WO2023002885A1 - 立体表示装置 - Google Patents

立体表示装置 Download PDF

Info

Publication number
WO2023002885A1
WO2023002885A1 PCT/JP2022/027409 JP2022027409W WO2023002885A1 WO 2023002885 A1 WO2023002885 A1 WO 2023002885A1 JP 2022027409 W JP2022027409 W JP 2022027409W WO 2023002885 A1 WO2023002885 A1 WO 2023002885A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical filter
display device
stereoscopic display
array
angle
Prior art date
Application number
PCT/JP2022/027409
Other languages
English (en)
French (fr)
Inventor
友哉 谷野
貴之 栗原
一 菊原
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2023536701A priority Critical patent/JPWO2023002885A1/ja
Publication of WO2023002885A1 publication Critical patent/WO2023002885A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/368Image reproducers using viewer tracking for two or more viewers

Definitions

  • the present disclosure relates to a stereoscopic display device.
  • Patent Document 1 There is a stereoscopic display device using a lenticular lens (see Patent Document 1, for example).
  • a configuration is proposed in which a diffuser is arranged to reduce moire.
  • a first stereoscopic display device includes an image display element that displays a plurality of viewpoint images, and a plurality of light rays corresponding to the plurality of viewpoint images. and an optical element that emits light toward a viewpoint position, and a predetermined angle range that is arranged between the plurality of viewpoint positions and the optical element, and that the diffusion angle of the light rays emitted from the optical element is determined based on the plurality of viewpoint positions. and an optical filter that controls to be
  • a second stereoscopic display device includes an image display element that displays a plurality of viewpoint images, and a plurality of light rays corresponding to the plurality of viewpoint images. and an optical element that emits light toward the viewpoint positions, and controls the diffusion angle of the light rays emitted from the optical element on the surface of the optical element so as to fall within a predetermined angle range determined based on the plurality of viewpoint positions. It is processed to function as an optical filter.
  • the diffusion angle of light rays emitted from the optical element toward the plurality of viewpoint positions is determined based on the plurality of viewpoint positions. is controlled to be within a predetermined angle range determined by
  • FIG. 1 is a horizontal sectional view schematically showing a configuration example of a stereoscopic display device according to a first embodiment of the present disclosure
  • FIG. FIG. 4 is an explanatory diagram showing an example of the relationship between the viewpoint angle and the light intensity at the viewpoint position in a stereoscopic display device
  • FIG. 4 is an explanatory diagram showing an example of the relationship between observation distance and viewpoint angle in a stereoscopic display device
  • 2 is a plan view showing an example of a pixel structure of an image display element
  • FIG. 4 is a simulation image showing an example of the state of pixels observed through a lenticular lens
  • FIG. 4 is an explanatory diagram showing an example of the state of pixels observed through a lenticular lens
  • FIG. 4 is an explanatory diagram showing an example of the state of pixels observed through a lenticular lens
  • FIG. 4 is an explanatory diagram showing an example of moiré observed through a lenticular lens
  • 1 is an axial cross-sectional view of a lenticular lens, schematically showing one configuration example of a stereoscopic display device according to a first embodiment
  • FIG. FIG. 4 is an explanatory diagram schematically showing an example of a sub-pixel pitch in the axial direction of a lenticular lens
  • FIG. 4 is a plan view showing an example of the arrangement relationship between a lenticular lens and pixels of an image display element
  • 1 is a horizontal cross-sectional view schematically showing one configuration example of a stereoscopic display device according to specific example 1.
  • 10 is a horizontal cross-sectional view schematically showing a modification of the stereoscopic display device according to Specific Example 1; 10 is a simulation image showing an example of the state of pixels observed when the optical filter is omitted in the stereoscopic display device according to Specific Example 1.
  • FIG. 10 is a simulation image showing an example of a moiré state observed when the optical filter is omitted in the stereoscopic display device according to Specific Example 1.
  • FIG. 11 is a horizontal cross-sectional view schematically showing one configuration example of a stereoscopic display device according to Specific Example 2;
  • FIG. 11 is a configuration diagram schematically showing one configuration example of a trapezoidal prism array as an optical filter in a stereoscopic display device according to Specific Example 3;
  • FIG. 11 is a cross-sectional view schematically showing one configuration example of a trapezoidal prism array as an optical filter in a stereoscopic display device according to Specific Example 3;
  • 11 is a simulation image showing an example of a pixel state and a moire state observed when an optical filter is omitted in the stereoscopic display device according to Specific Example 3.
  • FIG. 11 is a simulation image showing an example of a pixel state and a moiré state observed in a stereoscopic display device according to Specific Example 3.
  • FIG. 11 is a configuration diagram schematically showing one configuration example of a trapezoidal prism array as an optical filter in a stereoscopic display device according to Specific Example 4;
  • FIG. 11 is a simulation image showing an example of a pixel state observed when an optical filter is omitted in the stereoscopic display device according to Specific Example 4;
  • FIG. 13 is a simulation image showing an example of the state of pixels observed in the stereoscopic display device according to Specific Example 4;
  • FIG. 11 is a horizontal cross-sectional view schematically showing one configuration example of a stereoscopic display device according to Specific Example 5;
  • FIG. 11 is a configuration diagram schematically showing one configuration example of a lens array as an optical filter in a stereoscopic display device according to Specific Example 5;
  • FIG. 21 is a cross-sectional view schematically showing one configuration example of a lens array as an optical filter in a stereoscopic display device according to Specific Example 5; 11 is a simulation image showing an example of a pixel state observed when an optical filter is omitted in the stereoscopic display device according to Specific Example 5. FIG. 11 is a simulation image showing an example of the state of pixels observed in the stereoscopic display device according to Specific Example 5.
  • FIG. 21 is a configuration diagram schematically showing one configuration example of a lens array as an optical filter in a stereoscopic display device according to Specific Example 6;
  • FIG. 21 is an axial cross-sectional view of a lenticular lens schematically showing one configuration example of a stereoscopic display device according to a seventh specific example; FIG.
  • FIG. 21 is a cross-sectional view schematically showing one configuration example of an optical filter in a stereoscopic display device according to Specific Example 7;
  • FIG. 21 is a cross-sectional view schematically showing a modification of the optical filter in the stereoscopic display device according to Specific Example 7;
  • FIG. 21 is a simulation image showing an example of a pixel state observed through a lenticular lens when the optical filter is omitted in the stereoscopic display device according to Specific Example 7.
  • FIG. FIG. 21 is a simulation image showing an example of the state of pixels and the state of moiré observed when the optical filter is omitted in the stereoscopic display device according to Specific Example 7.
  • FIG. 14 is a simulation image showing an example of the state of pixels and the state of moire observed in the stereoscopic display device according to Specific Example 7.
  • FIG. FIG. 21 is an explanatory diagram showing the relation between the prism pitch in the axial direction of the lenticular lenses in the optical filter and the diffusion angle in the axial direction of the lenticular lenses in the optical filter and moire in the stereoscopic display device according to the seventh specific example;
  • FIG. 20 is an explanatory diagram showing the relationship between the optimum condition of the prism pitch in the axial direction of the lenticular lens in the optical filter and the prism pitch in the optical filter and the moire in the stereoscopic display device according to the seventh specific example;
  • FIG. 21 is an explanatory diagram showing the relation between the prism pitch in the axial direction of the lenticular lenses in the optical filter and the diffusion angle in the axial direction of the lenticular lenses in the optical filter and moire in the stereoscopic display device according to the seventh specific example;
  • FIG. 20 is an explanatory diagram showing the relationship between the observation distance, the diffusion angle in the axial direction of the lenticular lens in the optical filter, and moire when the prism pitch is 30 ⁇ m in the stereoscopic display device according to Specific Example 7;
  • FIG. 20 is an explanatory diagram showing the relationship between the observation distance, the diffusion angle in the axial direction of the lenticular lens in the optical filter, and moire when the prism pitch is 26.6 ⁇ m in the stereoscopic display device according to Specific Example 7;
  • FIG. 10 is an explanatory diagram showing the influence of diffraction due to narrowing of the array pitch of the optical filter;
  • FIG. 10 is an explanatory diagram showing the influence of diffraction due to narrowing of the array pitch of the optical filter;
  • FIG. 10 is an explanatory diagram showing the influence of diffraction due to narrowing of the array pitch of the optical filter;
  • FIG. 4 is a cross-sectional view schematically showing one configuration example of an optical filter using a triangular prism array;
  • FIG. 4 is a cross-sectional view schematically showing one configuration example of an optical filter using a trapezoidal prism array;
  • FIG. 4 is a cross-sectional view schematically showing one configuration example of an optical filter using a lens array;
  • FIG. 5 is an explanatory diagram showing an example of the relationship between phase difference and diffraction intensity in an optical filter;
  • FIG. 4 is an explanatory diagram showing an example of the angular distribution of light rays emitted from an optical filter;
  • FIG. 4 is an explanatory diagram showing an example of the angular distribution of light rays emitted from an optical filter;
  • FIG. 5 is an explanatory diagram showing an example of the relationship between phase difference and diffraction intensity in an optical filter;
  • FIG. 4 is an explanatory diagram showing an example of the angular distribution of light rays emitted from an optical filter;
  • FIG. 4 is an explanatory diagram showing an example of the angular distribution of light rays emitted from an optical filter
  • FIG. 21 is a perspective view schematically showing one configuration example of a trapezoidal prism array used as an optical filter 4 of a stereoscopic display device according to Example 8
  • FIG. 4 is a cross-sectional view schematically showing one configuration example of a trapezoidal prism
  • FIG. 5 is an explanatory diagram showing an example of the angular distribution of light rays emitted from an optical filter when a trapezoidal prism array is used as the optical filter
  • FIG. 20 is a perspective view schematically showing one configuration example of a triangular prism array used as an optical filter of a stereoscopic display device according to Specific Example 8;
  • FIG. 4 is an explanatory diagram showing an example of the angular distribution of light rays emitted from an optical filter when a triangular prism array is used as the optical filter; 13A and 13B are simulation images showing an example of a moire state observed when there is no optical filter and an example of a moire state observed when there is an optical filter in the stereoscopic display device according to Specific Example 8;
  • FIG. 20 is a perspective view schematically showing one configuration example of a lens array used as an optical filter of a stereoscopic display device according to Specific Example 8;
  • FIG. 4 is an explanatory diagram showing an example of the angular distribution of light rays emitted from an optical filter when a lens array is used as the optical filter;
  • FIG. 21 is a perspective view schematically showing a configuration example of a lens array used as an optical filter of a stereoscopic display device according to Specific Example 9;
  • FIG. 4 is a sectional view showing a comparison between a general cylindrical lens and a blazed cylindrical lens;
  • FIG. 20 is a plan view schematically showing a configuration example of an optical filter of a stereoscopic display device according to Specific Example 10;
  • FIG. 21 is a cross-sectional view schematically showing a configuration example of an optical filter of a stereoscopic display device according to Specific Example 11;
  • FIG. 20 is an explanatory diagram showing the interface reflectance of the triangular prism array in the optical filter of the stereoscopic display device according to Specific Example 11;
  • FIG. 21 is a cross-sectional view schematically showing a configuration example in the case where the intermediate layer in the optical filter of the stereoscopic display device according to Concrete Example 11 is uniform;
  • FIG. 20 is a cross-sectional view schematically showing a configuration example in the case where the intermediate layer in the optical filter of the stereoscopic display device according to Concrete Example 11 is non-uniform.
  • FIG. 21 is a perspective view schematically showing a first configuration example of an optical filter in a stereoscopic display device according to Specific Example 12;
  • FIG. 21 is a perspective view schematically showing a second configuration example of an optical filter in a stereoscopic display device according to Specific Example 12;
  • FIG. 21 is a perspective view schematically showing a first configuration example of an optical filter in a stereoscopic display device according to Concrete Example 13;
  • FIG. 21 is a perspective view schematically showing a second configuration example of an optical filter in a stereoscopic display device according to Concrete Example 13;
  • FIG. 20 is an explanatory diagram schematically showing an example of a phase difference distribution caused by the first configuration example of the optical filter in the stereoscopic display device according to Specific Example 14;
  • FIG. 20 is an explanatory diagram schematically showing an example of a phase difference distribution caused by the first configuration example of the optical filter in the stereoscopic display device according to Specific Example 14;
  • FIG. 20 is an explanatory diagram schematically showing an example of a phase difference distribution caused by the first configuration example of the optical filter in the stereoscopic display device according to Specific Example 14;
  • FIG. 20 is an explanatory diagram schematically showing an example of a phase difference distribution caused by a second configuration example of an optical filter in a stereoscopic display device according to Concrete Example 14;
  • FIG. 20 is an explanatory diagram schematically showing an example of a phase difference distribution caused by a second configuration example of an optical filter in a stereoscopic display device according to Concrete Example 14;
  • FIG. 10 is a cross-sectional view schematically showing one configuration example of a stereoscopic display device according to a second embodiment;
  • FIG. 10 is a cross-sectional view schematically showing a first configuration example of the surface of the lenticular lens in the stereoscopic display device according to the second embodiment;
  • FIG. 11 is a configuration diagram schematically showing a second configuration example of the surface of the lenticular lens in the stereoscopic display device according to the second embodiment;
  • FIG. 1 is a horizontal sectional view schematically showing one configuration example of a stereoscopic display device according to a first embodiment of the present disclosure.
  • the stereoscopic display device includes an image display element 1, a transparent substrate 2, a lenticular lens 3 as an optical element, an optical filter 4, a viewpoint position detector 6, and an image generator 7. It has
  • the viewpoint position detection unit 6 detects positions of the left eye 5L and the right eye 5R as a plurality of viewpoint positions of the observer.
  • the viewpoint position detector 6 can track a plurality of viewpoint positions of the observer.
  • the image generation unit 7 generates, for example, a viewpoint image for the left eye 5L and a viewpoint image for the right eye 5R as a plurality of viewpoint images.
  • the image generator 7 generates a viewpoint image according to the viewpoint position detected by the viewpoint position detector 6 .
  • the image display element 1 displays a plurality of viewpoint images generated by the image generation unit 7.
  • a plurality of pixels are two-dimensionally arranged in the image display element 1 .
  • Each of the multiple pixels includes multiple sub-pixels.
  • the multiple sub-pixels include, for example, an R-color (red) pixel 1R, a G-color (green) pixel 1G, and a B-color (blue) pixel 1B.
  • a black matrix 1BK is arranged between each sub-pixel.
  • the lenticular lens 3 is arranged to face the image display element 1 with the transparent substrate 2 interposed therebetween.
  • the lenticular lens 3 has, for example, a plurality of obliquely arranged cylindrical lenses 31 .
  • the cylindrical lens 31 extends in the tilt direction (axial direction) of the lenticular lens 3 .
  • the lenticular lens 3 emits a plurality of light rays corresponding to a plurality of viewpoint images displayed on the image display element 1 toward a plurality of viewpoint positions.
  • the lenticular lens 3 emits, for example, light rays corresponding to the viewpoint image for the left eye 5L displayed on the image display device 1 toward the viewpoint position of the left eye 5L.
  • the lenticular lens 3 emits, for example, light rays corresponding to the viewpoint image for the right eye 5R displayed on the image display device 1 toward the viewpoint position of the right eye 5R.
  • the optical filter 4 is arranged between a plurality of viewpoint positions (left eye 5L and right eye 5R) and the lenticular lens 3.
  • the optical filter 4 controls the diffusion angle of light rays emitted from the lenticular lens 3 so as to fall within a predetermined angle range determined based on a plurality of viewpoint positions.
  • FIG. 2 shows an example of the relationship between the viewpoint angle ⁇ eye and the light intensity at the viewpoint position in a stereoscopic display device.
  • FIG. 3 shows an example of the relationship between the observation distance and the viewpoint angle ⁇ eye in a stereoscopic display device.
  • the optical filter 4 has the effect of suppressing the occurrence of crosstalk while reducing moire.
  • a moire is a bright and dark fringe caused by interference between the pixel shape and the periodic structure of the lenticular lens 3 .
  • Bright and dark stripes are generated because a dark part is formed in the black matrix 1BK when the pixels of the image display element 1 are observed from the viewpoint position through the lenticular lens 3, and the dark part is spatially biased.
  • the light beam emitted from the lenticular lens 3 has an angular spread due to the optical filter 4 .
  • the optical filter 4 is composed of an element having a function of controlling the emission angle of light rays to a predetermined angle, such as a scattering angle-controlled diffusion plate or an optical low-pass filter.
  • a light ray emitted from about one point enters one eye (for example, the left eye 5L) if there is no optical filter 4, but if there is an optical filter 4, the surrounding pixels Light rays from the position also enter the eye.
  • the position of the black matrix 1BK the position of the black matrix 1BK.
  • one eye receives a light beam (light beam L1 in FIG. 1) emitted from a certain black matrix 1BK and surrounding pixels.
  • a ray from a position enters the eye.
  • the moire contrast can be lowered by averaging the light rays of the peripheral pixel positions even at the position of the black matrix 1BK.
  • FIG. 2 shows the angular distribution of the intensity of light incident on the left eye 5L and the right eye 5R when designed with an observation distance D of 500 mm.
  • a solid line indicates the case without the optical filter 4, and a dashed line indicates the case with the optical filter 4.
  • the observation distance D is the distance from the upper surface of the optical filter 4 to the viewpoint position as shown in FIG.
  • the viewpoint angle ⁇ eye is 7.4 degrees
  • the left eye 5L and right eye 5R each have a viewpoint width of 7.4 degrees.
  • 3.7 deg which is 1/2 of the visual point width
  • light rays from one eye enter the other eye, causing crosstalk.
  • the actual viewpoint distribution is not rectangular but has an inclination, and in FIG. 2, approximately 2 degrees is the allowable angle that does not exacerbate crosstalk.
  • FIG. 4 is a plan view showing an example of the pixel structure of the image display element 1.
  • FIG. FIG. 5 is a simulation image showing an example of the state of pixels observed through the lenticular lens 3.
  • FIG. 6 is an explanatory diagram showing an example of the state of pixels observed through the lenticular lens 3.
  • FIG. 7 is an explanatory diagram showing an example of moiré observed through the lenticular lens 3. As shown in FIG.
  • FIG. 4 shows the pixel structure in IPS (In-Plane Switching) mode. As shown in FIG. 4, the structure is such that the tilt directions of the sub-pixels are reversed every other row.
  • FIG. 5 is a simulation image of a pixel viewed through the lenticular lens 3 from the viewpoint position. It is a dark part with a large area. As shown in FIG. 7, there is a bias in the distribution of dark areas, and this bias appears as moire. Note that FIG. 6 shows the state of a pixel observed through the lenticular lens 3 as an example of a simplified pixel structure.
  • the viewpoint angle ⁇ eye which is determined by the lens pitch of the lenticular lens 3, is 7.4 deg as described above when the observation distance D is designed to be 500 mm. Since the focal position of the lenticular lens 3 is designed approximately at the pixel position, the horizontal spatial position on the pixel plane corresponds to the angle distribution. In the example shown in FIG. 5, the width of one sub-pixel is approximately 1.5 degrees when viewed from the viewpoint position. The angle of the dark area is also approximately within that range.
  • FIG. 8 is an axial cross-sectional view of the lenticular lens 3 schematically showing one configuration example of the stereoscopic display device according to the first embodiment.
  • FIG. 9 schematically shows an example of the axial sub-pixel pitch PL of the lenticular lens 3 .
  • FIG. 8 shows an example of the light beam control angle ⁇ b in the axial direction of the lenticular lens 3 by the optical filter 4 .
  • FIG. 8 shows an example of an angle at which a light beam L1 emitted from a certain black matrix 1BK spreads after exiting the optical filter 4 as the light beam control angle ⁇ b.
  • a light ray L2 indicated by a dashed line indicates a path along which a light ray entering one eye (for example, the left eye 5L) is emitted from a plurality of pixels. It is the same as ⁇ b.
  • the sub-pixel pitch PL in the axial direction of the lenticular lens 3 is determined by the horizontal size of the sub-pixel and the tilt of the lenticular lens 3 .
  • the optical filter 4 controls averaging in the range of one sub-pixel in the axial direction of the lenticular lens 3 in order to reduce moire. As the distance d between the upper surface of the optical filter 4 and the upper surface of the lenticular lens 3 shown in FIG. 8 increases, the light beam control angle ⁇ b corresponding to the same sub-pixel range can be reduced.
  • the light beam control angle ⁇ b in the axial direction of the lenticular lens 3 by the optical filter 4 is the sub-pixel pitch PL of the image display element 1 in the axial direction of the lenticular lens 3 and the distance d between the upper surface of the optical filter 4 and the upper surface of the lenticular lens 3. should be smaller than the angle determined by If there is a substrate such as glass or transparent resin between the surface functioning as the optical filter 4 and the lenticular lens 3, the distance d is calculated by converting it to the distance in the air.
  • a light beam control angle ⁇ b in the axial direction of the lenticular lens 3 by the optical filter 4 is obtained as follows.
  • FIG. 10 is a plan view showing an example of the arrangement relationship between the lenticular lens 3 and the pixels of the image display element 1.
  • FIG. 10 is a plan view showing an example of the arrangement relationship between the lenticular lens 3 and the pixels of the image display element 1.
  • the optical filter 4 may be configured to have anisotropy in the horizontal beam control angle ⁇ h and the vertical beam control angle ⁇ v.
  • the light beam control angle ⁇ v in the vertical direction by the optical filter 4 is obtained when the surface of the optical filter 4 and two viewpoint positions corresponding to the left eye position and the right eye position among the plurality of viewpoint positions are as shown in the following equation. It may be less than or equal to a value obtained by multiplying 1/2 of the formed viewpoint angle ⁇ eye by a ratio determined by the tilt angle of the lenticular lens 3 .
  • the vertical angular spread has less effect on crosstalk than the horizontal angular spread.
  • the allowable angle range in the vertical direction is tan (90- ⁇ L) times the allowable angle in the horizontal direction when the tilt angle of the lenticular lens 3 is ⁇ L.
  • Vertical beam control angle: ⁇ v ⁇ eye 2tan ⁇ 1 (IPD/2D) ⁇ v ⁇ ( ⁇ eye/2)tan(90 ⁇ L)
  • (Specific example 1) 11 is a horizontal cross-sectional view schematically showing a configuration example of a stereoscopic display device according to a specific example 1.
  • FIG. 12 is a horizontal cross-sectional view schematically showing a modification of the stereoscopic display device according to Specific Example 1.
  • the stereoscopic display device includes, as the optical filter 4, a diffusion plate 41 whose diffusion angle is controlled.
  • the diffusion plate 41 is arranged on the upper surface of the transparent substrate 42 .
  • the diffusion plate 41 and the transparent substrate 42 may be integrated.
  • a low refractive index layer 43 may be provided between the lenticular lens 3 and the transparent substrate 42 of the optical filter 4 as shown in the modified example of FIG.
  • the low refractive index layer 43 is made of resin having a refractive index lower than that of the lenticular lens 3, for example.
  • the lenticular lens 3 and the optical filter 4 may be integrated by the low refractive index layer 43 .
  • the horizontal light beam control angle ⁇ h by the optical filter 4 should be 3.7 degrees or less.
  • the diffuser plate 41 can control the light distribution of emitted light by controlling the diffusion angle by means of the uneven structure of the surface. Further, the diffusion plate 41 can be provided with a moth-eye type anti-reflection function to which an AR (Anti Reflection) function is added.
  • the diffusion plate 41 may be configured to have anisotropy in the horizontal light beam control angle ⁇ h and the vertical light beam control angle ⁇ v.
  • the lenticular lens 3 may have anisotropy such that the diffusion angle increases in the axial direction.
  • Diffusion plate 41 For example, LSD (Light Shaping Diffusers) manufactured by Luminit Position of diffusion plate 41: 2.7 mm from the upper surface of lenticular lens 3 Horizontal beam control angle ⁇ h: ⁇ 0.5 deg (1 deg at FWHM (full width at half maximum)) Optimal viewing distance D: 500mm Interocular distance IPD: 65mm Viewpoint angle ⁇ eye: 7.41deg
  • FIG. 13 is a simulation image showing an example of the state of pixels observed when the optical filter 4 is omitted in the stereoscopic display device according to Specific Example 1.
  • FIG. FIG. 14 is a simulation image showing an example of a moire state observed when the optical filter 4 is omitted in the stereoscopic display device according to the first specific example.
  • the size of the dark portion (FIG. 13) that causes moire is reduced. This makes it possible to reduce the occurrence of moiré as shown in FIG. 14 while suppressing the occurrence of crosstalk.
  • FIG. 15 is a horizontal cross-sectional view schematically showing one configuration example of a stereoscopic display device according to Specific Example 2.
  • FIG. 16 is a horizontal cross-sectional view schematically showing a modification of the stereoscopic display device according to Specific Example 2.
  • a low refractive index layer 43 may be provided between the lenticular lens 3 and the transparent substrate 2 on which the image display element 1 is arranged.
  • the low refractive index layer 43 is made of resin having a refractive index lower than that of the lenticular lens 3, for example.
  • the lenticular lens 3 and the transparent substrate 2 may be integrated by the low refractive index layer 43 .
  • the diffuser plate 41 can control the light distribution of emitted light by controlling the diffusion angle with the uneven structure of the surface, as in the stereoscopic display device according to the first specific example. Further, the diffuser plate 41 can be provided with a moth-eye type anti-reflection function with an AR function added.
  • the diffusion plate 41 may be configured to have anisotropy in the horizontal light beam control angle ⁇ h and the vertical light beam control angle ⁇ v.
  • the lenticular lens 3 may have anisotropy such that the diffusion angle increases in the axial direction.
  • Diffusion plate For example, LSD manufactured by Luminit Position of diffusion plate 41: 2.7 mm from the upper surface of lenticular lens 3 Horizontal beam control angle ⁇ h: ⁇ 0.5deg (1deg at FWHM) Optimal viewing distance D: 500mm Interocular distance IPD: 65mm Viewpoint angle ⁇ eye: 7.41deg
  • FIG. 17 is a simulation image showing an example of the state of pixels observed when an isotropic diffusion plate is used as the diffusion plate 41 of the optical filter 4 in the stereoscopic display device according to Specific Example 2.
  • FIG. 18 is a simulation image showing an example of a pixel state observed when an anisotropic diffusion plate is used as the diffusion plate 41 of the optical filter 4 in the stereoscopic display device according to the second specific example.
  • FIG. 19 is a horizontal cross-sectional view schematically showing one configuration example of a stereoscopic display device according to a specific example 3.
  • FIG. FIG. 20 is a configuration diagram schematically showing one configuration example of the trapezoidal prism array 50 as the optical filter 4 in the stereoscopic display device according to the specific example 3.
  • FIG. 21 is a cross-sectional view schematically showing one configuration example of the trapezoidal prism array 50 as the optical filter 4 in the stereoscopic display device according to Specific Example 3.
  • FIG. 20 is a configuration diagram schematically showing one configuration example of the trapezoidal prism array 50 as the optical filter 4 in the stereoscopic display device according to the specific example 3.
  • FIG. 21 is a cross-sectional view schematically showing one configuration example of the trapezoidal prism array 50 as the optical filter 4 in the stereoscopic display device according to Specific Example 3.
  • the stereoscopic display device includes a trapezoidal prism array 50 as the optical filter 4 .
  • the trapezoidal prism array 50 is arranged on the top surface of the transparent substrate 42 .
  • the trapezoidal prism array 50 and the transparent substrate 42 may be integrated.
  • the trapezoidal prism array 50 has a plurality of trapezoidal prisms 51 .
  • a plurality of trapezoidal prisms 51 are arranged in parallel in a direction parallel to the alignment of the lenticular lenses 3 .
  • Optimal viewing distance D 500mm Viewpoint angle ⁇ eye: 7.4deg
  • Lens pitch of lenticular lens 3 0.143 mm
  • Array pitch (prism pitch) of trapezoidal prism array 50 0.04 mm
  • Position of trapezoidal prism array 50 2.35 mm from top surface of lenticular lens 3
  • Horizontal beam control angle ⁇ h ⁇ 0.5 deg
  • the horizontal light beam control angle ⁇ h should be 3.7 degrees or less.
  • the trapezoidal shape of the trapezoidal prism 51 is designed so that the slanted portion has a ratio of 1/3 from left to right and the refraction angle of the slanted portion is a predetermined angle.
  • the array pitch (prism pitch) of the trapezoidal prism array 50 and the lens pitch of the lenticular lens 3 are combination conditions and themselves cause moire.
  • the prism pitch of the trapezoidal prism array 50 seen from the viewpoint position was multiplied by a reduction ratio corresponding to the distance d from the upper surface of the lenticular lens 3 .
  • An antireflection film may be added to the surface of the trapezoidal prism array 50 as appropriate.
  • the diffusion angle of the optical filter 4 is accurately controlled to prevent the angular distribution of light rays from the optical filter 4 from spreading too much, thereby suppressing crosstalk. becomes possible.
  • FIG. 22 is a simulation image showing an example of the state of pixels (A) and the state of moire (B) observed when the optical filter 4 is omitted in the stereoscopic display device according to Specific Example 3.
  • FIG. 23A and 23B are simulation images showing an example of a pixel state (A) and a moire state (B) observed in the stereoscopic display device according to the specific example 3.
  • the size of the dark portion that causes moire is reduced. This makes it possible to reduce the occurrence of moire while suppressing the occurrence of crosstalk.
  • FIG. 24 is a configuration diagram schematically showing one configuration example of the trapezoidal prism array 50 as the optical filter 4 in the stereoscopic display device according to the fourth specific example.
  • the stereoscopic display device according to Specific Example 4 includes a trapezoidal prism array 50 as the optical filter 4, like the stereoscopic display device according to Specific Example 3 (FIGS. 19 to 21).
  • the plurality of trapezoidal prisms 51 are arranged parallel to the arrangement of the lenticular lenses 3, but in the stereoscopic display device according to Specific Example 4, the plurality of trapezoidal prisms 51 are arranged in parallel. They are arranged in parallel in a direction perpendicular to the arrangement of the lenticular lenses 3 .
  • Optimal viewing distance D 500mm Viewpoint angle ⁇ eye: 7.4deg
  • Lens pitch of lenticular lens 3 0.143 mm
  • Array pitch (prism pitch) of trapezoidal prism array 50 0.029 mm
  • Position of trapezoidal prism array 50 6 mm from top surface of lenticular lens 3
  • the diffusion angle of the optical filter 4 is accurately controlled to prevent the angular distribution of light rays from the optical filter 4 from spreading too much, thereby suppressing crosstalk. becomes possible.
  • FIG. 25 is a simulation image showing an example of the state of pixels observed when the optical filter 4 is omitted in the stereoscopic display device according to Specific Example 4.
  • FIG. 26 is a simulation image showing an example of the state of pixels observed in the stereoscopic display device according to Specific Example 4.
  • the size of the dark portion that causes moire is reduced. This makes it possible to reduce the occurrence of moire while suppressing the occurrence of crosstalk.
  • FIG. 27 is a horizontal cross-sectional view schematically showing one configuration example of a stereoscopic display device according to Specific Example 5.
  • FIG. FIG. 28 is a configuration diagram schematically showing one configuration example of the lens array 60 as the optical filter 4 in the stereoscopic display device according to the fifth specific example.
  • FIG. 29 is a cross-sectional view schematically showing one configuration example of the lens array 60 as the optical filter 4 in the stereoscopic display device according to Specific Example 5. As shown in FIG.
  • the stereoscopic display device includes a lens array 60 as the optical filter 4 .
  • the lens array 60 is arranged on the top surface of the transparent substrate 42 .
  • the lens array 60 as the optical filter 4 and the transparent substrate 42 may be integrated.
  • a lens array 60 as the optical filter 4 has a plurality of cylindrical lenses 61 .
  • a plurality of cylindrical lenses 61 are arranged in parallel with the arrangement of the lenticular lenses 3 .
  • a light beam control angle by the lens array 60 as the optical filter 4 is an angle determined based on a plurality of viewpoint positions and a lens pitch (array pitch) of the lens array 60 .
  • Optimal viewing distance D 500mm Viewpoint angle ⁇ eye: 7.4deg Lens pitch of lenticular lens 3: 0.143 mm
  • the focal length of the lens array 60 as the optical filter 4 is designed so that the light beams at the pitch edges are emitted at a predetermined angle (see FIG. 29).
  • f focal length
  • p0 lens pitch (array pitch) of the optical filter 4 (lens array 60)
  • the diffusion angle of the optical filter 4 is accurately controlled to prevent the angular distribution of light rays from the optical filter 4 from spreading too much, thereby suppressing crosstalk. becomes possible.
  • FIG. 30 is a simulation image showing an example of the state of pixels observed when the optical filter 4 is omitted in the stereoscopic display device according to Specific Example 5.
  • FIG. 31 is a simulation image showing an example of the state of pixels observed in the stereoscopic display device according to Specific Example 5.
  • the size of the dark portion that causes moire is reduced. This makes it possible to reduce the occurrence of moire while suppressing the occurrence of crosstalk.
  • FIG. 32 is a configuration diagram schematically showing one configuration example of the lens array 60 as the optical filter 4 in the stereoscopic display device according to the sixth specific example.
  • the stereoscopic display device according to Specific Example 6 includes a lens array 60 as the optical filter 4, like the stereoscopic display device according to Specific Example 5 (FIGS. 27 to 29).
  • the plurality of cylindrical lenses 61 are arranged in parallel in a direction parallel to the arrangement of the lenticular lenses 3, but in the stereoscopic display device according to Specific Example 6, the plurality of cylindrical lenses 61 It is configured to be arranged in parallel in a direction perpendicular to the arrangement of the lenticular lenses 3 .
  • Optimal viewing distance D 500mm Viewpoint angle ⁇ eye: 7.4deg Lens pitch of lenticular lens 3: 0.143 mm
  • the focal length of the lens array 60 as the optical filter 4 is designed so that the emission angle (see FIG. 29) of the light rays at the pitch edges is a predetermined angle, as in the stereoscopic display device according to Specific Example 5.
  • the diffusion angle of the optical filter 4 is accurately controlled to prevent the angular distribution of light rays from the optical filter 4 from spreading too much, thereby suppressing crosstalk. becomes possible.
  • FIG. 33 is an axial cross-sectional view of the lenticular lens 3 schematically showing one configuration example of the stereoscopic display device according to the seventh specific example.
  • FIG. 34 is a cross-sectional view schematically showing one configuration example of the optical filter 80 in the stereoscopic display device according to the seventh specific example.
  • 35 is a cross-sectional view schematically showing a modification of the optical filter 80 in the stereoscopic display device according to Specific Example 7.
  • the optical filter 80 in the stereoscopic display device according to Specific Example 7 includes an optical filter layer 81, a glass substrate 82, an OCA (Optical Clear Adhesive, optical adhesive sheet) 83, a substrate film 84, and a low refractive index layer 85. , a base film 86 , and an AR (Anti Reflection) layer 87 .
  • OCA Optical Clear Adhesive, optical adhesive sheet
  • the upper surface of the optical filter layer 81 has an uneven structure in the shape of a substantially triangular prism.
  • the structure of the optical filter layer 81 may be such that the lower surface has an uneven structure in the shape of a substantially triangular prism.
  • an optical filter 80A has an optical filter layer 81, a glass substrate 82, a low refractive index layer 85, a substrate film 86, and an AR layer 87.
  • the pitch of the unevenness of the optical filter layer 81 is reduced, the height of the unevenness becomes very small and exceeds the level that can be manufactured.
  • a structure in which the unevenness is filled with a layer having a different refractive index can increase the inclination angle of the unevenness.
  • the optical filter layer 81 is embedded with the low refractive index layer 85 whose refractive index is lower than that of the optical filter layer 81 .
  • the refractive index of the optical filter layer 81 and the refractive index of the low refractive index layer 85 are preferably designed to have the following values, for example.
  • Refractive index of low refractive index layer 85 1.41 (silicon-based OCA)
  • Refractive index of optical filter layer 81 1.5
  • FIG. 36 is a simulation image showing an example of the state of pixels observed through the lenticular lens 3 when the optical filter 80 is omitted in the stereoscopic display device according to Specific Example 7.
  • FIG. FIG. 37 is a simulation image showing an example of the pixel state (A) and the moire state (B) observed when the optical filter 80 is omitted in the stereoscopic display device according to the seventh specific example.
  • FIG. 38 is a simulation image showing an example of a pixel state (A) and a moire state (B) observed in the stereoscopic display device according to the seventh specific example.
  • the distance d (see FIG. 33) between the upper surface of the optical filter 80 and the upper surface of the image display element 1 (the pixel surface in consideration of the refractive index),
  • the light beams L1 and L2 from two locations determined by the light beam control angle ⁇ b in the axial direction are mixed by the optical filter 80 .
  • a dark portion (see FIG. 36) that causes moire appears, for example, in a period of 4 sub-pixels if the optical filter 80 is not used. If the angle of refraction by the optical filter layer 81 is designed to be the same as the sub-pixel pitch PL in the axial direction of the lenticular lens 3, the period of the dark portion becomes 2 sub-pixel periods, lowering contrast and reducing moire.
  • an optical filter 80 including an optical filter layer 81 having an uneven structure in the shape of a substantially triangular prism by arranging an optical filter 80 including an optical filter layer 81 having an uneven structure in the shape of a substantially triangular prism, the size of dark areas that cause moire is reduced. This makes it possible to reduce the occurrence of moire while suppressing the occurrence of crosstalk.
  • FIG. 39 shows the array pitch (prism pitch) in the optical filter 80 in the axial direction of the lenticular lenses 3 and the diffusion angle in the optical filter 80 in the axial direction of the lenticular lenses 3 (beam control angle
  • FIG. 4 is an explanatory diagram showing the relationship between ⁇ b) and moiré.
  • the prism pitch referred to here is the pitch of the substantially triangular prism-shaped uneven structure of the optical filter layer 81 in the optical filter 80 .
  • the state of occurrence of moiré differs depending on the relationship between the prism pitch of the optical filter layer 81 in the optical filter 80 and the diffusion angle.
  • FIG. 40 is an explanatory diagram showing the relation between the prism pitch in the axial direction of the lenticular lens 3 in the optical filter 80 and the optimum conditions for the prism pitch in the optical filter 80 and moire in the stereoscopic display device according to the seventh specific example.
  • FIG. 40 shows the case where the diffusion angle in the axial direction of the lenticular lens 3 in the optical filter 80 is 3.5 degrees.
  • the prism pitch referred to here is the pitch of the substantially triangular prism-shaped concave-convex structure of the optical filter layer 81 .
  • the optimum condition for the prism pitch is represented by the following equation. PL/(n+0.5), where n is an integer PL: sub-pixel pitch in the axial direction of the lenticular lens 3
  • the state of occurrence of moiré differs depending on the relationship between the viewing distance D and the diffusion angle.
  • FIG. 45 shows a configuration example of the optical filter 4 using the triangular prism array 410.
  • FIG. 46 shows a configuration example of the optical filter 4 using the trapezoidal prism array 420.
  • FIG. 47 shows a configuration example of the optical filter 4 using the lens array 430. As shown in FIG.
  • the optical filter 4 may have a configuration including a prism array having a plurality of prisms as an optical filter layer.
  • the optical filter layer may include a triangular prism array 410 in which a plurality of triangular prisms 411 are arranged in parallel.
  • Triangular prism array 410 may be arranged on transparent substrate 401 .
  • a low refractive index layer 402 may be laminated on the upper layer of the triangular prism array 410 .
  • the low refractive index layer 402 may be an air layer.
  • the optical filter layer may include a trapezoidal prism array 420 in which a plurality of trapezoidal prisms 421 are arranged in parallel.
  • the trapezoidal prism array 420 may be arranged on the transparent substrate 401 .
  • a low refractive index layer 402 may be laminated on the upper layer of the trapezoidal prism array 420 .
  • the low refractive index layer 402 may be an air layer.
  • the optical filter layer may include a lens array (lenticular lens) 430 in which a plurality of cylindrical lenses 431 are arranged in parallel.
  • the lens array 430 may be arranged on the transparent substrate 401 .
  • a low refractive index layer 402 may be laminated on the upper layer of the lens array 430 .
  • the low refractive index layer 402 may be an air layer.
  • FIG. 43 and 44 show the angular distribution of light rays emitted from the optical filter 4 when the optical filter layer is the triangular prism array 410 (Fig. 45).
  • the horizontal axis indicates the angle of the outgoing light beam
  • the vertical axis indicates the light intensity.
  • FIG. 43 shows angular distributions when the array pitch Pa of the triangular prism array 410 is 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, and 70 ⁇ m.
  • the horizontal axis indicates the array pitch Pa
  • the vertical axis indicates the angle (peak angle) of the output light beam at which the light intensity is maximized.
  • the refraction angle of the triangular prism 411 is designed so that the light beam control angle ⁇ a by the optical filter 4 is 4.2 degrees when the dominant wavelength of the light beam incident on the optical filter 4 is 530 nm. 4 shows the angular distribution of emitted rays in the case of 45, the light beam control angle .theta.a is the angle within the cross section in the direction in which the plurality of triangular prisms 411 are arranged.
  • the light beam control angle ⁇ a should be designed in consideration of the diffraction effect instead of being designed by the refraction angle.
  • the light beam control angle ⁇ a by the optical filter 4 should be configured to satisfy the following conditional expressions (1) and (2).
  • ⁇ a sin ⁇ 1 (m ⁇ /Pa) (1) 0.9m ⁇ 0.9(m+1) ⁇ (2) however, m: number of diffraction orders of diffracted light produced by the prism array (or lens array) (integer)
  • Dominant wavelength of the light beam incident on the optical filter 4
  • Phase difference caused by the light beam incident on the optical filter 4 passing through the prism array (or lens array).
  • phase difference ⁇ is expressed below.
  • ⁇ nh ⁇ 2 ⁇ / ⁇
  • h the height of the optical filter layer (prism array or lens array) (see FIGS. 45 to 47).
  • the beam control angle ⁇ a can be accurately controlled even with the array pitch Pa ⁇ 25 ⁇ m of the optical filter 4, and no trail is left. An angular distribution can be obtained (broadening of the angular distribution due to diffraction effects can be reduced).
  • FIG. 48 shows an example of the relationship between the phase difference ⁇ in the optical filter 4 and the diffraction intensity.
  • the horizontal axis indicates the phase difference ⁇
  • the vertical axis indicates the diffraction intensity.
  • FIG. 48 shows the phase difference ⁇ ( ⁇ nh ⁇ 2 ⁇ / ⁇ ) and the amount of diffracted light of each diffraction order m when using a triangular prism array 410 in which substantially triangular triangular prisms 411 are arranged in parallel as an optical filter layer. ing.
  • FIG. 48 shows the phase difference ⁇ ( ⁇ nh ⁇ 2 ⁇ / ⁇ ) and the amount of diffracted light of each diffraction order m when using a triangular prism array 410 in which substantially triangular triangular prisms 411 are arranged in parallel as an optical filter layer. ing.
  • the light beam control angle ⁇ a with the 1st-order diffracted light as the basic angle can be obtained from Equation (1).
  • h is determined, an angular distribution as shown in FIG. 49A is obtained with the first-order diffracted light as the basic angle.
  • the light beam control angle ⁇ a with the second-order diffracted light as the basic angle can be obtained from equation (1).
  • h is determined, an angular distribution as shown in FIG. 49B is obtained with the second-order diffracted light as the basic angle.
  • FIG. 50 shows an example of the angular distribution of light rays emitted from the optical filter 4.
  • FIG. 50 a plurality of rays may be output from the optical filter 4 as long as they are diffused rays controlled within the beam control angle ⁇ a.
  • the moire reduction effect can be enhanced by approximating the distribution (top hat distribution).
  • FIG. 51 shows an example of the angular distribution of light rays emitted from the optical filter 4.
  • conditional expressions (1) and (2) when the phase difference ⁇ that makes the intensity of the m-order diffracted light and the intensity of the (m ⁇ 1)-order diffracted light equal to each other, the following is obtained within the beam control angle ⁇ a.
  • FIG. 52 schematically shows a configuration example of a trapezoidal prism array 420 used as the optical filter 4 of the stereoscopic display device according to the eighth specific example.
  • FIG. 53 schematically shows a configuration example of the trapezoidal prism 421. As shown in FIG.
  • a plurality of trapezoidal prisms 421 are arranged in parallel in a direction perpendicular to the arrangement of the lenticular lenses 3 .
  • the trapezoidal prism 421 is configured such that the horizontal ratio of the left and right inclined portions of the trapezoid in the horizontal cross section is 1/3. Note that a plurality of trapezoidal prisms 421 may be arranged in parallel in a direction parallel to the arrangement of the lenticular lenses 3 .
  • Optimal viewing distance D 500mm Lens pitch of lenticular lens 3: 0.143 mm
  • Array pitch (prism pitch) Pa of trapezoidal prism array 420: 15.2 ⁇ m
  • FIG. 54 shows an example of the angular distribution of light rays emitted from the optical filter 4 when the trapezoidal prism array 420 is used as the optical filter 4 .
  • the angle of the emitted light beam can be accurately controlled, and an angular distribution without trailing is obtained.
  • FIG. 55 schematically shows a configuration example of a triangular prism array 410 used as the optical filter 4 of the stereoscopic display device according to the eighth specific example.
  • a plurality of triangular prisms 411 are arranged in parallel in a direction orthogonal to the arrangement of the lenticular lenses 3.
  • a plurality of triangular prisms 411 may be arranged in parallel in a direction parallel to the arrangement of the lenticular lenses 3 .
  • the stereoscopic display device As in the configuration example of FIG. 45, a low refractive index layer 402 is stacked above the triangular prism array 410 . As shown in FIG. 45, the light beam control angle .theta.a is an angle within the cross section in the direction in which the plurality of triangular prisms 411 are arranged.
  • Optimal viewing distance D 500mm Lens pitch of lenticular lens 3: 0.238 mm
  • FIG. 56 shows an example of the angular distribution of light rays emitted from the optical filter 4 when the triangular prism array 410 is used as the optical filter 4.
  • FIG. FIG. 57 shows an example of a simulation image of a moiré state observed without the optical filter 4 and a moiré state observed with the optical filter 4 in the stereoscopic display device according to the eighth specific example. .
  • FIG. 58 schematically shows a configuration example of the lens array 430 used as the optical filter 4 of the stereoscopic display device according to the eighth specific example.
  • a plurality of cylindrical lenses 431 are arranged in parallel in a direction perpendicular to the arrangement of the lenticular lenses 3 . It should be noted that a plurality of cylindrical lenses 431 may be arranged in parallel in a direction parallel to the alignment of the lenticular lenses 3 .
  • the stereoscopic display device As in the configuration example of FIG. 47, a low refractive index layer 402 is stacked above the lens array 430 . As shown in FIG. 47, the light beam control angle .theta.a is an angle within the cross section in the direction in which the plurality of cylindrical lenses 431 are arranged.
  • Optimal viewing distance D 500mm Lens pitch of lenticular lens 3: 0.238 mm
  • FIG. 59 shows an example of the angular distribution of light rays emitted from the optical filter 4 when the lens array 430 is used as the optical filter 4.
  • FIG. 59 shows an example of the angular distribution of light rays emitted from the optical filter 4 when the lens array 430 is used as the optical filter 4.
  • the angle of the emitted light can be accurately controlled, and an angular distribution without trailing is obtained.
  • the output light beam a plurality of light rays can be generated, and the moiré reduction effect can be further enhanced without deteriorating crosstalk.
  • FIG. 60 schematically shows a configuration example of a lens array 440 used as the optical filter 4 of the stereoscopic display device according to the ninth specific example.
  • the optical filter 4 may include, as an optical filter layer, a lens array 440 in which a plurality of blazed cylindrical lenses 441 are arranged in parallel.
  • a plurality of blazed cylindrical lenses 441 are arranged in parallel in a direction orthogonal to the alignment of the lenticular lenses 3 .
  • a plurality of cylindrical lenses 441 may be arranged in parallel in a direction parallel to the alignment of the lenticular lenses 3 .
  • a low refractive index layer 402 is stacked above the lens array 440 .
  • the light beam control angle ⁇ a is an angle within the cross section in the arrangement direction of the plurality of cylindrical lenses 441 .
  • Optimal viewing distance D 500mm
  • Lens pitch of lenticular lens 3 0.238 mm
  • Refractive index n1 of low refractive index layer 402 1.41
  • Refractive index of optical filter layer (lens refractive index) n2 1.52
  • Array pitch (lens pitch) Pa of lens array 440 40 ⁇ m
  • Position of lens array 440 0.5 mm from wrench surface
  • Light beam control angle ⁇ a ⁇ 6deg
  • Focal length 0.19mm Height of optical filter layer before blazing (lens height) h: 14.5 ⁇ m Height of optical filter layer after blazing (lens height) h: 4.8 ⁇ m
  • FIG. 61 shows a comparison between a general cylindrical lens 431 and a blazed cylindrical lens 441.
  • the thickness of the cylindrical lens 441 can be made thinner than that of a general cylindrical lens 431 .
  • the thickness of the optical filter 4 can be reduced.
  • a multi-level phase type cylindrical lens may be used. Further, in the stereoscopic display device according to Specific Example 9, the angles of emitted light rays can be accurately controlled, and an angular distribution without trailing can be obtained.
  • FIG. 62 schematically shows a configuration example of the optical filter 4 of the stereoscopic display device according to the tenth specific example.
  • the optical filter 4 may be arranged obliquely with respect to the axial direction of the lenticular lens 3 .
  • the optical filter 4 By rotating the optical filter 4, a component of the horizontal light beam control angle ⁇ h and a component of the vertical light beam control angle ⁇ v are generated as the light beam control angle ⁇ a, and the light beam control angle of the optical filter 4 is made anisotropic. You can get the same effect as Further, in the stereoscopic display device according to the tenth specific example, the angles of emitted light rays can be accurately controlled, an angular distribution without trailing can be obtained, and crosstalk can be suppressed.
  • FIG. 63 schematically shows a configuration example of the optical filter 4 of the stereoscopic display device according to the eleventh specific example.
  • the optical filter 4 includes an optical filter layer, a low refractive index layer 402 having a lower refractive index than the refractive index n2 of the optical filter layer, and an intermediate layer 412 laminated between the optical filter layer and the low refractive index layer 402. and may be a configuration including.
  • the refractive index nm of the intermediate layer 412 may be lower than the refractive index n2 of the optical filter layer and higher than the refractive index n1 of the low refractive index layer 402 .
  • FIG. 63 shows a configuration example in which the optical filter layer is a triangular prism array 410 in which a plurality of triangular prisms 411 are arranged in parallel.
  • Interfacial reflection can be reduced by depositing the intermediate layer 412 by vapor deposition, sputtering, or the like so that the thickness of the intermediate layer 412 is an odd multiple of ⁇ /4.
  • the light beam control angle ⁇ a is an angle within the cross section in the arrangement direction of the plurality of triangular prisms 411 .
  • the optical filter layer is a triangular prism array 410 in which substantially triangular triangular prisms 411 are arranged in parallel.
  • the triangular prism 411 has a first slope 451 and a second slope 452 .
  • angle ⁇ out1 of the emitted light Lout1 from the first slope 451 and the angle ⁇ out2 of the emitted light Lout2 from the second slope 452 can be expressed by the following equations.
  • ⁇ out1 sin ⁇ 1 [n1 ⁇ sin ⁇ sin ⁇ 1 (1/n1 ⁇ sin ⁇ in) ⁇ 2 ⁇ s ⁇ ]
  • ⁇ out2 sin ⁇ 1 [n1 ⁇ sin ⁇ sin ⁇ 1 (1/n1 ⁇ sin ⁇ in)+2 ⁇ s ⁇ ]
  • FIG. 64 shows interface reflectance of the triangular prism array 410 in the optical filter 4 of the stereoscopic display device according to the eleventh specific example.
  • the horizontal axis indicates wavelength and the vertical axis indicates reflectance.
  • FIG. 64 shows interface reflectance with and without the intermediate layer 412 .
  • the intermediate layer 412 may be an AR (Anti Reflective) film composed of a plurality of LR (Low Reflection) layers, or an AR having a structure such as a moth-eye.
  • AR Anti Reflective
  • LR Low Reflection
  • FIG. 65 schematically shows a configuration example when the intermediate layer 412 in the optical filter 4 of the stereoscopic display device according to the eleventh specific example is uniform.
  • ⁇ nh is expressed as follows.
  • l1 is the optical path length on the mountain side
  • l2 is the optical path length on the valley side.
  • FIG. 66 schematically shows a configuration example when the intermediate layer 412 in the optical filter 4 of the stereoscopic display device according to the eleventh specific example is non-uniform.
  • the optical filter 4 may have a configuration including a prism array in which a plurality of prisms are two-dimensionally arranged in the horizontal and vertical directions as an optical filter layer.
  • the array pitch of the prism array in at least one of the horizontal and vertical directions is Pa, and Pa ⁇ 25 ⁇ m
  • the light beam control angle ⁇ a in at least one of the horizontal and vertical directions by the optical filter 4 is
  • the optical filter 4 may be constructed so as to satisfy the above conditional expressions (1) and (2).
  • the low refractive index layer 402 is laminated on the upper layer of the trapezoidal prism array 420.
  • Lens pitch of lenticular lens 3 0.143 mm
  • Design dominant wavelength ⁇ 0.53 ⁇ m
  • Position of trapezoidal prism array 420 2.75 mm from top surface of lenticular lens 3
  • Refractive index n1 of low refractive index layer 402 1.41
  • Pv 15.2 ⁇ m
  • Vertical beam control angle ⁇ v ⁇ 2deg Height of optical filter layer (prism height) h: 2.9 ⁇ m
  • the array pitch in the horizontal direction, is Ph>25 ⁇ m, and the design is based on the normal prism refraction angle that does not consider the influence of diffraction.
  • the array pitch in the vertical direction, is Pv ⁇ 25 ⁇ m, and the design is made under the condition of the diffraction angle in consideration of the diffraction effect that satisfies the above conditional expressions (1) and (2).
  • FIG. 68 schematically shows a second configuration example of the optical filter 4 in the stereoscopic display device according to the twelfth specific example.
  • FIG. 68 shows a configuration example in which the optical filter 4 includes a triangular prism array 410.
  • the triangular prism array 410 has a configuration in which triangular prisms 411 having a rectangular planar shape are used as unit cells, and a plurality of triangular prisms 411 as unit cells are two-dimensionally arranged in the horizontal and vertical directions. It is
  • a low refractive index layer 402 is stacked above the triangular prism array 410 .
  • Lens pitch of lenticular lens 3 0.238 mm
  • Design dominant wavelength ⁇ 0.53 ⁇ m
  • Position of triangular prism array 410 0.85 mm from top surface of lenticular lens 3
  • Refractive index n1 of low refractive index layer 402 1.41
  • Pv 17.4 ⁇ m
  • Vertical beam control angle ⁇ v ⁇ 3.5deg
  • Height of optical filter layer (prism height) h 4.5 ⁇ m
  • the array pitch in the horizontal direction, is Ph>25 ⁇ m, and the design is based on the normal prism refraction angle that does not consider the influence of diffraction.
  • the array pitch in the vertical direction, is Pv ⁇ 25 ⁇ m, and the design is made under the condition of the diffraction angle in consideration of the diffraction effect that satisfies the above conditional expressions (1) and (2).
  • a plurality of prisms are arranged two-dimensionally in the horizontal direction and the vertical direction as the prism array used for the optical filter 4, so that the horizontal light beam control angle ⁇ h is used as the light beam control angle. and a component of the vertical ray control angle ⁇ v.
  • the same effect as imparting anisotropy to the light beam control angle of the optical filter 4 can be obtained.
  • the optical filter 4 may have a configuration including, as an optical filter layer, a lens array in which a plurality of lenses are two-dimensionally arranged in the horizontal direction and the vertical direction.
  • the optical filter 4 may be constructed so as to satisfy the above conditional expressions (1) and (2).
  • FIG. 69 schematically shows a first configuration example of the optical filter 4 in the stereoscopic display device according to the thirteenth specific example.
  • FIG. 69 shows a configuration example in which the optical filter 4 includes a microlens array (MLA) 460.
  • MLA microlens array
  • the low refractive index layer 402 is stacked above the microlens array 460 .
  • Lens pitch of lenticular lens 3 0.143 mm
  • Position of microlens array 460 2.75 mm from top surface of lenticular lens 3
  • Refractive index n1 of low refractive index layer 402 1.41
  • Refractive index of optical filter layer (lens refractive index) n2 1.52
  • Pv 30 ⁇ m Vertical focal length fv: 0.39mm
  • Vertical beam control angle ⁇ v ⁇ 2.2 deg
  • FIG. 70 schematically shows a second configuration example of the optical filter 4 in the stereoscopic display device according to the thirteenth specific example.
  • the optical filter 4 may include, as an optical filter layer, a lens array in which a plurality of blazed lenses are two-dimensionally arranged in the horizontal and vertical directions.
  • FIG. 70 shows a configuration example in which the optical filter 4 includes a Fresnel lens array 470 .
  • the Fresnel lens array 470 has a configuration in which Fresnel lenses 471 having a rectangular planar shape are used as unit cells, and a plurality of Fresnel lenses 471 as unit cells are arranged two-dimensionally in the horizontal and vertical directions. It is
  • the lens array used for the optical filter 4 has a configuration in which a plurality of lenses are two-dimensionally arranged in the horizontal direction and the vertical direction. and a component of the vertical ray control angle ⁇ v.
  • the same effect as imparting anisotropy to the light beam control angle of the optical filter 4 can be obtained.
  • the angles of emitted light rays can be accurately controlled, an angular distribution without trailing can be obtained, and crosstalk can be suppressed.
  • the optical filter 4 may have a configuration including a prism array in which a plurality of prisms are randomly two-dimensionally arranged in the horizontal and vertical directions as an optical filter layer.
  • the optical filter 4 may also have a configuration including a lens array (random two-dimensionally arranged lens array) in which a plurality of lenses are randomly two-dimensionally arranged in the horizontal and vertical directions as an optical filter layer.
  • 71 and 72 schematically show an example of the phase difference distribution produced by the first structural example of the optical filter in the stereoscopic display device according to the fourteenth specific example.
  • 71 and 72 show an example of the phase difference distribution when the optical filter 4 has a configuration including a random two-dimensionally arranged lens array.
  • 71 and 72 show an example of the phase difference distribution when the horizontal light beam control angle and the vertical light beam control angle are different (anisotropic).
  • FIG. 71 shows a two-dimensional phase difference distribution.
  • FIG. 72 shows the phase difference distribution in the horizontal cross section and the phase difference distribution in the vertical cross section.
  • FIGS. 73 and 74 schematically show an example of the phase difference distribution produced by the second configuration example of the optical filter in the stereoscopic display device according to the fourteenth specific example.
  • FIGS. 73 and 74 show the case where the optical filter 4 includes a prism array in which a plurality of substantially triangular prisms are randomly two-dimensionally arranged in the horizontal and vertical directions (random two-dimensionally arranged substantially triangular prism array).
  • An example of phase difference distribution is shown.
  • 73 and 74 show an example of the phase difference distribution when the horizontal light beam control angle and the vertical light beam control angle are different (anisotropic).
  • FIG. 73 shows a two-dimensional phase difference distribution.
  • FIG. 74 shows the phase difference distribution in the horizontal cross section and the phase difference distribution in the vertical cross section.
  • a low refractive index layer 402 is stacked above the optical filter layer.
  • Lens pitch of lenticular lens 3 0.238 mm
  • Design dominant wavelength ⁇ 0.53 ⁇ m
  • Position of the optical filter layer 0.85 mm from the upper surface of the lenticular lens 3
  • Refractive index n1 of low refractive index layer 402 1.41
  • the light beam control angle can be made anisotropic.
  • FIGS. 71 and 73 are design examples in which the light beam control angle is controlled by the array pitch and the phase difference ⁇ .
  • the optical filter layer has a configuration in which a plurality of prisms or a plurality of lenses are randomly arranged two-dimensionally in the horizontal direction and the vertical direction. A component of angle ⁇ h and a component of vertical ray control angle ⁇ v can be generated. Thereby, the light beam control angle of the optical filter 4 can be made anisotropic. Further, in the stereoscopic display device according to Specific Example 14, the angles of emitted light rays can be accurately controlled, an angular distribution without trailing can be obtained, and crosstalk can be suppressed.
  • the diffusion angle of light rays emitted from the lenticular lens 3 toward a plurality of viewpoint positions is determined based on the plurality of viewpoint positions. is controlled to be within the angle range of This makes it possible to improve image quality. In particular, it is possible to reduce optical moire without degrading crosstalk.
  • Second Embodiment> a stereoscopic display device according to a second embodiment of the present disclosure will be described. It should be noted that, hereinafter, the same reference numerals are assigned to substantially the same components as those of the stereoscopic display device according to the first embodiment, and description thereof will be omitted as appropriate.
  • FIG. 75 is a cross-sectional view schematically showing one configuration example of the stereoscopic display device according to the second embodiment.
  • FIG. 76 is a cross-sectional view schematically showing a first structural example of the surface of the lenticular lens 3 in the stereoscopic display device according to the second embodiment.
  • the surface of the lenticular lens 3 is processed to function as an optical filter.
  • the optical filter formed on the surface of the lenticular lens 3 is similar to the optical filter 4 in the stereoscopic display device according to the first embodiment, and the diffusion angle of the light rays emitted from the lenticular lens 3 is set at a plurality of viewpoint positions. is controlled so as to be within a predetermined angle range determined based on .
  • the surface of the lenticular lens 3 is formed with a fine uneven layer 70 having a plurality of fine uneven shapes 71 functioning as an optical filter.
  • the fine irregularities 71 are formed parallel to the arrangement of the lenticular lenses 3 .
  • Lens pitch of lenticular lens 3 0.143 mm
  • Pitch of fine irregularities 71 Average 0.019 mm
  • Horizontal beam control angle ⁇ h ⁇ 0.5 deg
  • the unevenness of the fine unevenness shape 71 has a step of about 0.1 ⁇ m and a radius of curvature of about 0.36 mm.
  • the fine uneven shape 71 may be realized by a method of forming a tool bit for forming a mold, or by hairline processing after forming the mold. In the hairline processing or the like, the minute irregularities 71 have random pitches.
  • FIG. 77 is a configuration diagram schematically showing a second configuration example of the surface of the lenticular lens 3 in the stereoscopic display device according to the second embodiment.
  • a fine concave-convex shape 71 that functions as an optical filter may be formed in a direction perpendicular to the arrangement of the lenticular lenses 3 .
  • Lens pitch of lenticular lens 3 0.143 mm
  • Pitch of fine irregularities 71 Average 0.019 mm
  • Horizontal beam control angle ⁇ h ⁇ 1.5deg
  • the unevenness of the fine unevenness shape 71 is, for example, a step of about 0.4 ⁇ m.
  • the fine unevenness 71 is realized by hairline processing or the like after forming the mold. In the hairline processing or the like, the minute irregularities 71 have random pitches.
  • the present technology can also have the following configuration.
  • the diffusion angles of light rays emitted from the optical element toward a plurality of viewpoint positions are controlled so as to fall within a predetermined angle range determined based on the plurality of viewpoint positions. This makes it possible to improve image quality.
  • an image display element that displays a plurality of viewpoint images; an optical element arranged opposite to the image display element for emitting a plurality of light rays corresponding to the plurality of viewpoint images toward a plurality of viewpoint positions; An optical filter disposed between the plurality of viewpoint positions and the optical element, and controlling a diffusion angle of light rays emitted from the optical element so as to fall within a predetermined angle range determined based on the plurality of viewpoint positions.
  • a stereoscopic display device comprising and .
  • the horizontal light beam control angle by the optical filter is 1/2 or less of the viewpoint angle formed by the surface of the optical filter and two viewpoint positions corresponding to the left eye position and the right eye position among the plurality of viewpoint positions.
  • the stereoscopic display device configured to have anisotropy in a horizontal light beam control angle and a vertical light beam control angle.
  • the optical element is a lenticular lens having a plurality of obliquely arranged lenses,
  • the light beam control angle in the vertical direction by the optical filter is 1/2 of the viewpoint angle formed by the surface of the optical filter and two viewpoint positions corresponding to the left eye position and the right eye position among the plurality of viewpoint positions. , or less than a value obtained by multiplying the ratio determined by the tilt angle of the lenticular lens.
  • the image display element has a plurality of sub-pixels
  • the optical element is a lenticular lens having a plurality of obliquely arranged lenses
  • the light beam control angle in the axial direction of the lenticular lens by the optical filter is determined by the sub-pixel pitch of the image display element in the axial direction of the lenticular lens and the distance between the upper surface of the optical filter and the upper surface of the lenticular lens.
  • the stereoscopic display device (9) The stereoscopic display device according to (8) above, wherein the light beam control angle by the optical filter is an angle determined based on the plurality of viewpoint positions and the lens pitch of the lens array. (10) When the array pitch of the lens array is Pa, Pa ⁇ 25 ⁇ m, The stereoscopic display device according to (8) above, wherein the following conditional expression is satisfied with respect to the light beam control angle ⁇ a by the optical filter.
  • ⁇ a sin ⁇ 1 (m ⁇ /Pa) (1) 0.9m ⁇ 0.9(m+1) ⁇ (2) however, m: number of diffraction orders of diffracted light generated by the lens array (integer) ⁇ : Dominant wavelength of the light beam incident on the optical filter ⁇ : Phase difference caused by the light beam incident on the optical filter passing through the lens array.
  • ⁇ a sin ⁇ 1 (m ⁇ /Pa) (1) 0.9m ⁇ 0.9(m+1) ⁇ (2) however, m: number of diffraction orders of diffracted light generated by the lens array (integer) ⁇ : Dominant wavelength of the light beam incident on the optical filter ⁇ : Phase difference caused by the light beam incident on the optical filter passing through the lens array.
  • the optical element is a lenticular lens having a plurality of lenses extending in the axial direction,
  • the stereoscopic display device according to any one of (1) to (11) above, wherein the optical filter is arranged to be inclined with respect to the axial direction of the lenticular lens.
  • the optical filter is an optical filter layer; a low refractive index layer having a lower refractive index than the optical filter layer; and an intermediate layer laminated between the optical filter layer and the low refractive index layer and having a refractive index lower than that of the optical filter layer and higher than that of the low refractive index layer.
  • the stereoscopic display device according to any one of (1) to (5) above, wherein the optical filter includes a prism array in which a plurality of prisms are two-dimensionally arranged in horizontal and vertical directions.
  • Pa is an array pitch in at least one of the horizontal direction and the vertical direction of the prism array, and Pa ⁇ 25 ⁇ m;
  • the stereoscopic display device according to (14) above, wherein the following conditional expression is satisfied with respect to the light beam control angle ⁇ a in at least one of the horizontal direction and the vertical direction by the optical filter.
  • ⁇ a sin ⁇ 1 (m ⁇ /Pa) (1) 0.9m ⁇ 0.9(m+1) ⁇ (2) however, m: number of diffraction orders of diffracted light generated by the prism array (integer) ⁇ : Dominant wavelength of light incident on the optical filter ⁇ : Phase difference caused by the light incident on the optical filter passing through the prism array.
  • the optical filter includes a lens array in which a plurality of lenses are two-dimensionally arranged horizontally and vertically.
  • the plurality of lenses are randomly two-dimensionally arranged in the horizontal direction and the vertical direction.
  • each of the plurality of lenses in the lens array is a blazed lens.
  • 20 The stereoscopic display device according to any one of (1) to (19) above, further comprising a viewpoint position detection unit that detects the plurality of viewpoint positions.
  • (21) an image display element that displays a plurality of viewpoint images; an optical element arranged opposite to the image display element for emitting a plurality of light rays corresponding to the plurality of viewpoint images toward a plurality of viewpoint positions, The surface of the optical element is processed to function as an optical filter that controls the diffusion angle of light rays emitted from the optical element so as to fall within a predetermined angle range determined based on the plurality of viewpoint positions. display device.
  • (22) The stereoscopic display device according to (21) above, wherein a plurality of uneven shapes functioning as the optical filter are formed on the surface of the optical element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

本開示の立体表示装置は、複数の視点画像を表示する画像表示素子と、画像表示素子に対向配置され、複数の視点画像に対応する複数の光線をそれぞれ複数の視点位置に向けて出射する光学素子と、複数の視点位置と光学素子との間に配置され、光学素子から出射された光線の拡散角度を、複数の視点位置に基づいて決まる所定の角度範囲となるように制御する光学フィルタとを備える。

Description

立体表示装置
 本開示は、立体表示装置に関する。
 レンチキュラレンズを用いた立体表示装置がある(例えば特許文献1参照)。特許文献1に記載の立体表示装置では、モアレを低減するために拡散体を配置した構成が提案されている。
特開平9-133893号公報
 レンチキュラレンズを用いた立体表示装置では、左右の視点画像が混ざってしまうクロストークが発生し得る。特許文献1に記載の立体表示装置では、モアレを低減しつつ、クロストークの発生を抑制することは困難である。
 画質を向上させることが可能な立体表示装置を提供することが望ましい。
 本開示の一実施の形態に係る第1の立体表示装置は、複数の視点画像を表示する画像表示素子と、画像表示素子に対向配置され、複数の視点画像に対応する複数の光線をそれぞれ複数の視点位置に向けて出射する光学素子と、複数の視点位置と光学素子との間に配置され、光学素子から出射された光線の拡散角度を、複数の視点位置に基づいて決まる所定の角度範囲となるように制御する光学フィルタとを備える。
 本開示の一実施の形態に係る第2の立体表示装置は、複数の視点画像を表示する画像表示素子と、画像表示素子に対向配置され、複数の視点画像に対応する複数の光線をそれぞれ複数の視点位置に向けて出射する光学素子とを備え、光学素子の表面に、光学素子から出射される光線の拡散角度を、複数の視点位置に基づいて決まる所定の角度範囲となるように制御する光学フィルタとして機能する加工がなされている。
 本開示の一実施の形態に係る第1の立体表示装置、または第2の立体表示装置では、複数の視点位置に向けて光学素子から出射される光線の拡散角度が、複数の視点位置に基づいて決まる所定の角度範囲となるように制御される。
本開示の第1の実施の形態に係る立体表示装置の一構成例を概略的に示す水平方向の断面図である。 立体表示装置における視点角度と視点位置での光の強度との関係の一例を示す説明図である。 立体表示装置における観察距離と視点角度との関係の一例を示す説明図である。 画像表示素子の画素構造の一例を示す平面図である。 レンチキュラレンズを介して観察される画素の状態の一例を示すシミュレーション画像である。 レンチキュラレンズを介して観察される画素の状態の一例を示す説明図である。 レンチキュラレンズを介して観察されるモアレの一例を示す説明図である。 第1の実施の形態に係る立体表示装置の一構成例を概略的に示すレンチキュラレンズの軸方向の断面図である。 レンチキュラレンズの軸方向のサブピクセルピッチの一例を概略的に示す説明図である。 レンチキュラレンズと画像表示素子の画素との配置関係の一例を示す平面図である。 具体例1に係る立体表示装置の一構成例を概略的に示す水平方向の断面図である。 具体例1に係る立体表示装置の変形例を概略的に示す水平方向の断面図である。 具体例1に係る立体表示装置において光学フィルタを省いた場合に観察される画素の状態の一例を示すシミュレーション画像である。 具体例1に係る立体表示装置において光学フィルタを省いた場合に観察されるモアレの状態の一例を示すシミュレーション画像である。 具体例2に係る立体表示装置の一構成例を概略的に示す水平方向の断面図である。 具体例2に係る立体表示装置の変形例を概略的に示す水平方向の断面図である。 具体例2に係る立体表示装置において光学フィルタの拡散板として等方性拡散板を用いた場合に観察される画素の状態の一例を示すシミュレーション画像である。 具体例2に係る立体表示装置において光学フィルタの拡散板として異方性拡散板を用いた場合に観察される画素の状態の一例を示すシミュレーション画像である。 具体例3に係る立体表示装置の一構成例を概略的に示す水平方向の断面図である。 具体例3に係る立体表示装置における光学フィルタとしての台形プリズムアレイの一構成例を概略的に示す構成図である。 具体例3に係る立体表示装置における光学フィルタとしての台形プリズムアレイの一構成例を概略的に示す断面図である。 具体例3に係る立体表示装置において光学フィルタを省いた場合に観察される画素の状態およびモアレの状態の一例を示すシミュレーション画像である。 具体例3に係る立体表示装置において観察される画素の状態およびモアレの状態の一例を示すシミュレーション画像である。 具体例4に係る立体表示装置における光学フィルタとしての台形プリズムアレイの一構成例を概略的に示す構成図である。 具体例4に係る立体表示装置において光学フィルタを省いた場合に観察される画素の状態の一例を示すシミュレーション画像である。 具体例4に係る立体表示装置において観察される画素の状態の一例を示すシミュレーション画像である。 具体例5に係る立体表示装置の一構成例を概略的に示す水平方向の断面図である。 具体例5に係る立体表示装置における光学フィルタとしてのレンズアレイの一構成例を概略的に示す構成図である。 具体例5に係る立体表示装置における光学フィルタとしてのレンズアレイの一構成例を概略的に示す断面図である。 具体例5に係る立体表示装置において光学フィルタを省いた場合に観察される画素の状態の一例を示すシミュレーション画像である。 具体例5に係る立体表示装置において観察される画素の状態の一例を示すシミュレーション画像である。 具体例6に係る立体表示装置における光学フィルタとしてのレンズアレイの一構成例を概略的に示す構成図である。 具体例7に係る立体表示装置の一構成例を概略的に示すレンチキュラレンズの軸方向の断面図である。 具体例7に係る立体表示装置における光学フィルタの一構成例を概略的に示す断面図である。 具体例7に係る立体表示装置における光学フィルタの変形例を概略的に示す断面図である。 具体例7に係る立体表示装置において光学フィルタを省いた場合にレンチキュラレンズを介して観察される画素の状態の一例を示すシミュレーション画像である。 具体例7に係る立体表示装置において光学フィルタを省いた場合に観察される画素の状態およびモアレの状態の一例を示すシミュレーション画像である。 具体例7に係る立体表示装置において観察される画素の状態およびモアレの状態の一例を示すシミュレーション画像である。 具体例7に係る立体表示装置において、光学フィルタにおけるレンチキュラレンズの軸方向におけるプリズムピッチ、および光学フィルタにおけるレンチキュラレンズの軸方向の拡散角とモアレとの関係を示す説明図である。 具体例7に係る立体表示装置において、光学フィルタにおけるレンチキュラレンズの軸方向におけるプリズムピッチ、および光学フィルタにおけるプリズムピッチの最適条件とモアレとの関係を示す説明図である。 具体例7に係る立体表示装置において、プリズムピッチが30μmの場合における、観察距離、および光学フィルタにおけるレンチキュラレンズの軸方向における拡散角とモアレとの関係を示す説明図である。 具体例7に係る立体表示装置において、プリズムピッチが26.6μmの場合における、観察距離、および光学フィルタにおけるレンチキュラレンズの軸方向における拡散角とモアレとの関係を示す説明図である。 光学フィルタのアレイピッチの幅狭化による回折の影響を示す説明図である。 光学フィルタのアレイピッチの幅狭化による回折の影響を示す説明図である。 三角プリズムアレイを用いた光学フィルタの一構成例を概略的に示す断面図である。 台形プリズムアレイを用いた光学フィルタの一構成例を概略的に示す断面図である。 レンズアレイを用いた光学フィルタの一構成例を概略的に示す断面図である。 光学フィルタにおける位相差と回折強度との関係の一例を示す説明図である。 光学フィルタからの出射光線の角度分布の一例を示す説明図である。 光学フィルタからの出射光線の角度分布の一例を示す説明図である。 光学フィルタからの出射光線の角度分布の一例を示す説明図である。 具体例8に係る立体表示装置の光学フィルタ4として用いられる台形プリズムアレイの一構成例を概略的に示す斜視図である。 台形プリズムの一構成例を概略的に示す断面図である。 光学フィルタとして台形プリズムアレイを用いた場合の光学フィルタからの出射光線の角度分布の一例を示す説明図である。 具体例8に係る立体表示装置の光学フィルタとして用いられる三角プリズムアレイの一構成例を概略的に示す斜視図である。 光学フィルタとして三角プリズムアレイを用いた場合の光学フィルタからの出射光線の角度分布の一例を示す説明図である。 具体例8に係る立体表示装置において光学フィルタがない場合に観察されるモアレの状態、および光学フィルタがある場合に観察されるモアレの状態の一例を示すシミュレーション画像である。 具体例8に係る立体表示装置の光学フィルタとして用いられるレンズアレイの一構成例を概略的に示す斜視図である。 光学フィルタとしてレンズアレイを用いた場合の光学フィルタからの出射光線の角度分布の一例を示す説明図である。 具体例9に係る立体表示装置の光学フィルタとして用いられるレンズアレイの一構成例を概略的に示す斜視図である。 一般的なシリンドリカルレンズとブレーズ化されたシリンドリカルレンズとを比較して示す断面図である。 具体例10に係る立体表示装置の光学フィルタの一構成例を概略的に示す平面図である。 具体例11に係る立体表示装置の光学フィルタの一構成例を概略的に示す断面図である。 具体例11に係る立体表示装置の光学フィルタにおける三角プリズムアレイの界面反射率を示す説明図である。 具体例11に係る立体表示装置の光学フィルタにおける中間層が均一である場合の構成例を模式的に示す断面図である。 具体例11に係る立体表示装置の光学フィルタにおける中間層が不均一である場合の構成例を模式的に示す断面図である。 具体例12に係る立体表示装置における光学フィルタの第1の構成例を概略的に示す斜視図である。 具体例12に係る立体表示装置における光学フィルタの第2の構成例を概略的に示す斜視図である。 具体例13に係る立体表示装置における光学フィルタの第1の構成例を概略的に示す斜視図である。 具体例13に係る立体表示装置における光学フィルタの第2の構成例を概略的に示す斜視図である。 具体例14に係る立体表示装置における光学フィルタの第1の構成例によって生ずる位相差分布の一例を概略的に示す説明図である。 具体例14に係る立体表示装置における光学フィルタの第1の構成例によって生ずる位相差分布の一例を概略的に示す説明図である。 具体例14に係る立体表示装置における光学フィルタの第2の構成例によって生ずる位相差分布の一例を概略的に示す説明図である。 具体例14に係る立体表示装置における光学フィルタの第2の構成例によって生ずる位相差分布の一例を概略的に示す説明図である。 第2の実施の形態に係る立体表示装置の一構成例を概略的に示す断面図である。 第2の実施の形態に係る立体表示装置におけるレンチキュラレンズの表面の第1の構成例を概略的に示す断面図である。 第2の実施の形態に係る立体表示装置におけるレンチキュラレンズの表面の第2の構成例を概略的に示す構成図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態(光学フィルタを備えた立体表示装置)(図1~図74)
  1.1 概要
  1.2 具体例
  1.3 効果
 2.第2の実施の形態(レンチキュラレンズの表面に光学フィルタの機能が形成された立体表示装置)(図75~図77)
 3.その他の実施の形態
 
<1.第1の実施の形態>
[1.1 概要]
(構成)
 図1は、本開示の第1の実施の形態に係る立体表示装置の一構成例を概略的に示す水平方向の断面図である。
 第1の実施の形態に係る立体表示装置は、画像表示素子1と、透明基板2と、光学素子としてのレンチキュラレンズ3と、光学フィルタ4と、視点位置検出部6と、画像生成部7とを備えている。
 視点位置検出部6は、観察者の複数の視点位置として左眼5Lおよび右眼5Rの位置を検出する。第1の実施の形態に係る立体表示装置では、視点位置検出部6によって観察者の複数の視点位置をトラッキングすることが可能となっている。
 画像生成部7は、複数の視点画像として、例えば左眼5L用の視点画像と右眼5R用の視点画像とを生成する。画像生成部7は、視点位置検出部6によって検出された視点位置に応じた視点画像を生成する。
 画像表示素子1は、画像生成部7によって生成された複数の視点画像を表示する。画像表示素子1には、複数の画素が2次元配置されている。複数の画素はそれぞれ、複数のサブピクセルを含む。複数のサブピクセルは例えば、R色(赤色)画素1R、G色(緑色)画素1G、および、B色(青色)画素1Bを含む。各サブピクセルの間には、ブラックマトリクス1BKが配置されている。
 レンチキュラレンズ3は、透明基板2を介して画像表示素子1に対向配置されている。レンチキュラレンズ3は例えば、傾斜配置された複数のシリンドリカルレンズ31を有する。シリンドリカルレンズ31は、レンチキュラレンズ3の傾斜方向(軸方向)に延在している。レンチキュラレンズ3は、画像表示素子1に表示された複数の視点画像に対応する複数の光線をそれぞれ複数の視点位置に向けて出射する。レンチキュラレンズ3は例えば、画像表示素子1に表示された左眼5L用の視点画像に対応する光線を左眼5Lの視点位置に向けて出射する。また、レンチキュラレンズ3は例えば、画像表示素子1に表示された右眼5R用の視点画像に対応する光線を右眼5Rの視点位置に向けて出射する。
 光学フィルタ4は、複数の視点位置(左眼5Lおよび右眼5R)とレンチキュラレンズ3との間に配置されている。光学フィルタ4は、レンチキュラレンズ3から出射された光線の拡散角度を、複数の視点位置に基づいて決まる所定の角度範囲となるように制御する。
(光学フィルタ4の詳細な構成および作用)
 図2に、立体表示装置における視点角度θeyeと視点位置での光の強度との関係の一例を示す。図3に、立体表示装置における観察距離と視点角度θeyeとの関係の一例を示す。
 光学フィルタ4は、モアレを低減しつつ、クロストークの発生を抑制する作用を有している。モアレは画素形状とレンチキュラレンズ3の周期構造の干渉によって起こる明暗の縞である。明暗の縞は、視点位置からレンチキュラレンズ3越しに画像表示素子1の画素を観察したときにブラックマトリクス1BKに位置する場所が暗部を形成しその場所が空間的に偏りが起こるために発生する。
 レンチキュラレンズ3から出射した光線は光学フィルタ4によって角度の広がりを持つ。ここで、光学フィルタ4は、散乱角度を制御した拡散板や光学ローパスフィルタ等、光線の出射角度を所定角度に制御する機能を持つ素子で構成される。このとき、ある画素位置について、一方の眼(例えば左眼5L)には、光学フィルタ4がない場合はおおよそ1点から出射した光線が眼に入るが、光学フィルタ4がある場合は周辺の画素位置からの光線も眼に入射する。ブラックマトリクス1BKの位置についても同様であり、光学フィルタ4がある場合は、一方の眼(例えば左眼5L)には、あるブラックマトリクス1BKから出射した光線(図1の光線L1)と周辺の画素位置からの光線(例えば図1の光線L2)とが眼に入射する。光学フィルタ4がある場合は、ブラックマトリクス1BKに位置する場所においても周辺の画素位置の光線で平均化することでモアレのコントラストを下げることができる。
 一方、光学フィルタ4での角度の広がりが大きすぎると、他方の眼(例えば右眼5R)に光線が入ることでクロストークを発生させる。クロストークを発生させないためには視点位置で決まる視点角度θeye(両眼と光学フィルタ4の1点で成す角度)で決まる許容角度より小さく抑えることが必要である。図2は、観察距離D=500mmで設計した場合の左眼5Lおよび右眼5Rに入射する光の強度の角度分布を示している。実線は光学フィルタ4がない場合、破線は光学フィルタ4がある場合を示している。なお、光学フィルタ4がある場合、観察距離Dは図1に示したように光学フィルタ4の上面から視点位置までの距離である。図3に示したように、観察距離D=500mmでは視点角度θeyeは7.4degで、左眼5Lおよび右眼5Rのそれぞれについて、7.4degの視点幅を持つ。視点幅の1/2である3.7degを超えると、一方の眼からの光線が他方の眼に入り込み、クロストークを起こす。実際の視点分布は矩形ではなく傾きを持ち、図2ではおよそ2degがクロストークを悪化させない許容角度になる。
 図4は、画像表示素子1の画素構造の一例を示す平面図である。図5は、レンチキュラレンズ3を介して観察される画素の状態の一例を示すシミュレーション画像である。図6は、レンチキュラレンズ3を介して観察される画素の状態の一例を示す説明図である。図7は、レンチキュラレンズ3を介して観察されるモアレの一例を示す説明図である。
 図4には、IPS(In-Plane Switching)モードの画素構造を示す。図4に示したように、1行おきにサブピクセルの傾斜方向が逆となる構造となっている。図5は、レンチキュラレンズ3越しに見た画素を視点位置から見たシミュレーション画像であり、レンチキュラレンズ3の傾斜方向(軸方向)とブラックマトリクス1BKの傾斜方向とが一致したブラックマトリクス1BKの位置が面積の大きい暗部となっている。図7に示すように暗部の分布には偏りがあり、この偏りがモアレとして見える。なお、図6には、レンチキュラレンズ3を介して観察される画素の状態を、画素構造を簡略化した例として示す。
 レンチキュラレンズ3のレンズピッチで決まる視点角度θeyeは、観察距離D=500mmで設計した場合、先述したように7.4degになる。レンチキュラレンズ3の焦点位置は、おおよそ画素位置に設計するので画素面での水平方向の空間位置が角度の分布に対応する。図5に示した例では、1サブピクセルの幅はおよそ視点位置から見込んだとき、1.5degとなる。暗部の角度もおおよそその範囲である。
 光学フィルタ4による水平方向の光線制御角度θhは、光学フィルタ4の表面と複数の視点位置のうち左眼位置と右眼位置とに対応する2つの視点位置とが成す視点角度θeyeの1/2以下であるとよい。すなわち、水平方向の光線制御角度θhは下記を満たすことで、モアレの低減とクロストークの発生の抑制との両立が成り立つ。
 観察距離:D
 眼間距離:IPD
 視点角度:θeye
 水平方向の光線制御角度:θh
 θeye=2tan-1(IPD/2D)
 θh≦θeye/2
 図8は、第1の実施の形態に係る立体表示装置の一構成例を概略的に示すレンチキュラレンズ3の軸方向の断面図である。図9は、レンチキュラレンズ3の軸方向のサブピクセルピッチPLの一例を概略的に示す。
 図8には、光学フィルタ4によるレンチキュラレンズ3の軸方向の光線制御角度θbの一例を示す。図8には、光線制御角度θbとして、あるブラックマトリクス1BKから出射した光線L1が光学フィルタ4を出射後に広がる角度の例として示す。図8において、一点鎖線で示す光線L2は、一方の眼(例えば左眼5L)に入る光線が複数の画素から出射されている経路を示していて、光学フィルタ4への入射角度は光線制御角度θbと同じである。一方、レンチキュラレンズ3の軸方向におけるサブピクセルピッチPLは、サブピクセルの水平サイズとレンチキュラレンズ3の傾きとで決まる。
 モアレを軽減するためにレンチキュラレンズ3の軸方向に1サブピクセルの範囲で平均化することを光学フィルタ4で制御する。図8に示す光学フィルタ4の上面とレンチキュラレンズ3の上面との距離dが離れるほど、同じサブピクセルの範囲に相当する光線制御角度θbは小さくすることが可能となる。
 光学フィルタ4によるレンチキュラレンズ3の軸方向の光線制御角度θbは、レンチキュラレンズ3の軸方向における画像表示素子1のサブピクセルピッチPLと、光学フィルタ4の上面とレンチキュラレンズ3の上面との距離dとで決まる角度より小さくするとよい。なお、光学フィルタ4として機能する面とレンチキュラレンズ3との間にガラスや透明樹脂等の基材がある場合は距離dは空気中の距離に換算して求める。光学フィルタ4によるレンチキュラレンズ3の軸方向の光線制御角度θbは、以下のように求められる。
 レンチキュラレンズ3の軸方向のサブピクセルピッチ:PL
 水平サブピクセルサイズ:Px
 レンチキュラレンズ3の傾斜角:θL
 レンチキュラレンズ3の軸方向の光線制御角度:θb
 PL=Px/sinθL
 θb=tan-1(PL/d)
 図10は、レンチキュラレンズ3と画像表示素子1の画素との配置関係の一例を示す平面図である。
 光学フィルタ4は、水平方向の光線制御角度θhと垂直方向の光線制御角度θvとに異方性を持つように構成されてもよい。光学フィルタ4による垂直方向の光線制御角度θvは、以下の式に示すように、光学フィルタ4の表面と複数の視点位置のうち左眼位置と右眼位置とに対応する2つの視点位置とが成す視点角度θeyeの1/2に、レンチキュラレンズ3の傾斜角で決まる比率を乗じた値以下であってもよい。光学フィルタ4からの出射光線に関して、垂直方向の角度の広がりは、水平方向の角度の広がりよりもクロストークに対しての影響が小さい。光学フィルタ4からの出射光線に関して、垂直方向の許容角度範囲はレンチキュラレンズ3の傾斜角がθLのとき、水平方向の許容角度のtan(90-θL)倍となる。
 垂直方向の光線制御角度:θv
 θeye=2tan-1(IPD/2D)
 θv≦(θeye/2)tan(90-θL)
[1.2 具体例]
 次に、第1の実施の形態に係る立体表示装置の具体的な構成例を説明する。
(具体例1)
 図11は、具体例1に係る立体表示装置の一構成例を概略的に示す水平方向の断面図である。図12は、具体例1に係る立体表示装置の変形例を概略的に示す水平方向の断面図である。
 具体例1に係る立体表示装置は、光学フィルタ4として、拡散角度が制御された拡散板41を備えている。拡散板41は、透明基板42の上面に配置されている。拡散板41と透明基板42は一体化されていてもよい。
 なお、図12の変形例に示すように、レンチキュラレンズ3と光学フィルタ4の透明基板42との間に低屈折率層43が設けられていてもよい。低屈折率層43は、例えば、レンチキュラレンズ3の屈折率より低い屈折率の樹脂で構成されている。低屈折率層43によって、レンチキュラレンズ3と光学フィルタ4とが一体化されていてもよい。
 上述したように、光学フィルタ4による水平方向の光線制御角度θhは3.7deg以下にするとよい。水平方向の光線制御角度θhを0.5degとすることでクロストークの点で視点位置のトラッキングのずれに対しての余裕を持たせることができる。拡散板41は、表面の凹凸構造によって拡散角度を制御することで、出射光の配光分布をコントロールすることが可能となっている。また、拡散板41には、AR(Anti Reflection)機能を付加したモスアイタイプの反射防止機能を持たせることも可能である。
 拡散板41は、水平方向の光線制御角度θhと垂直方向の光線制御角度θvとに異方性を持つように構成されてもよい。レンチキュラレンズ3の軸方向に拡散角が大きくなるような異方性を持たせてもよい。
 以下に、具体例1に係る立体表示装置の具体的な設計値を示す。
 拡散板41:例えばLuminit社製LSD(Light Shaping Diffusers)
 拡散板41の位置:レンチキュラレンズ3の上面から2.7mm
 水平方向の光線制御角度θh:±0.5deg(FWHM(半値全幅)で1deg)
 最適な観察距離D:500mm
 眼間距離IPD:65mm
 視点角度θeye:7.41deg
 図13は、具体例1に係る立体表示装置において光学フィルタ4を省いた場合に観察される画素の状態の一例を示すシミュレーション画像である。図14は、具体例1に係る立体表示装置において光学フィルタ4を省いた場合に観察されるモアレの状態の一例を示すシミュレーション画像である。
 拡散板41を用いた光学フィルタ4を配置することにより、モアレの原因となる暗部(図13)の大きさが小さくなる。これにより、クロストークの発生を抑制しつつ、図14に示すようなモアレの発生を低減することが可能となる。
(具体例2)
 図15は、具体例2に係る立体表示装置の一構成例を概略的に示す水平方向の断面図である。図16は、具体例2に係る立体表示装置の変形例を概略的に示す水平方向の断面図である。
 具体例2に係る立体表示装置は、具体例1に係る立体表示装置の構成(図11)に対して、レンチキュラレンズ3の配置位置が異なっている。具体例2に係る立体表示装置では、レンチキュラレンズ3が光学フィルタ4における透明基板42の下面に配置されている。透明基板42とレンチキュラレンズ3は一体化されていてもよい。また、レンチキュラレンズ3は、シリンドリカルレンズ31の凸面が下側(画像表示素子1側)を向くように配置されている。また、具体例2に係る立体表示装置では、画像表示素子1が配置された透明基板2の内部に配置されている。
 なお、図16の変形例に示すように、レンチキュラレンズ3と画像表示素子1が配置された透明基板2との間に低屈折率層43が設けられていてもよい。低屈折率層43は、例えば、レンチキュラレンズ3の屈折率より低い屈折率の樹脂で構成されている。低屈折率層43によって、レンチキュラレンズ3と透明基板2とが一体化されていてもよい。
 拡散板41は、具体例1に係る立体表示装置と同様に、表面の凹凸構造によって拡散角度を制御することで、出射光の配光分布をコントロールすることが可能となっている。また、拡散板41には、AR機能を付加したモスアイタイプの反射防止機能を持たせることも可能である。
 拡散板41は、水平方向の光線制御角度θhと垂直方向の光線制御角度θvとに異方性を持つように構成されてもよい。レンチキュラレンズ3の軸方向に拡散角が大きくなるような異方性を持たせてもよい。
 以下に、具体例2に係る立体表示装置の具体的な設計値を示す。
 拡散板:例えばLuminit社製LSD
 拡散板41の位置:レンチキュラレンズ3の上面から2.7mm
 水平方向の光線制御角度θh:±0.5deg(FWHMで1deg)
 最適な観察距離D:500mm
 眼間距離IPD:65mm
 視点角度θeye:7.41deg
 図17は、具体例2に係る立体表示装置において光学フィルタ4の拡散板41として等方性拡散板を用いた場合に観察される画素の状態の一例を示すシミュレーション画像である。図18は、具体例2に係る立体表示装置において光学フィルタ4の拡散板41として異方性拡散板を用いた場合に観察される画素の状態の一例を示すシミュレーション画像である。
 図17および図18に示すように、拡散板41を用いた光学フィルタ4を配置することにより、モアレの原因となる暗部の大きさが小さくなる。これにより、クロストークの発生を抑制しつつ、モアレの発生を低減することが可能となる。
(具体例3)
 図19は、具体例3に係る立体表示装置の一構成例を概略的に示す水平方向の断面図である。図20は、具体例3に係る立体表示装置における光学フィルタ4としての台形プリズムアレイ50の一構成例を概略的に示す構成図である。図21は、具体例3に係る立体表示装置における光学フィルタ4としての台形プリズムアレイ50の一構成例を概略的に示す断面図である。
 具体例3に係る立体表示装置は、光学フィルタ4として、台形プリズムアレイ50を備えている。台形プリズムアレイ50は、透明基板42の上面に配置されている。台形プリズムアレイ50と透明基板42は一体化されていてもよい。台形プリズムアレイ50は、複数の台形プリズム51を有する。複数の台形プリズム51は、レンチキュラレンズ3の並びと平行方向に並列配置されている。
 以下に、具体例3に係る立体表示装置の具体的な設計値を示す。
 最適な観察距離D:500mm
 視点角度θeye:7.4deg
 レンチキュラレンズ3のレンズピッチ:0.143mm
 台形プリズムアレイ50のアレイピッチ(プリズムピッチ):0.04mm
 台形プリズムアレイ50の位置:レンチキュラレンズ3の上面から2.35mm
 水平方向の光線制御角度θh:±0.5deg
 水平方向の光線制御角度θhは3.7deg以下にするとよい。台形プリズム51の台形形状は、傾斜部が左右1/3の比率で傾斜部の屈折角が所定の角度になるように設計した。
 台形プリズムアレイ50のアレイピッチ(プリズムピッチ)とレンチキュラレンズ3のレンズピッチは組み合わせ条件でそれ自体がモアレの要因になる。台形プリズムアレイ50のプリズムピッチは、レンチキュラレンズ3のレンズピッチに対する比率が、
 Ratio=1/(n+0.5)、nは整数
を満たすように設計した。特に、n=3を満たすように設計した。ただし、視点位置から見込む台形プリズムアレイ50のプリズムピッチはレンチキュラレンズ3の上面からの距離dに応じた縮小率を乗じた。台形プリズムアレイ50の表面には適宜、反射防止膜を付加してもよい。
 光学フィルタ4として、台形プリズムアレイ50を用いることにより、光学フィルタ4の拡散角度を正確に制御し、光学フィルタ4からの光線の角度分布が広がりすぎないようにすることで、クロストークを抑制することが可能となる。
 図22は、具体例3に係る立体表示装置において光学フィルタ4を省いた場合に観察される画素の状態(A)およびモアレの状態(B)の一例を示すシミュレーション画像である。図23は、具体例3に係る立体表示装置において観察される画素の状態(A)およびモアレの状態(B)の一例を示すシミュレーション画像である。
 図22および図23に示すように、台形プリズムアレイ50を用いた光学フィルタ4を配置することにより、モアレの原因となる暗部の大きさが小さくなる。これにより、クロストークの発生を抑制しつつ、モアレの発生を低減することが可能となる。
(具体例4)
 図24は、具体例4に係る立体表示装置における光学フィルタ4としての台形プリズムアレイ50の一構成例を概略的に示す構成図である。
 具体例4に係る立体表示装置は、具体例3に係る立体表示装置(図19~図21)と同様に、光学フィルタ4として、台形プリズムアレイ50を備えている。具体例3に係る立体表示装置では、複数の台形プリズム51をレンチキュラレンズ3の並びと平行方向に並列配置するように構成したが、具体例4に係る立体表示装置では、複数の台形プリズム51をレンチキュラレンズ3の並びと直交する方向に並列配置するように構成している。
 以下に、具体例4に係る立体表示装置の具体的な設計値を示す。
 最適な観察距離D:500mm
 視点角度θeye:7.4deg
 レンチキュラレンズ3のレンズピッチ:0.143mm
 台形プリズムアレイ50のアレイピッチ(プリズムピッチ):0.029mm
 台形プリズムアレイ50の位置:レンチキュラレンズ3の上面から6mm
 水平方向の光線制御角度θh:±1deg
 台形プリズムアレイ50のプリズムピッチは、レンチキュラレンズ3の軸方向のサブピクセルピッチPLに対して、
 Ratio=1/(n+0.5)、nは整数
を乗じた値に設計した。レンチキュラレンズ3の軸方向のサブピクセルピッチPLは、以下で表される。
 水平サブピクセルサイズ:Px
 レンチキュラレンズ3の傾斜角:θL
 PL=Px/sinθL
 光学フィルタ4として、台形プリズムアレイ50を用いることにより、光学フィルタ4の拡散角度を正確に制御し、光学フィルタ4からの光線の角度分布が広がりすぎないようにすることで、クロストークを抑制することが可能となる。
 図25は、具体例4に係る立体表示装置において光学フィルタ4を省いた場合に観察される画素の状態の一例を示すシミュレーション画像である。図26は、具体例4に係る立体表示装置において観察される画素の状態の一例を示すシミュレーション画像である。
 図25および図26に示すように、台形プリズムアレイ50を用いた光学フィルタ4を配置することにより、モアレの原因となる暗部の大きさが小さくなる。これにより、クロストークの発生を抑制しつつ、モアレの発生を低減することが可能となる。
(具体例5)
 図27は、具体例5に係る立体表示装置の一構成例を概略的に示す水平方向の断面図である。図28は、具体例5に係る立体表示装置における光学フィルタ4としてのレンズアレイ60の一構成例を概略的に示す構成図である。図29は、具体例5に係る立体表示装置における光学フィルタ4としてのレンズアレイ60の一構成例を概略的に示す断面図である。
 具体例5に係る立体表示装置は、光学フィルタ4として、レンズアレイ60を備えている。レンズアレイ60は、透明基板42の上面に配置されている。光学フィルタ4としてのレンズアレイ60と透明基板42は一体化されていてもよい。光学フィルタ4としてのレンズアレイ60は、複数のシリンドリカルレンズ61を有する。複数のシリンドリカルレンズ61は、レンチキュラレンズ3の並びと平行方向に並列配置されている。光学フィルタ4としてのレンズアレイ60による光線制御角度は、複数の視点位置とレンズアレイ60のレンズピッチ(アレイピッチ)とに基づいて決まる角度となっている。
 以下に、具体例5に係る立体表示装置の具体的な設計値を示す。
 最適な観察距離D:500mm
 視点角度θeye:7.4deg
 レンチキュラレンズ3のレンズピッチ:0.143mm
 光学フィルタ4(レンズアレイ60)のレンズピッチ(アレイピッチ):0.030mm
 光学フィルタ4(レンズアレイ60)の位置:レンチキュラレンズ3の上面から2.75mm
 水平方向の光線制御角度θh:±0.5deg
 光学フィルタ4(レンズアレイ60)の焦点距離:1.72mm
 光学フィルタ4としてのレンズアレイ60の焦点距離は、ピッチ端の光線の出射角度(図29参照)が所定の角度になるように設計した。
 f:焦点距離
 p0:光学フィルタ4(レンズアレイ60)のレンズピッチ(アレイピッチ)
 θp:ピッチ端における光線の出射角度
 f=p0/2tanθp
 光学フィルタ4として、レンズアレイ60を用いることにより、光学フィルタ4の拡散角度を正確に制御し、光学フィルタ4からの光線の角度分布が広がりすぎないようにすることで、クロストークを抑制することが可能となる。
 図30は、具体例5に係る立体表示装置において光学フィルタ4を省いた場合に観察される画素の状態の一例を示すシミュレーション画像である。図31は、具体例5に係る立体表示装置において観察される画素の状態の一例を示すシミュレーション画像である。
 図30および図31に示すように、レンズアレイ60を用いた光学フィルタ4を配置することにより、モアレの原因となる暗部の大きさが小さくなる。これにより、クロストークの発生を抑制しつつ、モアレの発生を低減することが可能となる。
(具体例6)
 図32は、具体例6に係る立体表示装置における光学フィルタ4としてのレンズアレイ60の一構成例を概略的に示す構成図である。
 具体例6に係る立体表示装置は、具体例5に係る立体表示装置(図27~図29)と同様に、光学フィルタ4として、レンズアレイ60を備えている。具体例5に係る立体表示装置では、複数のシリンドリカルレンズ61をレンチキュラレンズ3の並びと平行方向に並列配置するように構成したが、具体例6に係る立体表示装置では、複数のシリンドリカルレンズ61をレンチキュラレンズ3の並びと直交する方向に並列配置するように構成している。
 以下に、具体例6に係る立体表示装置の具体的な設計値を示す。
 最適な観察距離D:500mm
 視点角度θeye:7.4deg
 レンチキュラレンズ3のレンズピッチ:0.143mm
 光学フィルタ4(レンズアレイ60)のレンズピッチ(アレイピッチ):0.029mm
 光学フィルタ4(レンズアレイ60)の位置:レンチキュラレンズ3の上面から6mm
 水平方向の光線制御角度θh:±1.0deg
 光学フィルタ4(レンズアレイ60)の焦点距離:0.83mm
 光学フィルタ4としてのレンズアレイ60の焦点距離は、具体例5に係る立体表示装置と同様に、ピッチ端の光線の出射角度(図29参照)が所定の角度になるように設計した。
 光学フィルタ4として、レンズアレイ60を用いることにより、光学フィルタ4の拡散角度を正確に制御し、光学フィルタ4からの光線の角度分布が広がりすぎないようにすることで、クロストークを抑制することが可能となる。
(具体例7)
 図33は、具体例7に係る立体表示装置の一構成例を概略的に示すレンチキュラレンズ3の軸方向の断面図である。図34は、具体例7に係る立体表示装置における光学フィルタ80の一構成例を概略的に示す断面図である。図35は、具体例7に係る立体表示装置における光学フィルタ80の変形例を概略的に示す断面図である。
 具体例7に係る立体表示装置における光学フィルタ80は、光学フィルタ層81と、ガラス基材82と、OCA(Optical Clear Adhesive、光学粘着シート)83と、基材フィルム84と、低屈折率層85と、基材フィルム86と、AR(Anti Reflection)層87とを有する。
 光学フィルタ層81は、上側の面が、略三角プリズム状の凹凸構造を有する。
 なお、図35の変形例に示すように、光学フィルタ層81の構造を、下側の面が略三角プリズム状の凹凸構造となるようにしてもよい。図35の変形例では、光学フィルタ80Aは、光学フィルタ層81と、ガラス基材82と、低屈折率層85と、基材フィルム86と、AR層87とを有する。
 光学フィルタ80による拡散角を小さく抑えようとした場合、光学フィルタ層81の凹凸の傾斜角を小さくする必要がある。その場合、凹凸のピッチを大きくするとレンチキュラレンズ3のレンズピッチと同等以上になる場合がある。その場合色ムラ、ギラツキ等の弊害が発生する。
 光学フィルタ層81の凹凸のピッチを小さくすると凹凸の高さが非常に小さくなり製造ができるレベルを超える。その場合の構造として屈折率の違う層で凹凸を埋める構造にすることで、凹凸の傾斜角を大きくすることができる。言い換えると、拡散角の大きな設計の凹凸の拡散板(プリズム)を屈折率の差がある樹脂等で埋めることで所定の角度範囲に制御することができる。具体例7に係る立体表示装置では、光学フィルタ層81を、光学フィルタ層81の屈折率よりも低い低屈折率層85で埋めた構成としている。光学フィルタ層81の屈折率と低屈折率層85の屈折率は、例えば以下の値となるように設計するとよい。
 低屈折率層85の屈折率:1.41(シリコン系OCA)
 光学フィルタ層81の屈折率:1.5
 図36は、具体例7に係る立体表示装置において光学フィルタ80を省いた場合にレンチキュラレンズ3を介して観察される画素の状態の一例を示すシミュレーション画像である。図37は、具体例7に係る立体表示装置において光学フィルタ80を省いた場合に観察される画素の状態(A)およびモアレの状態(B)の一例を示すシミュレーション画像である。図38は、具体例7に係る立体表示装置において観察される画素の状態(A)およびモアレの状態(B)の一例を示すシミュレーション画像である。
 具体例7に係る立体表示装置では、光学フィルタ80の上面と画像表示素子1の上面(屈折率を考慮した画素面)との距離d(図33参照)と、光学フィルタ80によるレンチキュラレンズ3の軸方向の光線制御角度θbとで決まる2カ所からの光線L1,L2とが光学フィルタ80によって混ざりあう。
 モアレの原因となる暗部(図36参照)は、光学フィルタ80を用いなかった場合、例えば4サブピクセル周期で出現する。光学フィルタ層81による屈折角を、レンチキュラレンズ3の軸方向のサブピクセルピッチPLと同じになるように設計すると、暗部の周期が2サブピクセル周期になりコントラストが下がり、モアレが低減する。
 図37および図38に示すように、略三角プリズム状の凹凸構造を有する光学フィルタ層81を含む光学フィルタ80を配置することにより、モアレの原因となる暗部の大きさが小さくなる。これにより、クロストークの発生を抑制しつつ、モアレの発生を低減することが可能となる。
 図39は、具体例7に係る立体表示装置において、光学フィルタ80におけるレンチキュラレンズ3の軸方向におけるアレイピッチ(プリズムピッチ)、および光学フィルタ80におけるレンチキュラレンズ3の軸方向の拡散角(光線制御角度θb)とモアレとの関係を示す説明図である。なお、ここでいうプリズムピッチとは、光学フィルタ80における光学フィルタ層81の略三角プリズム状の凹凸構造のピッチである。
 図39に示したように、光学フィルタ80における光学フィルタ層81のプリズムピッチと拡散角との関係に応じて、モアレの発生状態は異なってくる。
 図40は、具体例7に係る立体表示装置において、光学フィルタ80におけるレンチキュラレンズ3の軸方向におけるプリズムピッチ、および光学フィルタ80におけるプリズムピッチの最適条件とモアレとの関係を示す説明図である。図40には、光学フィルタ80におけるレンチキュラレンズ3の軸方向の拡散角が3.5degの場合を示す。なお、ここでいうプリズムピッチとは、光学フィルタ層81の略三角プリズム状の凹凸構造のピッチである。また、プリズムピッチの最適条件は、以下の式で表される。
 PL/(n+0.5)、nは整数
 PL:レンチキュラレンズ3の軸方向のサブピクセルピッチ
 図40に示したように、プリズムピッチが30μm以上では最適条件からずれたときのモアレの劣化が大きくなる。n=9では、色が付いたモアレがやや目立つようになる。プリズムピッチが26.6μm、n=8の場合には、モアレの発生は小さい。
 図41は、具体例7に係る立体表示装置において、光学フィルタ80におけるプリズムピッチが30μmの場合における、観察距離D、および光学フィルタ80におけるレンチキュラレンズ3の軸方向における拡散角とモアレとの関係を示す説明図である。図42は、具体例7に係る立体表示装置において、光学フィルタ80におけるプリズムピッチが26.6μmの場合における、観察距離D、および光学フィルタ80におけるレンチキュラレンズ3の軸方向における拡散角とモアレとの関係を示す説明図である。
 図41および図42に示したように、観察距離Dと拡散角との関係に応じて、モアレの発生状態は異なってくる。
(具体例8)
 図43および図44に、光学フィルタ4のアレイピッチPaの幅狭化による回折の影響を示す。
 また、図45に、三角プリズムアレイ410を用いた光学フィルタ4の一構成例を示す。図46に、台形プリズムアレイ420を用いた光学フィルタ4の一構成例を示す。図47に、レンズアレイ430を用いた光学フィルタ4の一構成例を示す。
 光学フィルタ4は、光学フィルタ層として、複数のプリズムを有するプリズムアレイを含む構成であってもよい。例えば図45に示したように、光学フィルタ層として、複数の三角プリズム411が並列配置された三角プリズムアレイ410を含む構成であってもよい。三角プリズムアレイ410は、透明基板401上に配置されていてもよい。三角プリズムアレイ410の上層には低屈折率層402が積層されていてもよい。低屈折率層402は空気層であってもよい。
 また、例えば図46に示したように、光学フィルタ層として、複数の台形プリズム421が並列配置された台形プリズムアレイ420を含む構成であってもよい。台形プリズムアレイ420は、透明基板401上に配置されていてもよい。台形プリズムアレイ420の上層には低屈折率層402が積層されていてもよい。低屈折率層402は空気層であってもよい。
 また、例えば図47に示したように、光学フィルタ層として、複数のシリンドリカルレンズ431が並列配置されたレンズアレイ(レンチキュラレンズ)430を含む構成であってもよい。レンズアレイ430は、透明基板401上に配置されていてもよい。レンズアレイ430の上層には低屈折率層402が積層されていてもよい。低屈折率層402は空気層であってもよい。
 図43および図44には、光学フィルタ層が三角プリズムアレイ410(図45)である場合において光学フィルタ4から出射される光線の角度分布を示す。図43において、横軸は出射光線の角度、縦軸は光強度を示す。また、図43には三角プリズムアレイ410のアレイピッチPaを10μm、20μm、30μm、および70μmとした場合のそれぞれについての角度分布を示す。図44において、横軸はアレイピッチPa、縦軸は光強度が最大となる出射光線の角度(ピーク角)を示す。
 一般的に画像表示素子1の画素サイズが小さくなると、レンチキュラレンズ3のピッチは幅狭化し、ひいては、光学フィルタ4のアレイピッチPaも幅狭化する。光学フィルタ4のアレイピッチPaが小さくなると、回折影響が支配的となり、適切な光線制御角度θaを得ることが困難となる。図43および図44には、光学フィルタ4に入射する光線の主波長を530nmとしたときに、光学フィルタ4による光線制御角度θaが4.2degとなるように、三角プリズム411の屈折角度を設計した場合の出射光線の角度分布を示している。また、光線制御角度θaは図45に示したように、複数の三角プリズム411の配列方向の断面内における角度とする。
 図43および図44から分かるように、アレイピッチPaが狭くなり、Pa≦25μmあたりになると、回折影響を受けて出射光線の角度と三角プリズム411の屈折角度との間にずれが生じ、想定していた光線制御角度θaが得られなくなる。
 そこで、Pa≦25μmのときには、光線制御角度θaを屈折角で設計するのではなく、回折影響を考慮した構成にするとよい。具体的には、Pa≦25μmのときには、光学フィルタ4による光線制御角度θaに関して、以下の条件式(1),(2)を満足するように構成するとよい。
 θa=sin-1(mλ/Pa) ……(1)
 0.9mπ≦δ≦0.9(m+1)π ……(2)
ただし、
 m:プリズムアレイ(またはレンズアレイ)によって生じる回折光の回折次数数(整数)
 λ:光学フィルタ4に入射する光線の主波長
 δ:光学フィルタ4に入射した光線がプリズムアレイ(またはレンズアレイ)を通過することによって生ずる位相差
とする。
 ここで、位相差δは、以下で表される。
 δ=Δnh・2π/λ
 hは、光学フィルタ層(プリズムアレイまたはレンズアレイ)の高さ(図45~図47参照)とする。Δnは、光学フィルタ層の屈折率n2と光学フィルタ層に隣接する層(低屈折率層402)の屈折率n1との屈折率差(=|n2-n1|)とする。
 条件式(1),(2)を満たすような回折次数mと位相差δを選択すると、光学フィルタ4のアレイピッチPa≦25μmにおいても、光線制御角度θaを正確に制御でき、尾を引かない角度分布を得ることができる(回折影響による角度分布の広がりを軽減できる)。
 図48に、光学フィルタ4における位相差δと回折強度との関係の一例を示す。図48において、横軸は位相差δ、縦軸は回折強度を示す。図48は、光学フィルタ層として略三角形の三角プリズム411が並列配置された三角プリズムアレイ410を用いた場合の位相差δ(Δnh・2π/λ)と、各回折次数mの回折光量とを表している。同様に、図49に、光学フィルタ層として略三角形の三角プリズム411が並列配置された三角プリズムアレイ410を用いた場合の、光学フィルタ4からの出射光線の角度分布の一例を示す。図49において、横軸は出射光線の角度、縦軸は光強度を示す。
 Pa≦25μmにおいて、例えば、m=1(回折次数1)とした場合、式(1)より、1次回折光を基本角度とした光線制御角度θaが求まる。図48に示した場合を例にすると、式(2)より、位相差δ=Δnh・2π/λが、0.9π~1.8πになるように屈折率差Δnと光学フィルタ層の高さhとを決定すると、1次回折光を基本角度とした、図49(A)のような角度分布が得られる。図49(A)には、m=1,δ=1.4πとした場合の角度分布を示す。
 m=2(回折次数2)とした場合、式(1)より、2次回折光を基本角度とした光線制御角度θaが求まる。図48に示した場合を例にすると、式(2)より、位相差δ=Δnh・2π/λが、1.8π~2.7πになるように屈折率差Δnと光学フィルタ層の高さhとを決定すると、2次回折光を基本角度とした、図49(B)のような角度分布が得られる。図49(B)には、m=2,δ=2.3πとした場合の角度分布を示す。
 m=3(回折次数3)とした場合、式(1)より、3次回折光を基本角度とした光線制御角度θaが求まり、式(2)より、3次回折光を基本角度とした、図49(C)のような角度分布が得られる。図49(C)には、m=3,δ=3.2πとした場合の角度分布を示す。
 図50に、光学フィルタ4からの出射光線の角度分布の一例を示す。図50に示すように、光線制御角度±θa以内に制御された拡散光線であれば、光学フィルタ4からの出射光線は複数あってもよく、角度分布を光線制御角度±θaを上辺とした台形分布(トップハット分布)に近づけることでモアレ低減効果を高めることができる。
 図51に、光学フィルタ4からの出射光線の角度分布の一例を示す。条件式(1),(2)で、m次の回折光の強度と(m-1)次の回折光の強度とが同等になる位相差δを選択すると、光線制御角度±θa以内に、同強度の±m次回折光と±(m-1)次回折光とを生成することができ、クロストークを悪化させずにモアレの低減効果をより一層高めることができる。例えば、m=2、位相差δ=1.85π(図48参照)を選択すれば、2次回折光の強度と1次回折光の強度とが同等となり、図51のような角度分布が得られる。
(具体例8・台形プリズムアレイ420の設計例)
 図52に、具体例8に係る立体表示装置の光学フィルタ4として用いられる台形プリズムアレイ420の一構成例を概略的に示す。図53に、台形プリズム421の一構成例を概略的に示す。
 この設計例では、図52に示したように、複数の台形プリズム421をレンチキュラレンズ3の並びと直交する方向に並列配置するように構成している。また、この設計例では、台形プリズム421は、図53に示したように、水平方向の断面内において台形の左右の傾斜部の水平方向の比率が1/3となるように構成している。なお、複数の台形プリズム421をレンチキュラレンズ3の並びと平行方向に並列配置するように構成してもよい。
 以下に、立体表示装置の具体的な設計値を示す。なお、図46の構成例と同様に、台形プリズムアレイ420の上層には低屈折率層402が積層されている。光線制御角度θaは図46に示したように、複数の台形プリズム421の配列方向の断面内における角度とする。
 最適な観察距離D:500mm
 レンチキュラレンズ3のレンズピッチ:0.143mm
 低屈折率層402の屈折率n1:1.41
 光学フィルタ層の屈折率(プリズム屈折率)n2:1.52
 光学フィルタ層の高さ(プリズム高さ)h:2.9μm
 台形プリズムアレイ420のアレイピッチ(プリズムピッチ)Pa:15.2μm
 台形プリズムアレイ420の位置:レンチキュラレンズ3の上面から2.75mm
 設計主波長λ:0.53μm
 回折次数m:1
 位相差δ=Δnh・2π/λ:1.2π
 光線制御角度θa:±2deg
 図54に、光学フィルタ4として台形プリズムアレイ420を用いた場合の光学フィルタ4からの出射光線の角度分布の一例を示す。この設計例では、図54からわかるように、アレイピッチPa≦25μmにおいても、出射光線の角度を正確に制御でき、尾を引かない角度分布が得られている。
(具体例8・三角プリズムアレイ410の設計例)
 図55に、具体例8に係る立体表示装置の光学フィルタ4として用いられる三角プリズムアレイ410の一構成例を概略的に示す。
 この設計例では、図55に示したように、複数の三角プリズム411をレンチキュラレンズ3の並びと直交する方向に並列配置するように構成している。なお、複数の三角プリズム411をレンチキュラレンズ3の並びと平行方向に並列配置するように構成してもよい。
 以下に、立体表示装置の具体的な設計値を示す。なお、図45の構成例と同様に、三角プリズムアレイ410の上層には低屈折率層402が積層されている。光線制御角度θaは図45に示したように、複数の三角プリズム411の配列方向の断面内における角度とする。
 最適な観察距離D:500mm
 レンチキュラレンズ3のレンズピッチ:0.238mm
 低屈折率層402の屈折率n1:1.41
 光学フィルタ層の屈折率(プリズム屈折率)n2:1.52
 光学フィルタ層の高さ(プリズム高さ)h:4.5μm
 三角プリズムアレイ410のアレイピッチ(プリズムピッチ)Pa:17.4μm
 三角プリズムアレイ410の位置:レンチキュラレンズ3の上面から0.85mm
 設計主波長λ:0.53μm
 回折次数m:2
 位相差δ=Δnh・2π/λ:1.85π
 光線制御角度θa:±3.5deg
 図56に、光学フィルタ4として三角プリズムアレイ410を用いた場合の光学フィルタ4からの出射光線の角度分布の一例を示す。また、図57に、具体例8に係る立体表示装置において光学フィルタ4がない場合に観察されるモアレの状態、および光学フィルタ4がある場合に観察されるモアレの状態のシミュレーション画像の一例を示す。
 この設計例では、図56からわかるように、光学フィルタ4のアレイピッチPa≦25μmにおいても、出射光線の角度を正確に制御でき、尾を引かない角度分布が得られている。また、この設計例では、図56に示したように、±2次の回折光の強度と±1次の回折光の強度とが略揃うように位相差δを選択している。これにより、光線制御角度±3.5deg以内に、出射光線として複数の光線を生成することができ、図57に示したように、クロストークを悪化させずにモアレ低減効果をより一層、高めることができる。
(具体例8・レンズアレイ430の設計例)
 図58に、具体例8に係る立体表示装置の光学フィルタ4として用いられるレンズアレイ430の一構成例を概略的に示す。
 この設計例では、図58に示したように、複数のシリンドリカルレンズ431をレンチキュラレンズ3の並びと直交する方向に並列配置するように構成している。なお、複数のシリンドリカルレンズ431をレンチキュラレンズ3の並びと平行方向に並列配置するように構成してもよい。
 以下に、立体表示装置の具体的な設計値を示す。なお、図47の構成例と同様に、レンズアレイ430の上層には低屈折率層402が積層されている。光線制御角度θaは図47に示したように、複数のシリンドリカルレンズ431の配列方向の断面内における角度とする。
 最適な観察距離D:500mm
 レンチキュラレンズ3のレンズピッチ:0.238mm
 低屈折率層402の屈折率n1:1.41
 光学フィルタ層の屈折率(レンズ屈折率)n2:1.52
 光学フィルタ層の高さ(レンズ高さ)h:4.8μm
 レンズアレイ430のアレイピッチ(レンズピッチ)Pa:17.4μm
 レンズアレイ430の位置:レンチキュラレンズ3の上面から0.85mm
 設計主波長λ:0.53μm
 回折次数m:2
 位相差δ=Δnh・2π/λ:2π
 光線制御角度θa:±3.5deg
 図59に、光学フィルタ4としてレンズアレイ430を用いた場合の光学フィルタ4からの出射光線の角度分布の一例を示す。図59からわかるように、光学フィルタ4のアレイピッチPa≦25μmにおいても、出射光線の角度を正確に制御でき、尾を引かない角度分布が得られている。また、この設計例では、±2次の回折光の強度と±1次の回折光の強度とが揃うように位相差δを選択することで、光線制御角度±3.5deg以内に、出射光線として複数の光線を生成することができ、クロストークを悪化させずにモアレ低減効果をより一層、高めることができる。
(具体例9)
 図60に、具体例9に係る立体表示装置の光学フィルタ4として用いられるレンズアレイ440の一構成例を概略的に示す。
 光学フィルタ4は、光学フィルタ層として、ブレーズ化された複数のシリンドリカルレンズ441が並列配置されたレンズアレイ440を含む構成であってもよい。図60の構成例では、ブレーズ化された複数のシリンドリカルレンズ441をレンチキュラレンズ3の並びと直交する方向に並列配置するように構成している。なお、複数のシリンドリカルレンズ441をレンチキュラレンズ3の並びと平行方向に並列配置するように構成してもよい。
 以下に、具体例9に係る立体表示装置の具体的な設計値を示す。なお、図47の構成例と同様に、レンズアレイ440の上層には低屈折率層402が積層されている。光線制御角度θaは、複数のシリンドリカルレンズ441の配列方向の断面内における角度とする。
 最適な観察距離D:500mm
 レンチキュラレンズ3のレンズピッチ:0.238mm
 低屈折率層402の屈折率n1:1.41
 光学フィルタ層の屈折率(レンズ屈折率)n2:1.52
 レンズアレイ440のアレイピッチ(レンズピッチ)Pa:40μm
 レンズアレイ440の位置:レンチ面から0.5mm
 光線制御角度θa:±6deg
 焦点距離:0.19mm
 ブレーズ化前の光学フィルタ層の高さ(レンズ高さ)h:14.5μm
 ブレーズ化後の光学フィルタ層の高さ(レンズ高さ)h:4.8μm
 図61に、一般的なシリンドリカルレンズ431とブレーズ化されたシリンドリカルレンズ441とを比較して示す。ブレーズ化することにより、一般的なシリンドリカルレンズ431と比較して、シリンドリカルレンズ441の厚さを薄くできる。これにより、光学フィルタ4を薄型化できる。なお、マルチレベル位相型のシリンドリカルレンズで構成してもよい。また、具体例9に係る立体表示装置では、出射光線の角度を正確に制御でき、尾を引かない角度分布が得られる。
(具体例10)
 図62に、具体例10に係る立体表示装置の光学フィルタ4の一構成例を概略的に示す。
 光学フィルタ4は、レンチキュラレンズ3の軸方向に対して傾斜配置されていてもよい。例えばレンチキュラレンズ3の軸に対して、光学フィルタ4の配置角度をθr[deg]回転させたとすると、水平方向の光線制御角度θhと垂直方向の光線制御角度θvは以下のように表せる。
 θh=θa・cosθr
 θv=θa・sinθr
 光学フィルタ4の回転によって、光線制御角度θaとして水平方向の光線制御角度θhの成分と垂直方向の光線制御角度θvの成分とを生成し、光学フィルタ4の光線制御角度に異方性を持たせることと同様の効果を得ることができる。また、具体例10に係る立体表示装置では、出射光線の角度を正確に制御でき、尾を引かない角度分布が得られ、クロストークを抑制することができる。
(具体例11)
 図63に、具体例11に係る立体表示装置の光学フィルタ4の一構成例を概略的に示す。
 光学フィルタ4は、光学フィルタ層と、光学フィルタ層の屈折率n2よりも低い屈折率を有する低屈折率層402と、光学フィルタ層と低屈折率層402との間に積層された中間層412とを含む構成であってもよい。中間層412の屈折率nmは、光学フィルタ層の屈折率n2よりも低く、低屈折率層402の屈折率n1よりも高い屈折率を有する構成であってもよい。図63には、光学フィルタ層が、複数の三角プリズム411が並列配置された三角プリズムアレイ410である構成例を示す。
 例えば、屈折率n2の光学フィルタ層と屈折率n1の低屈折率層402との境界に、屈折率nm=√(n1・n2)の中間層412を設けるようにしてもよい。中間層412の厚さをλ/4の奇数倍となるように、蒸着やスパッタ等で成膜すると、界面反射を低減できる。
 以下に、界面反射を低減するような光学フィルタ4の具体的な設計値を示す。光線制御角度θaは、複数の三角プリズム411の配列方向の断面内における角度とする。光学フィルタ層は、略三角形の三角プリズム411が並列配置された三角プリズムアレイ410である。三角プリズム411は、第1斜面451と第2斜面452とを有する。
 低屈折率層402の屈折率n1:1.41(シリコン系OCA)
 光学フィルタ層の屈折率(プリズム屈折率)n2:1.52(UV硬化樹脂)
 中間層412の屈折率nm:1.46(SiO
 プリズムの斜面角度:θs=17.5deg
 外光入射角θin:45~85deg
 第1斜面451への外光入射角度θ1’:12.6deg~27.5deg
 第2斜面452への外光入射角度θ2’:47.6deg~62.5deg
 第1斜面451からの光線出射角θout1:-6.9deg~14.1deg
(第2斜面452からの出射光Lout2は低屈折率層402と空気層とで全反射してしまうか、透過しても観察者の視野に入らない)
 第1斜面451への外光入射角度θ1’と第2斜面452への外光入射角度θ2’は、次式で表せる。
 θ1’=sin-1(1/n1・sinθin)-θs
 θ2’=sin-1(1/n1・sinθin)+θs
 また、第1斜面451からの出射光Lout1の角度θout1、第2斜面452からの出射光Lout2の角度θout2は、次式で表せる。
 θout1=sin-1[n1・sin{sin-1(1/n1・sinθin)-2θs}]
 θout2=sin-1[n1・sin{sin-1(1/n1・sinθin)+2θs}]
 ここで、中間層412の層厚tは例えば以下の式において、第1斜面451への光線入射角θc=22deg、k=1、λ=530nmで設計すると、t=98nmとなる。
 t=k・λ/(4nm・cosθc)
 kは奇数。
 図64に、具体例11に係る立体表示装置の光学フィルタ4における三角プリズムアレイ410の界面反射率を示す。図64において、横軸は波長、縦軸は反射率を示す。図64には、中間層412がある場合と、中間層412がない場合とにおける界面反射率を示す。
 図64から分かるように、中間層412を設けることにより、界面反射率を低減できる。外光からの反射影響を低減することで、画品位の低下を防止できる。なお、中間層412は、複数のLR(Low Reflection)層で構成されたAR(Anti Reflective)膜や、モスアイ等の構造体のARでも構わない。
 なお、成膜時のバラつきで、三角プリズムアレイ410の谷側と山側とで、不均一な膜厚となる場合は、以下の式(3)より、Δnh=(n2-n1)h2+(nm-n1)(ha-hb)によって補正するとよい。
 図65に、具体例11に係る立体表示装置の光学フィルタ4における中間層412が均一である場合の構成例を模式的に示す。中間層412の成膜が均一時には、Δnhは以下で表される。
 Δnh=l1-l2=n2・h2+nm・hm-nm・hm-n1・h
    =(n2-n1)h2
 ここで、l1は山側の光路長、l2は谷側の光路長である。
 l1=n2・h2+nm・hm
 l2=nm・hm+n1・h2
 また、図66に、具体例11に係る立体表示装置の光学フィルタ4における中間層412が不均一である場合の構成例を模式的に示す。中間層412の成膜が不均一時には、Δnhは以下で表される。
 l1=n2・h2+nm・ha
 l2=nm・hb+n1(ha+h2-hb)
 Δnh=l1-l2
    =n2・h2+nm・ha-nm・hb-n1(ha+h2-hb)
    =(n2-n1)h2+(nm-n1)(ha-hb)
 ……(3)
(具体例12)
 光学フィルタ4は、光学フィルタ層として、複数のプリズムが水平方向および垂直方向に2次元配置されたプリズムアレイを含む構成であってもよい。この場合において、プリズムアレイの水平方向および垂直方向の少なくとも一方のアレイピッチをPaとしたとき、Pa≦25μmとなる場合には、光学フィルタ4による水平方向および垂直方向の少なくとも一方の光線制御角度θaに関して、上述の条件式(1),(2)を満足するように光学フィルタ4を構成してもよい。
 図67に、具体例12に係る立体表示装置における光学フィルタ4の第1の構成例を概略的に示す。図67には、光学フィルタ4が台形プリズムアレイ420を含む構成例を示す。図67の構成例では、台形プリズムアレイ420が、平面形状が矩形状の台形プリズム421を単位セルとし、単位セルとしての台形プリズム421が水平方向および垂直方向に複数、2次元配置された構成とされている。
 以下に、図67に示した構成例の具体的な設計値を示す。なお、図46の構成例と同様に、台形プリズムアレイ420の上層には低屈折率層402が積層されている。
 レンチキュラレンズ3のレンズピッチ:0.143mm
 設計主波長λ:0.53μm
 台形プリズムアレイ420の位置:レンチキュラレンズ3の上面から2.75mm
 低屈折率層402の屈折率n1:1.41
 光学フィルタ層の屈折率(プリズム屈折率)n2:1.52
 水平方向のアレイピッチ(プリズムピッチ)Ph:40μm
 水平方向の光線制御角度θh:±0.8deg
 垂直方向のアレイピッチ(プリズムピッチ)Pv:15.2μm
 垂直方向の光線制御角度θv:±2deg
 光学フィルタ層の高さ(プリズム高さ)h:2.9μm
 回折次数m:1
 位相差δ=Δnh・2π/λ:1.2π
 この設計例では、水平方向は、アレイピッチPh>25μmであり、回折影響を考慮しない通常のプリズム屈折角による条件で設計している。垂直方向は、アレイピッチPv≦25μmであり、上述の条件式(1),(2)を満足する回折影響を考慮した回折角の条件で設計している。
 図68に、具体例12に係る立体表示装置における光学フィルタ4の第2の構成例を概略的に示す。図68には、光学フィルタ4が三角プリズムアレイ410を含む構成例を示す。図68の構成例では、三角プリズムアレイ410が、平面形状が矩形状の三角プリズム411を単位セルとし、単位セルとしての三角プリズム411が水平方向および垂直方向に複数、2次元配置された構成とされている。
 以下に、図68に示した構成例の具体的な設計値を示す。なお、図45の構成例と同様に、三角プリズムアレイ410の上層には低屈折率層402が積層されている。
 レンチキュラレンズ3のレンズピッチ:0.238mm
 設計主波長λ:0.53μm
 三角プリズムアレイ410の位置:レンチキュラレンズ3の上面から0.85mm
 低屈折率層402の屈折率n1:1.41
 光学フィルタ層の屈折率(プリズム屈折率)n2:1.52
 水平方向のアレイピッチ(プリズムピッチ)Ph:37μm
 水平方向の光線制御角度θh:±1.5deg
 垂直方向のアレイピッチ(プリズムピッチ)Pv:17.4μm
 垂直方向の光線制御角度θv:±3.5deg
 光学フィルタ層の高さ(プリズム高さ)h:4.5μm
 回折次数m:2
 位相差δ=Δnh・2π/λ:1.85π
 この設計例では、水平方向は、アレイピッチPh>25μmであり、回折影響を考慮しない通常のプリズム屈折角による条件で設計している。垂直方向は、アレイピッチPv≦25μmであり、上述の条件式(1),(2)を満足する回折影響を考慮した回折角の条件で設計している。
 具体例12に係る立体表示装置では、光学フィルタ4に用いるプリズムアレイとして複数のプリズムが水平方向および垂直方向に2次元配置された構成にすることで、光線制御角度として水平方向の光線制御角度θhの成分と垂直方向の光線制御角度θvの成分とを生成することができる。これにより、光学フィルタ4の光線制御角度に異方性を持たせることと同様の効果を得ることができる。また、具体例12に係る立体表示装置では、出射光線の角度を正確に制御でき、尾を引かない角度分布が得られ、クロストークを抑制することができる。
(具体例13)
 光学フィルタ4は、光学フィルタ層として、複数のレンズが水平方向および垂直方向に2次元配置されたレンズアレイを含む構成であってもよい。この場合において、レンズアレイの水平方向および垂直方向の少なくとも一方のアレイピッチをPaとしたとき、Pa≦25μmとなる場合には、光学フィルタ4による水平方向および垂直方向の少なくとも一方の光線制御角度θaに関して、上述の条件式(1),(2)を満足するように光学フィルタ4を構成してもよい。
 図69に、具体例13に係る立体表示装置における光学フィルタ4の第1の構成例を概略的に示す。図69には、光学フィルタ4がマイクロレンズアレイ(MLA)460を含む構成例を示す。図69の構成例では、マイクロレンズアレイ460が、平面形状が矩形状のマイクロレンズ461を単位セルとし、単位セルとしてのマイクロレンズ461が水平方向および垂直方向に複数、2次元配置された構成とされている。
 以下に、図67に示した構成例の具体的な設計値を示す。なお、図47の構成例と同様に、マイクロレンズアレイ460の上層には低屈折率層402が積層されている。
 レンチキュラレンズ3のレンズピッチ:0.143mm
 マイクロレンズアレイ460の位置:レンチキュラレンズ3の上面から2.75mm
 低屈折率層402の屈折率n1:1.41
 光学フィルタ層の屈折率(レンズ屈折率)n2:1.52
 水平方向のアレイピッチ(レンズピッチ)Ph:30μm
 水平方向の焦点距離fh:1.72mm
 水平方向の光線制御角度θh:±0.5deg
 垂直方向のアレイピッチ(レンズピッチ)Pv:30μm
 垂直方向の焦点距離fv:0.39mm
 垂直方向の光線制御角度θv:±2.2deg
 ここで、マイクロレンズアレイ460の焦点距離は、レンズピッチ端における光線の出射角度が所定の角度になるように設定した。また、水平方向と垂直方向とで、以下のように焦点距離を変えている。fhは水平方向の焦点距離、fvは垂直方向の焦点距離である。
 fh=Ph/2tanθh
 fv=Pv/2tanθv
 図70に、具体例13に係る立体表示装置における光学フィルタ4の第2の構成例を概略的に示す。
 光学フィルタ4は、光学フィルタ層として、ブレーズ化された複数のレンズが水平方向および垂直方向に2次元配置されたレンズアレイを含む構成であってもよい。図70には、光学フィルタ4がフレネルレンズアレイ470を含む構成例を示す。図70の構成例では、フレネルレンズアレイ470が、平面形状が矩形状のフレネルレンズ471を単位セルとし、単位セルとしてのフレネルレンズ471が水平方向および垂直方向に複数、2次元配置された構成とされている。
 具体例13に係る立体表示装置では、光学フィルタ4に用いるレンズアレイとして複数のレンズが水平方向および垂直方向に2次元配置された構成にすることで、光線制御角度として水平方向の光線制御角度θhの成分と垂直方向の光線制御角度θvの成分とを生成することができる。これにより、光学フィルタ4の光線制御角度に異方性を持たせることと同様の効果を得ることができる。また、具体例13に係る立体表示装置では、出射光線の角度を正確に制御でき、尾を引かない角度分布が得られ、クロストークを抑制することができる。
(具体例14)
 光学フィルタ4は、光学フィルタ層として、複数のプリズムが水平方向および垂直方向にランダムに2次元配置されたプリズムアレイを含む構成であってもよい。また、光学フィルタ4は、光学フィルタ層として、複数のレンズが水平方向および垂直方向にランダムに2次元配置されたレンズアレイ(ランダム2次元配置レンズアレイ)を含む構成であってもよい。
 図71および図72に、具体例14に係る立体表示装置における光学フィルタの第1の構成例によって生ずる位相差分布の一例を概略的に示す。図71および図72には、光学フィルタ4がランダム2次元配置レンズアレイを含む構成である場合における位相差分布の一例を示す。また、図71および図72には、水平方向の光線制御角度と垂直方向の光線制御角度とが異なる(異方性がある)場合における位相差分布の一例を示す。図71には、2次元的な位相差分布を示す。図72には、水平方向の断面内の位相差分布と、垂直方向の断面内の位相差分布を示す。
 図73および図74に、具体例14に係る立体表示装置における光学フィルタの第2の構成例によって生ずる位相差分布の一例を概略的に示す。図73および図74には、光学フィルタ4が複数の略三角プリズムが水平方向および垂直方向にランダムに2次元配置されたプリズムアレイ(ランダム2次元配置略三角プリズムアレイ)を含む構成である場合における位相差分布の一例を示す。また、図73および図74には、水平方向の光線制御角度と垂直方向の光線制御角度とが異なる(異方性がある)場合における位相差分布の一例を示す。図73には、2次元的な位相差分布を示す。図74には、水平方向の断面内の位相差分布と、垂直方向の断面内の位相差分布を示す。
 以下に、具体的な設計値を示す。なお、図45の構成例と同様に、光学フィルタ層の上層には低屈折率層402が積層されている。
 レンチキュラレンズ3のレンズピッチ:0.238mm
 設計主波長λ:0.53μm
 光学フィルタ層の位置:レンチキュラレンズ3の上面から0.85mm
 低屈折率層402の屈折率n1:1.41
 光学フィルタ層の屈折率(プリズム屈折率)n2:1.52
 なお、光学フィルタ層をランダム2次元配置レンズアレイにする場合、水平方向のアレイピッチ(レンズピッチ)Phと垂直方向のアレイピッチ(レンズピッチ)Pvとを異なる値にすると共に、水平方向のレンズ曲率と垂直方向のレンズ曲率とを異なる値にすることで、光線制御角度に異方性を持たせることができる。図71および図73の例は、アレイピッチと位相差δとで光線制御角度を制御した設計例である。
 具体例14に係る立体表示装置では、光学フィルタ層を、複数のプリズムまたは複数のレンズが水平方向および垂直方向にランダム2次元配置された構成にすることで、光線制御角度として水平方向の光線制御角度θhの成分と垂直方向の光線制御角度θvの成分とを生成することができる。これにより、光学フィルタ4の光線制御角度に異方性を持たせることができる。また、具体例14に係る立体表示装置では、出射光線の角度を正確に制御でき、尾を引かない角度分布が得られ、クロストークを抑制することができる。
[1.3 効果]
 以上説明したように、第1の実施の形態に係る立体表示装置によれば、複数の視点位置に向けてレンチキュラレンズ3から出射される光線の拡散角度が、複数の視点位置に基づいて決まる所定の角度範囲となるように制御される。これにより、画質を向上させることが可能となる。特に、クロストークを劣化させないで光学的なモアレを軽減することが可能となる。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態の効果についても同様である。
<2.第2の実施の形態>
 次に、本開示の第2の実施の形態に係る立体表示装置について説明する。なお、以下では、上記第1の実施の形態に係る立体表示装置の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
(第1の構成例)
 図75は、第2の実施の形態に係る立体表示装置の一構成例を概略的に示す断面図である。図76は、第2の実施の形態に係る立体表示装置におけるレンチキュラレンズ3の表面の第1の構成例を概略的に示す断面図である。
 第2の実施の形態に係る立体表示装置では、レンチキュラレンズ3の表面に光学フィルタとして機能する加工がなされている。レンチキュラレンズ3の表面に形成された光学フィルタは、上記第1の実施の形態に係る立体表示装置における光学フィルタ4と同様に、レンチキュラレンズ3から出射される光線の拡散角度を、複数の視点位置に基づいて決まる所定の角度範囲となるように制御する。
 例えば図75および図76に示したように、レンチキュラレンズ3の表面には、光学フィルタとして機能する複数の微小凹凸形状71を有する微小凹凸層70が形成されている。微小凹凸形状71は、レンチキュラレンズ3の並びと平行方向に形成されている。
 以下に、レンチキュラレンズ3の表面の第1の構成例の具体的な設計値を示す。
 レンチキュラレンズ3のレンズピッチ:0.143mm
 微小凹凸形状71のピッチ:平均0.019mm
 水平方向の光線制御角度θh:±0.5deg
 微小凹凸形状71の凹凸は例えば、約0.1μmの段差で曲率半径は約0.36mmである。微小凹凸形状71は金型を作成するバイト形状で実現する方法、金型形成後ヘアライン加工等で実現してもよい。ヘアライン加工等では微小凹凸形状71はランダムなピッチとなる。
(第2の構成例)
 図77は、第2の実施の形態に係る立体表示装置におけるレンチキュラレンズ3の表面の第2の構成例を概略的に示す構成図である。
 レンチキュラレンズ3の並びと直交する方向に光学フィルタとして機能する微小凹凸形状71を形成してもよい。
 以下に、レンチキュラレンズ3の表面の第2の構成例の具体的な設計値を示す。
 レンチキュラレンズ3のレンズピッチ:0.143mm
 微小凹凸形状71のピッチ:平均0.019mm
 水平方向の光線制御角度θh:±1.5deg
 微小凹凸形状71の凹凸は例えば、約0.4μmの段差である。微小凹凸形状71は金型形成後、ヘアライン加工等で実現する。ヘアライン加工等では微小凹凸形状71はランダムなピッチとなる。
 その他の構成、作用および効果は、上記第1の実施の形態に係る立体表示装置と略同様であってもよい。
<3.その他の実施の形態>
 本開示による技術は、上記各実施の形態の説明に限定されず種々の変形実施が可能である。
 例えば、本技術は以下のような構成を取ることもできる。
 以下の構成の本技術によれば、複数の視点位置に向けて光学素子から出射される光線の拡散角度が、複数の視点位置に基づいて決まる所定の角度範囲となるように制御される。
 これにより、画質を向上させることが可能となる。
(1)
 複数の視点画像を表示する画像表示素子と、
 前記画像表示素子に対向配置され、前記複数の視点画像に対応する複数の光線をそれぞれ複数の視点位置に向けて出射する光学素子と、
 前記複数の視点位置と前記光学素子との間に配置され、前記光学素子から出射された光線の拡散角度を、前記複数の視点位置に基づいて決まる所定の角度範囲となるように制御する光学フィルタと
 を備える
 立体表示装置。
(2)
 前記光学フィルタによる水平方向の光線制御角度は、前記光学フィルタの表面と前記複数の視点位置のうち左眼位置と右眼位置とに対応する2つの視点位置とが成す視点角度の1/2以下である
 上記(1)に記載の立体表示装置。
(3)
 前記光学フィルタは、水平方向の光線制御角度と垂直方向の光線制御角度とに異方性を持つように構成されている
 上記(1)または(2)に記載の立体表示装置。
(4)
 前記光学素子は、傾斜配置された複数のレンズを有するレンチキュラレンズであり、
 前記光学フィルタによる垂直方向の光線制御角度は、前記光学フィルタの表面と前記複数の視点位置のうち左眼位置と右眼位置とに対応する2つの視点位置とが成す視点角度の1/2に、前記レンチキュラレンズの傾斜角で決まる比率を乗じた値以下である
 上記(1)ないし(3)のいずれか1つに記載の立体表示装置。
(5)
 前記画像表示素子は、複数のサブピクセルを有し、
 前記光学素子は、傾斜配置された複数のレンズを有するレンチキュラレンズであり、
 前記光学フィルタによる前記レンチキュラレンズの軸方向の光線制御角度は、前記レンチキュラレンズの軸方向における前記画像表示素子のサブピクセルピッチと、前記光学フィルタの上面と前記レンチキュラレンズの上面との距離とで決まる角度より小さくなる
 上記(1)ないし(4)のいずれか1つに記載の立体表示装置。
(6)
 前記光学フィルタは、複数のプリズムを有するプリズムアレイを含む
 上記(1)ないし(5)のいずれか1つに記載の立体表示装置。
(7)
 前記プリズムアレイのアレイピッチをPaとしたとき、Pa≦25μmであり、
 前記光学フィルタによる光線制御角度θaに関して、以下の条件式を満足する
 上記(6)に記載の立体表示装置。
 θa=sin-1(mλ/Pa) ……(1)
 0.9mπ≦δ≦0.9(m+1)π ……(2)
ただし、
 m:前記プリズムアレイによって生じる回折光の回折次数数(整数)
 λ:前記光学フィルタに入射する光線の主波長
 δ:前記光学フィルタに入射した光線が前記プリズムアレイを通過することによって生ずる位相差
とする。
(8)
 前記光学フィルタは、複数のシリンドリカルレンズを有するレンズアレイを含む
 上記(1)ないし(5)のいずれか1つに記載の立体表示装置。
(9)
 前記光学フィルタによる光線制御角度は、前記複数の視点位置と前記レンズアレイのレンズピッチとに基づいて決まる角度である
 上記(8)に記載の立体表示装置。
(10)
 前記レンズアレイのアレイピッチをPaとしたとき、Pa≦25μmであり、
 前記光学フィルタによる光線制御角度θaに関して、以下の条件式を満足する
 上記(8)に記載の立体表示装置。
 θa=sin-1(mλ/Pa) ……(1)
 0.9mπ≦δ≦0.9(m+1)π ……(2)
ただし、
 m:前記レンズアレイによって生じる回折光の回折次数数(整数)
 λ:前記光学フィルタに入射する光線の主波長
 δ:前記光学フィルタに入射した光線が前記レンズアレイを通過することによって生ずる位相差
とする。
(11)
 前記レンズアレイにおける前記複数のシリンドリカルレンズはそれぞれ、ブレーズ化されたシリンドリカルレンズである
 上記(8)ないし(10)のいずれか1つに記載の立体表示装置。
(12)
 前記光学素子は、軸方向に延在する複数のレンズを有するレンチキュラレンズであり、
 前記光学フィルタは、前記レンチキュラレンズの前記軸方向に対して傾斜配置されている
 上記(1)ないし(11)のいずれか1つに記載の立体表示装置。
(13)
 前記光学フィルタは、
 光学フィルタ層と、
 前記光学フィルタ層の屈折率よりも低い屈折率を有する低屈折率層と、
 前記光学フィルタ層と前記低屈折率層との間に積層され、前記光学フィルタ層の屈折率よりも低く前記低屈折率層の屈折率よりも高い屈折率を有する中間層と
 を含む
 上記(1)ないし(12)のいずれか1つに記載の立体表示装置。
(14)
 前記光学フィルタは、複数のプリズムが水平方向および垂直方向に2次元配置されたプリズムアレイを含む
 上記(1)ないし(5)のいずれか1つに記載の立体表示装置。
(15)
 前記プリズムアレイの前記水平方向および前記垂直方向の少なくとも一方のアレイピッチをPaとしたとき、Pa≦25μmであり、
 前記光学フィルタによる前記水平方向および前記垂直方向の少なくとも一方の光線制御角度θaに関して、以下の条件式を満足する
 上記(14)に記載の立体表示装置。
 θa=sin-1(mλ/Pa) ……(1)
 0.9mπ≦δ≦0.9(m+1)π ……(2)
ただし、
 m:前記プリズムアレイによって生じる回折光の回折次数数(整数)
 λ:前記光学フィルタに入射する光線の主波長
 δ:前記光学フィルタに入射した光線が前記プリズムアレイを通過することによって生ずる位相差
とする。
(16)
 前記光学フィルタは、複数のレンズが水平方向および垂直方向に2次元配置されたレンズアレイを含む
 上記(1)ないし(5)のいずれか1つに記載の立体表示装置。
(17)
 前記レンズアレイにおいて、前記複数のレンズが前記水平方向および前記垂直方向にランダムに2次元配置されている
 上記(16)に記載の立体表示装置。
(18)
 前記レンズアレイの前記水平方向および前記垂直方向の少なくとも一方のアレイピッチをPaとしたとき、Pa≦25μmであり、
 前記光学フィルタによる前記水平方向および前記垂直方向の少なくとも一方の光線制御角度θaに関して、以下の条件式を満足する
 上記(16)に記載の立体表示装置。
 θa=sin-1(mλ/Pa) ……(1)
 0.9mπ≦δ≦0.9(m+1)π ……(2)
ただし、
 m:前記レンズアレイによって生じる回折光の回折次数数(整数)
 λ:前記光学フィルタに入射する光線の主波長
 δ:前記光学フィルタに入射した光線が前記レンズアレイを通過することによって生ずる位相差
とする。
(19)
 前記レンズアレイにおける前記複数のレンズはそれぞれ、ブレーズ化されたレンズである
 上記(16)ないし(18)のいずれか1つに記載の立体表示装置。
(20)
 前記複数の視点位置を検出する視点位置検出部、をさらに備える
 上記(1)ないし(19)のいずれか1つに記載の立体表示装置。
(21)
 複数の視点画像を表示する画像表示素子と、
 前記画像表示素子に対向配置され、前記複数の視点画像に対応する複数の光線をそれぞれ複数の視点位置に向けて出射する光学素子と
 を備え、
 前記光学素子の表面に、前記光学素子から出射される光線の拡散角度を、前記複数の視点位置に基づいて決まる所定の角度範囲となるように制御する光学フィルタとして機能する加工がなされている
 立体表示装置。
(22)
 前記光学素子の表面に、前記光学フィルタとして機能する複数の凹凸形状が形成されている
 上記(21)に記載の立体表示装置。
 本出願は、日本国特許庁において2021年7月21日に出願された日本特許出願番号第2021-120758号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (22)

  1.  複数の視点画像を表示する画像表示素子と、
     前記画像表示素子に対向配置され、前記複数の視点画像に対応する複数の光線をそれぞれ複数の視点位置に向けて出射する光学素子と、
     前記複数の視点位置と前記光学素子との間に配置され、前記光学素子から出射された光線の拡散角度を、前記複数の視点位置に基づいて決まる所定の角度範囲となるように制御する光学フィルタと
     を備える
     立体表示装置。
  2.  前記光学フィルタによる水平方向の光線制御角度は、前記光学フィルタの表面と前記複数の視点位置のうち左眼位置と右眼位置とに対応する2つの視点位置とが成す視点角度の1/2以下である
     請求項1に記載の立体表示装置。
  3.  前記光学フィルタは、水平方向の光線制御角度と垂直方向の光線制御角度とに異方性を持つように構成されている
     請求項1に記載の立体表示装置。
  4.  前記光学素子は、傾斜配置された複数のレンズを有するレンチキュラレンズであり、
     前記光学フィルタによる垂直方向の光線制御角度は、前記光学フィルタの表面と前記複数の視点位置のうち左眼位置と右眼位置とに対応する2つの視点位置とが成す視点角度の1/2に、前記レンチキュラレンズの傾斜角で決まる比率を乗じた値以下である
     請求項1に記載の立体表示装置。
  5.  前記画像表示素子は、複数のサブピクセルを有し、
     前記光学素子は、傾斜配置された複数のレンズを有するレンチキュラレンズであり、
     前記光学フィルタによる前記レンチキュラレンズの軸方向の光線制御角度は、前記レンチキュラレンズの軸方向における前記画像表示素子のサブピクセルピッチと、前記光学フィルタの上面と前記レンチキュラレンズの上面との距離とで決まる角度より小さくなる
     請求項1に記載の立体表示装置。
  6.  前記光学フィルタは、複数のプリズムを有するプリズムアレイを含む
     請求項1に記載の立体表示装置。
  7.  前記プリズムアレイのアレイピッチをPaとしたとき、Pa≦25μmであり、
     前記光学フィルタによる光線制御角度θaに関して、以下の条件式を満足する
     請求項6に記載の立体表示装置。
     θa=sin-1(mλ/Pa) ……(1)
     0.9mπ≦δ≦0.9(m+1)π ……(2)
    ただし、
     m:前記プリズムアレイによって生じる回折光の回折次数数(整数)
     λ:前記光学フィルタに入射する光線の主波長
     δ:前記光学フィルタに入射した光線が前記プリズムアレイを通過することによって生ずる位相差
    とする。
  8.  前記光学フィルタは、複数のシリンドリカルレンズを有するレンズアレイを含む
     請求項1に記載の立体表示装置。
  9.  前記光学フィルタによる光線制御角度は、前記複数の視点位置と前記レンズアレイのアレイピッチとに基づいて決まる角度である
     請求項8に記載の立体表示装置。
  10.  前記レンズアレイのアレイピッチをPaとしたとき、Pa≦25μmであり、
     前記光学フィルタによる光線制御角度θaに関して、以下の条件式を満足する
     請求項8に記載の立体表示装置。
     θa=sin-1(mλ/Pa) ……(1)
     0.9mπ≦δ≦0.9(m+1)π ……(2)
    ただし、
     m:前記レンズアレイによって生じる回折光の回折次数数(整数)
     λ:前記光学フィルタに入射する光線の主波長
     δ:前記光学フィルタに入射した光線が前記レンズアレイを通過することによって生ずる位相差
    とする。
  11.  前記レンズアレイにおける前記複数のシリンドリカルレンズはそれぞれ、ブレーズ化されたシリンドリカルレンズである
     請求項8に記載の立体表示装置。
  12.  前記光学素子は、軸方向に延在する複数のレンズを有するレンチキュラレンズであり、
     前記光学フィルタは、前記レンチキュラレンズの前記軸方向に対して傾斜配置されている
     請求項1に記載の立体表示装置。
  13.  前記光学フィルタは、
     光学フィルタ層と、
     前記光学フィルタ層の屈折率よりも低い屈折率を有する低屈折率層と、
     前記光学フィルタ層と前記低屈折率層との間に積層され、前記光学フィルタ層の屈折率よりも低く前記低屈折率層の屈折率よりも高い屈折率を有する中間層と
     を含む
     請求項1に記載の立体表示装置。
  14.  前記光学フィルタは、複数のプリズムが水平方向および垂直方向に2次元配置されたプリズムアレイを含む
     請求項1に記載の立体表示装置。
  15.  前記プリズムアレイの前記水平方向および前記垂直方向の少なくとも一方のアレイピッチをPaとしたとき、Pa≦25μmであり、
     前記光学フィルタによる前記水平方向および前記垂直方向の少なくとも一方の光線制御角度θaに関して、以下の条件式を満足する
     請求項14に記載の立体表示装置。
     θa=sin-1(mλ/Pa) ……(1)
     0.9mπ≦δ≦0.9(m+1)π ……(2)
    ただし、
     m:前記プリズムアレイによって生じる回折光の回折次数数(整数)
     λ:前記光学フィルタに入射する光線の主波長
     δ:前記光学フィルタに入射した光線が前記プリズムアレイを通過することによって生ずる位相差
    とする。
  16.  前記光学フィルタは、複数のレンズが水平方向および垂直方向に2次元配置されたレンズアレイを含む
     請求項1に記載の立体表示装置。
  17.  前記レンズアレイにおいて、前記複数のレンズが前記水平方向および前記垂直方向にランダムに2次元配置されている
     請求項16に記載の立体表示装置。
  18.  前記レンズアレイの前記水平方向および前記垂直方向の少なくとも一方のアレイピッチをPaとしたとき、Pa≦25μmであり、
     前記光学フィルタによる前記水平方向および前記垂直方向の少なくとも一方の光線制御角度θaに関して、以下の条件式を満足する
     請求項16に記載の立体表示装置。
     θa=sin-1(mλ/Pa) ……(1)
     0.9mπ≦δ≦0.9(m+1)π ……(2)
    ただし、
     m:前記レンズアレイによって生じる回折光の回折次数数(整数)
     λ:前記光学フィルタに入射する光線の主波長
     δ:前記光学フィルタに入射した光線が前記レンズアレイを通過することによって生ずる位相差
    とする。
  19.  前記レンズアレイにおける前記複数のレンズはそれぞれ、ブレーズ化されたレンズである
     請求項16に記載の立体表示装置。
  20.  前記複数の視点位置を検出する視点位置検出部、をさらに備える
     請求項1に記載の立体表示装置。
  21.  複数の視点画像を表示する画像表示素子と、
     前記画像表示素子に対向配置され、前記複数の視点画像に対応する複数の光線をそれぞれ複数の視点位置に向けて出射する光学素子と
     を備え、
     前記光学素子の表面に、前記光学素子から出射される光線の拡散角度を、前記複数の視点位置に基づいて決まる所定の角度範囲となるように制御する光学フィルタとして機能する加工がなされている
     を備える
     立体表示装置。
  22.  前記光学素子の表面に、前記光学フィルタとして機能する複数の凹凸形状が形成されている
     請求項21に記載の立体表示装置。
PCT/JP2022/027409 2021-07-21 2022-07-12 立体表示装置 WO2023002885A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023536701A JPWO2023002885A1 (ja) 2021-07-21 2022-07-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021120758 2021-07-21
JP2021-120758 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023002885A1 true WO2023002885A1 (ja) 2023-01-26

Family

ID=84979159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027409 WO2023002885A1 (ja) 2021-07-21 2022-07-12 立体表示装置

Country Status (2)

Country Link
JP (1) JPWO2023002885A1 (ja)
WO (1) WO2023002885A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116338975A (zh) * 2023-05-30 2023-06-27 成都工业学院 一种基于显示条阵列的立体显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101065A1 (ja) * 2004-04-09 2005-10-27 Sakari Co., Ltd. 光学部材およびこれを用いたバックライトユニット
JP2006206751A (ja) * 2005-01-28 2006-08-10 Teijin Chem Ltd 光拡散性芳香族ポリカーボネート樹脂組成物
JP2007264428A (ja) * 2006-03-29 2007-10-11 Casio Comput Co Ltd 液晶表示装置
JP2010122646A (ja) * 2008-10-21 2010-06-03 Sony Corp スクリーン及び画像表示装置
JP2011128235A (ja) * 2009-12-15 2011-06-30 Nikon Corp 表示装置および表示方法
US20140198364A1 (en) * 2013-01-11 2014-07-17 Konyang University Industry-Academic Cooperation Foundation Three-dimensional imaging system based on stereo hologram
US20180192037A1 (en) * 2017-01-04 2018-07-05 Innolux Corporation Display device and method for displaying
JP2018151549A (ja) * 2017-03-14 2018-09-27 株式会社リコー 拡散板及びそれをフォーカシングスクリーンに用いた一眼レフカメラ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101065A1 (ja) * 2004-04-09 2005-10-27 Sakari Co., Ltd. 光学部材およびこれを用いたバックライトユニット
JP2006206751A (ja) * 2005-01-28 2006-08-10 Teijin Chem Ltd 光拡散性芳香族ポリカーボネート樹脂組成物
JP2007264428A (ja) * 2006-03-29 2007-10-11 Casio Comput Co Ltd 液晶表示装置
JP2010122646A (ja) * 2008-10-21 2010-06-03 Sony Corp スクリーン及び画像表示装置
JP2011128235A (ja) * 2009-12-15 2011-06-30 Nikon Corp 表示装置および表示方法
US20140198364A1 (en) * 2013-01-11 2014-07-17 Konyang University Industry-Academic Cooperation Foundation Three-dimensional imaging system based on stereo hologram
US20180192037A1 (en) * 2017-01-04 2018-07-05 Innolux Corporation Display device and method for displaying
JP2018151549A (ja) * 2017-03-14 2018-09-27 株式会社リコー 拡散板及びそれをフォーカシングスクリーンに用いた一眼レフカメラ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116338975A (zh) * 2023-05-30 2023-06-27 成都工业学院 一种基于显示条阵列的立体显示装置
CN116338975B (zh) * 2023-05-30 2023-07-28 成都工业学院 一种基于显示条阵列的立体显示装置

Also Published As

Publication number Publication date
JPWO2023002885A1 (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
JP5571662B2 (ja) 自動立体視表示装置
US8749722B2 (en) Display device displaying an image for a first viewpoint and an image for a second viewpoint
JP5997123B2 (ja) 立体表示装置
US7667785B2 (en) Optical separating filter
JP6687014B2 (ja) レンズアレイ及び映像投影装置
US20060050379A1 (en) Projection display screen having microlens array
US7019899B2 (en) Screen, optical film, and method of manufacturing an optical film
CN108474943B (zh) 用于执行子像素压缩以减少包括多个显示器的显示系统中的莫尔干涉的方法和系统
KR20060063823A (ko) 투과형 스크린 및 리어형 프로젝터
US11372250B2 (en) Head-mounted display having reflective elements
WO2023002885A1 (ja) 立体表示装置
US20220350056A1 (en) System and method for holographic displays
KR20070078019A (ko) 필름유닛, 이를 포함한 프로젝션 스크린 및 프로젝션디스플레이 장치
CN108605121B (zh) 使用具有正方形元件轮廓的折射光束映射器减少自动立体显示器中的莫尔干涉的方法和系统
CN108770384B (zh) 用折射光束映射器减少包括多个显示器的显示系统中的莫尔干涉的方法和系统
WO2015125283A1 (ja) 光学素子、及び、ヘッドアップディスプレイ
US20120249968A1 (en) Autostereoscopic display
JP7352862B2 (ja) 光学部材及び表示装置
JP2016200784A (ja) スクリーン及び表示装置
CN105759431A (zh) 一种三维光场显示系统
US10684491B2 (en) Method and system using refractive beam mapper having square element profiles to reduce moire interference in a display system including multiple displays
JP2022129946A (ja) 照明装置及び表示装置
JP4273923B2 (ja) 透過型スクリーン
JP5699369B2 (ja) 立体映像表示用の反射スクリーン、立体映像表示システム
JP4056917B2 (ja) プロジェクションスクリーン及びプロジェクションディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18577123

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023536701

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE