア活性を有することを本発明者らは見出した。したがって、化合物(I)はマラリアの予防剤及び/又は治療剤としての利用可能性を有している。
Figure JPOXMLDOC01-appb-C000027
 一般に、医薬品として用いられる化合物及びその結晶の物性は、薬物のバイオアベイラビリティー、原薬の純度、製剤の処方などに大きな影響を与える。従って、本明細書の目的は医薬品の原薬としての利用可能性を有する化合物(I)の薬剤学的に許容される塩及びそれらの結晶を提供することにある。
 本発明者らは化合物(I)について、上記事情に鑑み鋭意研究を重ねた結果、化合物(I)の塩及びそれらの結晶を見出し、本明細書を完成した。
 すなわち、本明細書は以下の<1>から<31>に関する。
<1>下記式(I)
Figure JPOXMLDOC01-appb-C000028
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩又は一マレイン酸塩。
<2>下記式(I)
Figure JPOXMLDOC01-appb-C000029
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩又は一マレイン酸塩の結晶。
<3>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)6.2°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000030
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
<4>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)6.2°、12.5°及び14.3°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000031
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
<5>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)6.2°、11.1°、12.5°、14.3°及び24.9°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000032
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
<5-2>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)6.2°、11.1°、12.5°、14.3°、16.7°、19.7°、21.5°、22.4°、24.9°及び28.7°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000033
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
<6>CuKαをX線源とする粉末X線回析において、図1に示される粉末X線回折パターンと実質的に同一の粉末X線回折パターンを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000034
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
<7>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)157.2ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000035
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
<8>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)41.4ppm、157.2ppm及び162.7ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000036
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
<9>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)41.4ppm、144.0ppm、146.5ppm、157.2ppm及び162.7ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000037
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
<9-2>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)41.4ppm、69.7ppm、106.3ppm、113.3ppm、119.0ppm、144.0ppm、146.5ppm、152.0ppm、157.2ppm及び162.7ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000038
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
<10>グリシンを外部標準とする13C固体NMRスペクトルにおいて、図4に示される13C固体NMRスペクトルと実質的に同一の13C固体NMRスペクトルを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000039
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
<11>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)5.6°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000040
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
<12>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)5.6°、9.0°及び16.0°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000041
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
<13>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)5.6°、9.0°、16.0°、22.8°及び23.9°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000042
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
<13-2>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)5.6°、9.0°、16.0°、18.5°、19.5°、19.9°、22.8°及び23.9°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000043
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
<14>CuKαをX線源とする粉末X線回析において、図2に示される粉末X線回折パターンと実質的に同一の粉末X線回折パターンを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000044
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
<15>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)129.3ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000045
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
<16>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)11.2ppm、115.0ppm及び129.3ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000046
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
<17>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)11.2ppm、115.0ppm、117.9ppm、129.3ppm及び165.5ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000047
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
<17-2>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)11.2ppm、73.2ppm、103.2ppm、115.0ppm、117.9ppm、127.7ppm、129.3ppm及び165.5ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000048
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
<18>グリシンを外部標準とする13C固体NMRスペクトルにおいて、図5に示される13C固体NMRスペクトルと実質的に同一の13C固体NMRスペクトルを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000049
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
<19>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)17.0°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000050
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
<20>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)17.0°、18.2°及び25.3°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000051
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
<21>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)8.5°、9.9°、17.0°、18.2°及び25.3°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000052
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
<21-2>CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)8.5°、9.9°、17.0°、18.2°、19.8°、20.8°、22.2°、22.8°、24.3°及び25.3°に回折ピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000053
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
<22>CuKαをX線源とする粉末X線回析において、図3に示される粉末X線回折パターンと実質的に同一の粉末X線回折パターンを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000054
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
<23>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)172.6ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000055
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
<24>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)132.0ppm、170.2ppm及び172.6ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000056
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
<25>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)98.5ppm、105.2ppm、132.0ppm、170.2ppm及び172.6ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000057
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
<25-2>グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)13.4ppm、15.2ppm、40.5ppm、73.7ppm、98.5ppm、105.2ppm、132.0ppm、140.5ppm、164.8ppm、170.2ppm及び172.6ppmにピークを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000058
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
<26>グリシンを外部標準とする13C固体NMRスペクトルにおいて、図6に示される13C固体NMRスペクトルと実質的に同一の13C固体NMRスペクトルを有する、下記式(I)
Figure JPOXMLDOC01-appb-C000059
で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
<27>上記<1>に記載の塩又は上記<2>~<26>のいずれか一つに記載の結晶を含む医薬組成物。
<28>上記<1>に記載の塩又は上記<2>~<26>のいずれか一つに記載の結晶を含むマラリアの予防剤又は治療剤。
<29>上記<1>に記載の塩又は上記<2>~<26>のいずれか一つに記載の結晶の有効量を哺乳動物に投与することを含む、該哺乳動物におけるマラリアの予防方法又は治療方法。
<30>マラリアを予防又は治療する方法に使用するための上記<1>に記載の塩又は上記<2>~<26>のいずれか一つに記載の結晶。
<31>マラリアの予防又は治療のための医薬組成物を製造するための上記<1>に記載の塩又は上記<2>~<26>のいずれか一つに記載の結晶の使用。
 本明細書によれば、医薬品の原薬としての利用可能性が期待される、良好な物性を有する化合物(I)の結晶を提供できる。
図1は、実施例1で得られた化合物(I)一リン酸塩のα結晶の粉末X線回折パターンである。横軸は回折角(2θ)、縦軸はピーク強度を示す。 図2は、実施例2で得られた化合物(I)一リン酸塩のβ結晶型結晶の粉末X線回折パターンである。横軸は回折角(2θ)、縦軸はピーク強度を示す。 図3は、実施例3で得られた化合物(I)一マレイン酸塩の結晶の粉末X線回折パターンである。横軸は回折角(2θ)、縦軸はピーク強度を示す。 図4は実施例1で得られた化合物(I)一リン酸塩のα結晶の13C固体NMRスペクトルである。横軸は化学シフト(δ)、縦軸はピーク強度を示す。 図5は実施例2で得られた化合物(I)一リン酸塩のβ結晶の13C固体NMRスペクトルである。横軸は化学シフト(δ)、縦軸はピーク強度を示す。 図6は実施例3で得られた化合物(I)一マレイン酸塩の結晶の13C固体NMRスペクトルである。横軸は化学シフト(δ)、縦軸はピーク強度を示す。 図7は、実施例1で得られた化合物(I)一塩酸塩のα結晶の熱分析TG-DTAチャートである。横軸は温度、左縦軸はTGの重量変化、右縦軸はDTAの熱流量を示す。 図8は、実施例2で得られた化合物(I)一リン酸塩のβ結晶の熱分析TG-DTAチャートである。横軸は温度、左縦軸はTGの重量変化、右縦軸はDTAの熱流量を示す。 図9は、実施例3で得られた化合物(I)一マレイン酸塩の結晶の熱分析TG-DTAチャートである。横軸は温度、左縦軸はTGの重量変化、右縦軸はDTAの熱流量を示す。
 以下、本発明の化合物(I)の塩及びその結晶、並びにその製造方法について詳細に説明する。
 本明細書において、「塩」とは、塩基性成分である化合物(I)と、化合物(I)に対して特定の当量数の酸とからなる化学物質を意味する。
 本明細書において使用する「塩」としては、例えば、無機酸との塩、有機酸との塩、酸性アミノ酸との塩等が挙げられ、中でも薬剤学的に許容される塩が好ましい。
 無機酸との塩の例としては、例えば、塩酸、臭化水素酸、硫酸、硝酸、リン酸等との塩が挙げられ、有機酸との塩の例としては、例えば酢酸、コハク酸、フマル酸、マレイン酸、酒石酸、リンゴ酸、クエン酸、乳酸、ステアリン酸、安息香酸等の有機カルボン酸との塩、メタンスルホン酸(メシル酸)、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸(トシル酸)等の有機スルホン酸との塩が挙げられ、中でも、リン酸、マレイン酸が好ましい。
 酸性アミノ酸との塩の例としては、例えばアスパラギン酸、グルタミン酸等との塩が挙げられる。
 本明細書の塩は、無水物又は、水和物もしくは溶媒和物でもよい。本明細書において、水和物又は溶媒和物とは、化合物(I)又はその塩と、水分子又は溶媒分子とがそれぞれ一緒になって形成する固体をいい、その固体は結晶であってもよく、溶媒和物の溶媒としては、例えば、アセトン、2-ブタノン、シクロヘキサノンなどのケトン系溶媒;酢酸メチル、酢酸エチル等のエステル系溶媒;1,2-ジメトキシエタン、t-ブチルメチルエーテルのようなエーテル系溶媒;メタノール、エタノール、1-プロパノール、イソプロパノール等のアルコール系溶媒、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒が挙げられる。化合物(I)又はその塩に対する水分子又は溶媒分子の数は特に限定されず、例えば、1分子又は2分子であってもよい。
 本明細書において「結晶」とは、化合物(I)又はその塩の無水物又は水和物の結晶を意味する。
 本明細書において、好ましい化合物(I)の一リン酸塩及び一マレイン酸塩の結晶としては、
CuKαをX線源とする粉末X線回折において、回折角度(2θ±0.2°)6.2°に回折ピークを有する、化合物(I)一リン酸塩のα結晶;
CuKαをX線源とする粉末X線回折において、回折角度(2θ±0.2°)6.2°、12.5°及び14.3°に回折ピークを有する、化合物(I)一リン酸塩のα結晶;
CuKαをX線源とする粉末X線回折において、回折角度(2θ±0.2°)6.2°、11.1°、12.5°、14.3°及び24.9°に回折ピークを有する、化合物(I)一リン酸塩のα結晶;
CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)6.2°、11.1°、12.5°、14.3°、16.7°、19.7°、21.5°、22.4°、24.9°及び28.7°に回折ピークを有する、化合物(I)一リン酸塩のα結晶;
CuKαをX線源とする粉末X線回析において、図1に示される粉末X線回折パターンと実質的に同一の粉末X線回折パターンを有する、化合物(I)一リン酸塩のα結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)157.2ppmにピークを有する、化合物(I)一リン酸塩のα結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)41.4ppm、157.2ppm及び162.7ppmにピークを有する、化合物(I)一リン酸塩のα結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)41.4ppm、144.0ppm、146.5ppm、157.2ppm及び162.7ppmにピークを有する、化合物(I)一リン酸塩のα結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)41.4ppm、69.7ppm、106.3ppm、113.3ppm、119.0ppm、144.0ppm、146.5ppm、152.0ppm、157.2ppm及び162.7ppmにピークを有する、化合物(I)一リン酸塩のα結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、図4に示される13C固体NMRスペクトルと実質的に同一の13C固体NMRスペクトルを有する、化合物(I)一リン酸塩のα結晶;
CuKαをX線源とする粉末X線回折において、回折角度(2θ±0.2°)5.6°に回折ピークを有する、化合物(I)一リン酸塩のβ結晶;
CuKαをX線源とする粉末X線回折において、回折角度(2θ±0.2°)5.6°、9.0°及び16.0°に回折ピークを有する、化合物(I)一リン酸塩のβ結晶;
CuKαをX線源とする粉末X線回折において、回折角度(2θ±0.2°)5.6°、9.0°、16.0°、22.8°及び23.9°に回折ピークを有する、化合物(I)一リン酸塩のβ結晶;
CuKαをX線源とする粉末X線回折において、回折角度(2θ±0.2°)5.6°、9.0°、16.0°、18.5°、19.5°、19.9°、22.8°及び23.9°に回折ピークを有する、化合物(I)一リン酸塩のβ結晶;
CuKαをX線源とする粉末X線回析において、図2に示される粉末X線回折パターンと実質的に同一の粉末X線回折パターンを有する、化合物(I)一リン酸塩のβ結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)129.3ppmにピークを有する、化合物(I)一リン酸塩のβ結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)11.2ppm、115.0ppm及び129.3ppmにピークを有する、化合物(I)一リン酸塩のβ結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)11.2ppm、115.0ppm、117.9ppm、129.3ppm及び165.5ppmにピークを有する、化合物(I)一リン酸塩のβ結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)11.2ppm、73.2ppm、103.2ppm、115.0ppm、117.9ppm、127.7ppm、129.3ppm及び165.5ppmにピークを有する、化合物(I)一リン酸塩のβ結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、図5に示される13C固体NMRスペクトルと実質的に同一の13C固体NMRスペクトルを有する、化合物(I)一リン酸塩のβ結晶;
CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)17.0°に回折ピークを有する、化合物(I)一マレイン酸塩の結晶;
CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)17.0°、18.2°及び25.3°に回折ピークを有する、化合物(I)一マレイン酸塩の結晶;
CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)8.5°、9.9°、17.0°、18.2°及び25.3°に回折ピークを有する、化合物(I)一マレイン酸塩の結晶;
CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)8.5°、9.9°、17.0°、18.2°、19.8°、20.8°、22.2°、22.8°、24.3°及び25.3°に回折ピークを有する、化合物(I)一マレイン酸塩の結晶;
CuKαをX線源とする粉末X線回析において、図3に示される粉末X線回折パターンと実質的に同一の粉末X線回折パターンを有する、化合物(I)一マレイン酸塩の結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)172.6ppmにピークを有する、化合物(I)一マレイン酸塩の結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)132.0ppm、170.2ppm及び172.6ppmにピークを有する、化合物(I)一マレイン酸塩の結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)98.5ppm、105.2ppm、132.0ppm、170.2ppm及び172.6ppmにピークを有する、化合物(I)一マレイン酸塩の結晶;
グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)13.4ppm、15.2ppm、40.5ppm、73.7ppm、98.5ppm、105.2ppm、132.0ppm、140.5ppm、164.8ppm、170.2ppm及び172.6ppmにピークを有する、化合物(I)一マレイン酸塩の結晶;及び
グリシンを外部標準とする13C固体NMRスペクトルにおいて、図6に示される13C固体NMRスペクトルと実質的に同一の13C固体NMRスペクトルを有する、化合物(I)一マレイン酸塩の結晶
などを挙げることができる。
 上記記載の粉末X線回折における回折ピーク及び13C固体NMRスペクトルにおける化学シフトは、化合物(I)の一リン酸塩のα結晶、β結晶及び一マレイン酸塩の結晶にそれぞれ特有なものであり、当該結晶に特徴的なピークである。
 一般に、粉末X線回折における回折角度(2θ)は±0.2°の範囲内で誤差が生じ得るため、上記の回折角度の値は±0.2°程度の範囲内の数値も含むものとして理解される必要がある。したがって、特定の化合物又はその塩において、粉末X線回折におけるピークの回折角度が完全に一致する結晶だけでなく、ピークの回折角度が±0.2°程度の誤差で一致する結晶も同一であり、本発明に含まれる。
 本明細書において、例えば、「回折角度(2θ±0.2°)6.2°に回折ピークを有する」とは、「回折角度(2θ)6.0°~6.4°に回折ピークを有する」ということを意味し、その他の回折角度の場合も同様である。
 また、一般に、粉末X線回折における回折角度(2θ)のピーク強度又は半値幅は、結晶形が同一であっても、測定条件の違いや測定試料として用いる粉末結晶の各粒子の大きさや形状のばらつきにより、測定ごとに異なり、必ずしも一定のピーク強度又は半値幅が常に示されるとは限らない。そのため、粉末X線回折パターンの比較において、同じ回折角度(2θ)で、そのピーク強度又は半値幅に違いがあっても、その違いは、異なる結晶形に由来することを意味するものではない。したがって、本発明の特定の結晶に特徴的な回折ピークに対して、そのような違いを有する粉末X線回折パターンの当該結晶は、本発明の結晶と同一の結晶形であることを意味する。
 また、本明細書において「図1に示される粉末X線回折パターンと実質的に同一の粉末X線回折パターンを有する」とは、ある特徴的な回折ピークを有する粉末X線回折パターンが、図1に示される粉末X線回折パターンに完全に一致する場合だけでなく、ピーク強度又は半値幅が異なるか、特徴的な回折ピークの回折角度が±0.2°の誤差範囲で一致する場合も、図1に示される粉末X線回折パターンと同一の粉末X線回折パターンであることを意味する。したがって、このような粉末X線回折パターンを有する結晶は全て、本発明の結晶と同一の結晶であることを意味する。
 本明細書において、「ケミカルシフト(δ±0.5ppm)157.2ppmにピークを有する」とは、「通常の測定条件又は本明細書と実質的に同一の条件にてグリシンを外部標準とする13C固体NMRスペクトル測定を行い、ケミカルシフト(δ±0.5ppm)157.2ppmと実質的に同等なピークを有すること」を意味する。
 「実質的に同等なピークを有する」か否かの判断に際して、一般に、13C固体NMRスペクトルにおけるケミカルシフトδは、±0.5ppmの範囲内で誤差が生じ得るため、上記の化学シフトの値は、±0.5ppm程度の範囲内の数値も含むものとして理解される必要がある。したがって、13C固体NMRスペクトルにおけるケミカルシフトが完全に一致する結晶だけでなく、ケミカルシフトが±0.5ppm程度の誤差で一致する結晶も本発明に含まれる。それ故に、本明細書において、例えば「ケミカルシフト(δ±0.5ppm)157.2ppmにピークを有する」とは、「ケミカルシフト(δ)156.7ppm~157.7ppmの範囲にピークを有する」ことを意味し、その他の13C固体NMRスペクトルにおけるケミカルシフトの場合も同様である。
 また、「図4に示される13C固体NMRスペクトルと実質的に同一の13C固体NMRスペクトルを有する結晶」とは、ある化学シフトのピークを有する13C固体NMRスペクトルが、図4に示される13C固体NMRスペクトルと完全に一致する場合だけでなく、ピーク強度が異なるか、特徴的なピークが化学シフト±0.5ppm程度の範囲内で一致する場合も、図4に示される13C固体NMRスペクトルと同一の13C固体NMRスペクトルを有する結晶であることを意味する。したがって、このような13C固体NMRスペクトルを有する結晶は全て、本発明の結晶と同一の結晶であることを意味する。
 以下に、本発明の一実施形態である化合物(I)の塩、結晶等の製造方法について説明する。
化合物(I)の製造方法
 化合物(I)は、当業者に周知な方法により製造されたものであってもよい。例えば、化合物(I)は、後述する参考例に記載の方法で合成することができる。
化合物(I)の塩の製造方法
 本明細書に係る化合物(I)の塩は、通常の塩を製造する方法により得ることができる。具体的には、例えば、化合物(I)を溶媒に、必要に応じて加温して、懸濁又は溶解させ、次いで、得られる懸濁液又は溶液に、酸を加え、室温下あるいは冷却しながら数分から数日間、撹拌又は放置することにより、製造することができる。これらの製造方法により、化合物(I)の塩を、結晶又は非晶質として得ることができる。また、非晶質は、これらの製造方法に、必要に応じて、さらに凍結乾燥等の操作を行うことにより得ることもできる。ここで使用する溶媒としては、例えばエタノール、1-プロパノール、イソプロパノール等のアルコール系溶媒;アセトニトリル;アセトン、2-ブタノン等のケトン系溶媒;酢酸エチル等のエステル系溶媒;ヘキサン、ヘプタン等の飽和炭化水素系溶媒;t-ブチルメチルエーテル等のエーテル系溶媒又は水を挙げることができる。これらの溶媒は単独で使用してもよく、2種以上を混合して使用してもよい。
化合物(I)又はその塩の結晶の製造方法
 化合物(I)又はその塩の結晶は、上述の化合物(I)の製造方法、又はその塩の製造方法により製造することができ、又は、化合物(I)又はその塩を、溶媒中で加熱溶解し、攪拌下冷却して晶析することにより、製造することもできる。
 晶析に使用する化合物(I)又はその塩は、どのような形態であってもよく、溶媒和物もしくは水和物又は無水物でもよく、非晶質でも結晶質(複数の結晶多形からなるものを含む)でもよく、これらの混合物でもよい。
 晶析に使用する溶媒は、例えば、メタノール、エタノール、イソプロパノール、1-プロパノール等のアルコール系溶媒;アセトニトリル;N,N-ジメチルホルムアミド等のアミド系溶媒;酢酸エチル等のエステル系溶媒;ヘキサン、ヘプタン等の飽和炭化水素系溶媒;アセトン、2-ブタノン等のケトン系溶媒;t-ブチルメチルエーテル等のエーテル系溶媒又は水を挙げることができる。また、これらの溶媒は単独で使用してもよく、2種以上を混合して使用してもよい。
 溶媒の使用量は、化合物(I)又はその塩が加熱により溶解する量又は懸濁液が撹拌可能となる量を下限とし、結晶の収量が著しく低下しない量を上限として適宜選択することができる。
 晶析において、種結晶(所望の化合物(I)の塩の結晶など)を加えても、加えなくてもよい。種結晶を加える温度は、特に限定されないが、好ましくは0~80℃である。
 化合物(I)又はその塩を加熱して溶解する場合の温度は、溶媒に応じて化合物(I)又はその塩が溶解する温度を適宜選択すればよいが、好ましくは50℃から再結晶溶媒が還流を開始する温度の範囲であり、より好ましくは55~80℃である。
 晶析時の冷却は、急冷すると態様の異なる結晶(多形)を含むものを与えうるので、結晶の品質や粒度等への影響を考慮して適宜冷却速度を調整して実施することが望ましく、好ましくは、例えば5~40℃/時間の速度での冷却である。より好ましくは、例えば5~25℃/時間の速度での冷却である。
 また、最終的な晶析温度は、結晶の収量と品質等から適宜選択することができるが、好ましくは-25~30℃である。
 晶析した結晶を通常の濾過操作で分離し、必要に応じてろ別した結晶を溶媒で洗浄し、さらにこれを乾燥して、目的の結晶を得ることができる。結晶の洗浄に使用する溶媒には、晶析溶媒と同様のものを使用できる。好ましくは、例えば、エタノール、アセトン、2-ブタノン、酢酸エチル、ジエチルエーテル、t-ブチルメチルエーテル、ヘキサン等を挙げることができる。また、これらの溶媒は単独で使用してもよく、2種以上を混合して使用してもよい。
 濾過操作で分離した結晶は、適宜、大気下又は窒素気流下に放置することにより、又は加熱によって乾燥することができる。
 乾燥時間は、残留溶媒が所定の量を下回るまでの時間を製造量、乾燥装置、乾燥温度等に応じて適宜選択すればよい。また、乾燥は通風下でも減圧下でも行うことができる。減圧度は、製造量、乾燥装置、乾燥温度等に応じて適宜選択すればよい。得られた結晶は、乾燥後、必要に応じて大気中に放置することもできる。
 以上に説明した製造方法によって得られる化合物(I)の塩及びその結晶は、後述の薬理試験例における活性データに示されているように、マラリアの予防剤及び/又は治療剤としての利用可能性を有している。
[医薬組成物]
 本発明の他の実施形態は、化合物(I)の塩又はその結晶及び薬剤学的に許容される添加物を含有する医薬組成物である。医薬組成物は、薬剤学的に許容される添加物を化合物(I)の塩又はその結晶と混和することにより製造することができる。本発明に係る医薬組成物は例えば第十七改正日本薬局方の製剤総則に記載の方法など既知の方法に従って製造することができる。本実施形態に係る医薬組成物は、その剤形に応じて適切に患者に投与することができる。
 医薬組成物は、錠剤、顆粒剤、細粒剤、粉剤、カプセル剤などの固形製剤又は液剤、ゼリー剤、シロップ剤などの形態で、経口投与することができる。また、医薬組成物は注射剤、坐剤、軟膏剤、パップ剤などの形態で、非経口的に投与してもよい。
 固形製剤を調製する場合には、化合物(I)の塩又はその結晶に、添加剤として、賦形剤、さらに必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、矯味矯臭剤などを加えた後、常法により錠剤、顆粒剤、細粒剤、散剤、カプセル剤などとすることができる。上記添加剤は、適宜組み合わせて製剤化することができる。また、これらの錠剤、顆粒剤などは、必要に応じてコーティングを施してもよい。
 賦形剤としては、例えば、乳糖、白糖、ブドウ糖、コーンスターチ、マンニトール、ソルビトール、デンプン、α化デンプン、デキストリン、結晶セルロース、リン酸水素カルシウムなどがあげられる。
 結合剤としては、例えば、メチルセルロース、エチルセルロース、アラビアゴム、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、などがあげられる。
 崩壊剤としては、例えば、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、クロスポビドンなどがあげられる。
 滑沢剤としては、例えば、タルク、シリカ、ステアリン酸マグネシウム、ステアリン酸カルシウム、フマル酸ステアリルナトリウム、ポリエチレングリコールなどがあげられる。
 着色剤としては、例えば、三二酸化鉄、黄色三二酸化鉄、カルミン、β-カロチン、酸化チタン、リン酸リボフラビンナトリウム、黄色アルミニウムレーキ、コチニールなどがあげられる。
 矯味矯臭剤としては、例えば、ココア末、アスコルビン酸、酒石酸、ハッカ油、ボルネオール、桂皮末などがあげられる。
 注射剤を調製する場合には、必要により主薬にpH調整剤、緩衝剤、懸濁化剤、溶解補助剤、安定化剤、等張化剤、保存剤などを添加し、常法により静脈、皮下、筋肉内注射剤、点滴静注剤とすることができる。その際必要により、常法により凍結乾燥物とすることもできる。
 pH調整剤や緩衝剤としては、例えば、塩酸、炭酸ナトリウム、炭酸水素ナトリウム、クエン酸、クエン酸ナトリウム、クエン酸2水素ナトリウム、グリシン、リン酸、リン酸2水素ナトリウム、リン酸1水素ナトリウム、水酸化ナトリウム、酢酸、酢酸ナトリウム、メグルミンなどがあげられる。
 懸濁化剤としては、例えば、アルギン酸ナトリウム、ショ糖脂肪酸エステル、ポリソルベート80、アラビアゴム、トラガント末、ポリオキシエチレンソルビタンモノラウレートなどがあげられる。
 溶解補助剤としては、例えば、ポリオキシエチレン硬化ヒマシ油、ポリソルベート80、ニコチン酸アミド、ポリオキシエチレンソルビタンモノラウレート、グリセリン脂肪酸エステル、ポリエチレングリコール、プロピレングリコール、安息香酸ベンジル、エタノール、トリエタノールアミン、などがあげられる。
 安定化剤としては、例えば、亜硫酸ナトリウム、メタ亜硫酸ナトリウムなどがあげられる。
 等張化剤としては、例えば、ブドウ糖、マンニトール、ソルビトールなどがあげられる。
 保存剤としては、例えば、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、ソルビン酸、フェノール、クレゾール、クロロクレゾールなどがあげられる。
 本発明に係る化合物(I)の投与量は、症状の程度、年齢、性別、体重、投与形態・塩の種類、疾患の具体的な種類等に応じて異なるが、通常、成人の場合は1日あたり経口投与で約30μg~10g、好ましくは100μg~5g、さらに好ましくは100μg~1gを、注射投与で約30μg~1g、好ましくは100μg~500mg、さらに好ましくは100μg~300mgをそれぞれ1回又は数回に分けて投与する。
 本発明の化合物(I)の結晶は、例えば、以下の実施例に記載した方法により製造することができ、また、当該化合物が奏する効果は、以下の試験例に記載した方法により確認することができる。ただし、これらは例示的なものであって、本発明は、如何なる場合も以下の具体例に制限されるものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。
 以下の実施例及び参考例中の「室温」は通常約10℃から約35℃を示す。%は特記しない限り重量パーセントを示す。
参考例
 実施例化合物の化学名は,“E-Notebook 2014”version13(PerkinElmer Co.,Ltd.)の化学構造に基づき命名した。シリカゲルクロマトグラフィーには,pre-packed silica gel cartridges on a Biotage(登録商標) Isolera Four(登録商標)を用いた。
 H NMRスペクトルのケミカルシフトは、内部標準物質としてテトラメチルシラン(ppm=0.00)を用い算出し、以下の略語又はそれぞれの組み合わせを利用した:br=broad signal、s=singlet、d=doublet、t=triplet、m=multiplet。H-NMRは、Bruker AVIII(600MHz)を用い測定した.
 光学純度eeは、Shimadzu Chiral HPLC利用し算出した。
 HPLCによる精製には、Waters SQD massを搭載したWaters MDAP systemを利用した.
 さらに,本明細書で使用されている略語は,当事者にとって周知かつ一般的なものであるが、以下の略語を用いた.
app: apparent
DCM: Dichloromethane
DIPEA: N,N-Diisopropylethylamine
DMF-DMA: N,N-Dimethylformamide dimethyl acetal
Dppf: 1,1'-Ferrocenediyl-bis(diphenylphosphine)
EDC.HCl: N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride
HOBT: 1-Hydroxybenzotriazole
HPLC: High pressure liquid chromatography
IMS: Industrial Methylated Spirit
LCMS: Liquid chromatography-Mass Spectroscopy
MDAP: Mass Directed Autopurification
2-MeTHF: 2-Methyl Tetrahydrofuran
TBME: tert-Butyl methyl ether
NBS: N-Bromosuccinimide
NIS: N-Iodosuccinimide
SQD: Single quadrupole detection
TBTU: O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate
THF: Tetrahydrofuran
 化合物(I)は、例えば、以下の参考例に記載の方法で製造することができ、また、その効果は以下の試験例に記載の方法で確認することができる。ただし、これらはあくまでも例示であり、本発明はいかなる場合も以下の具体例に限定されるものではなく、本発明の範囲を逸脱しない範囲で変更することができる.
参考例1
2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミド(化合物(I))の合成
Figure JPOXMLDOC01-appb-C000060
工程1:(R)-4-((1,1,1-トリフルオロプロパン-2-イル)オキシ)ベンゾニトリルの合成
カリウム tert-ブトキシド(3.47g,30.9mmol)のTHF(35mL)懸濁液に,攪拌窒素気流下0℃にて、(R)-1,1,1-トリフルオロプロパン-2-オール(2.00mL,21.7mmol)を加えた。10min後、4-フルオロベンゾニトリル(2.5g,20.6mmol)のTHF溶液(35mL)を滴下し、1時間攪拌後室温に戻した。反応液はEtOAc/水にて分液し、有機層を飽和食塩水で洗浄後、NaSOで乾燥した。エバポレーターで溶媒を留去し得られた残渣(5.4g)をカラムクロマトグラフィー(0-50% EtOAc/c-Hex,50g Silica-gel)で精製し、標題化合物(4.27g)を得た。
1H-NMR(600MHz, CDCl3) δppm 1.54(d, J=6.4Hz, 3H) 4.74(t, J=6.1Hz, 1H) 7.02(d, J=8.8Hz, 2H) 7.63(d, J=8.8Hz, 2H)
工程2:(R)-(4-((1,1,1-トリフルオロプロパン-2-イル)オキシ)フェニル)メタンアミンの合成
(R)-4-((1,1,1-トリフルオロプロパン-2-イル)オキシ)ベンゾニトリル(4.1g,19.1mmol)のTHF(39mL)溶液に攪拌下0℃にて1Mボランテトラヒドロフラン錯体(38.1mL,38.1mmol)THF溶液を滴下した。反応液を1時間かけて、0℃から室温に戻し、さらに65℃で加熱した。室温に冷却後、2M HCl(39.0mL,78.0mmol)を滴下し、混合物を65℃で2時間さらに100℃で2時間加熱攪拌した。反応液を冷却後MeOHで希釈し,SCX-2 cartridgeに充填した。MeOHで洗浄後、生成物を2M NH/MeOHで溶出した。溶出物を集めエバポレーターで溶媒を留去し、標題化合物(3.76g)を得た。
1H NMR (600MHz, CDCl3) δppm 1.49(d, J=6.6Hz, 3H) 3.83(s, 2H) 4.61(t, J=6.3Hz, 1H) 6.93(d, J=8.6Hz, 2H) 7.24-7.27(m, 2H)
工程3:2,6-ジアミノ-5-ヨードニコチン酸の合成
2,6-ジアミノニコチン酸(1.01g,6.60mmol)のDMF(20mL)懸濁液に室温にてNIS(1.63g,7.24mmol)を5分間かけて少しずつ加えた。出発原料は、加熱と超音波処理により小さなかけらに粉砕し利用した。反応液を1M NaOHで希釈後、EtOAcで分液した。水層を濃塩酸にてpH6の酸性にした。析出物をろ過し、水及びEtOAcで洗浄した。減圧乾燥し標題化合物(1.28g)を得た。
1H NMR (600MHz, DMSO-d6) δppm 6.35(br s, 2H) 6.97(br s, 2H) 8.01(s, 1H) 12.15(br s, 1H)
工程4:(R)-2,6-ジアミノ-5-ヨード-N-(4-((1,1,1-トリフルオロプロパン-2-イル)オキシ)ベンジル)ニコチンアミドの合成
2,6-ジアミノ-5-ヨードニコチン酸(1g,3.58mmol)のDMSO(10mL)溶液に攪拌下、HOBT・HO(0.659g,4.30mmol)とEDC・HCl(0.824g,4.30mmol)を加えた。5分後、(R)-(4-((1,1,1-トリフルオロプロパン-2-イル)オキシ)フェニル)メタンアミン(0.825g,3.76mmol)とトリエチルアミン(2.00mL,14.3mmol)のDMSO(10mL)溶液を滴下し、室温で20時間攪拌した。反応液をEtOAc/水で分液し,有機層を飽和食塩水で洗浄後NaSOで乾燥した。エバポレーターで溶媒留去し得られた残留物(2.15g)をカラムクロマトグラフィー(20-80% EtOAc/c-Hex,25g KP-Sil)で精製し、標題化合物(1.08g)を得た。
1H NMR (600MHz, DMSO-d6) δppm 1.39(d, J=6.4Hz, 3H) 4.30(d, J=5.7Hz, 2H) 5.16 (app spt, J=6.5Hz, 1H) 6.13(br s, 2H) 7.02(d, J=8.6Hz, 2H) 7.07(br s, 2H) 7.23(d, J=8.4Hz, 2H) 8.11(s, 1H) 8.51(t, J=5.8Hz, 1H)
工程5:2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミド(化合物(I))の合成
(R)-2,6-ジアミノ-5-ヨード-N-(4-((1,1,1-トリフルオロプロパン-2-イル)オキシ)ベンジル)ニコチンアミド(120mg,0.25mmol),3-(トリフルオロメチル)-1H-1,2,4-トリアゾール(47.9mg,0.35mmol),ヨウ化銅(I)(52.3mg,0.275mmol),N,N’-ジメチルシクロヘキサン-1,2-ジアミン(0.043mL,0.275mmol)及びリン酸カリウム(106mg,0.50mmol)のDMF(2mL)溶液を窒素でガス置換を行い、封菅中120℃で18時間加熱した。反応液をMeOHで希釈し,SCX-2に充填しMeOHで洗浄した。引き続き2M NH/MeOH/DCMで溶出し油状物(0.14g)を得た。カラムクロマトグラフィー(20-100% EtOAc/c-Hex,KP-Sil)で精製し標題化合物(21mg)を得た。
1H NMR (600MHz, DMSO-d6) δppm 1.38(d, J=6.4Hz, 3H) 4.31(d, J=5.7Hz, 2H) 5.15 (dt, J=12.8, 6.4Hz, 1H) 6.39(s, 2H) 7.01(d, J=8.4Hz, 2H) 7.23(d, J=8.4Hz, 2H) 7.42(br s, 2H) 7.92(s, 1H) 8.41(br t, J=5.8Hz, 1H) 8.97(s, 1H)
参考例2
2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミド(化合物(I))の合成
Figure JPOXMLDOC01-appb-C000061
工程1:3-(トリフルオロメチル)-1H-1,2,4-トリアゾールの合成
ヒドラジン一水和物(100mL,2052mmol)のEtOH(2.6L)溶液に攪拌下、10℃にてトリフルオロ酢酸エチル(257mL,2161mmol)(CAS 383-63-1,Fluorochem)を滴下し、反応液を室温にて16時間攪拌した。イミノホルムアミド酢酸(247g,2377mmol)を加え、反応液を9時間加熱還流した。AcOH(148mL,2585mmol)を加えた後EtOHをエバポレーターで留去した。得られた溶液に飽和炭酸水素ナトリウム水溶液でアルカリ性とした後EtOAc(3×500mL)で抽出した。集めた有機層をNaSOで乾燥後、フィルターろ過し、エバポレーターで溶媒留去した。得られた粗生成物をn-ヘプタンでトリチュレーションし,フィルターろ過後n-ヘプタン(100mL)で洗浄した。減圧下乾燥し標題化合物(216g)を得た。
LCMS: m/z 138 [M+H]+1H NMR (600 MHz, DMSO-d6) δ ppm 8.84 (s, 1 H) 13.99 (br s, 1 H).
工程2:(2,6-ジピバルアミドピリジン-3-イル)ボロン酸の合成
N,N’-(ピリジン-2,6-ジイル)ビス(2,2-ジメチルプロパンアミド)(80g,288mmol)のTHF(1L)溶液に攪拌、窒素気流下-70℃にてn-BuLi(2.5Mヘキサン溶液,400mL,1000mmol)を滴下した。反応液を0℃に昇温し、16時間攪拌後,-60℃に冷却し、ホウ酸トリイソプロピル(233mL,1009mmol)を滴下した。混合物を室温まで昇温し90分間攪拌後0℃に冷却し、飽和NHCl水溶液(600mL)を滴下した。混合物を水(600mL)及び2-MeTHF(200mL)で分液し分離した。水層をさらに2-MeTHF(2×1L)で抽出し,集めた有機層を飽和NHCl水溶液(2×500mL)で洗浄後、NaSOで乾燥後フィルターろ過しエバポレーターで溶媒留去した。得られた残留物をトルエン(1L)中、室温にて16時間攪拌した。得られた析出物をろ過後、冷却したトルエン(200mL)で洗浄後減圧乾燥し標題化合物(83.2g)を得た。
LCMS: m/z 322 [M+H]+1H NMR (600 MHz, DMSO-d6) δ ppm 1.17 (s, 9 H) 1.23 (s, 9 H) 7.69 (d, J=7.89 Hz, 1 H) 7.92 (br d, J=7.89 Hz, 1 H) 9.17 (s, 1 H) 11.43 (br s, 1 H).
工程3:N,N’-(3-(3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル)ピリジン-2,6-ジイル)ビス(2,2-ジメチルプロパンアミド)の合成
(2,6-ジピバルアミドピリジン-3-イル)ボロン酸(30g,93.4mmol)のDMF(600mL)溶液に、攪拌下(トリフルオロメチル)-1H-1,2,4-トリアゾール(19.2g,140mmol),酢酸銅(II)(1.70g,9.34mmol)及びピリジン(18.9mL,234mmol)を少しずつ加えた。反応は3頸フラスコを用い、軽い減圧下無水CaClを通した空気をスパージングチューブにて反応溶液に導入した。反応液を60℃にて22時間加熱後冷却し、氷水(2L)に注いだ。30分後に析出物をろ過し、水(200mL)及びn-ヘプタン(200mL)で洗浄後、減圧乾燥し標題化合物(32.0g)を得た。
LCMS: m/z 413 [M+H]+1H NMR (600 MHz, DMSO-d6) δ ppm 1.03 (s, 9 H) 1.24-1.28 (m, 10 H) 8.11 (d, J=2.75 Hz, 2 H) 9.05 (s, 1 H) 9.88 (s, 1 H) 10.16 (s, 1 H).
工程4:N,N’-(3-ブロモ-5-(3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル)ピリジン-2,6-ジイル)ビス(2,2-ジメチルプロパンアミド)の合成
N,N’-(3-(3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル)ピリジン-2,6-ジイル)ビス(2,2-ジメチルプロパンアミド)(76.1g,184mmol)のDMF(1L)溶液に攪拌下、室温にてNBS(34.5g,194mmol)を加えた。反応液を70℃で40分間攪拌した後,22℃に冷却し氷水(3L)に攪拌しながら注いだ。室温で30分間攪拌後,析出物をろ過した。得られた固体をEtOAc(500mL)及び水(500mL)で分液し,分離した有機層を飽和食塩水(2×300mL)で洗浄した。MgSOで乾燥後、エバポレーターで溶媒を濃縮した。得られた残留物をn-ヘプタンでトリチュレーションし,集めた固体を減圧乾燥し標題化合物(84.3g)を得た。
LCMS: m/z 491/493 [M+H]+1H NMR (600 MHz, DMSO-d6) δ ppm 1.04 (s, 9 H) 1.25 (s, 8 H) 8.59 (s, 1 H) 9.23 (s, 1 H) 9.87-9.93 (m, 1 H) 10.04 (s, 1 H) 10.28 (s, 1 H).
工程5:エチル 2,6-ジピバルアミド-5-(3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル)ニコチン酸の合成
EtOH(152mL),トルエン(1.1L)及びEtN(443mL,3176mmol)溶液に1時間窒素と通しながらガス交換を行った。本溶液にN,N’-(3-ブロモ-5-(3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル)ピリジン-2,6-ジイル)ビス(2,2-ジメチルプロパンアミド)(85.0g,173mmol)及びPdCl(dppf).DCM(28.3g,34.6mmol)を加えた。混合物にCOガス(5L)を導入しCO気流下80℃で18時間加熱した。反応液を冷却後Celite(登録商標)(180g)を加え室温で30分間攪拌した。混合物はsilica padを通しEtOAc(2L)で流出した。流出液をエバポレーターで留去し標題化合物(115.8g)を得た。
LCMS: m/z 485 [M+H]+1H NMR (600 MHz, DMSO-d6) δ ppm 1.05 (s, 9 H) 1.24 (s, 9 H) 1.26 - 1.31 (m, 3 H) 4.21 - 4.28 (m, 2 H) 8.45 (s, 1 H) 9.17 (s, 1 H) 10.59 (s, 1 H).
工程6:2,6-ジアミノ-5-(3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル)ニコチン酸の合成
エチル 2,6-ジピバルアミド-5-(3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル)ニコチン酸(84g,174mmol)のIMS(432mL)溶液に攪拌下80℃にて4M NaOH水溶液(867mL,3467mmol)を加えた。反応液を5時間加熱還流後冷却し、攪拌下氷水(1.3L)で希釈し、フィルターろ過後IMSをエバポレーターで留去した。水溶液をTBME(2×1.5L)で洗浄後、濃塩酸(50mL)及び2M HCl(300mL)でpH5酸性にし、室温で18時間放置し析出物が生成した。固体をフィルターろ過後、水(2×300mL)及びEtO(2×300mL)で洗浄後、減圧乾燥することにより標題化合物(51g)を得た。
LCMS: m/z 289 [M+H]+1H NMR (600 MHz, DMSO-d6) δ ppm 6.60 (br s, 2 H) 7.45 (br s, 2 H) 7.79 (s, 1 H) 8.97 (s, 1 H) 12.24 (br s, 1 H).
工程7:2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミド(化合物(I))の合成
2,6-ジアミノ-5-(3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル)ニコチン酸(44.6g,155mmol)及びTBTU(52.2g,163mmol)のDMF(650mL)溶液に攪拌下、室温にてDIPEA(108mL,619mmol)を加えた。混合物を室温で15分間攪拌後、(R)-(4-((1,1,1-トリフルオロプロパン-2-イル)オキシ)フェニル)メタンアミン 塩酸塩(41.5g,163mmol)を加え、室温でさらに1時間攪拌した。反応液をEtOAc(1.2L)及び半飽和食塩水(1L)で希釈した。有機層を水(500mL)で洗浄後、飽和食塩水(500mL)で希釈しEtOAc(1L)を用いてCelite(登録商標)ろ過した。有機層を飽和食塩水(500mL)で洗浄後,MgSOで乾燥しエバポレーターで溶媒を留去した。残留物を20% EtOH/n-ヘプタン(800mL)で懸濁し30分間加熱還流した。冷却後固体をフィルターろ過し、20% EtOH/n-ヘプタン(2×350mL)及びn-ペンタン(2×400mL)で洗浄後、EtOAc(500mL)に溶解した。上記操作を3回繰り返し集めた生成物はKP-NH silica(500g)を通しEtOAc(7L)で溶出した。溶出物の溶媒を留去し、得られた残留物をn-ペンタンでトリチュレーションした後、減圧乾燥し標題化合物(50g)を得た。
LCMS: m/z 490 [M+H]+1H NMR (600 MHz, DMSO-d6) δ ppm 1.39 (d, J=6.24 Hz, 3 H) 4.31 (d, J=5.69 Hz, 2 H) 5.15 (app spt, J=6.42 Hz, 1 H) 6.39 (s, 2 H) 7.01 (d, J=8.25 Hz, 2 H) 7.23 (d, J=8.44 Hz, 2 H) 7.42 (br s, 2 H) 7.92 (s, 1 H) 8.41 (br t, J=5.69 Hz, 1 H) 8.97 (s, 1 H). Chiral HPLC: Rt 20.3 mins (minor), 22.9 mins (major), 96.6% ee.
実施例1
化合物(I)の一リン酸塩のα型結晶の調製
 化合物(I)(5g)のアセトニトリル溶液(150mL)に、リン酸(1.20g)のアセトニトリル溶液(50mL)を室温下10分間かけて滴下した。滴下後、室温で終夜攪拌した後、析出した固体をろ取し、アセトニトリル(20mL)で洗浄した後、通気乾燥し標記結晶(5.68g)を得た。
 粉末X線回折ピーク(透過法、2θ±0.2°):6.2°、11.1°、12.5°、14.3°、16.7°、19.7°、21.5°、22.4°、24.9°、28.7°.
 13C-NMR(100MHz、solid state)δ(±0.5ppm):41.4ppm、69.7ppm、106.3ppm、113.3ppm、119.0ppm、144.0ppm、146.5ppm、152.0ppm、157.2ppm、162.7ppm.
 上記方法により得られた化合物(I)の一リン酸塩のα型結晶の粉末X線回折パターンを図1に、13C固体NMRスペクトルを図4に、熱分析TG-DTAチャートを図7にそれぞれ示す。
実施例2
化合物(I)の一リン酸塩のβ型結晶の調製
 化合物(I)(約300mg)をアセトン(3.5mL)に溶解し,42μLのリン酸(化合物(I)に対して1当量分)を滴下した後,室温で終夜攪拌した。その後,ヘプタン1mLを添加して室温で終夜撹拌し,析出した固体をろ取し標記結晶を得た。
 粉末X線回折ピーク(透過法、2θ±0.2°):5.6°、9.0°、16.0°、18.5°、19.5°、19.9°、22.8°、23.9°
 13C-NMR(100MHz、solid state)δ(±0.5ppm):11.2ppm、73.2ppm、103.2ppm、115.0ppm、117.9ppm、127.7ppm、129.3ppm、165.5ppm
 上記方法により得られた化合物(I)の一リン酸塩のβ型結晶の粉末X線回折パターンを図2に、13C固体NMRスペクトルを図5に、熱分析TG-DTAチャートを図8にそれぞれ示す。
実施例3
化合物(I)の一マレイン酸の結晶の調製
 化合物(I)(6.5g)のメチルtert-ブチルエーテル溶液(200mL)に、マレイン酸(1.573g)のメチルtert-ブチルエーテル溶液(60mL)を室温下15分間かけて滴下した。滴下後、室温で終夜攪拌した後、析出した塩をろ紙(5μm)を用いてろ取し、メチルtert-ブチルエーテル(26mL)で洗浄した後、ろ紙上で通気乾燥し標記結晶を得た(6.52g)。
 粉末X線回折ピーク(透過法、2θ±0.2°):8.5°、9.9°、17.0°、18.2°、19.8°、20.8°、22.2°、22.8°、24.3°、25.3°. 13C-NMR(100MHz、solid state)δ(±0.5ppm):13.4ppm、15.2ppm、40.5ppm、73.7ppm、98.5ppm、105.2ppm、132.0ppm、140.5ppm、164.8ppm、170.2ppm、172.6ppm.
 上記方法により得られた化合物(I)の一マレイン酸塩の結晶の粉末X線回折パターンを図3に、13C固体NMRスペクトルを図6に、熱分析TG-DTAチャートを図9にそれぞれ示す。
粉末X線回折測定
 上記の実施例において得られた結晶の粉末X線結晶回折は、得られた結晶を粉末X線装置の試料台に置き、以下の測定条件で測定した。
(透過法条件)
X線源:Cu-Kα
電圧:45kV
電流:200mA
光学系:集光光学系
ソーラースリット:2.5°
検出器:D/teX Ultra 250(1次元半導体検出器)
スキャン速度:10°/min
ステップ幅:0.01°
スキャン範囲:3°~35°
サンプルホルダー:アルミニウム製ホルダー及びマイラーフィルム
 上記の実施例において得られた結晶の13C固体NMRスペクトルは、試料管に固体試料を約150-300mg内封し、以下の条件で測定した。
(測定条件)
使用装置:Avance400MHz(BRUKER社製)7mm-CPMASプローブ(BRUKER社製)
測定核:13C(共鳴周波数 100.6248425MHz)
測定温度:室温
パルスモード:CPTOSS測定
回転数:5000Hz
パルス繰り返し時間:5sec
コンタクトタイム:1msec
積算回数:8192回
基準物質:グリシン(外部基準:176.03ppm)
 熱分析は、上記の実施例において得られた結晶をアルミニウム製試料パンに精密に秤取し、以下の条件で測定した。
(測定条件)
雰囲気:50mL/min窒素ガス気流下
対照:空のアルミニウム製試料パン
昇温速度:20℃/min
サンプリング間隔:1sec
測定温度範囲:25~300℃
薬理試験例
 以下の薬効試験は化合物(I)を用いて実施した。
 北里大学熱帯病研究センターから分与された熱帯熱マラリア原虫(Plasmodium falciparum)の薬剤感受性株である3D7株及び薬剤耐性株であるK1株を用いて、これらのマラリア原虫に対する化合物のin vitro抗マラリア活性を測定した。試験原虫の培養については、TragerとJensenの方法(Trager,W and Jensen,J.:Human malaria parasites in continuous culture,Science,193:673-677,(1976))を一部改変し、維持、継代を行ったものを用いた。すなわち、培養フラスコ内で、10%ヒト血漿と2%ヒト新鮮赤血球を添加したRPMI1640培地を用いて継代した原虫感染赤血球を希釈し(原虫感染赤血球率:0.25~1%)、37℃にて5%O-5%CO-90%Nの混合ガス下で培養を行い、2~3日毎に培地交換と新鮮な赤血球を添加して連続培養を行った。原虫の感染率は0.25~10%の範囲で維持した。薬剤感受性試験は、Desjardinsらの方法(Desjardins,R.E., Canfield,C.J., Haynes,D.E. and Chulay,J.D.:Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique.Antimicrob.Agents Chemother.,16:710-718(1979))を改変して行った。被験化合物としては、化合物(I)の他、対照化合物として既存の抗マラリア剤であるアルテミシニン、クロロキンを用いた。具体的には、96穴プレートの各ウェルに前培養した原虫浮遊液(ヘマトクリット値:2%、原虫感染赤血球率:0.75~1%)199μLと最終濃度1~0.001μg/mLとなるような濃度段階希釈した被験化合物の溶液(DMSO溶液)1μLを添加し、混和後、前述の混合ガス下で72時間培養を行った。原虫増殖の測定はMaklerらの方法(Makler,M.T., Rise,J.M., Williams,J.A., Bancroft,J.E., Piper,R.C., Gibbins,B.L. and Hinrichs,D.J.:Parasite lactate dehydrogenase as an Assay for Plasmodium falciparum drug sensitivity,Am.J.Med.Hyg.,48:739-741(1993))を改変し、原虫の乳酸脱水素酵素(p-LDH)を比色定量する方法を用いた。すなわち、培養72時間後に96穴プレートを直接-20℃下で1昼夜凍結後、37℃下で融解することにより、原虫感染赤血球を溶血させ、かつ原虫を破壊させて粗酵素液を調製した。新たな96穴プレートの各ウェルに酵素反応液(110mM 乳酸リチウム,0.5mM アセチルピリジン-アデニンジヌクレオチド,50mM Tris(pH7.5),10mM EDTA,50mM KCl及び15g/L PEG6000)100μLと粗酵素液20μLを添加、混和し、30分間室温にて反応後、ニトロブルーテトラゾリウム2mg/mL溶液とフェナジンエトサルフェート0.1mg/mL溶液の1:1混合液20μLを各ウェルに添加し、遮光条件下、室温にて1.5時間反応させた。反応により生じたブルーフォルマザン生成物をマイクロプレートリーダーを用いて測定波長660nmでの吸光度を測定することにより検出し、原虫の増殖の有無を比色定量した。化合物の50%原虫増殖阻止濃度(IC50値)は化合物濃度作用曲線より求めた。化合物(I)は、熱帯熱マラリア原虫の3D7株及びK1株に対してそれぞれ0.026μg/mL(0.053μM)、0.043μg/mL(0.089μM)のIC50値を示した。
 以下のヒト化マウスマラリアモデルによる薬効評価は化合物(I)を用い、The Art of Discovery S.L.(ビスカヤ、スペイン)で実施した。端的には、ヒト赤血球を移植したマウスに熱帯熱マラリア原虫感染赤血球を静脈内接種し、72時間経過後に薬剤治療を開始した。感染率での治療効果は、末梢血中の感染赤血球の割合を測定することで評価した。
 本試験に用いた熱帯熱マラリア原虫Pf3D70087/N9株の由来は下記参考文献(1)に記載した研究により作製した。雌のNSG(NOD-scid IL-2Rγnull)免疫欠損マウスに対してヒト赤血球を移植し、試験期間全体を通して末梢血中の全赤血球におけるヒト赤血球の割合が40%以上になるように維持した。ヒト赤血球を25%非働化ヒト血清及び3.1mMヒポキサンチンを添加したRP1640培地に50~75%になるよう懸濁し、各マウス個体に対して1mLの腹腔内投与又は0.7mLの静脈内投与を行った。上記により得られたヒト化NSGマウスに対し、別途準備した感染マウスの血液を1mLあたり1.17×10感染赤血球になるよう希釈したものを0.3mL静脈内接種した。薬剤治療は感染の72時間後に開始し、体重1kgあたり10mLの薬剤溶液を1日1回、3日間経口投与した。末梢血中の感染赤血球数の解析はフローサイトメトリー法を用いて下記参考文献(2)に報告した手法で実施し、結果は末梢血の全赤血球数に対する感染赤血球数の割合を感染率として示した。具体的には、感染マウスから採取した末梢血2μLをTER-119-Phycoeruthrine(マウス赤血球マーカー)及びSYTO-16(核酸染色色素)で染色し、フローサイトメトリーで分析した。治療効果は、感染7日後の時点における感染率を非治療群と比較して90%低下させた一日あたり投与量をED90として算出し、化合物(I)のED90は3.2mg/kg/dayであった。
(1) Angulo-Barturen et al. A murine model of falciparum-malaria by in vivo selection of competent strains in nonmyelodepleted mice engrafted with human erythrocytes. Plos One. 2008 May 21;3(5):e2252.
(2) Jimenez-Diaz et al. Quantitative measurement of Plasmodium-infected erythrocytes in murine models of malaria by flow cytometry using bidimensional assessment of SYTO-16 fluorescence. Cytometry A. 2009 Mar;75(3):225-35.
 予防効果については、二つの可能性が考えられる。第一に、蚊によってスポロゾイトを注入された際の、肝細胞における原虫のシゾントへの成熟を阻害する効果が期待される。主要なGPIアンカー型タンパク質であるMSP1がこの肝細胞での成熟に必須であることが下記参考文献(3)に報告されており、GWT1阻害剤は原虫の血液期だけでなく肝臓期にも有効であると考えられる。肝臓期原虫に対する効果を証明するためには、下記参考文献(4)及び(5)のような、蚊で成長させたげっ歯類マラリア原虫のスポロゾイトを用いたex vivo肝細胞感染実験が可能である。第二の可能性として、血液期の1回目の感染サイクルで原虫の増殖を止めることで、マラリアの症状が発現する前に原虫を駆除できると考えられる。血液期における予防効果については、げっ歯類マラリア原虫を用いたマウスモデルで確認できることが下記参考文献(5)に報告されており、GWT1阻害剤をあらかじめ投与して同様の実験を行うことで血液期をターゲットにした予防効果を実証できると考えられる。
(3) Kawabata Y, Udono H, Honma K et al. Merozoite Surface Protein 1-Specific Immune Response is Protective against Exoerythrocytic Forms of Plasmodium yoelii. Infection and Immunity 2002;70:6075-82.
(4) Hovlid ML, Winzeler EA. Phenotypic screens in antimalarial drug discovery.
Trends Parasitol. 2016;32:697-707.
(5) Kato N, Comer E, Sakata-Kato T et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature 2016;538:344-349.

Claims (27)

  1.  下記式(I)
    Figure JPOXMLDOC01-appb-C000001
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩又は一マレイン酸塩。
  2.  下記式(I)
    Figure JPOXMLDOC01-appb-C000002
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩又は一マレイン酸塩の結晶。
  3.  CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)6.2°に回折ピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000003
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
  4.  CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)6.2°、12.5°及び14.3°に回折ピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000004
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
  5.  CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)6.2°、11.1°、12.5°、14.3°及び24.9°に回折ピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000005
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
  6.  CuKαをX線源とする粉末X線回析において、図1に示される粉末X線回折パターンと実質的に同一の粉末X線回折パターンを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000006
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
  7.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)157.2ppmにピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000007
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
  8.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)41.4ppm、157.2ppm及び162.7ppmにピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000008
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
  9.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)41.4ppm、144.0ppm、146.5ppm、157.2ppm及び162.7ppmにピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000009
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
  10.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、図4に示される13C固体NMRスペクトルと実質的に同一の13C固体NMRスペクトルを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000010
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のα結晶。
  11.  CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)5.6°に回折ピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000011
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
  12.  CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)5.6°、9.0°及び16.0°に回折ピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000012
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
  13.  CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)5.6°、9.0°、16.0°、22.8°及び23.9°に回折ピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000013
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
  14.  CuKαをX線源とする粉末X線回析において、図2に示される粉末X線回折パターンと実質的に同一の粉末X線回折パターンを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000014
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
  15.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)129.3ppmにピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000015
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
  16.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)11.2ppm、115.0ppm及び129.3ppmにピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000016
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
  17.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)11.2ppm、115.0ppm、117.9ppm、129.3ppm及び165.5ppmにピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000017
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
  18.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、図5に示される13C固体NMRスペクトルと実質的に同一の13C固体NMRスペクトルを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000018
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一リン酸塩のβ結晶。
  19.  CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)17.0°に回折ピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000019
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
  20.  CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)17.0°、18.2°及び25.3°に回折ピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000020
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
  21.  CuKαをX線源とする粉末X線回析において、回折角度(2θ±0.2°)8.5°、9.9°、17.0°、18.2°及び25.3°に回折ピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000021
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
  22.  CuKαをX線源とする粉末X線回析において、図3に示される粉末X線回折パターンと実質的に同一の粉末X線回折パターンを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000022
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
  23.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)172.6ppmにピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000023
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
  24.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)132.0ppm、170.2ppm及び172.6ppmにピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000024
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
  25.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、ケミカルシフト(δ±0.5ppm)98.5ppm、105.2ppm、132.0ppm、170.2ppm及び172.6ppmにピークを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000025
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
  26.  グリシンを外部標準とする13C固体NMRスペクトルにおいて、図6に示される13C固体NMRスペクトルと実質的に同一の13C固体NMRスペクトルを有する、下記式(I)
    Figure JPOXMLDOC01-appb-C000026
    で表される2,6-ジアミノ-5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-1-イル]-N-(4-{[(2R)-1,1,1-トリフルオロプロパン-2-イル]オキシ}ベンジル)ピリジン-3-カルボキサミドの一マレイン酸塩の結晶。
  27.  請求項1に記載の塩又は請求項2~26のいずれか一項に記載の結晶を含む医薬組成物。
PCT/JP2022/027971 2021-07-21 2022-07-19 抗マラリア活性を有するヘテロ環化合物の塩及びその結晶 WO2023002965A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280044088.XA CN117545747A (zh) 2021-07-21 2022-07-19 具有抗疟疾活性的杂环化合物的盐及其晶体
JP2023536744A JPWO2023002965A1 (ja) 2021-07-21 2022-07-19
US18/572,025 US20240294491A1 (en) 2021-07-21 2022-07-19 Salt of heterocyclic compound with anti-malaria activity, and crystals thereof
EP22845898.0A EP4342889A1 (en) 2021-07-21 2022-07-19 Salt of heterocyclic compound with anti-malaria activity, and crystals thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021120421 2021-07-21
JP2021-120421 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023002965A1 true WO2023002965A1 (ja) 2023-01-26

Family

ID=84979280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027971 WO2023002965A1 (ja) 2021-07-21 2022-07-19 抗マラリア活性を有するヘテロ環化合物の塩及びその結晶

Country Status (5)

Country Link
US (1) US20240294491A1 (ja)
EP (1) EP4342889A1 (ja)
JP (1) JPWO2023002965A1 (ja)
CN (1) CN117545747A (ja)
WO (1) WO2023002965A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016548A1 (ja) * 2004-08-09 2006-02-16 Eisai R & D Management Co., Ltd. ヘテロ環化合物を含有する新規な抗マラリア剤
WO2009152356A2 (en) * 2008-06-11 2009-12-17 Irm Llc Compounds and compositions useful for the treatment of malaria
WO2021149692A1 (en) * 2020-01-21 2021-07-29 Eisai R&D Management Co., Ltd. Novel antimalarial agent containing heterocyclic compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016548A1 (ja) * 2004-08-09 2006-02-16 Eisai R & D Management Co., Ltd. ヘテロ環化合物を含有する新規な抗マラリア剤
WO2009152356A2 (en) * 2008-06-11 2009-12-17 Irm Llc Compounds and compositions useful for the treatment of malaria
WO2021149692A1 (en) * 2020-01-21 2021-07-29 Eisai R&D Management Co., Ltd. Novel antimalarial agent containing heterocyclic compound

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
ANGULO-BARTUREN ET AL.: "A murine model of falciparum-malaria by in vivo selection of competent strains in nonmyelodepleted mice engrafted with human erythrocytes", PLOS ONE, vol. 3, no. 5, 21 May 2008 (2008-05-21), pages e2252, XP055166984, DOI: 10.1371/journal.pone.0002252
DESJARDINS, R.E., CANFIELD, C. J., HAYNES, D. E. AND CHULAY, J. D.: "Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob", AGENTS CHEMOTHER, vol. 16, 1979, pages 710 - 718, XP008021786
DEVI NISHA, SINGH DHARMENDER, K. RAWAL RAVINDRA, BARIWAL JITENDER, SINGH VIRENDER: "Medicinal Attributes of Imidazo[1,2-a]pyridine Derivatives: An Update", CURRENT TOPICS IN MEDICINAL CHEMISTRY, BENTHAM SCIENCE PUBLISHERS LTD.HILVERSUM, NL, vol. 16, no. 26, 2 September 2016 (2016-09-02), NL , pages 2963 - 2994, XP055836863, ISSN: 1568-0266, DOI: 10.2174/1568026616666160506145539 *
HAWKES MCONROY ALKAIN KC: "Spread of artemisinin resistance in malaria", THE NEW ENGLAND JOURNAL OF MEDICINE, vol. 371, 2014, pages 1944 - 5
HOVLID MLWINZELER EA: "Phenotypic screens in antimalarial drug discovery", TRENDS PARASITOL, vol. 32, 2016, pages 697 - 707, XP029698324, DOI: 10.1016/j.pt.2016.04.014
JIMENEZ-DIAZ ET AL.: "Quantitative measurement of Plasmodium-infected erythrocytes in murine models of malaria by flow cytometry using bidimensional assessment of SYTO-16 fluorescence", CYTOMETRY A, vol. 75, no. 3, 2009, pages 225 - 35
KATO NCOMER ESAKATA-KATO T ET AL.: "Diversity-oriented synthesis yields novel multistage antimalarial inhibitors", NATURE, vol. 538, 2016, pages 344 - 349, XP055645378, DOI: 10.1038/nature19804
KAWABATA YUDONO HHONMA K ET AL.: "Merozoite Surface Protein 1-Specific Immune Response is Protective against Exoerythrocytic Forms of Plasmodium yoelii", INFECTION AND IMMUNITY, vol. 70, 2002, pages 6075 - 82, XP002388503, DOI: 10.1128/IAI.70.11.6075-6082.2002
MAKLER, M. TRISE, J. MWILLIAMS, J. ABANCROFT, J. EPIPER, R. CGIBBINS, B. LHINRICHS, D. J: "Parasite lactate dehydrogenase as an Assay for Plasmodium falciparum drug sensitivity", AM. J. MED. HYG, vol. 48, 1993, pages 739 - 741
OKAMOTO MYOKO-O TUMEMURA M ET AL.: "Glycosylphosphatidylinositol-anchored proteins are required for the transport of detergent-resistant microdomain-associated membrane proteins Tat2p and Fur4p", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 281, 2006, pages 4013 - 23
SAGANE KUMEMURA MOGAWA-MITSUHASHI K ET AL.: "Analysis of membrane topology and identification of essential residues for the yeast endoplasmic reticulum inositol acyltransferase Gwtlp", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 286, 2011, pages 14649 - 58
TRAGER, WJENSEN, J: "Human malaria parasites in continuous culture", SCIENCE, vol. 193, no. 383-63-1, 1976, pages 673 - 677
TSUKAHARA KHATA KNAKAMOTO K ET AL.: "Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly", MOL MICROBIOL, vol. 48, 2003, pages 1029 - 42, XP002300258, DOI: 10.1046/j.1365-2958.2003.03481.x
UMEMURA MOKAMOTO MNAKAYAMA K ET AL.: "GWT 1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 278, 2003, pages 23639 - 47
YEUNG SSOCHEAT DMOORTHY VS ET AL.: "Artemisinin resistance on the Thai-Cambodian border", LANCET, vol. 374, 2009, pages 1418 - 9, XP026721776, DOI: 10.1016/S0140-6736(09)61856-0

Also Published As

Publication number Publication date
JPWO2023002965A1 (ja) 2023-01-26
EP4342889A1 (en) 2024-03-27
US20240294491A1 (en) 2024-09-05
CN117545747A (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN110240596B (zh) 用于治疗hbv感染的治疗剂
KR102520543B1 (ko) 피리딘 화합물
TWI722004B (zh) 1,3,5-三嗪衍生物及其使用方法
CN107531682B (zh) B-raf激酶抑制剂的马来酸盐、其结晶形式、制备方法和用途
JP2015524448A (ja) アルキニルへテロ芳香環化合物及びその応用
RU2600928C2 (ru) Цианохинолиновые производные
TW201800413A (zh) 作為jak抑制劑的吡咯並嘧啶化合物的結晶
RU2730500C2 (ru) Производное хиназолинона, способ его получения, фармацевтическая композиция и применения
JP5603775B2 (ja) 柔軟な側鎖を有する抗マラリア化合物
JP2007015928A (ja) 新規オレフィン誘導体
JP7251841B2 (ja) 芳香環結合ジオキシノ-キナゾリンまたはジオキシノ-キノリン系化合物、組成物およびその使用
KR20090106633A (ko) PDE5 억제제로서 유용한 6-벤질-2,3,4,7-테트라히드로-인돌로[2,3-c]퀴놀린 화합물
JP2024050645A (ja) ヘテロアリールで置換されたピラゾール化合物及びその医薬用途
JP6529983B2 (ja) マラリアの予防又は治療に有用なトリアミノピリミジン化合物
CA2846507C (en) Substituted 2-alkyl-1-oxo-n-phenyl-3-heteroaryl-1,2,3,4- tetrahydroisoquinoline-4-carboxamides for antimalarial therapies
WO2023002965A1 (ja) 抗マラリア活性を有するヘテロ環化合物の塩及びその結晶
US11407760B2 (en) Dioxinoquinoline compounds, preparation method and uses thereof
TW202413326A (zh) Stat3抑制劑的前藥
US20240190904A1 (en) Heteroaryl compounds as inhibitors of RIP2 kinase, composition and application thereof
US20240083844A1 (en) Kinase inhibitors and uses thereof
WO2021200934A1 (ja) 抗マラリア薬
US20240174636A1 (en) Novel indoleamine 2,3-dioxygenase inhibitors, processes for the preparation thereof and pharmaceutical compositions comprising the same
WO2022037601A1 (zh) 作为ep4受体拮抗剂的吡唑酰胺衍生物及其在制备治疗癌症和炎症药物中的用途
KR20240110593A (ko) 기생충 원충 감염 치료에 유용한 피라진 화합물
CA3174980A1 (en) New anti-malarial agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845898

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18572025

Country of ref document: US

Ref document number: 2023536744

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280044088.X

Country of ref document: CN

Ref document number: 2022845898

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022845898

Country of ref document: EP

Effective date: 20231220

NENP Non-entry into the national phase

Ref country code: DE