WO2023002923A1 - 光学フィルタ - Google Patents
光学フィルタ Download PDFInfo
- Publication number
- WO2023002923A1 WO2023002923A1 PCT/JP2022/027766 JP2022027766W WO2023002923A1 WO 2023002923 A1 WO2023002923 A1 WO 2023002923A1 JP 2022027766 W JP2022027766 W JP 2022027766W WO 2023002923 A1 WO2023002923 A1 WO 2023002923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength
- optical filter
- light
- carbon atoms
- group
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 155
- 230000031700 light absorption Effects 0.000 claims abstract description 61
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 42
- 239000011147 inorganic material Substances 0.000 claims abstract description 42
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 150000001875 compounds Chemical class 0.000 claims description 142
- 125000004432 carbon atom Chemical group C* 0.000 claims description 112
- 239000010410 layer Substances 0.000 claims description 103
- 238000002834 transmittance Methods 0.000 claims description 74
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 54
- 125000000217 alkyl group Chemical group 0.000 claims description 53
- 238000010521 absorption reaction Methods 0.000 claims description 46
- 239000011241 protective layer Substances 0.000 claims description 30
- 125000003545 alkoxy group Chemical group 0.000 claims description 21
- 125000005843 halogen group Chemical group 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 19
- 125000000623 heterocyclic group Chemical group 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 15
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 13
- 125000001424 substituent group Chemical group 0.000 claims description 13
- -1 merocyanine compound Chemical class 0.000 claims description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 claims description 8
- 125000004423 acyloxy group Chemical group 0.000 claims description 8
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 claims description 8
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 101001106523 Homo sapiens Regulator of G-protein signaling 1 Proteins 0.000 claims description 6
- 102100021269 Regulator of G-protein signaling 1 Human genes 0.000 claims description 6
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 claims description 6
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 6
- 229920006395 saturated elastomer Polymers 0.000 claims description 6
- 150000001721 carbon Chemical class 0.000 claims description 5
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 5
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 125000004429 atom Chemical group 0.000 claims description 4
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims description 4
- 239000012964 benzotriazole Substances 0.000 claims description 4
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 claims description 4
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 claims description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229920005668 polycarbonate resin Polymers 0.000 claims description 4
- 239000004431 polycarbonate resin Substances 0.000 claims description 4
- 229920001225 polyester resin Polymers 0.000 claims description 4
- 239000004645 polyester resin Substances 0.000 claims description 4
- 239000009719 polyimide resin Substances 0.000 claims description 4
- 125000002373 5 membered heterocyclic group Chemical group 0.000 claims description 3
- 125000004070 6 membered heterocyclic group Chemical group 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 3
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 5
- 239000000049 pigment Substances 0.000 abstract description 11
- 239000000975 dye Substances 0.000 description 96
- 230000003595 spectral effect Effects 0.000 description 24
- 239000011347 resin Substances 0.000 description 23
- 229920005989 resin Polymers 0.000 description 23
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 11
- 150000002430 hydrocarbons Chemical group 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 125000001153 fluoro group Chemical group F* 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 239000006096 absorbing agent Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000001771 vacuum deposition Methods 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 125000005529 alkyleneoxy group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 150000002926 oxygen Chemical group 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- 238000007539 photo-oxidation reaction Methods 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- WYNCHZVNFNFDNH-UHFFFAOYSA-N Oxazolidine Chemical compound C1COCN1 WYNCHZVNFNFDNH-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical compound C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- RSAZYXZUJROYKR-UHFFFAOYSA-N indophenol Chemical compound C1=CC(O)=CC=C1N=C1C=CC(=O)C=C1 RSAZYXZUJROYKR-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- HRRDCWDFRIJIQZ-UHFFFAOYSA-N naphthalene-1,8-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=CC2=C1 HRRDCWDFRIJIQZ-UHFFFAOYSA-N 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical compound N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 125000005506 phthalide group Chemical class 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/04—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B23/00—Methine or polymethine dyes, e.g. cyanine dyes
- C09B23/10—The polymethine chain containing an even number of >CH- groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/006—Preparation of organic pigments
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
Definitions
- the present invention relates to optical filters.
- Imaging devices such as digital cameras, digital video cameras, and mobile phone cameras are equipped with solid-state imaging devices (CCD, CMOS, etc.) for sensing people and scenery. While the spectral sensitivity of a solid-state imaging device extends from the ultraviolet wavelength region to the near-infrared wavelength region, human luminosity is only in the visible wavelength region. An optical filter is arranged on the subject side of the solid-state imaging device in order to bring the spectral sensitivity of the solid-state imaging device close to human visibility.
- Patent Literature 1 discloses an ultraviolet cut filter in which a polyene having both ends substituted with an aromatic hydrocarbon is added as an ultraviolet absorber to a transparent resin material.
- the ultraviolet cut filter of Patent Document 1 since the UV absorber is contained in the resin layer, there is a possibility that the UV absorber reacts with the hydroxyl groups in the resin due to sunlight or room light, resulting in photo-oxidation and deterioration. be. Therefore, the ultraviolet cut filter of Patent Document 1 may not have sufficient light resistance.
- An object of one aspect of the present invention is to provide an optical filter having excellent light resistance and ultraviolet shielding properties.
- One aspect of the optical filter according to the present invention is an optical filter comprising a transparent substrate having a first main surface, and a first light absorption layer provided on the first main surface side of the transparent substrate.
- the first light absorbing layer contains an ultraviolet absorbing pigment and an inorganic material, and the ultraviolet absorbing pigment has a maximum absorption wavelength of 300 nm to 430 nm and a molecular weight of 2000 or less.
- One aspect of the present invention can provide an optical filter with excellent light resistance and ultraviolet shielding properties.
- FIG. 1 is a schematic diagram of a cross-section of an optical filter according to one embodiment of the present invention
- FIG. FIG. 5 is a schematic cross-sectional view of a first modified example of an optical filter according to an embodiment of the present invention
- FIG. 5 is a schematic cross-sectional view of a second modified example of an optical filter according to an embodiment of the present invention
- FIG. 5 is a schematic cross-sectional view of a third modified example of an optical filter according to an embodiment of the present invention
- FIG. 11 is a schematic cross-sectional view of a fourth modified example of the optical filter according to one embodiment of the present invention
- FIG. 11 is a schematic cross-sectional view of a fifth modified example of an optical filter according to an embodiment of the present invention
- 4 is a diagram showing spectral transmittance curves before and after a lightfastness test of the optical filter in Example 1.
- FIG. FIG. 10 is a diagram showing spectral transmittance curves before and after a light resistance test of an optical filter in Example 2
- FIG. 10 is a diagram showing spectral transmittance curves before and after a light resistance test of an optical filter in Example 3
- FIG. 11 is a diagram showing a spectral transmittance curve of an optical filter in Example 4
- FIG. 10 is a diagram showing a spectral transmittance curve of an optical filter in Example 5
- FIG. 11 is a diagram showing a spectral transmittance curve of an optical filter in Example 6
- FIG. 10 is a diagram showing spectral transmittance curves before and after a light resistance test of an optical filter in Example 7;
- FIG. 1 is a schematic cross-sectional view of an optical filter according to one embodiment of the present invention.
- the optical filter 10 has a transparent substrate 1 and a first light absorption layer 2 provided on one principal surface (first principal surface) of the transparent substrate 1 .
- the transparent substrate 1 may be made of any material as long as it is transparent (has high transmittance) to visible light.
- the transparent substrate 1 may be made of glass (white plate glass, near-infrared absorbing glass, etc.) or resin.
- the thickness of the transparent base material 1 depends on the constituent material, it is preferably 0.03 mm to 5 mm, and from the viewpoint of thinning, preferably 0.05 mm to 1 mm.
- the first light absorption layer 2 is a layer that absorbs ultraviolet rays.
- the first light-absorbing layer 2 is a layer containing an ultraviolet-absorbing dye (A) that absorbs ultraviolet rays and an inorganic material (B).
- A) is a dispersed layer.
- the layer is a mixture of the inorganic material (B) and the ultraviolet absorbing dye (A).
- the infrared absorbing dye (A) may be uniformly dispersed in the inorganic material (B), and the concentration is different in the direction orthogonal to the first main surface of the transparent substrate 1 (thickness direction of the transparent substrate 1). may be
- the ultraviolet absorbing dye (A) is not particularly limited as long as it has a maximum absorption wavelength (hereinafter referred to as " ⁇ max ”) within the wavelength range of 300 nm to 430 nm and has a molecular weight of 2000 or less.
- ⁇ max has an absorption peak having an absorption peak (hereinafter referred to as “ ⁇ max absorption peak”).
- the absorption curve of the ultraviolet absorbing dye (A) has ⁇ max in the wavelength range of 300 nm to 430 nm, has little absorption in the visible light region, and the slope of the absorption peak of ⁇ max on the visible light side is gentle. is preferred. Furthermore, it is preferable that the absorption peak of ⁇ max has a steep slope on the long wavelength side.
- ⁇ max of the ultraviolet absorbing dye (A) is measured using a solution obtained by dissolving the ultraviolet absorbing dye (A) in dichloromethane, for example, with an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, model number: V770). can be detected from the absorption curve.
- absorption curves are measured at an incident angle of 0° unless otherwise specified.
- the ultraviolet absorbing dye (A) can give the optical filter 10 excellent ability to absorb light in the ultraviolet wavelength range (300 nm to 430 nm). Further, since the ultraviolet absorbing dye (A) has a molecular weight of 2000 or less, the ultraviolet absorbing dye (A) can be formed on the transparent substrate at a low temperature. Therefore, the thermal deterioration of the ultraviolet absorbing dye (A) can be suppressed, and the optical filter 10 can obtain desired ultraviolet absorbing characteristics.
- Examples of the ultraviolet absorbing dye (A) include triazine-based compounds, indole-based compounds, azomethine-based compounds, benzotriazole-based compounds, merocyanine-based compounds, benzoxazole-based compounds, cyanine-based compounds, naphthalimide-based compounds, and oxadiazole-based compounds. , oxazine-based compounds, oxazolidine-based compounds, naphthalic acid-based compounds, styryl-based compounds, anthracene-based compounds, cyclic carbonyl-based compounds, triazole-based compounds, and the like.
- the UV-absorbing dye (A) composed of a merocyanine-based compound or a benzoxazole-based compound is preferable in that it has a high absorbance and can efficiently absorb a desired UV band.
- the change in characteristics from the ultraviolet wavelength region to the visible wavelength region is steep, so that transmittance loss in the visible wavelength band is less likely to occur, which is preferable.
- a merocyanine compound represented by the following formula (U1) is preferable as the ultraviolet absorbing dye (A) that is a merocyanine compound.
- the compound represented by formula (U1) is also referred to as compound (U1). The same applies to other compounds.
- Y represents a methylene group or an oxygen atom substituted with R6 and R7 .
- R 1 represents an optionally substituted monovalent hydrocarbon group having 1 to 12 carbon atoms.
- R 2 to R 7 each independently represent a hydrogen atom, a halogen atom, or an alkyl or alkoxy group having 1 to 10 carbon atoms.
- X represents any of the divalent groups represented by the following formulas (X1) to (X5) (with the proviso that R 8 and R 9 each independently represent an optionally substituted carbon number represents a 1 to 12 monovalent hydrocarbon group, wherein each of R 10 to R 19 is independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent; ).
- R 1 , R 8 and R 9 are each independently an alkyl group having 1 to 6 carbon atoms in which a portion of the hydrogen atoms may be substituted with a cycloalkyl group or a phenyl group;
- R 2 to R 7 and R 10 to R 19 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- R 1 , R 8 and R 9 are each independently alkyl groups having 1 to 6 carbon atoms, and R 2 to R 7 and R 10 to R 19 are each independently hydrogen atoms. Alternatively, it is preferably an alkyl group having 1 to 6 carbon atoms.
- Examples of the ultraviolet absorbing dye (C), which is a benzoxazole-based compound, include compounds represented by the following formula (U2-1).
- the ultraviolet absorbing dye (A) one selected from a plurality of compounds having a maximum absorption wavelength within the wavelength range of 300 nm to 430 nm may be used alone, or two or more may be used in combination. good too.
- the ultraviolet absorbing dye (A) preferably contains one or more of the ultraviolet absorbing dyes (A) described above.
- the ultraviolet absorbing dye (A) may contain any ultraviolet absorbing dye as necessary.
- an inorganic material having a refractive index of 1.38 to 2.20 at a wavelength of 500 nm is preferred.
- the inorganic material (B) include silica, alumina, magnesium fluoride, sodium fluoride, lanthanum fluoride, lithium fluoride, calcium fluoride, barium fluoride, lanthanum oxide, cerium oxide, germanium oxide, Indium oxide, magnesium oxide, zirconia oxide, tantalum oxide, yttrium oxide, tungsten oxide, zinc oxide, ITO, materials obtained by changing the valence of these compounds, composite materials obtained by mixing any of these compounds as the main component and adjusting the refractive index, etc. is mentioned.
- the matrix material in which the ultraviolet absorbing pigment (A) is dispersed is an inorganic material, there are fewer hydroxyl groups than when the matrix material is a resin. It is thought that the photo-oxidation of Therefore, the optical filter 10 can exhibit excellent light resistance and ultraviolet shielding properties.
- the film thickness of the first light absorption layer 2 is not particularly limited, and is appropriately determined according to the application, that is, the arrangement space in the device to be used, the required absorption characteristics, and the like.
- the film thickness of the first light absorption layer 2 is preferably 0.1 ⁇ m to 100 ⁇ m. If the film thickness is less than 0.1 ⁇ m, there is a possibility that the ultraviolet absorbing ability cannot be fully exhibited. In addition, if the film thickness exceeds 100 ⁇ m, the flatness of the film is lowered, and there is a possibility that the absorptivity may vary.
- the film thickness is more preferably 0.2 ⁇ m to 0.7 ⁇ m. Within this range, a sufficient ultraviolet absorbability can be obtained.
- a film thickness means a physical film thickness.
- the first light-absorbing layer 2 may optionally contain optional components other than the ultraviolet-absorbing dye (A) and the inorganic material (B) within a range that does not impair the effects of the present invention.
- optional components include ultraviolet or infrared absorbers, color tone correction dyes, ultraviolet absorbers, leveling agents, antistatic agents, heat stabilizers, light stabilizers, antioxidants, and the like.
- the content of these optional components in the first light absorption layer 2 is preferably 15 parts by mass or less with respect to 100 parts by mass of the inorganic material (B).
- the first light-absorbing layer 2 can exhibit both the function of absorbing near-infrared rays and the function of absorbing ultraviolet rays.
- the near-infrared absorbing dye (C) is not particularly limited as long as it has a maximum absorption wavelength within the wavelength range of 650 nm to 760 nm and a molecular weight of 2000 or less.
- the absorption curve of the near-infrared absorbing dye (C) has ⁇ max in the wavelength range of 650 nm to 760 nm, has little absorption in the visible light region, and has a steep slope on the visible light side of the absorption peak of ⁇ max .
- the absorption peak of ⁇ max has a gentle slope on the long wavelength side.
- ⁇ max of the near-infrared absorbing dye (C) is measured using a solution of the near-infrared absorbing dye (C) dissolved in dichloromethane, for example, with an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, model number: V770). can be detected from the absorption curve in the wavelength range of 400 nm to 850 nm, measured by In this specification, absorption curves are measured at an incident angle of 0° unless otherwise specified.
- the near-infrared absorbing dye (C) has a maximum absorption wavelength within the wavelength range of 650 nm to 760 nm, thereby imparting the optical filter 10 with the ability to absorb light in the near infrared wavelength range (700 nm to 1100 nm). . Further, since the near-infrared absorbing dye (C) has a molecular weight of 2000 or less, the near-infrared absorbing dye (C) can be formed on the transparent substrate at a low temperature. Therefore, thermal deterioration of the near-infrared absorbing dye (C) can be suppressed, and the optical filter 10 can obtain desired near-infrared absorbing characteristics.
- Examples of the near-infrared absorbing dye (C) include cyanine-based compounds, phthalocyanine-based compounds, naphthalocyanine-based compounds, dithiol metal complex-based compounds, diimmonium-based compounds, polymethine-based compounds, phthalide compounds, naphthoquinone-based compounds, anthraquinone-based compounds, and indophenol. and squarylium-based compounds.
- squarylium-based compounds, cyanine-based compounds and phthalocyanine-based compounds are more preferable, and squarylium-based compounds are particularly preferable.
- the near-infrared absorbing dye (C) made of a squarylium-based compound has little absorption in the visible light region in the above absorption curve, and the absorption peak of ⁇ max has a steep slope on the visible light side. It is preferred because of its high stability.
- the near-infrared absorbing dye (C) made of a cyanine-based compound is preferable because it shows little absorption in the visible light region in the above absorption curve and has a high light absorptance on the long wavelength side in the wavelength region near ⁇ max .
- cyanine compounds are dyes that have long been used as recording colors for CD-Rs and the like, are low in cost, and are known to ensure long-term stability by salt formation.
- a near-infrared absorbing dye (C) comprising a phthalocyanine-based compound is preferable because it is excellent in heat resistance and weather resistance.
- the near-infrared absorbing dye (C), which is a squarylium-based compound include at least one selected from squarylium-based compounds represented by the following formula (F1).
- the compound represented by formula (F1) is also referred to as compound (F1). The same applies to other compounds.
- the compound (F1) is a squarylium-based compound having a structure in which benzene rings are bonded to the left and right of the squarylium skeleton, a nitrogen atom is bonded to the 4-position of the benzene ring, and a saturated heterocyclic ring containing the nitrogen atom is formed. .
- the compound (F1) is a compound having light absorption properties as the near-infrared absorbing dye (C).
- the solvent used for forming the first light-absorbing layer (hereinafter sometimes referred to as "host solvent”) and other requirements such as increasing the solubility in the inorganic material (B)
- the substituents on the benzene ring can be appropriately adjusted within the following ranges.
- R 4 and R 6 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, or 6 carbon atoms.
- R 41 and R 42 are independently a hydrogen atom, a halogen atom, or a C 1 to 10 alkyl group or alkoxy group having 1 to 10 carbon atoms, k is 2 or 3).
- R 1 and R 2 , R 2 and R 5 , and R 1 and R 3 are linked together to form a 5-membered or 6-membered heterocyclic ring A, heterocyclic ring B, and heterocyclic ring C, respectively, with the nitrogen atom; good too.
- R 1 and R 2 are, as the divalent group -Q- to which they are bonded, a hydrogen atom of which is an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or It represents an alkylene group optionally substituted by an optionally substituted acyloxy group having 1 to 10 carbon atoms, or an alkyleneoxy group.
- R 2 and R 5 when the heterocycle B is formed, and R 1 and R 3 when the heterocycle C is formed, are respectively the divalent groups —X 1 —Y 1 — and — to which they are attached.
- X 2 -Y 2 - (X 1 and X 2 are on the nitrogen-bonding side)
- X 1 and X 2 are groups represented by the following formula (1x) or (2x)
- Y 1 and Y 2 are each A group represented by any one of the following formulas (1y) to (5y).
- each of X 1 and X 2 is a group represented by the following formula (2x)
- each of Y 1 and Y 2 may be a single bond.
- Zs are each independently a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms or an alkoxy group, or -NR 28 R 29 (R 28 and R 29 are each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms).
- R 21 to R 26 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms, and R 27 is an alkyl group having 1 to 6 carbon atoms or a represents an aryl group.
- R 7 , R 8 , R 9 , R 4 , R 6 , R 21 to R 27 , R 1 to R 3 when not forming a heterocyclic ring, and R 5 are mutually They may be combined to form a 5- or 6-membered ring.
- R 21 and R 26 and R 21 and R 27 may be directly bonded.
- R 1 and R 2 when not forming a heterocyclic ring are each independently a hydrogen atom, an optionally substituted C 1-6 alkyl group or allyl group, or a C 6 to 11 aryl or araryl groups.
- R 3 and R 5 when not forming a heterocyclic ring each independently represent a hydrogen atom, a halogen atom, or an alkyl or alkoxy group having 1 to 6 carbon atoms.
- heterocyclic ring A may simply be referred to as ring A.
- R 4 and R 6 each independently represent the above atoms or groups.
- a fluorine atom, a chlorine atom, a bromine atom etc. are mentioned as a halogen atom.
- Alkyl groups may be linear, branched, or cyclic.
- a preferred combination of R 4 and R 6 is one in which one is a hydrogen atom and the other is —NR 7 R 8 .
- -NR 7 R 8 is either R 4 or R 6 may be introduced into When compound (F1) has only ring B or only ring A and ring B, respectively, -NR 7 R 8 is preferably introduced into R 4 . Similarly, when having only ring C or only ring A and ring C respectively, -NR 7 R 8 is preferably introduced at R 6 .
- R 9 is an optionally substituted C 1-20 alkyl group, an optionally substituted C 6-10 aryl group, or an optionally substituted C 6-10
- An araryl group having 7 to 18 carbon atoms which may have an oxygen atom between carbon atoms is preferred. Examples of substituents include a fluorine atom, an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an acyloxy group having 1 to 6 carbon atoms.
- R 9 is a linear, branched, or cyclic alkyl group having 1 to 17 carbon atoms which may be substituted with a fluorine atom, a fluoroalkyl group having 1 to 6 carbon atoms, and/or carbon a phenyl group optionally substituted with an alkoxy group having 1 to 6 carbon atoms, and a phenyl group having 7 to 18 carbon atoms which may have an oxygen atom between carbon atoms, and a terminally substituted fluorine atom having 1 to 6 carbon atoms.
- a group selected from an optionally substituted alkyl group and/or an araryl group having a phenyl group optionally substituted with an alkoxy group having 1 to 6 carbon atoms is preferred.
- the 5- or 6-membered rings A, B, and C formed by connecting R 1 and R 2 , R 2 and R 5 , and R 1 and R 3 to each other are At least one of these may be formed, and two or three may be formed.
- R 1 and R 2 when not forming a ring are each independently a hydrogen atom, an optionally substituted C 1-6 alkyl group or allyl group, or a C 6- 11 aryl or araryl groups are shown.
- Alkyl groups may be linear, branched, or cyclic. Substituents include hydroxyl groups, alkoxy groups having 1 to 3 carbon atoms, and acyloxy groups having 1 to 3 carbon atoms.
- R 3 and R 5 when not forming a ring each independently represent a hydrogen atom, a halogen atom, or an alkyl or alkoxy group having 1 to 6 carbon atoms.
- R 1 , R 2 , R 3 and R 5 are preferably alkyl groups having 1 to 3 carbon atoms, methyl group, 2 -Propyl groups are particularly preferred.
- the groups R 1 to R 6 of the benzene rings bonded to the left and right of the squarylium skeleton may be different on the left and right, but are preferably the same on the left and right.
- the compound (F1) includes the compound (F1-1) represented by the formula (F1-1) having the resonance structure of the structure represented by the general formula (F1).
- the compound (F1) more specifically, a compound represented by the following formula (F11) having only ring B as a ring structure, a compound represented by the following formula (F12) having only ring A as a ring structure, and ring B and a compound represented by the following formula (F13) having two rings C as a ring structure.
- the compound represented by the following formula (F11) is the same compound as the compound (F1) having only ring C as a ring structure and R 6 being —NR 7 R 8 .
- the compound represented by the following formula (F11) and the compound represented by the following formula (F13) are compounds described in US Pat. No. 5,543,086.
- X 1 is preferably an ethylene group in which the hydrogen atom represented by (2x) above may be substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- the substituent is preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group.
- X 1 specifically includes -(CH 2 ) 2 -, -CH 2 -C(CH 3 ) 2 -, -CH(CH 3 )-C(CH 3 ) 2 -, -C(CH 3 ) 2 -C(CH 3 ) 2- and the like.
- the compound (F11) for example, the following formula (F11-1), formula (F11-2), formula (F11-3), formula (F11-4), formula (F11-5), formula (F11-6) , compounds represented by formula (F11-7) and formula (F11-8), respectively.
- the solubility in the host solvent and the inorganic material (B) is high, so the compound (F11-2), the compound (F11-3), the compound (F11-4), the compound (F11-5), the compound ( F11-6), formula (F11-7), and formula (F11-8) are more preferred.
- Q is a hydrogen atom substituted with an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms or an acyloxy group having 1 to 10 carbon atoms which may have a substituent.
- the position of the oxygen in the case of the alkyleneoxy group is preferably other than adjacent to N.
- Q is preferably an alkyl group having 1 to 3 carbon atoms, particularly a butylene group which may be substituted with a methyl group.
- the compound (F12) since the compound (F12) has a ⁇ max on the relatively long wavelength side in the above wavelength range, the use of the compound (F12) makes it possible to widen the transmission region of the visible wavelength band.
- Examples of the compound (F12) include compounds represented by the following formulas (F12-1), (F12-2), and (F12-3).
- X 1 and X 2 may be independently substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms at the hydrogen atom represented by (2x) above. Ethylene groups are preferred. In this case, the substituent is preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group. Specific examples of X 1 and X 2 include -(CH 2 ) 2 -, -CH 2 -C(CH 3 ) 2 -, -CH(CH 3 )-C(CH 3 ) 2 -, -C( CH 3 ) 2 —C(CH 3 ) 2 — and the like.
- Y 1 and Y 2 are independently -CH 2 -, -C(CH 3 ) 2 -, -CH(C 6 H 5 )-, -CH((CH 2 ) m CH 3 )- (m is 0 to 5) and the like.
- Examples of the compound (F13) include compounds represented by the following formulas (F13-1) and (F13-2), respectively.
- a squarylium-based compound represented by the following formula (F2) can also be used as the near-infrared absorbing dye (C).
- Formula (F2) represents a compound in which none of ring A, ring B, and ring C is formed in formula (F1) (provided that R 1 to R 6 are as follows).
- R 1 and R 2 each independently represent a hydrogen atom, an optionally substituted alkyl or allyl group having 1 to 12 carbon atoms, or an aryl or araryl group having 6 to 11 carbon atoms.
- R 3 and R 5 each independently represent a hydrogen atom, a halogen atom, or an alkyl or alkoxy group having 1 to 6 carbon atoms.
- R 4 and R 6 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl or alkoxy group having 1 to 6 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, or —NR 7 R 8
- R 9 is a hydrogen atom, an optionally substituted carbon an alkyl group of 1 to 20 carbon atoms or an aryl group of 6 to 11 carbon atoms, or an araryl group of 7 to 18 carbon atoms which optionally has a substituent and an oxygen atom between the carbon atoms) ).
- Examples of the compound (F2) include compounds represented by formulas (F2-1) and (F2-2).
- a squarylium-based compound represented by the following formula (F3) can also be used as the near-infrared absorbing dye (C).
- the compound (F1) such as the compound (F11), the compound (F12), and the compound (F13), the compound (F2), and the compound (F3) can be produced by known methods.
- Compound (F11) such as compound (F11-1) can be produced, for example, by the method described in US Pat. No. 5,543,086. Further, the compound (F12) is described in, for example, J. Am. Org. Chem. 2005, 70(13), 5164-5173.
- the near-infrared absorbing dye (C) is a squarylium-based compound
- a commercially available product may be used.
- Commercially available products include S2098 and S2084 (trade name, manufactured by FEW Chemicals).
- the near-infrared absorbing dye (C), which is a cyanine compound include at least one selected from cyanine compounds represented by the following formula (F4).
- Each R 11 independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group or an alkylsulfone group, or an anion thereof.
- R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
- Z is PF 6 , ClO 4 , R f —SO 2 , (R f —SO 2 ) 2 —N (R f is an alkyl group having 1 to 8 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom; ), or BF 4 .
- R 14 , R 15 , R 16 and R 17 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms.
- n represents an integer of 1-6.
- R 11 in compound (F4) is preferably an alkyl group having 1 to 20 carbon atoms
- R 12 and R 13 are each independently preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- R 14 , R 15 , R 16 and R 17 are each independently preferably a hydrogen atom, and the number of n is preferably 1-4.
- the left and right structures sandwiching n repeating units may be different, but the same structure is preferred.
- More specific examples of the compound (F4) include compounds represented by the following formula (F4-1) and compounds represented by the following formula (F4-2).
- the anion represented by Z- is the same as Z- in (F4) above.
- a commercially available product may be used as the near-infrared absorbing dye (C), which is a cyanine compound.
- Commercially available products include ADS680HO (trade name, manufactured by American Dye), S0830 (trade name, manufactured by FEW Chemicals), and S2137 (trade name, manufactured by FEW Chemicals).
- phthalocyanine compounds that can be used as the near-infrared absorbing dye (C) include FB22 (trade name, manufactured by Yamada Chemical Industry Co., Ltd.), TXEX720 (trade name, manufactured by Nippon Shokubai Co., Ltd.), and PC142c (trade name, manufactured by Yamada Chemical Industry Co., Ltd.). company) and other commercially available products.
- the near-infrared absorbing dye (C) one selected from a plurality of compounds having a maximum absorption wavelength within the wavelength range of 650 nm to 760 nm may be used alone, or two or more may be used in combination.
- the near-infrared absorbing dye (C) preferably contains one or more of the near-infrared absorbing dyes (C) described above.
- the near-infrared absorbing dye (C) may contain any near-infrared absorbing dye as necessary.
- the near-infrared absorbing dye (C) When a plurality of near-infrared absorbing dyes are used as the near-infrared absorbing dye (C), it is preferable to use a combination of near-infrared absorbing dyes so as to exhibit the maximum absorption wavelength within the wavelength range of 650 nm to 760 nm. Furthermore, in the absorption curve, near-infrared absorption dyes are combined so that the absorption in the visible light region is small, the slope of the absorption peak of ⁇ max on the visible light side is steep, and the slope is gentle on the long wavelength side. It is preferable to use
- FIG. 2 is a schematic cross-sectional view of a first modified example of an optical filter according to one embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view of a second modification of the optical filter according to one embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view of a third modification of the optical filter according to one embodiment of the present invention.
- FIG. 5 is a schematic cross-sectional view of a fourth modification of the optical filter according to one embodiment of the present invention.
- FIG. 6 is a schematic cross-sectional view of a fifth modification of the optical filter according to one embodiment of the present invention.
- the first light absorption layer 2 may have an inorganic layer 21 containing an inorganic material (B) and a dye layer 22 containing an ultraviolet absorbing dye (A).
- the interface between the inorganic layer 21 and the dye layer 22 may be a clear one that does not include the other, or may be a portion where the inorganic material (B) and the near-infrared absorbing dye (A) are mixed.
- FIG. 2 shows an example in which the transparent base material 1, the inorganic layer 21, and the dye layer 22 are laminated in this order, the transparent base material 1, the dye layer 22, and the inorganic layer 21 may be laminated in this order.
- a plurality of inorganic layers 21 and dye layers 22 may be alternately laminated. In the example shown in FIG. 3 as well, the inorganic layer 21 and the dye layer 22 may be alternately laminated in reverse order.
- the optical filter 40 may have the second light absorption layer 3 on one main surface (first main surface) of the transparent substrate 1 .
- the transparent substrate 1, the first light absorption layer 2, and the second light absorption layer 3 are laminated in this order, but as shown in FIG. 1, the second light absorption layer 3, and the first light absorption layer 2 may be laminated in this order.
- the optical filter 60 has a first light absorption layer provided on the first main surface side of the transparent base material 1 and a second light absorption layer provided on the second main surface side of the transparent base material 1 .
- a light absorption layer 3 may be provided.
- the second light absorption layer 3 has a near-infrared absorption dye (C) having a maximum absorption wavelength of 300 nm to 430 nm, and a matrix material.
- a near-infrared absorption dye (C) having a maximum absorption wavelength of 300 nm to 430 nm, and a matrix material.
- the near-infrared absorbing dye (C) specifically, the same near-infrared absorbing dye (C) as in the optical filter 10 shown in FIG. 1 can be applied.
- ⁇ max of the near-infrared absorbing dye (C) is measured using a solution of the near-infrared absorbing dye (C) dissolved in dichloromethane, for example, with an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, model number: V770). can be detected from the absorption curve in the wavelength range of 400 nm to 850 nm, measured by
- the near-infrared absorbing dye (C) has a maximum absorption wavelength within the wavelength range of 650 nm to 760 nm, thereby imparting the optical filter 10 with the ability to absorb light in the near infrared wavelength range (700 nm to 1100 nm). .
- the matrix material may be an inorganic material or a resin.
- the inorganic material specifically, the same inorganic material (B) as in the case of the optical filter 10 shown in FIG. 1 can be applied.
- the resin preferably has a refractive index of 1.45 or more.
- the refractive index is more preferably 1.5 or higher, particularly preferably 1.6 or higher. Although there is no particular upper limit for the refractive index of the resin, it is preferably about 1.72 in terms of availability.
- resins include acrylic resins, epoxy resins, ene-thiol resins, polycarbonate resins, polyether resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyparaphenylene resins, and polyarylene ether phosphines.
- Oxide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins can be mentioned.
- One of these resins may be used alone, or two or more may be mixed and used.
- a resin having a refractive index of 1.45 or more one of these resins may be used alone, or two or more may be mixed, as long as the overall refractive index is 1.45 or more. can be used as
- polyimide Resins from the viewpoint of high solubility of the near-infrared absorbing dye (C) and high glass transition temperature, and from the viewpoint of suppressing the thermal movement of the near-infrared absorbing dye (C) and improving heat resistance, polyimide Resins, polyester resins and polycarbonate resins are preferred.
- a protective layer is provided on the surface of the first light absorption layer 2 or the second light absorption layer 3 (the surface in contact with the atmosphere).
- protective layers may be provided on both the surface of the first light absorption layer 2 and the surface of the second light absorption layer 3 .
- the protective layer is not particularly limited, but includes an antireflection film, a reflective film that reflects light in a specific wavelength range, a selective wavelength shielding film that controls transmission and shielding of light in a specific wavelength range, and shields radiation such as ⁇ rays. It can be composed of a radiation shielding film or the like.
- the protective layer preferably has at least one optical property of suppressing reflection of visible light, optical property of reflecting ultraviolet light, and optical property of reflecting infrared light. Specifically, for example, it may have at least one film selected from a visible light antireflection film that suppresses reflection of visible light, an ultraviolet reflective film that reflects ultraviolet rays, and an infrared reflective film that reflects infrared rays.
- a protective layer having such optical properties a dielectric multilayer film in which two or more kinds of dielectric films having different refractive indices are laminated is exemplified.
- the protective layer provided on the surface of the first light absorption layer 2 is preferably made of the same material as the inorganic material (B).
- the protective layer provided on the surface of the second light absorption layer 3 is preferably made of the same material as the matrix material. By doing so, the adhesion between each light absorbing layer and the protective layer is high, and the two are less likely to be peeled off.
- the protective layer may be a single layer or a plurality of layers composed of different materials.
- the film thickness of the protective layer is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 5 ⁇ m, and from the viewpoint of thinning the optical filter, the thinner one is preferable.
- the thickness of the protective layer is the total physical thickness of the plurality of layers.
- the first light absorption layer 2 of the optical filter 10 has an average internal transmittance of 60% or less at a wavelength of 300 nm to 380 nm, an average internal transmittance of 80% or more at a wavelength of 430 nm to 600 nm, and has a transmittance in the ultraviolet wavelength range. It is preferable that the difference between the wavelength at which the transmittance is 80% and the wavelength at which the transmittance is 20% is 45 nm or less.
- the transmittance is a value measured using an ultraviolet-visible-near-infrared spectrophotometer.
- the internal transmittance is a transmittance that does not include the influence of the reflection characteristics of the surface of the optical filter, and means a value calculated by transmittance/(100 ⁇ reflectance) ⁇ 100.
- the average internal transmittance in a specific wavelength region means a value obtained by averaging internal transmittances at all wavelengths in that wavelength region.
- the optical filter 10 can exhibit excellent ultraviolet shielding properties. Therefore, the sensitivity of the solid-state imaging device can be increased.
- the optical filters 40, 50, 60 having the second light absorption layer 3 shown in FIGS. 4 to 6 preferably have the following characteristics (a-1) to (a-7).
- (a-2) The difference between the wavelength ⁇ UV50% at a light incident angle of 0° and the wavelength ⁇ UV50% at a light incident angle of 30° is 10 nm or less.
- the average transmittance at a light incident angle of 0° at a wavelength of 440 nm to 500 nm is 80% or more.
- the average transmittance of light having a wavelength of 500 nm to 600 nm at an incident angle of 0° is 85% or more.
- the average transmittance at a wavelength of 750 nm to 1000 nm at a light incident angle of 0° is 90% or less.
- (a-7) having a wavelength ⁇ IR20% at which the light transmittance is 20% in the infrared wavelength region, and the wavelength ⁇ IR20% at a light incident angle of 0° and the wavelength at a light incident angle of 30°; The difference from ⁇ IR20% is 5 nm or less.
- the average transmittance in a specific wavelength region means the average transmittance of all wavelengths in that wavelength region.
- the angle of incidence when measuring the transmittance of light by allowing light to enter from a direction other than the direction orthogonal to the main surface of the specimen, a straight line that indicates the direction of light incidence with respect to the line orthogonal to the main surface is called the angle of incidence.
- the light transmittance refers to the ratio of the light incident from the direction perpendicular to the main surface of the specimen that passes straight through the specimen to the opposite side.
- the optical filters 40, 50, and 60 having the second light absorption layer 3 have the properties (a-1) to (a-7) described above, so that they can exhibit excellent near-infrared shielding properties and ultraviolet shielding properties. . Therefore, the sensitivity of the solid-state imaging device can be increased.
- the method for manufacturing the optical filter 10 includes, for example, using a vacuum vapor deposition method, simultaneously heating the ultraviolet absorbing dye (A) by resistance heating and the inorganic material (B) by an electron beam (EB), and forming the A first light absorbing layer 2 is formed on the substrate.
- the optical filter 10 having the first light absorbing layer 2 containing the ultraviolet absorbing pigment (A) and the near-infrared absorbing pigment (C) for example, the ultraviolet absorbing pigment (A) and the near-infrared absorbing pigment (C) are mixed and heated by resistance heating.
- the concentration of the ultraviolet absorbing pigment (A) contained in the first light absorbing layer 2 can be increased compared to the wet film forming process, so the optical filter has superior ultraviolet shielding properties. is obtained.
- the inorganic material (B) is heated by an electron beam (EB) to form the inorganic layer 21 on the transparent base material 1, and then the ultraviolet absorbing dye (A) is added to the resistor. By heating, the dye layer 22 is formed on the inorganic layer 21 .
- the optical filter 30 shown in FIG. 3 this is repeated to form a plurality of laminated structures.
- the vacuum deposition method described above can be applied.
- a method for producing the second light absorption layer 3 when an inorganic material is used as the matrix material, for example, it can be formed using a vacuum deposition method, and when using a resin, for example, the following method can be used. can be formed.
- a coating liquid prepared by dispersing and dissolving the near-infrared absorbing dye (C) and the resin (B) in a solvent is applied onto the transparent substrate 1 or the first light absorbing layer 2, and dried; Furthermore, it can be produced by curing as necessary.
- a vacuum film formation process such as CVD, sputtering, or vacuum deposition, or a wet film formation process such as spray or dip can be used.
- any one of the optical filters may include a reflective film that reflects light in a specific wavelength range and a selective wavelength shielding film that controls transmission and blocking of light in a specific wavelength range.
- the optical filters 10, 20, 30, 40, 50, and 60 are used in imaging devices such as smartphone cameras, digital still cameras, digital video cameras, surveillance cameras, vehicle-mounted cameras, and web cameras, and near-infrared filters such as automatic exposure meters. , a near-infrared filter for PDP, and the like.
- the optical filter has two transmission bands of visible light and some wavelengths of near-infrared light (for example, only light with a wavelength of 850 nm or 940 nm), and cuts light with wavelengths other than these transmission bands.
- the optical filter of the present invention is suitably used in solid-state imaging devices such as smartphone cameras, digital still cameras, digital video cameras, surveillance cameras, vehicle-mounted cameras, and web cameras. It is arranged between the image sensor.
- Examples 1, 2 and 7 are examples and Example 3 is a comparative example. Examples 4 to 6 are reference examples.
- Example 1 A flat glass plate (D263, manufactured by Schott) having a length of 50 mm, a width of 50 mm, and a thickness of 0.3 mm was used as the transparent substrate.
- Magnesium fluoride (MgF 2 ) was used as the matrix material, and the compound (U2-1) (molecular weight 430.17, maximum absorption wavelength 375 nm in dichloromethane solution, manufactured by Tokyo Kasei Co., Ltd., product name: UVITEX OB) was used as the ultraviolet absorbing dye.
- a film was formed on a glass plate using a vacuum vapor deposition apparatus so that both were in a mixed state to form a light absorption layer.
- the light absorption layer was appropriately adjusted so that the film thickness was between 200 nm and 700 nm.
- a protective layer was formed on the surface of the obtained light absorption layer using silicon oxide (SiO 2 ) with a vacuum deposition apparatus so that the film thickness was 100 nm or more, and an optical filter of Example 1 was obtained.
- Example 2 An optical filter of Example 2 was obtained in the same manner as in Example 1, except that SiO 2 was used as the matrix material.
- Example 3 A glass plate similar to that of Example 1 was used as a transparent substrate.
- Compound (U2-1) as an ultraviolet absorbing dye was added to a solution obtained by dissolving polyimide (trade name: C-3G30G, manufactured by Mitsubishi Gas Chemical Co., Ltd.) as a matrix material in an organic solvent, and 4. to 100 parts by mass of polyimide. After mixing at a ratio of 5 parts by mass, the coating liquid was obtained by stirring and dissolving at room temperature. The obtained coating liquid was applied onto a glass plate using spin coating, and the organic solvent was removed by heating and drying to form a light absorption layer with a thickness of 1.11 ⁇ m. Got a filter.
- Example 4 An optical filter of Example 4 was obtained in the same manner as in Example 1, except that the compound (U1-6) (molecular weight: 293.14, maximum absorption wavelength: 399 nm in a dichloromethane solution) was used as the ultraviolet absorbing dye. rice field.
- the compound (U1-6) molecular weight: 293.14, maximum absorption wavelength: 399 nm in a dichloromethane solution
- Example 5 In Example 1, SiO 2 was used as the matrix material, and compound (U1-6) (molecular weight: 293.14, maximum absorption wavelength: 399 nm in dichloromethane solution) was used as the ultraviolet absorbing dye. An optical filter of Example 5 was obtained.
- Example 6 An optical filter of Example 6 was obtained in the same manner as in Example 1, except that the protective layer was not provided.
- Example 7 An optical filter of Example 7 was obtained in the same manner as in Example 1 except that magnesium fluoride (MgF 2 ) was used as the protective layer.
- magnesium fluoride MgF 2
- FIG. 12 shows the spectral transmittance curve of the optical filter of Example 6, and
- FIG. 7 shows the spectral transmittance curves of the optical filters of No. 7.
- FIG. 7 shows the spectral transmittance curves of the optical filter of Example 1 before and after the light resistance test
- FIG. 8 shows the spectral transmittance curves of the optical filter of Example 2 before and after the light resistance test
- FIG. 9 shows the optical filter of Example 3.
- Fig. 13 shows the spectral transmittance curves of the optical filter of Example 7 before and after the light resistance test.
- Minimum transmittance fluctuation amount [%] (Minimum transmittance of light with a wavelength of 500 nm to 800 nm before irradiation) - (Minimum transmittance of light with a wavelength of 500 nm to 800 nm after irradiation)
- the evaluation of the light fastness is shown in Table 1 as A when the minimum transmittance variation [%] is 5% or less, and as B when it exceeds 5%.
- the optical filters of Examples 1, 2, and 7 using an inorganic material as the matrix material were found to have good light resistance. Since the matrix material is an inorganic material, there are fewer hydroxyl groups than when the matrix material is a resin.
- the present invention includes the following aspects.
- the first light absorption layer has an average internal transmittance of 60% or less at a wavelength of 300 nm to 380 nm, an average internal transmittance of 80% or more at a wavelength of 430 nm to 600 nm, and a transmittance of 80% in the ultraviolet wavelength region. 5.
- Y represents a methylene group or an oxygen atom substituted with R6 and R7 .
- R 1 represents an optionally substituted monovalent hydrocarbon group having 1 to 12 carbon atoms.
- R 2 to R 7 each independently represent a hydrogen atom, a halogen atom, or an alkyl or alkoxy group having 1 to 10 carbon atoms.
- X represents any of the divalent groups represented by the following formulas (X1) to (X5) (with the proviso that R 8 and R 9 each independently represent an optionally substituted carbon number represents a 1 to 12 monovalent hydrocarbon group, wherein each of R 10 to R 19 is independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent; ).
- R 1 , R 8 and R 9 are each independently an alkyl group having 1 to 6 carbon atoms in which a portion of the hydrogen atoms may be substituted with a cycloalkyl group or a phenyl group;
- R 1 , R 8 and R 9 are each independently alkyl groups having 1 to 6 carbon atoms, and R 2 to R 7 and R 10 to R 19 are each independently hydrogen atoms.
- optical filter according to aspect 7 which is an alkyl group having 1 to 6 carbon atoms.
- ⁇ Aspect 12> 12 12.
- the optical filter according to aspect 11, wherein the inorganic material is at least one selected from the group consisting of silica, alumina, and magnesium fluoride.
- ⁇ Aspect 14> 14 The optical filter according to aspect 13, wherein the protective layer provided on the surface of the first light absorption layer is made of the same material as the inorganic material.
- the protective layer provided on the surface of the first light absorption layer has at least one optical property of suppressing reflection of visible light, optical property of reflecting ultraviolet light, and optical property of reflecting infrared light.
- ⁇ Aspect 16> A second light absorption layer is provided on the first main surface side of the transparent base material, The second light absorbing layer is formed by a mixture of a near-infrared absorbing dye and a matrix material, 16.
- the matrix material is any one selected from the group consisting of silica, alumina, magnesium fluoride, polyimide resin, polyester resin and polycarbonate resin.
- the near-infrared absorbing dye is at least one selected from the group consisting of squarylium-based compounds, phthalocyanine-based compounds, and cyanine-based compounds.
- squarylium-based compound has a structure represented by the following formula (F1).
- R 4 and R 6 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, or 6 carbon atoms.
- R 41 and R 42 are independently a hydrogen atom, a halogen atom, or a C 1 to 10 alkyl group or alkoxy group having 1 to 10 carbon atoms, k is 2 or 3).
- R 1 and R 2 , R 2 and R 5 , and R 1 and R 3 are linked together to form a 5-membered or 6-membered heterocyclic ring A, heterocyclic ring B, and heterocyclic ring C, respectively, with the nitrogen atom; good too.
- the optical filter according to aspect 20, wherein the protective layer provided on the surface of the second light absorbing layer is made of the same material as the matrix material.
- the protective layer provided on the surface of the second light absorption layer has at least one optical characteristic of suppressing reflection of visible light, optical characteristic of reflecting ultraviolet light, and optical characteristic of reflecting infrared light. 22.
- the difference between the wavelength ⁇ UV50% at a light incident angle of 0° and the wavelength ⁇ UV50% at a light incident angle of 30° is 10 nm or less.
- the average transmittance at a light incident angle of 0° at a wavelength of 440 nm to 500 nm is 80% or more.
- the average transmittance of light having a wavelength of 500 nm to 600 nm at an incident angle of 0° is 85% or more.
- (a-7) having a wavelength ⁇ IR20% at which the light transmittance is 20% in the infrared wavelength region, and the wavelength ⁇ IR20% at a light incident angle of 0° and the wavelength at a light incident angle of 30°;
- the difference from ⁇ IR20% is 5 nm or less.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optical Filters (AREA)
- Laminated Bodies (AREA)
Abstract
Description
透明基材1は、可視光に対して透明(透過率が高い)である限り、いかなる材料で構成されてもよい。例えば、透明基材1は、ガラス(白板ガラス、近赤外線吸収ガラスなど)、または樹脂で構成されてよい。
第1の光吸収層2は、紫外線を吸収する層である。第1の光吸収層2は、紫外線を吸収する紫外線吸収色素(A)と無機材料(B)とを含有する層であり、典型的な例としては、無機材料(B)に紫外線吸収色素(A)が分散してなる層である。言い換えると、無機材料(B)と紫外線吸収色素(A)とが混在してなる層である。赤外線吸収色素(A)は、無機材料(B)に均一に分散していてもよく、透明基材1の第1の主面の直交方向(透明基材1の厚み方向)で濃度が相違していてもよい。
紫外線吸収色素(A)は、300nm~430nmの波長域内に最大吸収波長(以下、「λmax」という)をもち、且つ分子量が2000以下の紫外線吸収色素であれば特に制限されない。なお、λmaxは、吸収の頂点を有する吸収ピーク(以下、「λmaxの吸収ピーク」という)を有する。紫外線吸収色素(A)の吸収曲線は、300nm~430nmの波長域内にλmaxを有することに加えて、可視光域の吸収が少なく、λmaxの吸収ピークの可視光側の傾きが緩やかであることが好ましい。さらに、λmaxの吸収ピークは長波長側では傾きは急峻であることが好ましい。
無機材料(B)としては、波長500nmにおける屈折率が1.38~2.20の無機材料が好ましい。
近赤外線吸収色素(C)は、650nm~760nmの波長域内に最大吸収波長をもち、且つ分子量が2000以下の近赤外線吸収色素であれば特に制限されない。近赤外線吸収色素(C)の吸収曲線は、650nm~760nmの波長域内にλmaxを有することに加えて、可視光域の吸収が少なく、λmaxの吸収ピークの可視光側の傾きが急峻であることが好ましい。さらに、λmaxの吸収ピークは長波長側では傾きは緩やかであることが好ましい。
光学フィルタ10の変形例について、図2~図6を参照して説明する。図2は、本発明の一実施形態による光学フィルタの第1変形例の断面の模式図である。図3は、本発明の一実施形態による光学フィルタの第2変形例の断面の模式図である。図4は、本発明の一実施形態による光学フィルタの第3変形例の断面の模式図である。図5は、本発明の一実施形態による光学フィルタの第4変形例の断面の模式図である。図6は、本発明の一実施形態による光学フィルタの第5変形例の断面の模式図である。
光学フィルタ10の第1の光吸収層2は、波長300nm~380nmの平均内部透過率が60%以下、且つ波長430nm~600nmの平均内部透過率が80%以上であり、紫外波長域において透過率が80%となる波長と透過率が20%となる波長との差が45nm以下であることが好ましい。
(a-1)光の入射角0°~50°における紫外波長域において光の透過率が50%となる波長λUV50%を有し、前記波長λUV50%が波長350nm~420nmの範囲内にある。
(a-2)光の入射角0°における前記波長λUV50%と、光の入射角30°における前記波長λUV50%との差が10nm以下である。
(a-3)光の入射角0°における波長440nm~500nmの平均透過率が80%以上である。
(a-4)光の入射角0°における波長500nm~600nmの平均透過率が85%以上である。
(a-5)赤外波長域において光の透過率が50%となる波長λIR50%を有し、光の入射角0°における前記波長λIR50%と、光の入射角30°における前記波長λIR50%との差が10nm以下である。
(a-6)光の入射角0°における波長750nm~1000nmの平均透過率が90%以下である。
(a-7)赤外波長域において光の透過率が20%となる波長λIR20%を有し、光の入射角0°における前記波長λIR20%と、光の入射角30°における前記波長λIR20%との差が5nm以下である。
光学フィルタ10の製造方法は、例えば、真空蒸着法を用いて、紫外線吸収色素(A)を抵抗加熱により、無機材料(B)を電子ビーム(EB)により、同時に加熱し、透明基材1上に第1の光吸収層2を形成する。紫外線吸収色素(A)と近赤外線吸収色素(C)とを含有した第1の光吸収層2を有する光学フィルタ10の場合は、例えば、紫外線吸収色素(A)と近赤外線吸収色素(C)を混合した上で、抵抗加熱により加熱する。真空蒸着法を用いることにより、湿式成膜プロセスと比べて、第1の光吸収層2に含有される紫外線吸収色素(A)の濃度を高くできるので、より優れた紫外線遮蔽特性を有する光学フィルタが得られる。
透明基材として、縦:50mm、横:50mm、厚さ:0.3mmの平板形状のガラス板(D263、Schott社製)を使用した。マトリックス材として、フッ化マグネシウム(MgF2)、紫外線吸収色素として、化合物(U2-1)(分子量430.17、ジクロロメタン溶液中で最大吸収波長375nm、東京化成社製、製品名:UVITEX OB)を用いて、ガラス板上に両者が混合状態となるよう真空蒸着装置にて成膜し、光吸収層を形成した。光吸収層は、膜厚が200nm~700nmの間となるよう適宜調整した。得られた、光吸収層の表面に、酸化ケイ素(SiO2)を用いて、真空蒸着装置にて膜厚が100nm以上となるように保護層を形成し、例1の光学フィルタを得た。
例1において、マトリックス材として、SiO2を用いたこと以外は例1と同様にして、例2の光学フィルタを得た。
透明基材として、例1と同様のガラス板を使用した。マトリックス材としてのポリイミド(三菱ガス化学社製、商品名:C-3G30G)を有機溶媒に溶解させた溶液に、紫外線吸収色素として化合物(U2-1)を、ポリイミド100質量部に対して4.5質量部となる割合で混合した後、室温にて撹拌・溶解することで塗工液を得た。得られた塗工液を、スピンコートを用いてガラス板上に塗工し、加熱乾燥して有機溶媒を除去することで、膜厚1.11μmの光吸収層を形成し、例3の光学フィルタを得た。
例1において、紫外線吸収色素として、化合物(U1-6)(分子量293.14、ジクロロメタン溶液中で最大吸収波長399nm)を用いたこと以外は例1と同様にして、例4の光学フィルタを得た。
例1において、マトリックス材として、SiO2、紫外線吸収色素として、化合物(U1-6)(分子量293.14、ジクロロメタン溶液中で最大吸収波長399nm)を用いたこと以外は例1と同様にして、例5の光学フィルタを得た。
例1において、保護層を設けていないこと以外は例1と同様にして、例6の光学フィルタを得た。
例1において、保護層として、フッ化マグネシウム(MgF2)を用いたこと以外は例1と同様にして、例7の光学フィルタを得た。
得られた例1~例7の光学フィルタについて、紫外可視近赤外分光光度計(日本分光社製、型番:V770)を用いて、入射角0°における透過率を測定し、分光透過率曲線を得た。図7に例1の光学フィルタの分光透過率曲線を示し、図8に例2の光学フィルタの分光透過率曲線を示し、図9に例3の光学フィルタの分光透過率曲線を示し、図10に例4の光学フィルタの分光透過率曲線を示し、図11に例5の光学フィルタの分光透過率曲線を示し、図12に例6の光学フィルタの分光透過率曲線を示し、図13に例7の光学フィルタの分光透過率曲線を示す。図7~図13に示すように、例1~例7の光学フィルタは、波長350nm付近の光の透過率が低く、紫外線遮蔽特性を有する光学フィルタであることがわかった。
得られた例1~例3、例7の光学フィルタについて、耐光性試験を行い耐光性を評価した。耐光性試験では、スーパーキセノンウエザーメータSX75(スガ試験機(株)製)を用いて、光学フィルタに対し下記の条件で光を照射した。(照射条件)
波長:300~2450nm
温度:4℃
湿度:50%RT
積算光量:87.2kw・時間/m2
光照射後に、入射角0°での透過率を測定し分光透過率曲線を得た。図7に例1の光学フィルタの耐光性試験前後の分光透過率曲線を示し、図8に例2の光学フィルタの耐光性試験前後の分光透過率曲線を示し、図9に例3の光学フィルタの耐光性試験前後の分光透過率曲線を示し、図13に例7の光学フィルタの耐光性試験前後の分光透過率曲線を示す。
最小透過率変動量[%]=(照射前の波長500nm~800nmの光の最小透過率)-(照射後の波長500nm~800nmの光の最小透過率)
耐光性の評価は、最小透過率変動量[%]が5%以下の場合はA、5%超の場合はBとして表1に表し、Aを合格とした。
本発明は、以下の態様を含む。
<態様1>
第1の主面を有する透明基材と、
前記透明基材の前記第1の主面側に設けられた第1の光吸収層と、
を備える光学フィルタであって、
前記第1の光吸収層は、紫外線吸収色素と、無機材料とを含み、
前記紫外線吸収色素は、波長300nm~430nmに最大吸収波長をもち、且つ分子量が2000以下である光学フィルタ。
<態様2>
前記第1の光吸収層は、前記紫外線吸収色素と前記無機材料とが混在して形成されている態様1に記載の光学フィルタ。
<態様3>
前記紫外線吸収色素の濃度は、前記第1の主面の直交方向で相違している態様2に記載の光学フィルタ。
<態様4>
前記第1の光吸収層は、前記紫外線吸収色素を含む色素層と前記無機材料を含む無機層とを有する態様1に記載の光学フィルタ。
<態様5>
前記第1の光吸収層は、波長300nm~380nmの平均内部透過率が60%以下、且つ波長430nm~600nmの平均内部透過率が80%以上であり、紫外波長域において透過率が80%となる波長と透過率が20%となる波長との差が45nm以下である態様1乃至4のいずれか一つに記載の光学フィルタ。
<態様6>
前記紫外線吸収色素は、トリアジン系化合物、インドール系化合物、アゾメチン系化合物、ベンソトリアゾール系化合物、メロシアニン系化合物、およびベンゾオキサゾール系化合物をからなる群から選ばれる少なくとも1種である態様1乃至5のいずれか一つに記載の光学フィルタ。
<態様7>
前記紫外線吸収色素は、下記式(U1)で示されるメロシアニン系化合物を含む態様6に記載の光学フィルタ。
式(U1)中、R1、R8およびR9が、それぞれ独立に、水素原子の一部がシクロアルキル基またはフェニル基で置換されていてもよい炭素数1~6のアルキル基であり、R2~R7およびR10~R19が、それぞれ独立に、水素原子、または炭素数1~6のアルキル基である態様7に記載の光学フィルタ。
<態様9>
式(U1)中、R1、R8およびR9が、それぞれ独立に、炭素数1~6のアルキル基であり、R2~R7およびR10~R19が、それぞれ独立に、水素原子または炭素数1~6のアルキル基である態様7に記載の光学フィルタ。
<態様10>
前記紫外線吸収色素は、ベンゾオキサゾール系化合物である態様6に記載の光学フィルタ。
<態様11>
前記無機材料は、波長500nmにおける屈折率が1.38~2.20である態様1乃至10のいずれか一つに記載の光学フィルタ。
<態様12>
前記無機材料は、シリカ、アルミナ、およびフッ化マグネシウムからなる群から選ばれる少なくとも1種である態様11に記載の光学フィルタ。
<態様13>
前記第1の光吸収層の表面に保護層を備える態様1乃至12のいずれか一つに記載の光学フィルタ。
<態様14>
前記第1の光吸収層の表面に設けられた前記保護層は、前記無機材料と同一の材料からなる態様13に記載の光学フィルタ。
<態様15>
前記第1の光吸収層の表面に設けられた前記保護層は、可視光の反射を抑制する光学特性、紫外線を反射する光学特性、および赤外線を反射する光学特性の少なくとも1種の光学特性を有する態様13又は14に記載の光学フィルタ。
<態様16>
前記透明基材の前記第1の主面側に第2の光吸収層を備え、
前記第2の光吸収層は、近赤外線吸収色素とマトリックス材とが混在して形成されており、
前記近赤外線吸収色素は、波長650nm~760nmに最大吸収波長をもつ、態様1乃至15のいずれか一つに記載の光学フィルタ。
<態様17>
前記マトリックス材は、シリカ、アルミナ、フッ化マグネシウム、ポリイミド樹脂、ポリエステル樹脂およびポリカーボネート樹脂からなる群から選ばれるいずれか1種である態様16に記載の光学フィルタ。
<態様18>
前記近赤外線吸収色素は、スクアリリウム系化合物、フタロシアニン系化合物、およびシアニン系化合物からなる群から選ばれる少なくとも1種である態様16又は17に記載の光学フィルタ。
<態様19>
前記スクアリリウム系化合物は、下記式(F1)で示される構造を有する態様18に記載の光学フィルタ。
<態様20>
前記第2の光吸収層の表面に保護層を備える態様16乃至19のいずれか一つに記載の光学フィルタ。
<態様21>
前記第2の光吸収層の表面に設けられた前記保護層は、前記マトリックス材と同一の材料からなる態様20に記載の光学フィルタ。
<態様22>
前記第2の光吸収層の表面に設けられた前記保護層は、可視光の反射を抑制する光学特性、紫外線を反射する光学特性、および赤外線を反射する光学特性の少なくとも1種の光学特性を有する態様20又は21に記載の光学フィルタ。
<態様23>
下記特性を備える、態様16乃至22のいずれか一つに記載の光学フィルタ。
(a-1)光の入射角0°~50°における紫外波長域において光の透過率が50%となる波長λUV50%を有し、前記波長λUV50%が波長350nm~420nmの範囲内にある。
(a-2)光の入射角0°における前記波長λUV50%と、光の入射角30°における前記波長λUV50%との差が10nm以下である。
(a-3)光の入射角0°における波長440nm~500nmの平均透過率が80%以上である。
(a-4)光の入射角0°における波長500nm~600nmの平均透過率が85%以上である。
(a-5)赤外波長域において光の透過率が50%となる波長λIR50%を有し、光の入射角0°における前記波長λIR50%と、光の入射角30°における前記波長λIR50%との差が10nm以下である。
(a-6)光の入射角0°における波長750nm~1000nmの平均透過率が90%以下である。
(a-7)赤外波長域において光の透過率が20%となる波長λIR20%を有し、光の入射角0°における前記波長λIR20%と、光の入射角30°における前記波長λIR20%との差が5nm以下である。
2 第1の光吸収層
21 無機層
22 色素層
3 第2の光吸収層
10、20、30、40、50、60 光学フィルタ
Claims (23)
- 第1の主面を有する透明基材と、
前記透明基材の前記第1の主面側に設けられた第1の光吸収層と、
を備える光学フィルタであって、
前記第1の光吸収層は、紫外線吸収色素と、無機材料とを含み、
前記紫外線吸収色素は、波長300nm~430nmに最大吸収波長をもち、且つ分子量が2000以下である光学フィルタ。 - 前記第1の光吸収層は、前記紫外線吸収色素と前記無機材料とが混在して形成されている請求項1に記載の光学フィルタ。
- 前記紫外線吸収色素の濃度は、前記第1の主面の直交方向で相違している請求項2に記載の光学フィルタ。
- 前記第1の光吸収層は、前記紫外線吸収色素を含む色素層と前記無機材料を含む無機層とを有する請求項1に記載の光学フィルタ。
- 前記第1の光吸収層は、波長300nm~380nmの平均内部透過率が60%以下、且つ波長430nm~600nmの平均内部透過率が80%以上であり、紫外波長域において透過率が80%となる波長と透過率が20%となる波長との差が45nm以下である請求項2又は4に記載の光学フィルタ。
- 前記紫外線吸収色素は、トリアジン系化合物、インドール系化合物、アゾメチン系化合物、ベンソトリアゾール系化合物、メロシアニン系化合物、およびベンゾオキサゾール系化合物をからなる群から選ばれる少なくとも1種である請求項1に記載の光学フィルタ。
- 前記紫外線吸収色素は、下記式(U1)で示されるメロシアニン系化合物を含む請求項6に記載の光学フィルタ。
Yは、R6およびR7で置換されたメチレン基または酸素原子を表す。
R1は、置換基を有していてもよい炭素数1~12の1価の炭化水素基を表す。R2~R7は、それぞれ独立に、水素原子、ハロゲン原子、または、炭素数1~10のアルキル基もしくはアルコキシ基を表す。
Xは、下記式(X1)~(X5)で表される2価の基のいずれかを表す(ただし、R8およびR9は、それぞれ独立に、置換基を有していてもよい炭素数1~12の1価の炭化水素基を表し、R10~R19は、それぞれ独立に、水素原子、または、置換基を有していてもよい炭素数1~12の1価の炭化水素基を表す)。
- 式(U1)中、R1、R8およびR9が、それぞれ独立に、水素原子の一部がシクロアルキル基またはフェニル基で置換されていてもよい炭素数1~6のアルキル基であり、R2~R7およびR10~R19が、それぞれ独立に、水素原子、または炭素数1~6のアルキル基である請求項7に記載の光学フィルタ。
- 式(U1)中、R1、R8およびR9が、それぞれ独立に、炭素数1~6のアルキル基であり、R2~R7およびR10~R19が、それぞれ独立に、水素原子または炭素数1~6のアルキル基である請求項7に記載の光学フィルタ。
- 前記紫外線吸収色素は、ベンゾオキサゾール系化合物である請求項6に記載の光学フィルタ。
- 前記無機材料は、波長500nmにおける屈折率が1.38~2.20である請求項7に記載の光学フィルタ。
- 前記無機材料は、シリカ、アルミナ、およびフッ化マグネシウムからなる群から選ばれる少なくとも1種である請求項11に記載の光学フィルタ。
- 前記第1の光吸収層の表面に保護層を備える請求項12に記載の光学フィルタ。
- 前記第1の光吸収層の表面に設けられた前記保護層は、前記無機材料と同一の材料からなる請求項13に記載の光学フィルタ。
- 前記第1の光吸収層の表面に設けられた前記保護層は、可視光の反射を抑制する光学特性、紫外線を反射する光学特性、および赤外線を反射する光学特性の少なくとも1種の光学特性を有する請求項14に記載の光学フィルタ。
- 前記透明基材の前記第1の主面側に第2の光吸収層を備え、
前記第2の光吸収層は、近赤外線吸収色素とマトリックス材とが混在して形成されており、
前記近赤外線吸収色素は、波長650nm~760nmに最大吸収波長をもつ、請求項15に記載の光学フィルタ。 - 前記マトリックス材は、シリカ、アルミナ、フッ化マグネシウム、ポリイミド樹脂、ポリエステル樹脂およびポリカーボネート樹脂からなる群から選ばれるいずれか1種である請求項16に記載の光学フィルタ。
- 前記近赤外線吸収色素は、スクアリリウム系化合物、フタロシアニン系化合物、およびシアニン系化合物からなる群から選ばれる少なくとも1種である請求項17に記載の光学フィルタ。
- 前記スクアリリウム系化合物は、下記式(F1)で示される構造を有する請求項18に記載の光学フィルタ。
- 前記第2の光吸収層の表面に保護層を備える請求項19に記載の光学フィルタ。
- 前記第2の光吸収層の表面に設けられた前記保護層は、前記マトリックス材と同一の材料からなる請求項20に記載の光学フィルタ。
- 前記第2の光吸収層の表面に設けられた前記保護層は、可視光の反射を抑制する光学特性、紫外線を反射する光学特性、および赤外線を反射する光学特性の少なくとも1種の光学特性を有する請求項21に記載の光学フィルタ。
- 下記特性を備える、請求項16に記載の光学フィルタ。
(a-1)光の入射角0°~50°における紫外波長域において光の透過率が50%となる波長λUV50%を有し、前記波長λUV50%が波長350nm~420nmの範囲内にある。
(a-2)光の入射角0°における前記波長λUV50%と、光の入射角30°における前記波長λUV50%との差が10nm以下である。
(a-3)光の入射角0°における波長440nm~500nmの平均透過率が80%以上である。
(a-4)光の入射角0°における波長500nm~600nmの平均透過率が85%以上である。
(a-5)赤外波長域において光の透過率が50%となる波長λIR50%を有し、光の入射角0°における前記波長λIR50%と、光の入射角30°における前記波長λIR50%との差が10nm以下である。
(a-6)光の入射角0°における波長750nm~1000nmの平均透過率が90%以下である。
(a-7)赤外波長域において光の透過率が20%となる波長λIR20%を有し、光の入射角0°における前記波長λIR20%と、光の入射角30°における前記波長λIR20%との差が5nm以下である。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280046886.6A CN117597612A (zh) | 2021-07-21 | 2022-07-14 | 滤光片 |
JP2023536721A JPWO2023002923A1 (ja) | 2021-07-21 | 2022-07-14 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-121014 | 2021-07-21 | ||
JP2021121014 | 2021-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023002923A1 true WO2023002923A1 (ja) | 2023-01-26 |
Family
ID=84979264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/027766 WO2023002923A1 (ja) | 2021-07-21 | 2022-07-14 | 光学フィルタ |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023002923A1 (ja) |
CN (1) | CN117597612A (ja) |
TW (1) | TW202309560A (ja) |
WO (1) | WO2023002923A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118231432B (zh) * | 2024-05-21 | 2024-08-27 | 湖北江城芯片中试服务有限公司 | 图像传感器及其制作方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015099060A1 (ja) * | 2013-12-26 | 2015-07-02 | 旭硝子株式会社 | 光学フィルタ |
JP2015196622A (ja) * | 2014-04-01 | 2015-11-09 | 住友金属鉱山株式会社 | 熱線遮蔽膜、熱線遮蔽透明基材、自動車および建造物 |
JP2016515084A (ja) * | 2013-02-25 | 2016-05-26 | サン−ゴバン グラス フランス | 赤外減衰コーティングを含む板ガラス配置 |
JP3213654U (ja) * | 2017-06-27 | 2017-11-24 | 白金科技股▲分▼有限公司 | 吸収型近赤外線フィルターおよびイメージセンサー |
JP2019049586A (ja) * | 2017-09-07 | 2019-03-28 | 株式会社日本触媒 | 光選択透過フィルター |
JP2020091422A (ja) * | 2018-12-06 | 2020-06-11 | ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd | 光学部材、硬化性組成物、及び光学部材の製造方法 |
-
2022
- 2022-07-14 JP JP2023536721A patent/JPWO2023002923A1/ja active Pending
- 2022-07-14 CN CN202280046886.6A patent/CN117597612A/zh active Pending
- 2022-07-14 WO PCT/JP2022/027766 patent/WO2023002923A1/ja active Application Filing
- 2022-07-19 TW TW111126969A patent/TW202309560A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016515084A (ja) * | 2013-02-25 | 2016-05-26 | サン−ゴバン グラス フランス | 赤外減衰コーティングを含む板ガラス配置 |
WO2015099060A1 (ja) * | 2013-12-26 | 2015-07-02 | 旭硝子株式会社 | 光学フィルタ |
JP2015196622A (ja) * | 2014-04-01 | 2015-11-09 | 住友金属鉱山株式会社 | 熱線遮蔽膜、熱線遮蔽透明基材、自動車および建造物 |
JP3213654U (ja) * | 2017-06-27 | 2017-11-24 | 白金科技股▲分▼有限公司 | 吸収型近赤外線フィルターおよびイメージセンサー |
JP2019049586A (ja) * | 2017-09-07 | 2019-03-28 | 株式会社日本触媒 | 光選択透過フィルター |
JP2020091422A (ja) * | 2018-12-06 | 2020-06-11 | ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd | 光学部材、硬化性組成物、及び光学部材の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202309560A (zh) | 2023-03-01 |
JPWO2023002923A1 (ja) | 2023-01-26 |
CN117597612A (zh) | 2024-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6168252B2 (ja) | 近赤外線カットフィルタおよび撮像装置 | |
KR101832114B1 (ko) | 광학 필터 및 촬상 장치 | |
JP6642578B2 (ja) | 光学フィルタおよび撮像装置 | |
JP7070555B2 (ja) | 光学フィルタおよび撮像装置 | |
JP7456525B2 (ja) | 光学フィルタおよび撮像装置 | |
JPWO2019151344A1 (ja) | 光学フィルタおよび撮像装置 | |
JP2024177587A (ja) | 光学フィルタ | |
WO2023002923A1 (ja) | 光学フィルタ | |
CN117716266A (zh) | 滤光片 | |
JP7298072B2 (ja) | 光学フィルタおよび撮像装置 | |
JP2019078816A (ja) | 光学フィルタおよび撮像装置 | |
WO2023002924A1 (ja) | 光学フィルタ | |
JP7552271B2 (ja) | 光学フィルタ | |
WO2022024942A1 (ja) | 光学フィルタ | |
WO2023022118A1 (ja) | 光学フィルタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22845857 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280046886.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023536721 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22845857 Country of ref document: EP Kind code of ref document: A1 |