WO2023002703A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2023002703A1
WO2023002703A1 PCT/JP2022/013154 JP2022013154W WO2023002703A1 WO 2023002703 A1 WO2023002703 A1 WO 2023002703A1 JP 2022013154 W JP2022013154 W JP 2022013154W WO 2023002703 A1 WO2023002703 A1 WO 2023002703A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
point
rim
carcass layer
rim flange
Prior art date
Application number
PCT/JP2022/013154
Other languages
English (en)
French (fr)
Inventor
啓 甲田
尚久 村田
栄星 清水
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN202280048316.0A priority Critical patent/CN117730006A/zh
Priority to DE112022002301.5T priority patent/DE112022002301T5/de
Publication of WO2023002703A1 publication Critical patent/WO2023002703A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/08Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend transversely from bead to bead, i.e. radial ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/02Seating or securing beads on rims
    • B60C15/024Bead contour, e.g. lips, grooves, or ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile

Definitions

  • the present invention relates to a tire that is suitable when a high load capacity is required. relating to tires that have made it possible to improve
  • An object of the present invention is to provide a tire capable of effectively suppressing failures caused by deflection of the tire and failures caused by friction between the tire and the rim flange and improving durability.
  • the tire of the present invention for achieving the above object has a structure in which a carcass layer is mounted between a pair of bead portions, and the carcass layer is rolled up around the bead core from the inside to the outside of the tire, In a tire having a cross-sectional height SH in the range of 50 mm to 150 mm, In an unloaded state in which the tire is mounted on a specified rim and filled with a specified internal pressure, the distance between the tire and the rim flange on a vertical line drawn from the radially outermost point Tr of the rim flange to the outer surface of the tire.
  • the opening distance A satisfies the relationship of 0.01 ⁇ A/SH ⁇ 0.16 with respect to the cross-sectional height SH, and the opening starting point at which the rim flange separates from the tire is defined.
  • S be a point where a perpendicular line drawn from the radially outermost point Tr of the rim flange to the outer surface of the tire intersects with the outer surface of the tire, and from the point S and the point T the carcass layer
  • the cross-sectional area Sr of the rubber portion included in the region surrounded by the two perpendicular lines and the wound portion of the carcass layer is 12 mm 2 ⁇ Sr ⁇ 101 mm 2 It is characterized by being in the range.
  • the present inventors found that the tire cross-sectional height SH greatly affects tire deflection.
  • the opening distance A to the rim flange with respect to the cross-sectional height SH and by appropriately defining the cross-sectional area Sr of the rubber portion that supports the cushioning effect on the rim flange, failure due to tire deflection can be prevented.
  • the inventors have found that failures due to friction between the tire and the flange can be effectively suppressed, and have arrived at the present invention.
  • the tire and the rim flange in an unloaded state in which the tire is mounted on a specified rim and filled with a specified internal pressure, the tire and the rim flange on a vertical line drawn from the radially outermost point Tr of the rim flange to the outer surface of the tire.
  • the opening distance A When the opening distance A is the opening distance A, the opening distance A satisfies the relationship of 0.01 ⁇ A / SH ⁇ 0.16 with respect to the cross-sectional height SH, and the opening start point where the rim flange separates from the tire is S , the point where the perpendicular line drawn from the radially outermost point Tr of the rim flange to the outer surface of the tire intersects with the outer surface of the tire is defined as T, and from points S and T to the wound-up portion of the carcass layer.
  • the cross-sectional area Sr of the rubber portion included in the area surrounded by these two perpendicular lines and the wound-up portion of the carcass layer is in the range of 12 mm 2 ⁇ Sr ⁇ 101 mm 2 , so that the deflection of the tire is suppressed. It is possible to effectively suppress the failure caused by the tire and the failure caused by the friction between the tire and the flange, thereby improving the durability of the tire.
  • the thickness of the rubber portion for cushioning on the perpendicular line drawn from the point S to the wound portion of the carcass layer is Gl
  • the thickness of the rubber portion for cushioning on the perpendicular line drawn from the point T to the wound portion of the carcass layer is Gl
  • the thickness of the rubber portion for cushioning on the perpendicular line drawn from the point T to the wound portion of the carcass layer is Gl
  • the thickness of the rubber portion for cushioning on the perpendicular line drawn from the point T to the wound portion of the carcass layer is Gl
  • the thickness of the rubber portion for cushioning on the perpendicular line drawn from the point T to the wound portion of the carcass layer is Gl
  • the thickness of the rubber portion for cushioning on the perpendicular line drawn from the point T to the wound portion of the carcass layer is Gl
  • the thickness of the rubber portion for cushioning on the perpendicular line drawn from the point T to the wound portion of the carcass layer is Gl
  • a perpendicular line drawn from point S to the wound-up portion of the carcass layer intersects with the wound-up portion of the carcass layer
  • Sc is the point at which the carcass layer extends from point T.
  • An arc of the carcass layer passing through point Sc, point Tc, and point Uc, where Tc is the point where the perpendicular drawn to the wound portion intersects with the wound portion of the carcass layer, and Uc is the midpoint between points Sc and Tc. preferably has a center on the outer side in the tire width direction.
  • the main body portion and the winding portion of the carcass layer contact each other without the bead filler interposed therebetween to form a closed region containing the bead core.
  • the tire When the tire has a rim cushion rubber layer arranged in a region in contact with the rim flange and a sidewall rubber layer arranged outside the rim cushion rubber layer in the tire radial direction, the tire is mounted on the specified rim and filled with the specified internal pressure.
  • the boundary point X between the rim cushion rubber layer and the sidewall rubber layer on the outer surface of the tire is located outside the point T in the tire radial direction.
  • the hardness of the rim cushion rubber layer at 20°C is preferably 55 or more and 80 or less. Thereby, the durability of the rim cushion rubber layer can be improved.
  • the carcass cords constituting the carcass layer have an intermediate elongation of 3.3% or more and 6.2% or less under a load of 1.5 cN/dtex. Thereby, the effect of improving durability can be enhanced.
  • the dimensions measured in an unloaded state are measured in an unloaded state in which the tire is mounted on a specified rim and filled with a specified internal pressure.
  • the dimensions measured under a load are measured with the tire mounted on a specified rim, filled with a specified internal pressure, placed vertically on a flat surface, and loaded with 100% of the specified load capacity.
  • Each dimension is the average value of measurements taken at four locations on the tire circumference.
  • Specific rim means a rim defined for each tire in a standard system including the standards on which the tire is based. For example, JATMA is a standard rim, TRA is a "Design Rim", or ETRTO. If so, it should be "Measuring Rim”.
  • the “specified internal pressure” is the air pressure corresponding to the maximum load capacity determined for each tire by each standard in the standard system including the standard on which the tire is based.
  • the “specified load capacity” is the maximum load capacity defined for each tire by each standard in a system of standards including standards on which tires are based.
  • FIG. 1 is a meridional half-sectional view showing a pneumatic tire (unloaded state) according to an embodiment of the present invention.
  • FIG. 2 is a sectional view extracting and showing a bead portion of the pneumatic tire (unloaded state) of FIG.
  • FIG. 3 is another sectional view showing the extracted bead portion of the pneumatic tire (unloaded state) of FIG.
  • FIG. 4 is a sectional view showing a modified example of the bead portion (unloaded state).
  • FIG. 5 is another sectional view showing the extracted bead portion of the pneumatic tire (unloaded state) of FIG.
  • FIG. 6 is a sectional view extracting and showing the bead portion of the pneumatic tire (100% load applied state) of FIG.
  • FIG. 1 is a meridional half-sectional view showing a pneumatic tire (unloaded state) according to an embodiment of the present invention.
  • FIG. 2 is a sectional view extracting and showing a bead portion of the pneumatic tire (unloaded
  • FIG. 7 is another sectional view showing the extracted bead portion of the pneumatic tire (unloaded state) of FIG.
  • FIG. 8 is a sectional view extracting and showing the bead portion and sidewall portion of the pneumatic tire (unloaded state) of FIG.
  • FIG. 9 is another sectional view showing the extracted bead portion of the pneumatic tire (unloaded state) of FIG.
  • FIG. 10 is another sectional view showing the extracted bead portion of the pneumatic tire (unloaded state) of FIG.
  • FIG. 11 is another sectional view showing the extracted bead portion of the pneumatic tire (unloaded state) of FIG.
  • FIG. 12 is another sectional view showing the extracted bead portion and sidewall portion of the pneumatic tire (unloaded state) of FIG.
  • FIG. 1 depicts one side of a pneumatic tire bounded by the tire equator CL
  • the pneumatic tire has a symmetrical or asymmetrical structure on both sides of the tire equator CL.
  • a pneumatic tire 10 of this embodiment includes a tread portion 1 extending in the tire circumferential direction and forming an annular shape, and a pair of sidewall portions 2 arranged on both sides of the tread portion 1. 2 and a pair of bead portions 3, 3 arranged radially inward of the sidewall portions 2. As shown in FIG. 1, a pneumatic tire 10 of this embodiment includes a tread portion 1 extending in the tire circumferential direction and forming an annular shape, and a pair of sidewall portions 2 arranged on both sides of the tread portion 1. 2 and a pair of bead portions 3, 3 arranged radially inward of the sidewall portions 2. As shown in FIG.
  • a carcass layer 4 is mounted between the pair of bead portions 3,3.
  • the carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back from the tire inner side to the outer side around bead cores 5 arranged in the respective bead portions 3 .
  • a bead filler 6 made of a rubber composition having a triangular cross section is arranged on the outer circumference of the bead core 5 .
  • the carcass layer 4 has a main body portion 4A and a winding portion 4B bounded by the bead core 5. As shown in FIG.
  • a plurality of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1 .
  • These belt layers 7 include a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and are arranged so that the reinforcing cords intersect each other between the layers.
  • the inclination angle of the reinforcing cords with respect to the tire circumferential direction is set within a range of 10° to 40°, for example.
  • a steel cord is preferably used as the reinforcing cord for the belt layer 7 .
  • At least one belt cover layer 8 formed by arranging reinforcing cords at an angle of, for example, 5° or less with respect to the tire circumferential direction is arranged on the outer peripheral side of the belt layer 7 for the purpose of improving high-speed durability.
  • Organic fiber cords such as nylon and aramid cords are preferably used as the reinforcing cords for the belt cover layer 8 .
  • a tread rubber layer 11 is arranged on the tread portion 1
  • a sidewall rubber layer 12 is arranged on the sidewall portion 2
  • a rim cushion rubber layer 13 is arranged on the bead portion 3.
  • an inner liner rubber layer 14 is arranged along the carcass layer 4.
  • a rim protector 15 for protecting the rim flange 22 is formed on the sidewall portion 2 so as to protrude outward in the tire width direction.
  • the tire 10 described above has a cross-sectional height SH in the range of 50 mm to 150 mm, and is mainly a tire for passenger cars.
  • the following configuration is applied to such tire 10 . That is, as shown in FIGS. 1 and 2, in an unloaded state in which the tire 10 is mounted on the specified rim 21 and the specified internal pressure is filled, the radial direction from the radially outermost point Tr of the rim flange 22 to the outer surface of the tire 10.
  • the opening distance between the tire 10 and the rim flange 22 on the drawn perpendicular line is A (mm)
  • the opening distance A is 0.01 ⁇ A/SH ⁇ 0.16 with respect to the cross-sectional height SH (mm). happy with the relationship.
  • the opening starting point where the rim flange 22 separates from the tire 10 is defined as S, and the perpendicular line drawn from the radially outermost point Tr of the rim flange 22 to the outer surface of the tire 10 intersects with the outer surface of the tire 10. T, and when two perpendicular lines are drawn from point S and point T to the wound portion 4B of the carcass layer 4, the rubber contained in the area surrounded by these two perpendicular lines and the wound portion 4B of the carcass layer 4
  • the cross-sectional area Sr of the portion R (hatched portion) is configured to be in the range of 12 mm 2 ⁇ Sr ⁇ 101 mm 2 .
  • the radially outermost point Tr of the rim flange 22 is the radially outermost position of the rim flange 22. is the innermost point in the width direction of the rim flange 22 at the position of .
  • the cross-sectional area Sr of the rubber portion R is the cross-sectional area of the portion outside the carcass cords forming the carcass layer 4 .
  • the opening distance A between the tire 10 and the rim flange 22 in an unloaded state satisfies the relationship of 0.01 ⁇ A/SH ⁇ 0.16 with respect to the sectional height SH, and the rim flange 22
  • the cross - sectional area Sr of the rubber portion R which supports the cushioning action against the It is possible to effectively suppress failures due to friction between the tire 10 and the flange 22 .
  • failure in the vicinity of the bead portion 3 can be suppressed, and the durability of the tire 10 can be improved.
  • the aspect ratio of the tire 10 is 55% or less, excellent durability is required, and in such a case, the effect of improving durability can be maximized.
  • the opening distance A becomes insufficient, and the stress in the vicinity of the rim flange 22 increases when the tire 10 is flexed, leading to failure. If it exceeds 16, the opening distance A is too large, and failures due to rubbing between the tire 10 and the rim flange 22 are likely to occur.
  • the cross-sectional area Sr of the rubber portion R is less than 12 mm 2 , compressive stress is likely to be applied to the carcass layer 4 in the vicinity of the rim flange 22 when the tire 10 is flexed, leading to failure. In this case, it becomes difficult to ensure a sufficient opening distance A, and the stress in the vicinity of the rim flange 22 increases when the tire 10 is flexed, leading to failure.
  • the thicknesses Gl and Gu preferably satisfy the relationship of 0.40 ⁇ Gl/Gu ⁇ 0.90. As a result, good cushioning action can be ensured, and the effect of improving durability can be enhanced.
  • the cushioning action is reduced and the effect of improving durability is reduced.
  • the thickness Gl of the rubber portion R preferably satisfies the range of 0.5 mm ⁇ Gl ⁇ 4.0 mm, and more preferably satisfies the range of 1.5 mm ⁇ Gl ⁇ 3.0 mm.
  • the thicknesses Gl and Gu of the rubber portion R can also be measured using a cut sample of the tire 10 .
  • a perpendicular line drawn from the point S to the wound-up portion 4B of the carcass layer 4 is the carcass layer. 4 intersects with the wound portion 4B of the carcass layer 4, and the point at which the perpendicular drawn from the point T to the wound portion 4B of the carcass layer 4 intersects the wound portion 4B of the carcass layer 4 is Tc.
  • the arc (curvature radius Rc) of the carcass layer 4 passing through points Sc, Tc, and Uc preferably has its center on the outer side in the tire width direction.
  • the arc of the carcass layer 4 that passes through the points Sc, Tc, and Uc has its center on the outside in the tire width direction even when the tire 10 is in a single unit state without being mounted on a rim or when a 100% load is applied. is desirable.
  • Fig. 4 shows a modified example of the bead portion.
  • the body portion 4A and the winding portion 4B of the carcass layer 4 form a closed region containing the bead core 5 by contacting each other without intervening the bead filler.
  • the carcass layer 4 is wound up around the bead core 5 from the inside to the outside of the tire so that the body portion 4A and the wound-up portion 4B are in close contact with each other at the upper end position of the bead core 5 .
  • the rubber occupation ratio of the closed region formed by the carcass layer 4 is preferably 15% or less, more preferably 10% or less, and even more preferably 5% or less.
  • the term "rubber occupancy” as used herein refers to the percentage of the rubber portion (for example, bead wire insulation rubber or small bead filler) that occupies the closed region formed by the carcass layer 4 in the tire meridian cross section.
  • a secondary bead filler 9 is arranged on the outer side of the wound-up portion 4B of the carcass layer 4 in the tire width direction, and the rim cushion rubber layer 13 is thickened to improve durability. can be improved.
  • the cross-sectional area Sr of the rubber portion R can be set within the range of 36 mm 2 ⁇ Sr ⁇ 101 mm 2 .
  • a rim cushion rubber layer 13 arranged in a region contacting the rim flange 22 and a sidewall rubber layer 12 arranged outside the rim cushion rubber layer 13 in the tire radial direction.
  • the boundary point X between the rim cushion rubber layer 13 and the sidewall rubber layer 12 on the outer surface of the tire 10 is greater than the point T in an unloaded state in which the tire 10 is mounted on the specified rim and filled with the specified internal pressure. It is preferable to position it on the outer side in the tire radial direction. That is, it is desirable that the rim cushion rubber layer 13 extends from the lower side of the bead core 5 toward the outside in the tire radial direction to at least the position of the point T. As shown in FIG. As a result, compressive stress is less likely to be applied to the carcass layer 4 when the tire is deformed, so the effect of improving durability can be enhanced.
  • the hardness of the rim cushion rubber layer 13 at 20°C is preferably 55 or more and 80 or less. Thereby, the durability of the rim cushion rubber layer 13 can be improved. Here, if the hardness of the rim cushion rubber layer 13 is out of the above range, the effect of improving durability is reduced.
  • the hardness is durometer hardness measured at a temperature of 20° C. using a type A durometer in accordance with JIS-K6253.
  • the 100% modulus of the rim cushion rubber layer 13 at 20°C is preferably 2.0 MPa or more and 9.5 MPa or less. Thereby, the durability of the rim cushion rubber layer 13 can be improved. Here, if the 100% modulus of the rim cushion rubber layer 13 is out of the above range, the effect of improving durability is reduced.
  • the 100% modulus is a prescribed elongational tensile stress measured at a temperature of 20° C. in accordance with JIS-K6251.
  • the loss tangent (tan ⁇ ) of the rim cushion rubber layer 13 at 20°C is preferably 0.05 or more and 0.35 or less. As a result, the thickness (durability) of the rim cushion rubber layer 13 can be ensured, and an increase in rolling resistance can be suppressed. Here, if the loss tangent of the rim cushion rubber layer 13 exceeds 0.35, rolling resistance increases.
  • the loss tangent (tan ⁇ ) is measured in accordance with JIS-K6394 using a viscoelastic spectrometer (manufactured by Toyo Seiki Seisakusho) under the conditions of a frequency of 20 Hz, an initial strain of 10%, dynamic strain of ⁇ 2%, and a temperature of 60°C. It is what is done.
  • the intermediate elongation of the carcass cords forming the carcass layer 4 under a load of 1.5 cN/dtex is preferably 3.3% or more and 6.2% or less. Thereby, the effect of improving durability can be enhanced.
  • the intermediate elongation of the carcass cords constituting the carcass layer 4 under a load of 1.5 cN/dtex is out of the above range, the effect of improving durability is reduced.
  • the carcass cord has an intermediate elongation of 3.8% or more and 5.9% or less under a load of 1.5 cN/dtex.
  • the intermediate elongation is measured by performing a tensile test on the carcass cord taken out from the sidewall portion of the tire 10, in compliance with JIS-L1017, under the conditions of a grip interval of 250 mm and a tensile speed of 300 ⁇ 20 mm/min. is.
  • the carcass cords forming the carcass layer 4 are preferably organic fiber cords. If, for example, a high modulus rayon cord is used as the carcass cord, the durability is improved.
  • the total thickness of the carcass layer 4 is preferably 0.8 mm or more and 1.5 mm or less.
  • the cord diameter is preferably 0.6 mm or more and 1.1 mm or less, and the cord implantation density is preferably 43 cords/50 mm or more and 59 cords/50 mm or less.
  • the carcass cord a polyester cord having excellent fatigue resistance is also suitable.
  • the cord diameter is preferably 0.7 mm or more and 1.2 mm or less, and the cord driving density is preferably 44 cords/50 mm or more and 60 cords/50 mm or less.
  • the angle of the carcass cords forming the carcass layer 4 with respect to the tire circumferential direction can be set within the range of 75° or more and 90° or less.
  • the angle of the carcass cords is set to be less than 88°, the tire rigidity is increased, resulting in improved durability.
  • the wound-up portion 4B of the carcass layer 4 extends beyond the maximum width of the tire to a position where it overlaps with the edge portion of the belt layer 7 .
  • the tire 10 is mounted on the specified rim 21 and filled with the specified internal pressure in a non-loaded state. It is preferable that the opening distance A satisfies the relationship of 0.03 ⁇ A/W ⁇ 1.60 with respect to the protrusion amount W, where W (mm) is the protrusion amount corresponding to 1/2 of the difference.
  • the total width TW of the tire 10 is the total width of the tire 10 at the position where the carcass layer 4 expands most outward in the tire width direction. That is, the rim protector 15 for protecting the rim flange 22 is excluded from the total width TW.
  • the opening distance A between the tire 10 and the rim flange 22 in the unloaded state is 0 with respect to the protrusion amount W corresponding to 1/2 of the difference between the total width TW of the tire 10 and the rim width DW of the specified rim 21.
  • the opening distance A is optimized with respect to the amount of bending deformation of the tire 10, and failures caused by the bending of the tire 10 and contact between the tire 10 and the flange 22 are prevented. Failures caused by rubbing can be effectively suppressed. As a result, the effect of suppressing failure in the vicinity of the bead portion 3 and improving the durability of the tire 10 can be further enhanced.
  • the opening distance A becomes insufficient, and the stress in the vicinity of the rim flange 22 increases when the tire 10 is flexed, leading to failure. If it exceeds 60, the opening distance A is too large, so failures due to friction between the tire 10 and the rim flange 22 are likely to occur, and pebbles and the like are likely to enter, resulting in a significant deterioration in durability.
  • the radially outermost point Tr of the rim flange 22 is
  • the opening distance between the tire 10 and the rim flange 22 on the perpendicular line drawn from is A 100 (mm)
  • the opening distance A 100 is relative to the cross-sectional height SH (mm) It is preferable to satisfy the relationship 0.003 ⁇ A100/ SH ⁇ 0.100 .
  • the measurement position of the opening distance A 100 is the same as the measurement position of the opening distance A.
  • the opening distance A 100 becomes insufficient, and the stress near the rim flange 12 increases when the tire 10 is flexed, leading to failure. If it exceeds 0.100, the opening distance A 100 is too large, and failures due to friction between the tire 10 and the rim flange 22 are likely to occur, and in either case, the effect of improving durability is reduced.
  • the opening distance A 100 (mm) preferably satisfies the relationship of 0.010 ⁇ A 100 /W ⁇ 1.000 with respect to the protrusion amount W (mm).
  • the opening distance A 100 becomes insufficient, and the stress near the rim flange 22 increases when the tire 10 is flexed, leading to failure. If it exceeds 1.000, the opening distance A 100 is too large, and failures due to friction between the tire 10 and the rim flange 22 are likely to occur, and in either case, the effect of improving durability is reduced.
  • the opening distance A (mm) and the opening distance A100 (mm) preferably satisfy the relationship 0.20 ⁇ A100/ A ⁇ 0.80 .
  • the stress caused by repeated deformation can be suppressed, and the effect of improving durability can be enhanced.
  • the ratio A 100 /A is less than 0.20, the deformation in the vicinity of the rim flange 22 is significantly increased when the tire 10 is flexed. If it is more than 0.80, the deformation at the position separated from the rim flange 22 becomes significantly large when the tire 10 is bent, so there is a possibility that the effect of improving the durability is reduced.
  • the opening distance A is preferably in the range of 1.5 mm ⁇ A ⁇ 8.0 mm.
  • the opening distance A is in the range of 1.8 mm ⁇ A ⁇ 7.5 mm, and more preferably in the range of 2.0 mm ⁇ A ⁇ 7.0 mm.
  • the opening distance A (mm) is 0.01 ⁇ A/SDH ⁇ 0 with respect to the height SDH (mm) in the tire radial direction to the maximum width position (measurement position of the total width TW) of the tire 10. It is preferable to satisfy the relationship of 0.50.
  • the opening distance A becomes insufficient, and the stress in the vicinity of the rim flange 12 increases when the tire 10 is flexed, leading to failure. If it exceeds 50, the opening distance A is too large, and failures due to friction between the tire 10 and the rim flange 22 are likely to occur, and in either case, the effect of improving durability is reduced.
  • the opening distance A' becomes insufficient, and the stress near the rim flange 12 increases when the tire 10 is flexed, leading to failure. If it exceeds 0.150, the opening distance A' is too large, and failures due to rubbing between the tire 10 and the rim flange 22 are likely to occur.
  • the opening distance A (mm) and the opening distance A' (mm) preferably satisfy the relationship 0.50 ⁇ A'/A ⁇ 0.96. As a result, the stress caused by repeated deformation can be suppressed, and the effect of improving durability can be enhanced.
  • the opening distance A' becomes insufficient, and the stress near the rim flange 12 increases when the tire 10 is flexed, leading to failure. If it exceeds 0.96, the opening distance A' is too large, and failures due to friction between the tire 10 and the rim flange 22 are likely to occur, and in either case, the effect of improving durability is reduced.
  • the opening distance A' is preferably in the range of 1.0 mm ⁇ A' ⁇ 7.5 mm.
  • the opening distance A' is in the range of 1.2 mm ⁇ A' ⁇ 7.0 mm, and more preferably in the range of 1.4 mm ⁇ A' ⁇ 6.5 mm.
  • the opening distance A is optimized with respect to the amount of bending deformation of the tire 10, It is possible to effectively suppress failures caused by the tire 10 and failures caused by rubbing between the tire 10 and the flange 22 . As a result, failures near the bead portion 3 can be suppressed, and the effect of improving the durability of the tire 10 can be further enhanced.
  • the opening distance A becomes insufficient, and stress near the rim flange 22 increases when the tire 10 is flexed, leading to failure. Then, since the opening distance A is too large, failure due to friction between the tire 10 and the rim flange 22 is likely to occur, and furthermore, pebbles and the like are likely to enter, resulting in a significant deterioration in durability. .
  • L is the point that defines the total width TW of the tire 10.
  • the angle ⁇ between the straight line connecting the points P and Q and the straight line connecting the points L and Q should be in the range of 2° ⁇ 30°.
  • the opening distance A becomes insufficient, and the stress near the rim flange 12 increases when the tire 10 is flexed, leading to failure. In either case, the tire 10 and the rim flange 22 are likely to rub against each other because the opening distance A is too large.
  • the opening starting point at which the rim flange 22 separates from the tire 10 is defined as S, and the rim flange 22 is opened.
  • Tr be the radially outermost point
  • T be the point at which a perpendicular line drawn from the point Tr to the outer surface of the tire 10 intersects with the outer surface of the tire.
  • the angle ⁇ formed with the straight line connecting S and point Tr is preferably in the range of 15° ⁇ 65°.
  • the angle ⁇ is less than 15°, the stress in the vicinity of the rim flange 22 increases when the tire 10 is bent, leading to failure. Failure due to friction with the In particular, it is desirable to satisfy the range of 20° ⁇ 60°, and more preferably the range of 25° ⁇ 55°.
  • the horizontal distance B (mm) in the tire width direction between the point Q and the point S is 0.02 ⁇ B/SH ⁇ It is preferable to satisfy the relationship of 0.18. As a result, the stress due to repeated deformation falls within an appropriate range, and the effect of improving durability can be enhanced.
  • the ratio B/SH is less than 0.02, failures due to friction between the tire 10 and the rim flange 22 are likely to occur. Since the stress in the vicinity of the rim flange 22 increases, it leads to failure, and in either case, the effect of improving durability decreases.
  • the horizontal distance B is preferably in the range of 3.0 mm ⁇ B ⁇ 9.0 mm.
  • the horizontal distance B is in the range of 3.2 mm ⁇ B ⁇ 8.5 mm, and more preferably in the range of 3.4 mm ⁇ B ⁇ 8.0 mm.
  • T is The arc (curvature radius Rb) of the tire 10 passing through the points S, P, and T preferably has its center on the outer side in the tire width direction.
  • the belt layer 7 located on the innermost side in the tire radial direction among the plurality of belt layers 7
  • the horizontal line in the tire width direction passing through the edge of the tire 10 intersects with the outer surface of the tire 10 and the point defining the total width TW of the tire 10 is L
  • the straight line connecting the point L and the point V is the tire
  • the angle ⁇ formed with the horizontal line in the width direction is preferably in the range of 45° ⁇ 80°.
  • the angle ⁇ is out of the above range, the stress due to repeated deformation will be out of the appropriate range, and the effect of improving durability will decrease.
  • the ratio Rs/SH deviates from the above range, the stress due to repeated deformation will deviate from the appropriate range, and the effect of improving durability will decrease.
  • Abrasion resistance Each test tire was mounted on a wheel with a rim size of 20 x 10 J and mounted on a tester with a drum diameter of 1707 mm, the air pressure was 290 kPa, the speed was 81 km / h, the initial load was 88% of the maximum load capacity, and every 2 hours The load was increased by 13%, and a running test of 2500 km was carried out.
  • the rubber thickness from the outer surface of the tire to the carcass layer at the position corresponding to the radially outermost point of the rim flange was measured before and after the test to determine the amount of change in the rubber thickness.
  • the evaluation results were shown as indices with Comparative Example 1 being 100, using the reciprocal of the amount of change in rubber thickness. It means that the larger the index value, the better the abrasion resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

タイヤの撓みに起因する故障やタイヤとリムフランジとの擦れに起因する故障を効果的に抑制し、耐久性を改善することを可能にしたタイヤを提供する。断面高さSHが50mm~150mmの範囲にあるタイヤ10において、タイヤ10を規定リムに組み付けて規定内圧を充填した無負荷状態において、リムフランジ22の径方向最外側点Trからタイヤ10の外表面に対して引いた垂線上でのタイヤ10とリムフランジ22との開口距離をAとしたとき、開口距離Aが断面高さSHに対して0.01≦A/SH≦0.16の関係を満足し、リムフランジ22がタイヤ10から離れる開口開始点をSとし、リムフランジ22の径方向最外側点Trからタイヤ10の外表面に対して引いた垂線とタイヤ10の外表面とが交わる点をTとし、点S及び点Tからカーカス層4の巻き上げ部4Bに対して2本の垂線を引いたとき、これら2本の垂線とカーカス層4の巻き上げ部4Bにより囲まれた領域に含まれるゴム部分Rの断面積Srが12mm2≦Sr≦101mm2の範囲にある。

Description

タイヤ
 本発明は、高い負荷能力が要求される場合に好適なタイヤに関し、更に詳しくは、タイヤの撓みに起因する故障やタイヤとリムフランジとの擦れに起因する故障を効果的に抑制し、耐久性を改善することを可能にしたタイヤに関する。
 自動車の電動化等に起因する車重の増加に伴い、高い負荷能力を有するタイヤが求められている。ところが、負荷の増大により、タイヤ転動時にサイドウォール部からビード部にかけて繰り返し生じる変形が大きくなると、タイヤの耐久性が悪化するという問題がある。
 これに対して、重荷重用タイヤにおいて、リムフランジの形状に対してビード部の形状を規定することにより、耐久性を改善することが提案されている(例えば、特許文献1参照)。しかしながら、リムフランジの形状に対してビード部の形状を規定するだけでは耐久性の改善効果が不十分であり、依然としてタイヤの撓みに起因する故障やタイヤとフランジとの擦れに起因する故障が生じることが懸念されている。
日本国特開平11-34619号公報
 本発明の目的は、タイヤの撓みに起因する故障やタイヤとリムフランジとの擦れに起因する故障を効果的に抑制し、耐久性を改善することを可能にしたタイヤを提供することにある。
 上記目的を達成するための本発明のタイヤは、一対のビード部間に装架されたカーカス層を有し、該カーカス層がビードコアの廻りにタイヤ内側から外側に巻き上げられた構造を有すると共に、断面高さSHが50mm~150mmの範囲にあるタイヤにおいて、
 前記タイヤを規定リムに組み付けて規定内圧を充填した無負荷状態において、リムフランジの径方向最外側点Trから前記タイヤの外表面に対して引いた垂線上での前記タイヤと前記リムフランジとの開口距離をAとしたとき、前記開口距離Aが前記断面高さSHに対して0.01≦A/SH≦0.16の関係を満足し、前記リムフランジが前記タイヤから離れる開口開始点をSとし、前記リムフランジの径方向最外側点Trから前記タイヤの外表面に対して引いた垂線と前記タイヤの外表面とが交わる点をTとし、前記点S及び前記点Tから前記カーカス層の巻き上げ部に対して2本の垂線を引いたとき、前記2本の垂線と前記カーカス層の巻き上げ部により囲まれた領域に含まれるゴム部分の断面積Srが12mm2≦Sr≦101mm2の範囲にあることを特徴とするものである。
 本発明者は、断面高さSHが50mm~150mmの範囲にある乗用車用のタイヤにおけるビード部の挙動について鋭意研究した結果、タイヤの断面高さSHはタイヤの撓みに大きく影響するため、タイヤとリムフランジとの開口距離Aを断面高さSHに対して適切に規定すると共に、リムフランジに対する緩衝作用を担持するゴム部分の断面積Srを適切に規定することにより、タイヤの撓みに起因する故障やタイヤとフランジとの擦れに起因する故障が効果的に抑制されることを知見し、本発明に至ったのである。
 即ち、本発明では、タイヤを規定リムに組み付けて規定内圧を充填した無負荷状態において、リムフランジの径方向最外側点Trからタイヤの外表面に対して引いた垂線上でのタイヤとリムフランジとの開口距離をAとしたとき、開口距離Aが断面高さSHに対して0.01≦A/SH≦0.16の関係を満足し、リムフランジがタイヤから離れる開口開始点をSとし、リムフランジの径方向最外側点Trからタイヤの外表面に対して引いた垂線とタイヤの外表面とが交わる点をTとし、点S及びTからカーカス層の巻き上げ部に対して2本の垂線を引いたとき、これら2本の垂線とカーカス層の巻き上げ部により囲まれた領域に含まれるゴム部分の断面積Srが12mm2≦Sr≦101mm2の範囲にあることにより、タイヤの撓みに起因する故障やタイヤとフランジとの擦れに起因する故障を効果的に抑制し、その結果、タイヤの耐久性を改善することができる。
 本発明において、点Sからカーカス層の巻き上げ部に対して引いた垂線上における緩衝用のゴム部分の厚さをGlとし、点Tからカーカス層の巻き上げ部に対して引いた垂線上における緩衝用のゴム部分の厚さをGuとしたとき、厚さGl,Guが0.40≦Gl/Gu≦0.90の関係を満足することが好ましい。これにより、良好な緩衝作用を確保し、耐久性の改善効果を高めることができる。
 タイヤを規定リムに組み付けて規定内圧を充填した無負荷状態において、点Sからカーカス層の巻き上げ部に対して引いた垂線がカーカス層の巻き上げ部と交わる点をScとし、点Tからカーカス層の巻き上げ部に対して引いた垂線がカーカス層の巻き上げ部と交わる点をTcとし、点Scと点Tcとの中間点をUcとしたとき、点Scと点Tcと点Ucを通るカーカス層の円弧がタイヤ幅方向外側に中心を有することが好ましい。これにより、タイヤ変形時にカーカス層に圧縮応力が掛かり難くなるため、耐久性の改善効果を高めることができる。
 タイヤを規定リムに組み付けて規定内圧を充填した無負荷状態において、点Sと点Trとの中間点をUrとしたとき、点Sと点Trと点Urを通るリムフランジの円弧の曲率半径Rrに対して点Scと点Tc点Ucを通るカーカス層の円弧の曲率半径Rcが1≦Rc/Rr≦55の関係を満足することが好ましい。これにより、タイヤ変形時にカーカス層に圧縮応力が掛かり難くなるため、耐久性の改善効果を高めることができる。
 カーカス層の本体部と巻き上げ部はビードフィラーを介さずに互いに接触することでビードコアを内包する閉鎖領域を形成することが好ましい。このようなカーカス層の巻き上げ構造を採用することにより、リムフランジとの接触部においてカーカス層をリムフランジから遠ざけることが可能となるので、カーカス層に掛かる圧縮応力を大幅に低減し、耐久性の改善効果を高めることができる。
 リムフランジと接触する領域に配置されたリムクッションゴム層と該リムクッションゴム層よりもタイヤ径方向外側に配置されたサイドウォールゴム層とを有する場合、タイヤを規定リムに組み付けて規定内圧を充填した無負荷状態において、タイヤの外表面におけるリムクッションゴム層とサイドウォールゴム層との境界点Xが点Tよりもタイヤ径方向外側に位置することが好ましい。これにより、タイヤ変形時にカーカス層に圧縮応力が掛かり難くなるため、耐久性の改善効果を高めることができる。
 リムクッションゴム層の20℃における硬度は55以上80以下であることが好ましい。これにより、リムクッションゴム層の耐久性を改善することができる。
 カーカス層を構成するカーカスコードの1.5cN/dtex負荷時の中間伸度が3.3%以上6.2%以下であることが好ましい。これにより、耐久性の改善効果を高めることができる。
 本発明において、無負荷状態で測定される寸法は、タイヤを規定リムに組み付けて規定内圧を充填した無負荷状態で測定される。一方、荷重負荷状態で測定される寸法は、タイヤを規定リムに組み付けて規定内圧を充填し、タイヤを平面上に垂直に置いて規定負荷能力の100%荷重を負荷した状態で測定される。各寸法は、タイヤ周上の4箇所で測定された測定値の平均値である。「規定リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「規定内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている最大負荷能力に対応する空気圧である。「規定負荷能力」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている最大負荷能力である。
図1は本発明の実施形態からなる空気入りタイヤ(無負荷状態)を示す子午線半断面図である。 図2は図1の空気入りタイヤ(無負荷状態)のビード部を抽出して示す断面図である。 図3は図1の空気入りタイヤ(無負荷状態)のビード部を抽出して示す他の断面図である。 図4はビード部(無負荷状態)の変形例を示す断面図である。 図5は図1の空気入りタイヤ(無負荷状態)のビード部を抽出して示す他の断面図である。 図6は図1の空気入りタイヤ(100%荷重負荷状態)のビード部を抽出して示す断面図である。 図7は図1の空気入りタイヤ(無負荷状態)のビード部を抽出して示す他の断面図である。 図8は図1の空気入りタイヤ(無負荷状態)のビード部及びサイドウォール部を抽出して示す断面図である。 図9は図1の空気入りタイヤ(無負荷状態)のビード部を抽出して示す他の断面図である。 図10は図1の空気入りタイヤ(無負荷状態)のビード部を抽出して示す他の断面図である。 図11は図1の空気入りタイヤ(無負荷状態)のビード部を抽出して示す他の断面図である。 図12は図1の空気入りタイヤ(無負荷状態)のビード部及びサイドウォール部を抽出して示す他の断面図である。
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1~図12は本発明の実施形態からなる空気入りタイヤを示すものである。図1は空気入りタイヤのタイヤ赤道CLを境とする片側を描写しているが、この空気入りタイヤはタイヤ赤道CLの両側で対称又は非対称の構造を有している。
 図1に示すように、本実施形態の空気入りタイヤ10は、タイヤ周方向に延在して環状をなすトレッド部1と、該トレッド部1の両側に配置された一対のサイドウォール部2,2と、これらサイドウォール部2のタイヤ径方向内側に配置された一対のビード部3,3とを備えている。
 一対のビード部3,3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りにタイヤ内側から外側へ折り返されている。ビードコア5の外周上には断面三角形状のゴム組成物からなるビードフィラー6が配置されている。カーカス層4はビードコア5を境とする本体部4Aと巻き上げ部4Bとを有している。
 一方、トレッド部1におけるカーカス層4の外周側には複数層のベルト層7が埋設されている。これらベルト層7はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。ベルト層7の補強コードとしては、スチールコードが好ましく使用される。ベルト層7の外周側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して例えば5°以下の角度で配列してなる少なくとも1層のベルトカバー層8が配置されている。ベルトカバー層8の補強コードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。
 なお、上述したタイヤ内部構造は空気入りタイヤ10における代表的な例を示すものであるが、これに限定されるものではない。図1において、トレッド部1にはトレッドゴム層11が配置され、サイドウォール部2にはサイドウォールゴム層12が配置され、ビード部3にはリムクッションゴム層13が配置され、タイヤ10の内面にはカーカス層4に沿ってインナーライナーゴム層14が配置されている。また、サイドウォール部2には、リムフランジ22を保護するためのリムプロテクター15がタイヤ幅方向外側に突出するように形成されている。
 上述したタイヤ10は、断面高さSHが50mm~150mmの範囲にあり、主として乗用車用のタイヤである。このようなタイヤ10について、以下の構成が適用されている。即ち、図1及び図2に示すように、タイヤ10を規定リム21に組み付けて規定内圧を充填した無負荷状態において、リムフランジ22の径方向最外側点Trからタイヤ10の外表面に対して引いた垂線上でのタイヤ10とリムフランジ22との開口距離をA(mm)としたとき、開口距離Aが断面高さSH(mm)に対して0.01≦A/SH≦0.16の関係を満足している。また、リムフランジ22がタイヤ10から離れる開口開始点をSとし、リムフランジ22の径方向最外側点Trからタイヤ10の外表面に対して引いた垂線とタイヤ10の外表面とが交わる点をTとし、点S及び点Tからカーカス層4の巻き上げ部4Bに対して2本の垂線を引いたとき、これら2本の垂線とカーカス層4の巻き上げ部4Bにより囲まれた領域に含まれるゴム部分R(斜線部)の断面積Srが12mm2≦Sr≦101mm2の範囲になるように構成されている。なお、リムフランジ22が径方向最外側の位置においてタイヤ幅方向と平行に延在する部分を有している場合、リムフランジ22の径方向最外側点Trは、リムフランジ22の径方向最外側の位置においてリムフランジ22の幅方向最内側となる点である。また、ゴム部分Rの断面積Srはカーカス層4を構成するカーカスコードよりも外側部分の断面積である。
 上述したタイヤ10では、無負荷状態におけるタイヤ10とリムフランジ22との開口距離Aが断面高さSHに対して0.01≦A/SH≦0.16の関係を満足すると共に、リムフランジ22に対する緩衝作用を担持するゴム部分Rの断面積Srが12mm2≦Sr≦101mm2の範囲にあることにより、タイヤ10の撓み変形量に対して開口距離Aを適正化し、タイヤ10の撓みに起因する故障やタイヤ10とフランジ22との擦れに起因する故障を効果的に抑制することができる。これにより、ビード部3付近における故障を抑制し、タイヤ10の耐久性を改善することができる。特に、タイヤ10の偏平率が55%以下である場合、優れた耐久性が求められているが、そのような場合に耐久性の改善効果を最大限に享受することができる。
 ここで、比A/SHが0.01未満であると、開口距離Aが不十分となり、タイヤ10が撓んだ際にリムフランジ22付近の応力が大きくなるため故障に繋がり、逆に0.16超であると、開口距離Aが大き過ぎるため、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、更には、小石などが入り込み易くなり、それに起因して耐久性が大幅に悪化する恐れがある。特に、0.015≦A/SH≦0.14の関係を満足し、更には、0.02≦A/SH≦0.12の関係を満足することが望ましい。
 一方、ゴム部分Rの断面積Srが12mm2未満であると、タイヤ10が撓んだ際にリムフランジ22付近においてカーカス層4に圧縮応力が掛かり易くなるため故障に繋がり、逆に101mm2超であると、開口距離Aを十分に確保することが困難になり、タイヤ10が撓んだ際にリムフランジ22付近の応力が大きくなるため故障に繋がる。特に、14mm2≦Sr≦98mm2の範囲を満足し、更には、16mm2≦Sr≦93mm2の範囲を満足することが望ましい。
 上記タイヤ10において、図3に示すように、点Sからカーカス層4の巻き上げ部4Bに対して引いた垂線上におけるゴム部分Rの厚さをGl(mm)とし、点Tからカーカス層4の巻き上げ部4Bに対して引いた垂線上におけるゴム部分Rの厚さをGu(mm)としたとき、厚さGl,Guが0.40≦Gl/Gu≦0.90の関係を満足すると良い。これにより、良好な緩衝作用を確保し、耐久性の改善効果を高めることができる。
 ここで、比Gl/Guが上記範囲から外れると、緩衝作用が低下し、耐久性の改善効果が低下する。特に、0.45≦Gl/Gu≦0.85の関係を満足し、更には、0.50≦Gl/Gu≦0.80の関係を満足することが望ましい。また、ゴム部分Rの厚さGlは、0.5mm≦Gl≦4.0mmの範囲を満足し、更には、1.5mm≦Gl≦3.0mmの範囲を満足することが望ましい。ゴム部分Rの厚さGl,Guはタイヤ10のカットサンプルにおいても測定可能である。
 上記タイヤ10において、図3に示すように、タイヤ10を規定リム21に組み付けて規定内圧を充填した無負荷状態において、点Sからカーカス層4の巻き上げ部4Bに対して引いた垂線がカーカス層4の巻き上げ部4Bと交わる点をScとし、点Tからカーカス層4の巻き上げ部4Bに対して引いた垂線がカーカス層4の巻き上げ部4Bと交わる点をTcとし、点Scと点Tcとの中間点をUcとしたとき、点Scと点Tcと点Ucを通るカーカス層4の円弧(曲率半径Rc)がタイヤ幅方向外側に中心を有すると良い。これにより、タイヤ変形時にカーカス層4に圧縮応力が掛かり難くなるため、耐久性の改善効果を高めることができる。なお、点Scと点Tcと点Ucを通るカーカス層4の円弧は、タイヤ10がリム組されていない単体の状態や100%荷重が負荷された状態においても、タイヤ幅方向外側に中心を有することが望ましい。
 特に、図3に示すように、点Sと点Trとの中間点をUrとしたとき、点Sと点Trと点Urを通るリムフランジ22の円弧の曲率半径Rr(mm)に対して点Scと点Tc点Ucを通るカーカス層4の円弧の曲率半径Rc(mm)が1≦Rc/Rr≦55の関係を満足すると良い。これにより、タイヤ変形時にカーカス層4に圧縮応力が掛かり難くなるため、耐久性の改善効果を高めることができる。
 ここで、比Rc/Rrが上記範囲から外れると、タイヤ変形時にカーカス層4に圧縮応力が掛かり易くなるため、耐久性の改善効果が低下する。特に、2≦Rc/Rr≦50の関係を満足し、更には、3≦Rc/Rr≦45の関係を満足することが望ましい。
 図4はビード部の変形例を示すものである。図4において、カーカス層4の本体部4Aと巻き上げ部4Bはビードフィラーを介さずに互いに接触することでビードコア5を内包する閉鎖領域を形成している。つまり、カーカス層4はビードコア5の廻りにタイヤ内側から外側に巻き上げられてビードコア5の上端位置において本体部4Aと巻き上げ部4Bとが互いに密着するように配置されている。このようなカーカス層4の巻き上げ構造を採用することにより、リムフランジ22との接触部においてカーカス層4をリムフランジ22から遠ざけることが可能となるので、カーカス層4に掛かる圧縮応力を大幅に低減し、耐久性の改善効果を高めることができる。なお、カーカス層4により形成される閉鎖領域のゴム占有率は15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることが更に好ましい。ここで言うゴム占有率とは、タイヤ子午線断面において、カーカス層4により形成される閉鎖領域に占めるゴム部分(例えば、ビードワイヤのインシュレーションゴムや小型のビードフィラー)の百分率である。
 また、図4の構造において、カーカス層4の巻き上げ部4Bのタイヤ幅方向外側には、2次的なビードフィラー9を配置したり、リムクッションゴム層13を厚肉化したりすることで耐久性の改善を図ることができる。この場合、ゴム部分Rの断面積Srは36mm2≦Sr≦101mm2の範囲に設定することができる。特に、42mm2≦Sr≦98mm2の範囲を満足し、更には、48mm2≦Sr≦93mm2の範囲を満足することが望ましい。
 上記タイヤ10において、図2に示すように、リムフランジ22と接触する領域に配置されたリムクッションゴム層13と該リムクッションゴム層13よりもタイヤ径方向外側に配置されたサイドウォールゴム層12とを有する場合、タイヤ10を規定リムに組み付けて規定内圧を充填した無負荷状態において、タイヤ10の外表面におけるリムクッションゴム層13とサイドウォールゴム層12との境界点Xが点Tよりもタイヤ径方向外側に位置すると良い。つまり、リムクッションゴム層13はビードコア5の下側からタイヤ径方向外側に向かって少なくとも点Tの位置まで延在していることが望ましい。これにより、タイヤ変形時にカーカス層4に圧縮応力が掛かり難くなるため、耐久性の改善効果を高めることができる。
 リムクッションゴム層13の20℃における硬度は55以上80以下であると良い。これにより、リムクッションゴム層13の耐久性を改善することができる。ここで、リムクッションゴム層13の硬度が上記範囲から外れると、耐久性の改善効果が低下する。硬度は、JIS-K6253に準拠して、Aタイプのデュロメータを用いて温度20℃の条件にて測定されるデュロメータ硬さである。
 リムクッションゴム層13の20℃における100%モジュラスは2.0MPa以上9.5MPa以下であると良い。これにより、リムクッションゴム層13の耐久性を改善することができる。ここで、リムクッションゴム層13の100%モジュラスが上記範囲から外れると、耐久性の改善効果が低下する。100%モジュラスは、JIS-K6251に準拠して、温度20℃の条件にて測定される所定伸び引張応力である。
 リムクッションゴム層13の20℃における損失正接(tanδ)は0.05以上0.35以下であると良い。これにより、リムクッションゴム層13の厚さ(耐久性)を確保した上で転がり抵抗の増大を抑制することができる。ここで、リムクッションゴム層13の損失正接が0.35超であると、転がり抵抗が増大することになる。損失正接(tanδ)は、JIS-K6394に準拠して、粘弾性スペクトロメーター(東洋精機製作所製)を用い、周波数20Hz、初期歪み10%、動歪み±2%、温度60℃の条件にて測定されるものである。
 カーカス層4を構成するカーカスコードの1.5cN/dtex負荷時の中間伸度は3.3%以上6.2%以下であると良い。これにより、耐久性の改善効果を高めることができる。ここで、カーカス層4を構成するカーカスコードの1.5cN/dtex負荷時の中間伸度が上記範囲から外れると、耐久性の改善効果が低下する。特に、カーカスコードの1.5cN/dtex負荷時の中間伸度は3.8%以上5.9%以下であることが望ましい。中間伸度は、タイヤ10のサイドウォール部から取り出されたカーカスコードについて、JIS-L1017準拠し、つかみ間隔250mm、引張速度300±20mm/分の条件にて引張試験を実施して測定されるものである。
 カーカス層4を構成するカーカスコードは、有機繊維コードであると良い。カーカスコードとして、例えば高モジュラスのレーヨンコードを採用した場合、耐久性が良化する。カーカス層4の総厚さは0.8mm以上1.5mm以下であると良い。レーヨンコードの場合、コード径は0.6mm以上1.1mm以下であり、コード打ち込み密度は43本/50mm以上59本/50mm以下であると良い。また、カーカスコードとして、耐疲労性に優れたポリエステルコードも好適である。ポリエステルコードの場合、コード径は0.7mm以上1.2mm以下であり、コード打ち込み密度は44本/50mm以上60本/50mm以下であると良い。
 また、カーカス層4を構成するカーカスコードのタイヤ周方向に対する角度は75°以上90°以下の範囲に設定することができる。特に、カーカスコードの角度を88°未満に設定した場合、タイヤ剛性が高くなるため耐久性が向上する。また、カーカス層4の巻き上げ部4Bはタイヤ最大幅位置を超えてベルト層7のエッジ部と重なる位置まで延在することが好ましい。このような巻き上げ構造を採用することにより、タイヤ剛性が高くなるため耐久性が向上する。
 上記タイヤ10において、図1及び図5に示すように、タイヤ10を規定リム21に組み付けて規定内圧を充填した無負荷状態において、タイヤ10の総幅TWと規定リム21のリム幅DWとの差の1/2に相当する突き出し量をW(mm)としたとき、開口距離Aが突き出し量Wに対して0.03≦A/W≦1.60の関係を満足すると良い。タイヤ10の総幅TWは、カーカス層4がタイヤ幅方向外側に最も膨らんだ位置におけるタイヤ10の総幅である。つまり、リムフランジ22を保護するためのリムプロテクター15は総幅TWから除外される。
 このように無負荷状態におけるタイヤ10とリムフランジ22との開口距離Aがタイヤ10の総幅TWと規定リム21のリム幅DWとの差の1/2に相当する突き出し量Wに対して0.03≦A/W≦1.60の関係を満足することにより、タイヤ10の撓み変形量に対して開口距離Aを適正化し、タイヤ10の撓みに起因する故障やタイヤ10とフランジ22との擦れに起因する故障を効果的に抑制することができる。これにより、ビード部3付近における故障を抑制し、タイヤ10の耐久性を改善する効果を更に高めることができる。
 ここで、比A/Wが0.03未満であると、開口距離Aが不十分となり、タイヤ10が撓んだ際にリムフランジ22付近の応力が大きくなるため故障に繋がり、逆に1.60超であると、開口距離Aが大き過ぎるため、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、更には、小石などが入り込み易くなり、それに起因して耐久性が大幅に悪化する恐れがある。特に、0.035≦A/W≦1.5の関係を満足し、更には、0.04≦A/W≦1.4の関係を満足することが望ましい。
 上記タイヤ10において、図6に示すように、タイヤ10を規定リム21に組み付けて規定内圧を充填しつつ規定負荷能力の100%荷重を負荷した状態において、リムフランジ22の径方向最外側点Trからタイヤ10の外表面に対して引いた垂線上でのタイヤ10とリムフランジ22との開口距離をA100(mm)としたとき、開口距離A100が断面高さSH(mm)に対して0.003≦A100/SH≦0.100の関係を満足すると良い。なお、開口距離A100の測定位置は開口距離Aの測定位置と同じである。このようにタイヤ10が変形した際の開口距離A100を最適化することにより、耐久性の改善効果を高めることができる。
 ここで、比A100/SHが0.003未満であると、開口距離A100が不十分となり、タイヤ10が撓んだ際にリムフランジ12付近の応力が大きくなるため故障に繋がり、逆に0.100超であると、開口距離A100が大き過ぎるため、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、いずれの場合も耐久性の改善効果が低下する。特に、0.005≦A100/SH≦0.070の関係を満足し、更には、0.007≦A100/SH≦0.065の関係を満足することが望ましい。
 上記タイヤ10において、開口距離A100(mm)は突き出し量W(mm)に対して0.010≦A100/W≦1.000の関係を満足すると良い。これにより、耐久性の改善効果を高めることができる。
 ここで、比A100/Wが0.010未満であると、開口距離A100が不十分となり、タイヤ10が撓んだ際にリムフランジ22付近の応力が大きくなるため故障に繋がり、逆に1.000超であると、開口距離A100が大き過ぎるため、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、いずれの場合も耐久性の改善効果が低下する。特に、0.015≦A100/W≦0.800の関係を満足し、更には、0.020≦A100/W≦0.800の関係を満足することが望ましい。
 上記タイヤ10において、開口距離A(mm)と開口距離A100(mm)とは0.20≦A100/A≦0.80の関係を満足すると良い。これにより、繰り返し変形により生じる応力を抑制し、耐久性の改善効果を高めることができる。
 ここで、比A100/Aが0.20未満であると、タイヤ10が撓んだ際にリムフランジ22付近の変形が著しく大きくなるため耐久性の改善効果が低下する恐れがあり、逆に0.80超であると、タイヤ10が撓んだ際にリムフランジ22から外れた位置での変形が著しく大きくなるため耐久性の改善効果が低下する恐れがある。特に、0.23≦A100/A≦0.75の関係を満足し、更には、0.25≦A100/A≦0.70の関係を満足することが望ましい。
 上記タイヤ10において、開口距離Aは1.5mm≦A≦8.0mmの範囲にあると良い。これにより、繰り返し変形により生じる応力を抑制し、耐久性の改善効果を高めることができる。
 ここで、開口距離Aが1.5mm未満であると、開口距離Aが不十分となり、タイヤ10が撓んだ際にリムフランジ12付近の応力が大きくなるため故障に繋がり、逆に8.0mm超であると、開口距離Aが大き過ぎるため、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、いずれの場合も耐久性の改善効果が低下する。特に、開口距離Aは1.8mm≦A≦7.5mmの範囲にあり、更には、2.0mm≦A≦7.0mmの範囲にあることが望ましい。
 上記タイヤ10において、開口距離A(mm)はタイヤ10の最大幅位置(総幅TWの測定位置)までのタイヤ径方向の高さSDH(mm)に対して0.01≦A/SDH≦0.50の関係を満足すると良い。ビード部3の変形に対する影響が大きい高さSDHに対して開口距離Aを規定することにより、繰り返し変形により生じる応力を抑制し、耐久性の改善効果を高めることができる。
 ここで、比A/SDHが0.01未満であると、開口距離Aが不十分となり、タイヤ10が撓んだ際にリムフランジ12付近の応力が大きくなるため故障に繋がり、逆に0.50超であると、開口距離Aが大き過ぎるため、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、いずれの場合も耐久性の改善効果が低下する。特に、0.02≦A/SDH≦0.45の関係を満足し、更には、0.03≦A/SDH≦0.40の関係を満足することが望ましい。
 上記タイヤ10において、図5に示すように、タイヤ10を規定リム21に組み付けて規定内圧を充填した無負荷状態において、リムフランジ22の径方向最外側点Trと該リムフランジ22がタイヤ10から離れる開口開始点Sとの中間点Urからタイヤ10の外表面に対して引いた垂線上でのタイヤ10とリムフランジ22との開口距離をA' (mm)としたとき、開口距離A'が断面高さSH(mm)に対して0.006≦A'/SH≦0.150の関係を満足すると良い。これにより、繰り返し変形により生じる応力を抑制し、耐久性の改善効果を高めることができる。
 ここで、比A'/SHが0.006未満であると、開口距離A'が不十分となり、タイヤ10が撓んだ際にリムフランジ12付近の応力が大きくなるため故障に繋がり、逆に0.150超であると、開口距離A'が大き過ぎるため、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、いずれの場合も耐久性の改善効果が低下する。特に、0.010≦A'/SH≦0.130の関係を満足し、更には、0.014≦A'/SH≦0.110の関係を満足することが望ましい。
 上記タイヤ10において、開口距離A(mm)と開口距離A' (mm)とは0.50≦A'/A≦0.96の関係を満足すると良い。これにより、繰り返し変形により生じる応力を抑制し、耐久性の改善効果を高めることができる。
 ここで、比A'/Aが0.50未満であると、開口距離A'が不十分となり、タイヤ10が撓んだ際にリムフランジ12付近の応力が大きくなるため故障に繋がり、逆に0.96超であると、開口距離A'が大き過ぎるため、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、いずれの場合も耐久性の改善効果が低下する。特に、0.53≦A'/A≦0.94の関係を満足し、更には、0.56≦A'/A≦0.92の関係を満足することが望ましい。
 上記タイヤ10において、開口距離A'は1.0mm≦A'≦7.5mmの範囲にあることが好ましい。これにより、繰り返し変形により生じる応力を抑制し、耐久性の改善効果を高めることができる。
 ここで、開口距離A'が1.0mm未満であると、開口距離A'が不十分となり、タイヤ10が撓んだ際にリムフランジ12付近の応力が大きくなるため故障に繋がり、逆に7.5mm超であると、開口距離A'が大き過ぎるため、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、いずれの場合も耐久性の改善効果が低下する。特に、開口距離A'は1.2mm≦A'≦7.0mmの範囲にあり、更には、1.4mm≦A'≦6.5mmの範囲にあることが望ましい。
 上記タイヤ10において、図7に示すように、タイヤ10を規定リム21に組み付けて規定内圧を充填した無負荷状態において、リムフランジ22の径方向最外側点Trを通るタイヤ幅方向の水平線とタイヤ10の外表面とが交わる点をPとし、規定リム21のリム幅DW及びリム径DOを規定する点をQとしたとき、点Pと点Qとを結ぶ直線がタイヤ幅方向の水平線に対してなす角度αが50°≦α≦80°の範囲にあると良い。
 このようにビード部3の傾斜角度に相当する角度αが50°≦α≦80°の範囲にあることにより、タイヤ10の撓み変形量に対して開口距離Aを適正化し、タイヤ10の撓みに起因する故障やタイヤ10とフランジ22との擦れに起因する故障を効果的に抑制することができる。これにより、ビード部3付近における故障を抑制し、タイヤ10の耐久性を改善する効果を更に高めることができる。
 ここで、角度αが50°未満であると、開口距離Aが不十分となり、タイヤ10が撓んだ際にリムフランジ22付近の応力が大きくなるため故障に繋がり、逆に80°超であると、開口距離Aが大き過ぎるため、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、更には、小石などが入り込み易くなり、それに起因して耐久性が大幅に悪化する恐れがある。特に、55°≦α≦75°の範囲を満足し、更には、60°≦α≦70°の範囲を満足することが望ましい。
 上記タイヤ10において、図1及び図8に示すように、タイヤ10を規定リム21に組み付けて規定内圧を充填した無負荷状態において、タイヤ10の総幅TWを規定する点をLとしたとき、点Pと点Qとを結ぶ直線が点Lと点Qとを結ぶ直線に対してなす角度θは2°≦θ≦30°の範囲にあると良い。これにより、開口距離Aを撓み変形量に対して適正化し、耐久性の改善効果を高めることができる。
 ここで、角度θが2°未満であると、開口距離Aが不十分となり、タイヤ10が撓んだ際にリムフランジ12付近の応力が大きくなるため故障に繋がり、逆に30°超であると、開口距離Aが大き過ぎるため、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、いずれの場合も耐久性の改善効果が低下する。特に、4°≦θ≦25°の範囲を満足し、更には、6°≦θ≦20°を満足することが望ましい。
 上記タイヤ10において、図9に示すように、タイヤ10を規定リム21に組み付けて規定内圧を充填した無負荷状態において、リムフランジ22がタイヤ10から離れる開口開始点をSとし、リムフランジ22の径方向最外側点をTrとし、該点Trからタイヤ10の外表面に対して引いた垂線とタイヤの外表面とが交わる点をTとしたとき、点Sと点Tとを結ぶ直線が点Sと点Trとを結ぶ直線に対してなす角度βは15°≦β≦65°の範囲にあると良い。これにより、耐久性の改善効果を高めることができる。
 ここで、角度βが15°未満であると、タイヤ10が撓んだ際にリムフランジ22付近の応力が大きくなるため故障に繋がり、逆に65°超であると、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなる。特に、20°≦β≦60°の範囲を満足し、更には、25°≦β≦55°の範囲を満足することが望ましい。
 上記タイヤ10において、図10に示すように、点Qと点Sとの間のタイヤ幅方向の水平距離B(mm)は断面高さSH(mm)に対して0.02≦B/SH≦0.18の関係を満足すると良い。これにより、繰り返し変形による応力が適正な範囲となり、耐久性の改善効果を高めることができる。
 ここで、比B/SHが0.02未満であると、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、逆に0.18超であると、タイヤ10が撓んだ際にリムフランジ22付近の応力が大きくなるため故障に繋がり、いずれの場合も耐久性の改善効果が低下する。特に、0.03≦B/SH≦0.15の関係を満足し、更には、0.04≦B/SH≦0.13の関係を満足することが望ましい。
 上記タイヤ10において、水平距離Bは3.0mm≦B≦9.0mmの範囲にあると良い。これにより、繰り返し変形による応力が適正な範囲となり、耐久性の改善効果を高めることができる。
 ここで、水平距離Bが3.0mm未満であると、タイヤ10とリムフランジ22との擦れによる故障が生じ易くなり、逆に9.0mm超であると、タイヤ10が撓んだ際にリムフランジ12付近の応力が大きくなるため故障に繋がり、いずれの場合も耐久性の改善効果が低下する。特に、水平距離Bは3.2mm≦B≦8.5mmの範囲にあり、更には、3.4mm≦B≦8.0mmの範囲にあることが望ましい。
 上記タイヤ10において、図11に示すように、リムフランジ22の径方向最外側点Trからタイヤ10の外表面に対して引いた垂線とタイヤ10の外表面とが交わる点をTとしたとき、点Sと点Pと点Tを通るタイヤ10の円弧(曲率半径Rb)がタイヤ幅方向外側に中心を有すると良い。これにより、タイヤ10のリムフランジ22と接触する部分に圧縮応力が掛かり難くなるため、耐久性の改善効果を高めることができる。
 特に、図11に示すように、点Pから引いたタイヤ10の外表面に対する垂線がリムフランジ22の外表面と交わる点をPrとしたとき、点Sと点Prと点Trを通るリムフランジ22の円弧の曲率半径Rr(mm)に対して点Sと点Pと点Tを通るタイヤ10の円弧の曲率半径Rb(mm)が1.2≦Rb/Rr≦14.5の関係を満足すると良い。これにより、タイヤ10のリムフランジ22と接触する部分に圧縮応力が掛かり難くなるため、耐久性の改善効果を高めることができる。
 ここで、比Rb/Rrが上記範囲から外れると、タイヤ10のリムフランジ22と接触する部分に圧縮応力が掛かり易くなるため、耐久性の改善効果が低下する。特に、1.5≦Rb/Rr≦12.2の関係を満足し、更には、2.0≦Rb/Rr≦10.0の関係を満足することが望ましい。
 上記タイヤ10において、図12に示すように、タイヤ10を規定リム21に組み付けて規定内圧を充填した無負荷状態において、複数層のベルト層7のうちタイヤ径方向最内側に位置するベルト層7のエッジ部を通るタイヤ幅方向の水平線がタイヤ10の外表面と交わる点をVとし、タイヤ10の総幅TWを規定する点をLとしたとき、点Lと点Vとを結ぶ直線がタイヤ幅方向の水平線に対してなす角度γは45°≦γ≦80°の範囲にあると良い。これにより、繰り返し変形による応力が適正な範囲となり、耐久性の改善効果を高めることができる。
 ここで、角度γが上記範囲から外れると、繰り返し変形による応力が適正な範囲から外れるため耐久性の改善効果が低下する。特に、50°≦γ≦75°の範囲を満足し、更には、55°≦γ≦70°の範囲を満足することが望ましい。
 上記タイヤ10において、図12に示すように、点Lと点Vとの間のタイヤ径方向の中央位置でタイヤ10の外表面上にある点をWとしたとき、点Vと点Wと点Lを通るタイヤ10の円弧の曲率半径Rsは断面高さSHに対して0.3≦Rs/SH≦2.5の関係を満足すると良い。これにより、繰り返し変形による応力が適正な範囲となり、耐久性の改善効果を高めることができる。
 ここで、比Rs/SHが上記範囲から外れると、繰り返し変形による応力が適正な範囲から外れるため耐久性の改善効果が低下する。特に、0.4≦Rs/SH≦2.3の関係を満足し、更には、0.5≦Rs/SH≦2.0の関係を満足することが望ましい。
 タイヤサイズ285/35R20のタイヤ(SH=95mm)において、A/SH、断面積Sr、Gl/Gu、厚さGl、厚さGu、開口距離A、点Scと点Tcと点Ucを通るタイヤの円弧(Rc)の中心位置、Rc/Rr、曲率半径Rc、曲率半径Rr、閉鎖領域内のビードフィラーの有無、リムクッションゴム層とサイドウォールゴム層との境界点Xの位置、リムクッションゴム層の20℃における硬度、カーカス層を構成するカーカスコードの1.5cN/dtex負荷時の中間伸度を表1のように設定した比較例1~2及び実施例1~9の空気入りタイヤを製作した。なお、円弧(Rc)の中心位置について、円弧の中心位置がタイヤ幅方向内側にある場合を「内側」と示し、円弧の中心位置がタイヤ幅方向外側にある場合を「外側」と示した。また、リムクッションゴム層とサイドウォールゴム層との境界点Xの位置について、境界点Xが点Tよりもタイヤ径方向内側に位置する場合を「内側」と示し、境界点Xが点Tよりもタイヤ径方向外側に位置する場合を「外側」と示した。
  これら試験タイヤについて、下記試験方法により、耐ひずみ性能、耐擦れ性能を評価し、その結果を表1に併せて示した。
 耐ひずみ性能:
 各試験タイヤをリムサイズ20×10Jのホイールに組み付けてドラム径1707mmの試験機に装着し、空気圧を290kPaとし、速度を81km/hとし、初期荷重を最大負荷能力の88%とし、2時間毎に13%ずつ荷重を増加させ、タイヤに故障が生じるまでの走行距離を計測した。評価結果は、比較例2を100とする指数にて示した。この指数値が大きいほど耐ひずみ性能が優れていることを意味する。
 耐擦れ性能:
 各試験タイヤをリムサイズ20×10Jのホイールに組み付けてドラム径1707mmの試験機に装着し、空気圧を290kPaとし、速度を81km/hとし、初期荷重を最大負荷能力の88%とし、2時間毎に13%ずつ荷重を増加させ、2500kmの走行試験を実施した。リムフランジの径方向最外側点に対応する位置におけるタイヤ外表面からカーカス層までのゴム厚さを試験前後に測定し、そのゴム厚さの変化量を求めた。評価結果は、ゴム厚さの変化量の逆数を用い、比較例1を100とする指数にて示した。この指数値が大きいほど耐擦れ性能が優れていることを意味する。
Figure JPOXMLDOC01-appb-T000001
 この表1から判るように、実施例1~9タイヤは、比較例1~2との対比において、耐ひずみ性能と耐擦れ性能が共に改善されており、優れた耐久性を有するものであった。
 1 トレッド部
 2 サイドウォール部
 3 ビード部
 4 カーカス層
 5 ビードコア
 6 ビードフィラー
 7 ベルト層
 8 ベルトカバー層
 10 タイヤ
 11 トレッドゴム層
 12 サイドウォールゴム層
 13 リムクッションゴム層
 14 インナーライナー層
 15 リムプロテクター
 21 規定リム
 22 リムフランジ

Claims (8)

  1.  一対のビード部間に装架されたカーカス層を有し、該カーカス層がビードコアの廻りにタイヤ内側から外側に巻き上げられた構造を有すると共に、断面高さSHが50mm~150mmの範囲にあるタイヤにおいて、
     前記タイヤを規定リムに組み付けて規定内圧を充填した無負荷状態において、リムフランジの径方向最外側点Trから前記タイヤの外表面に対して引いた垂線上での前記タイヤと前記リムフランジとの開口距離をAとしたとき、前記開口距離Aが前記断面高さSHに対して0.01≦A/SH≦0.16の関係を満足し、前記リムフランジが前記タイヤから離れる開口開始点をSとし、前記リムフランジの径方向最外側点Trから前記タイヤの外表面に対して引いた垂線と前記タイヤの外表面とが交わる点をTとし、前記点S及び前記点Tから前記カーカス層の巻き上げ部に対して2本の垂線を引いたとき、前記2本の垂線と前記カーカス層の巻き上げ部により囲まれた領域に含まれるゴム部分の断面積Srが12mm2≦Sr≦101mm2の範囲にあることを特徴とするタイヤ。
  2.  前記点Sから前記カーカス層の巻き上げ部に対して引いた垂線上における前記ゴム部分の厚さをGlとし、前記点Tから前記カーカス層の巻き上げ部に対して引いた垂線上における前記ゴム部分の厚さをGuとしたとき、前記厚さGl,Guが0.40≦Gl/Gu≦0.90の関係を満足することを特徴とする請求項1に記載のタイヤ。
  3.  前記タイヤを規定リムに組み付けて規定内圧を充填した無負荷状態において、前記点Sから前記カーカス層の巻き上げ部に対して引いた垂線が前記カーカス層の巻き上げ部と交わる点をScとし、前記点Tから前記カーカス層の巻き上げ部に対して引いた垂線が前記カーカス層の巻き上げ部と交わる点をTcとし、前記点Scと前記点Tcとの中間点をUcとしたとき、前記点Scと前記点Tcと前記点Ucを通る前記カーカス層の円弧がタイヤ幅方向外側に中心を有することを特徴とする請求項1又は2に記載のタイヤ。
  4.  前記タイヤを規定リムに組み付けて規定内圧を充填した無負荷状態において、前記点Sと前記点Trとの中間点をUrとしたとき、前記点Sと前記点Trと前記点Urを通る前記リムフランジの円弧の曲率半径Rr(mm)に対して前記点Scと前記点Tcと前記点Ucを通る前記カーカス層の円弧の曲率半径Rc(mm)が1≦Rc/Rr≦55の関係を満足することを特徴とする請求項3に記載のタイヤ。
  5.  前記カーカス層の本体部と巻き上げ部がビードフィラーを介さずに互いに接触することで前記ビードコアを内包する閉鎖領域を形成することを特徴とする請求項1~4のいずれかに記載のタイヤ。
  6.  前記リムフランジと接触する領域に配置されたリムクッションゴム層と該リムクッションゴム層よりもタイヤ径方向外側に配置されたサイドウォールゴム層とを有し、
     前記タイヤを規定リムに組み付けて規定内圧を充填した無負荷状態において、前記タイヤの外表面における前記リムクッションゴム層と前記サイドウォールゴム層との境界点Xが前記点Tよりもタイヤ径方向外側に位置することを特徴とする請求項1~5のいずれかに記載のタイヤ。
  7.  前記リムクッションゴム層の20℃における硬度が55以上80以下であることを特徴とする請求項6に記載のタイヤ。
  8.  前記カーカス層を構成するカーカスコードの1.5cN/dtex負荷時の中間伸度が3.3%以上6.2%以下であることを特徴とする請求項1~7のいずれかに記載のタイヤ。
PCT/JP2022/013154 2021-07-20 2022-03-22 タイヤ WO2023002703A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280048316.0A CN117730006A (zh) 2021-07-20 2022-03-22 轮胎
DE112022002301.5T DE112022002301T5 (de) 2021-07-20 2022-03-22 Reifen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-119860 2021-07-20
JP2021119860A JP2023015838A (ja) 2021-07-20 2021-07-20 タイヤ

Publications (1)

Publication Number Publication Date
WO2023002703A1 true WO2023002703A1 (ja) 2023-01-26

Family

ID=84979878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013154 WO2023002703A1 (ja) 2021-07-20 2022-03-22 タイヤ

Country Status (4)

Country Link
JP (1) JP2023015838A (ja)
CN (1) CN117730006A (ja)
DE (1) DE112022002301T5 (ja)
WO (1) WO2023002703A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238916A (ja) * 2004-02-25 2005-09-08 Yokohama Rubber Co Ltd:The タイヤ・ホイール組立体
JP2007118903A (ja) * 2005-10-31 2007-05-17 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2020015495A (ja) * 2018-07-12 2020-01-30 住友ゴム工業株式会社 空気入りタイヤ
JP2021054295A (ja) * 2019-09-30 2021-04-08 住友ゴム工業株式会社 タイヤ・リム組立体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134619A (ja) 1987-11-20 1989-05-26 Fuji Photo Film Co Ltd アナログーディジタル変換回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238916A (ja) * 2004-02-25 2005-09-08 Yokohama Rubber Co Ltd:The タイヤ・ホイール組立体
JP2007118903A (ja) * 2005-10-31 2007-05-17 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2020015495A (ja) * 2018-07-12 2020-01-30 住友ゴム工業株式会社 空気入りタイヤ
JP2021054295A (ja) * 2019-09-30 2021-04-08 住友ゴム工業株式会社 タイヤ・リム組立体

Also Published As

Publication number Publication date
JP2023015838A (ja) 2023-02-01
DE112022002301T5 (de) 2024-04-18
CN117730006A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
RU2467883C2 (ru) Пневматическая шина
JP4880990B2 (ja) ランフラットタイヤ
JP7151217B2 (ja) 空気入りラジアルタイヤ
KR20190077462A (ko) 공기입 타이어
JP4621068B2 (ja) 重荷重用タイヤ
JP3998704B2 (ja) 小型トラック用空気入りラジアルタイヤ
JP6059429B2 (ja) 空気入りタイヤ
KR20220038779A (ko) 공기입 타이어
WO2023002703A1 (ja) タイヤ
WO2023002701A1 (ja) タイヤ
WO2023002702A1 (ja) タイヤ
JP4586344B2 (ja) 空気入りタイヤ
JP7088402B2 (ja) 空気入りラジアルタイヤ
JP7047703B2 (ja) 空気入りタイヤ
JP6450111B2 (ja) 空気入りタイヤ
JP7200680B2 (ja) 空気入りタイヤ
JP6773014B2 (ja) 空気入りタイヤ
CN111405990B (zh) 充气轮胎
JP7311779B2 (ja) ランフラットタイヤ
JP5309731B2 (ja) 空気入りタイヤ
JPH09193609A (ja) 空気入りラジアルタイヤ
JP7448796B2 (ja) 空気入りタイヤ
WO2023188604A1 (ja) 空気入りタイヤ
JP2021172159A (ja) 空気入りタイヤ
JP2021046054A (ja) 空気入りラジアルタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022002301

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202280048316.0

Country of ref document: CN