WO2023002550A1 - Display substrate bonding device and bonding method - Google Patents

Display substrate bonding device and bonding method Download PDF

Info

Publication number
WO2023002550A1
WO2023002550A1 PCT/JP2021/027064 JP2021027064W WO2023002550A1 WO 2023002550 A1 WO2023002550 A1 WO 2023002550A1 JP 2021027064 W JP2021027064 W JP 2021027064W WO 2023002550 A1 WO2023002550 A1 WO 2023002550A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
reference point
bonding
display
substrates
Prior art date
Application number
PCT/JP2021/027064
Other languages
French (fr)
Japanese (ja)
Inventor
義和 大谷
Original Assignee
信越エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越エンジニアリング株式会社 filed Critical 信越エンジニアリング株式会社
Priority to PCT/JP2021/027064 priority Critical patent/WO2023002550A1/en
Priority to JP2021569468A priority patent/JP7038932B1/en
Priority to KR1020237029730A priority patent/KR20230132876A/en
Priority to CN202180094651.XA priority patent/CN117043836A/en
Priority to TW111106967A priority patent/TW202306193A/en
Publication of WO2023002550A1 publication Critical patent/WO2023002550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67294Apparatus for monitoring, sorting or marking using identification means, e.g. labels on substrates or labels on containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a bonding apparatus and a bonding method for display substrates on which a display component pattern is formed up to the vicinity of the edge of the substrate, that is, a so-called bezel-less type display substrate.
  • LED array displays are realized by laminating together a drive circuit board, a display light-emitting board, a color filter board, and a color conversion function board.
  • a method of alignment for bonding thin substrates or films constituting a display alignment is performed using alignment marks provided on the two substrates (see Patent Document 1), sensor There is a method in which alignment is performed based on a drawn-out line arranged on a film (see Patent Document 2).
  • the competition to narrow the bezel which is the boundary between the screen of a large display and the real world, has been intensifying in recent years.
  • the trend toward narrower bezels also applies to display panels of small devices such as smartphones and tablets.
  • micro LEDs are laid out in tiles to form a single display, so bezels can be completely eliminated in order to achieve a regular arrangement. It is no exaggeration to say that what is required is not only a narrow bezel, but also a bezel-less design.
  • the method of Patent Document 1 it is impossible to deal with the bezel-less type because alignment marks cannot be arranged, and the method of Patent Document 2 may also contribute to narrowing the bezel. , not compatible with bezel-less boards.
  • the driving wiring of the light emitting substrate of the display is usually arranged on the lower surface of the light emitting element, and there is not necessarily a wiring around the periphery. It is not always possible to use the wiring as a reference. Under such circumstances, the present invention provides an apparatus capable of precisely bonding display substrates on which display component element patterns are formed up to the vicinity of the edge of the substrate without using special alignment marks, wiring, or the like. and to provide a method.
  • a display substrate bonding apparatus includes a first substrate on which a display body component pattern is formed up to the vicinity of the substrate edge and a display body component pattern formed up to the vicinity of the substrate edge.
  • a display substrate laminating apparatus for laminating a formed second substrate comprising an imaging means, an image recognition means, and an alignment adjustment means, wherein the image recognition means is an imaging means imaged by the imaging means.
  • a first reference point of the first substrate and a second reference point of the second substrate are calculated from the characteristics of the first substrate and the characteristics of the second substrate, and the alignment adjustment means calculates the first reference point and the second reference point.
  • a display substrate bonding method comprises: a first substrate on which a display body component pattern is formed up to the vicinity of the edge of the substrate; A method of bonding a display substrate to a second substrate formed up to the vicinity thereof, wherein the positions of the two substrates are shifted so that the characteristics of the first substrate and the characteristics of the second substrate can be observed at the same time. a step of performing preliminary position adjustment so that the amount of deviation in the plane direction becomes a predetermined value in the state in which the stage is placed, and then a step of moving the stage so that the amount of deviation becomes zero. do.
  • FIG. 2A is a cross-sectional view of display substrates to be bonded to the device according to the embodiment of the present invention, where (a) shows only the second substrate, and (b) shows the first substrate above the second substrate; (c) shows the state after the bonding of the first substrate and the second substrate is completed.
  • 1 is an explanatory view showing a display substrate bonding apparatus according to a first embodiment of the present invention
  • FIG. 4 is an explanatory view showing a state of preliminary processing performed by the display substrate bonding apparatus according to the embodiment of the present invention
  • FIG. 4 is an explanatory diagram showing an example of a method of calculating a first reference point or a second reference point calculated by the display substrate bonding apparatus according to the embodiment of the present invention
  • FIG. 5 is an explanatory diagram showing another example of a method of calculating the first reference point and the second reference point calculated by the display substrate bonding apparatus according to the embodiment of the present invention
  • FIG. 4 is an explanatory diagram showing a first step and a second step in the method of bonding display substrates according to the first embodiment of the present invention
  • FIG. 4 is an explanatory view showing the third step and the fourth step in the bonding method of the display substrates according to the first embodiment of the present invention
  • FIG. 10 is an explanatory diagram showing a display substrate bonding apparatus according to another embodiment of the present invention, in which (a) shows a structure provided with a vacuum chamber having a single structure, and (b) shows a structure provided with divided chambers. showing the structure. It is a figure for demonstrating the application example of this invention.
  • FIG. 1(a) shows only the second substrate
  • (b) shows the state before bonding in which the first substrate is positioned above the second substrate
  • (c) shows the first substrate. It shows a state in which the bonding of the first substrate and the second substrate is completed.
  • the electrodes (electrode forming layer 23) formed on the display wiring substrate 24 serving as the base substrate of the second substrate 2 are smoothed with the adhesive layer 22 interposed therebetween.
  • the LEDs 21 are arranged in a rectangular thin plate shape (quadrilateral with right angles including squares and rectangles).
  • the LEDs 21 are arranged with a white monochromatic substrate, with a colored (blue or ultraviolet) monochromatic substrate, or with three LEDs of RGB corresponding to the three primary colors of light arranged in a repeated manner.
  • a white monochromatic substrate is arranged.
  • the first substrate In order to improve the alignment characteristics when 1 and the second substrate 2 are bonded together, or to prevent color mixture of light that is a component of the three primary colors when RGB LEDs are used, a low refractive index material is used.
  • a partition wall 11 for preventing color mixing is arranged. As will be described later, each space partitioned by the partition walls 11 for preventing color mixing is filled with resin during bonding, thereby suppressing loss in light distribution.
  • a color filter 13 is arranged at a position facing the LED 21 to convert white light into red, green, and blue.
  • the LED 21 is a colored (blue or ultraviolet) single-color substrate
  • a color conversion element is arranged at a position facing each other, and color conversion to red, green, and blue is performed by the color conversion element.
  • either a partition substrate or a cover glass is arranged facing each other, and the transparent substrate 12 may be replaced with a black matrix substrate.
  • a specific example of the LED 21 is an LED chip with a size of 50 ⁇ m ⁇ 50 ⁇ m or less and a thickness of less than 50 ⁇ m, which is mainly called a micro LED.
  • the present invention can be applied to LED chips of around 100 ⁇ m square called mini LEDs, general LED chips such as 200 to 300 ⁇ m squares, and general-sized semiconductor diodes such as LD chips. is.
  • FIG. 2 is an explanatory view showing the display substrate bonding apparatus 100 according to the first embodiment of the present invention.
  • a display substrate bonding apparatus 100 according to the first embodiment of the present invention includes an upper base plate 3 detachably holding a first substrate 1, a lower base plate 4 detachably holding a second substrate 2, and a plurality of imaging devices. It has means 5.
  • the upper base plate 3 and the lower base plate 4 are made of a rigid body such as metal, and are formed in a flat plate shape with a thickness that does not cause distortion (bending) deformation. be done.
  • the display substrate bonding apparatus 100 includes a loading mechanism (not shown) for inserting the first substrate 1 and the second substrate 2 between the upper base plate 3 and the lower base plate 4, and , an upper and lower base plate drive mechanism (not shown) for moving the upper base plate 3 and the lower base plate 4, and a control means (not shown) for driving and controlling these mechanism portions.
  • the upper and lower base plate driving mechanisms and the control means constitute alignment adjustment means in the display substrate bonding apparatus 100 according to the first embodiment of the present invention.
  • the upper base plate 3 and the lower base plate 4 can be moved back and forth or translated in the x-axis and y-axis directions within a plane by upper and lower base plate drive mechanisms (not shown), and can be rotated in the ⁇ direction (around the z-axis). rotation) is possible. Also, the upper base plate 3 and the lower base plate 4 can move up and down in the z-axis direction so that they can approach or separate from each other. Preliminary processing or position adjustment processing is performed by x-axis direction movement, y-axis direction movement, and ⁇ -axis rotation movement within these planes, and bonding is performed by z-axis direction vertical movement. Since it is necessary to image the first substrate 1 and the second substrate 2 with the imaging means 5 , the upper base plate 3 is provided with a small hole in the field of view of the imaging means 5 .
  • imaging means such as a CCD camera or a CMOS image sensor can be used as the imaging means 5 as long as it has the resolution required for alignment.
  • Two imaging means 5 are provided at positions where two vertices located on the diagonal line of the first substrate 1 and the second substrate 2 can be observed. The reason for this is that the alignment accuracy is insufficient with a single eye, and it is difficult to arrange three imaging means on three vertices or four imaging means on four vertices. , as will be described later, is not so effective. For this reason, the number of imaging units 5 is two in the first embodiment.
  • FIG. 3 is a diagram for explaining how preliminary processing is performed.
  • the base substrate of the first substrate 1 is depicted as a black matrix substrate, and the in-plane deviation of the two substrates in the ⁇ direction (rotational deviation around the z-axis) is exaggerated.
  • the first substrate 1 and the second substrate 2 are preliminarily offset and loaded into the apparatus with some deviation. This state is shown in the upper part of FIG.
  • Image recognition processing is performed on the images obtained by imaging the edge portions of the two substrates and the component pattern of the display, and the rotation correction is performed.
  • Known techniques such as rule base, clustering, decision tree, random forest, and CNN (Convolutional Neural Network) can be used for image recognition processing.
  • the first substrate 1 of the first substrate 1 is separated from the color mixture preventing partition wall 11 which is a feature of the first substrate 1 and the LED 21 which is a feature of the second substrate 2 .
  • a reference point GF and a second reference point GR of the second substrate 2 are calculated respectively. This will be discussed later.
  • ⁇ x which is the deviation in the x direction between the first reference point GF and the second reference point GR
  • ⁇ y which is the deviation in the y direction between the first reference point GF and the second reference point GR
  • a process for making the amount of deviation equal to a predetermined value is one technique of the preliminary process of the present invention.
  • ⁇ x which is the deviation in the x direction between the first reference point GF and the second reference point GR
  • ⁇ y which is the deviation in the y direction between the two reference points GR
  • Alignment is completed by moving the first substrate 1 or the second substrate 2 or both in the planar direction so that the set or measured amount of deviation is canceled and becomes zero.
  • the observed positions are two vertices on the upper left and lower right corners of the first substrate 1 and the second substrate 2 .
  • the reason for this is that it is meaningless to observe the part where the second substrate 2 is completely hidden by the first substrate 1, as indicated by the vertex position at the lower left of the figure drawn in the lower part of FIG.
  • image recognition is performed in a state in which both the upper side and the right side, which are the outer edges of the first substrate 1, are contained inside the upper side and the right side, which are the outer edges of the second substrate 2. This is because it is slightly disadvantageous in terms of For this reason, two imaging means 5 are provided in order to save waste.
  • the orientation of the offset when the first substrate 1 and the second substrate 2 are loaded is set to a predetermined position.
  • the first substrate 1 is put in a state shifted downward and leftward with respect to the second substrate 2 on the paper surface.
  • disregarding cost arranging three or four imaging means 5 is not prevented. If four imaging means 5 are provided, the orientation of the offset of the first substrate 1 and the second substrate 2 is randomly introduced, and the second substrate 2 is completely hidden by the first substrate 1. Even if the state occurs at any of the four vertices, it can be dealt with using the imaging means 5 that can observe the second substrate 2, so it is sufficiently significant.
  • FIG. 3 (Calculation method of reference point)
  • the dimension lines .delta.x and .delta.y are drawn between the edges of the first substrate 1 and the second substrate 2, but this is for illustration purposes only and is actually the first reference point GF and the second reference point GR is set or measured.
  • FIG. 4 is a diagram for explaining this. Since the LEDs 21 are arranged on the underlying substrate by a mounter, the arrangement position of each LED 21 may vary slightly depending on the arrangement accuracy. If, for example, the sole LED 21 at the upper left end of the entire board is selected as a target for obtaining the reference point, if the LED 21 at this end happens to be misaligned with the point where it should be arranged, This will adversely affect the alignment of the entire substrate.
  • the position of the center of gravity of a plurality of LEDs 21 in some of the LEDs 21 mounted on the second substrate 2 is calculated and used as a reference.
  • the center-of-gravity position is calculated from four sets of LEDs 21 forming RGB, that is, from 12 LEDs 21 .
  • a weighted average may be obtained according to the expected value of occurrence of misalignment due to the difference between the LED 21 arranged at the outermost edge and the LED 21 arranged inside.
  • the reference point obtained in this manner is the reference point MG, which is a synthesis of the points marked with "+" at the four corners and the "+" at the four corners shown in FIG. FIG.
  • the amount of deviation ⁇ x and ⁇ y of the upper left reference point should be the same as the amount of deviation ⁇ x and ⁇ y of the lower right reference point. Otherwise, there is a possibility that the values may differ between the upper left and the lower right due to variations in the arrangement of the LEDs 21 on the mounter described above. In that case, the rotation correction is applied again so that the difference in value between the upper left and lower right is minimized.
  • FIG. 5 is an explanatory diagram showing another method of calculating the reference point. If the placement accuracy of the LEDs 21 on the base substrate by the mounter is extremely high, only one LED 21 at the outermost end may be used as a reference.
  • the reference point is the reference point ME obtained by integrating the points marked with "+” at the four corners and the "+” at the four corners.
  • FIG. 5 is drawn as one reference point ME for the sake of explanation. are used to set or measure the amounts of deviation .delta.x and .delta.y.
  • the shift amounts ⁇ x and ⁇ y of the upper left reference point should be the same as the shift amounts ⁇ x and ⁇ y of the lower right reference point. There may be a difference in values between the upper left and lower right. In that case, the rotation correction is applied again so that the difference in value between the upper left and lower right is minimized.
  • FIGS. 6 and 7 are explanatory diagrams showing a series of steps of a method of bonding display substrates.
  • the state of the display substrate bonding apparatus 100 is depicted.
  • the first substrate 1 and the second substrate 2 are loaded into the apparatus in a state of being preliminarily offset and misaligned, and are attracted to the upper base plate 3 and the lower base plate 4, respectively.
  • FIG. 6A shows a state in which the first substrate 1 and the second substrate 2 are attracted to the upper base plate 3 and the lower base plate 4.
  • the in-plane .theta It is preferable that the shift in the .theta. direction is set to zero.
  • the images obtained by imaging the edge portions of the two substrates are subjected to image recognition processing to perform rotation correction between the upper base plate 3 and the lower base plate 4.
  • FIG. If an unexpected situation arises in which the edge portions of the first substrate 1 and the second substrate 2 cannot be observed simultaneously under the observation of the two imaging means 5, the stage is translated until they can be observed simultaneously. If there are four imaging means 5, such an unforeseen situation will not occur. If it does, it is when both substrates are aligned exactly the first time.
  • a first reference point of the first substrate 1 and a second reference point of the second substrate 2 are calculated from the characteristics of the first substrate 1 and the characteristics of the second substrate 2, and then the first reference point and the second reference point are calculated.
  • the upper base plate 3 or the lower base plate 4 is adjusted so that the displacement amount set to the predetermined value in the second step or the displacement amount measured and temporarily stored in the second step is canceled and becomes zero.
  • FIG. 7(c) shows a state where the amount of deviation is zero.
  • the upper base plate 3 or the lower base plate 4 or both are moved in the z-axis direction to bond the precisely aligned first substrate 1 and second substrate 2 together. to move up and down to complete the bonding.
  • FIG. 8 shows a structure suitable for bonding substrates in a vacuum state.
  • a vacuum chamber 6 is provided so that the substrates can be bonded together under a vacuum atmosphere.
  • FIG. 8(b) shows that the chamber is divided into upper and lower halves, and is composed of an upper chamber member 61 and a lower chamber member 62.
  • FIG. A transparent window is provided on the upper surface portion of the upper chamber member 61 located directly below the imaging means 5 so as not to obstruct the field of view of the imaging means 5 .
  • the chamber is configured by a transparent chamber, it is possible to prevent the visual field of the imaging means 5 from being obstructed without providing a window in the chamber.
  • the work of assembling the chamber and the see-through window can be omitted.
  • FIG. 9 shows a situation in which such a situation has occurred, and the line segment drawn as a dashed line shows the second substrate 2 that is arranged and hidden under the first substrate 1. represents an edge.
  • the first row of the first substrate 1 prevents color mixture. It shows a situation in which the LEDs 21 are not arranged with respect to the partition wall 11.
  • FIG. 9(b) the LEDs 21 in the first row of the second substrate 2 are arranged in the second row of the color mixing prevention partition walls 11 of the first substrate 1, so the first row of the first substrate 1 A situation is shown in which the LEDs 21 are not arranged with respect to the color mixing prevention partition wall 11 .
  • FIGS. 9(a) and 9(b) A part of the LED 21 in FIGS. 9(a) and 9(b) is shown solid, but this is an add-on to the display substrate bonding apparatus 100 according to the embodiment of the present invention. It shows that the LED 21 is emitting light due to the functional configuration.
  • the additional functional configuration is a lighting jig (not shown) installed in the device.
  • a driving circuit (not shown) for the first substrate 1, which is an array display body of the LEDs 21, is connected to this lighting jig, and the driving circuit is driven when checking the operation after the alignment, so that the elements of the LEDs 21 are turned on. Light some. In FIGS. 9A and 9B, only the R LEDs 21 in the first row and first column are lit.
  • the first substrate 1 and the second substrate 2 which were thought to have been aligned, actually faced each other with a deviation of one row or one column. It can be detected.
  • the lighting jig (not shown) plays a role of giving an address to the board under the condition that the board edge cannot be detected.
  • the edge of the second substrate 2 cannot be detected well, it is possible to perform proper alignment. Since the edge of the first substrate 1 is arranged on the proximal side of the imaging means 5, the address lighting of the second substrate 2 increases the contrast, so that the edge can be sufficiently detected.
  • the substrate on which the display element pattern is formed up to the vicinity of the edge of the substrate which is the object of the present invention, is not limited to the bezelless substrate, and may be a substrate with a narrow bezel. That is, the present invention is not limited to substrates on which alignment marks cannot be provided, but also substrates on which alignment marks are difficult to be provided.
  • the technical idea of the present invention encompasses any mode in which alignment is performed using the intrinsic features of the substrate (LEDs and partition walls for preventing color mixing). As described above, it should be fully understood that the technical idea of the present invention resides in the point that alignment is performed by utilizing the regular arrangement of the display component element patterns on the display substrate. is.
  • REFERENCE SIGNS LIST 100 display substrate bonding apparatus 1 first substrate 11 color mixture preventing partition wall 12 transparent substrate (black matrix substrate) 13 Color filter (color conversion element) 2 second substrate 21 LED 22 Adhesive layer 23 Electrode forming layer 24 Display wiring board 3 Upper base plate 4 Lower base plate 5 Imaging means 6 Vacuum chamber 61 Upper chamber member 62 Lower chamber member

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Wire Bonding (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided are a device and a method capable of accurately bonding display substrates on each of which a display body component pattern is formed up to the vicinity of substrate ends without using special alignment marks, wiring, or the like. This display substrate bonding device bonds a first substrate on which a display body component pattern is formed up to the vicinity of substrate ends and a second substrate on which a display body component pattern is formed up to the vicinity of substrate ends, and is characterized by comprising an imaging means, an image recognition means, and an alignment adjustment means, the image recognition means calculating a first reference point of the first substrate and a second reference point of the second substrate from a feature of the first substrate and a feature of the second substrate, images of which are captured by the imaging means, and the alignment adjustment means performing preliminary processing in a state where the positions of the two substrates are displaced from each other in a planar direction so that the first reference point and the second reference point can be simultaneously viewed, and thereafter bonding the two substrates while completing alignment.

Description

表示基板の貼り合わせ装置及び貼り合わせ方法Apparatus and method for bonding display substrates
 本発明は、表示体構成要素パターンが基板端部近傍まで形成された表示基板、所謂ベゼルレスタイプの表示基板の貼り合わせ装置及び貼り合わせ方法に関する。 The present invention relates to a bonding apparatus and a bonding method for display substrates on which a display component pattern is formed up to the vicinity of the edge of the substrate, that is, a so-called bezel-less type display substrate.
 従来、LEDアレイ表示体として、駆動回路基板や表示体発光基板とカラーフィルタ基板や色変換機能基板とを貼り合わせることによって実現するものがある。この際、ディスプレイを構成する薄板基板ないしフィルムを貼り合わせるための位置合わせの手法としては、2つの基板に設けられたアライメントマークを利用して位置合わせをするもの(特許文献1参照)や、センサフィルム上に配置された引き回し線を基準にして位置合わせをするもの(特許文献2参照)が見られる。
 一方、大型ディスプレイの画面と現実世界を隔てる境界線である額縁(ベゼル)を如何に小さくしてデザイン性の優れたものとするかという狭ベゼル化の競争は近年激化している。また、このような狭ベゼル化の傾向は、スマートフォンやタブレットといった小型機器の表示パネルでも同様に当て嵌まることである。さらに、マイクロLEDによって大型のディスプレイを構築する際には、多数のマイクロLEDをタイル状に敷き詰めて1枚のディスプレイとすることから、規則的な配列を実現する上でベゼルを一切排除することが要求されるため、求められるのは狭ベゼル化に止まらず、実質上、ベゼルレス化といっても過言ではない。
Conventionally, some LED array displays are realized by laminating together a drive circuit board, a display light-emitting board, a color filter board, and a color conversion function board. At this time, as a method of alignment for bonding thin substrates or films constituting a display, alignment is performed using alignment marks provided on the two substrates (see Patent Document 1), sensor There is a method in which alignment is performed based on a drawn-out line arranged on a film (see Patent Document 2).
On the other hand, the competition to narrow the bezel, which is the boundary between the screen of a large display and the real world, has been intensifying in recent years. In addition, the trend toward narrower bezels also applies to display panels of small devices such as smartphones and tablets. Furthermore, when constructing a large display with micro LEDs, many micro LEDs are laid out in tiles to form a single display, so bezels can be completely eliminated in order to achieve a regular arrangement. It is no exaggeration to say that what is required is not only a narrow bezel, but also a bezel-less design.
特開2019-138949号公報JP 2019-138949 A 特開2017-102713号公報JP 2017-102713 A
 しかしながら、特許文献1の手法では、ベゼルレスタイプの場合にはアライメントマークを配置できないため対応が不可能であるし、特許文献2の手法も、狭ベゼル化に貢献するものであるかもしれないが、ベゼルレス基板に対応できるものではない。このことに加えて、表示体発光基板の駆動配線は通常は発光素子の下面に配置されるものであって、必ずしも周辺部に引き回し配線が存在するものではなく、そもそも特許文献2のように、配線を基準として利用することが常にできるものではない。
 このような状況の下、本発明は、表示体構成要素パターンが基板端部近傍まで形成された表示基板を、特別なアライメントマークや配線等を利用せずとも、精度よく貼り合わせることのできる装置及び方法を提供することを目的とする。
However, with the method of Patent Document 1, it is impossible to deal with the bezel-less type because alignment marks cannot be arranged, and the method of Patent Document 2 may also contribute to narrowing the bezel. , not compatible with bezel-less boards. In addition to this, the driving wiring of the light emitting substrate of the display is usually arranged on the lower surface of the light emitting element, and there is not necessarily a wiring around the periphery. It is not always possible to use the wiring as a reference.
Under such circumstances, the present invention provides an apparatus capable of precisely bonding display substrates on which display component element patterns are formed up to the vicinity of the edge of the substrate without using special alignment marks, wiring, or the like. and to provide a method.
 このような課題を解決するために本発明に係る表示基板の貼り合わせ装置は、表示体構成要素パターンが基板端部近傍まで形成された第一基板と表示体構成要素パターンが基板端部近傍まで形成された第二基板との貼り合わせを行う表示基板の貼り合わせ装置であって、撮像手段と、画像認識手段と、位置合わせ調整手段とを備え、前記画像認識手段は、前記撮像手段が撮像した前記第一基板の特徴及び前記第二基板の特徴から第一基板の第一基準点と第二基板の第二基準点を算出し、前記位置合わせ調整手段は、前記第一基準点と前記第二基準点を同時に観察できるように二つの基板の位置が平面方向にずらされた状態での予備処理を行い、その後に位置合わせを完了させつつ、貼り合わせを行うことを特徴とする。
 また、このような課題を解決するために本発明に係る表示基板の貼り合わせ方法は、表示体構成要素パターンが基板端部近傍まで形成された第一基板と表示体構成要素パターンが基板端部近傍まで形成された第二基板との貼り合わせを行う表示基板の貼り合わせ方法であって、前記第一基板の特徴及び前記第二基板の特徴を同時に観察できるように二つの基板の位置がずらされた状態で平面方向のズレ量が所定値となるように予備的な位置調整を行う工程、次いで、ズレ量がゼロとなるようにステージを移動させる工程、とを、少なくとも含むことを特徴とする。
In order to solve such a problem, a display substrate bonding apparatus according to the present invention includes a first substrate on which a display body component pattern is formed up to the vicinity of the substrate edge and a display body component pattern formed up to the vicinity of the substrate edge. A display substrate laminating apparatus for laminating a formed second substrate, comprising an imaging means, an image recognition means, and an alignment adjustment means, wherein the image recognition means is an imaging means imaged by the imaging means. A first reference point of the first substrate and a second reference point of the second substrate are calculated from the characteristics of the first substrate and the characteristics of the second substrate, and the alignment adjustment means calculates the first reference point and the second reference point. The two substrates are pre-processed in a state in which the positions of the two substrates are shifted in the plane direction so that the second reference point can be observed at the same time.
Further, in order to solve such problems, a display substrate bonding method according to the present invention comprises: a first substrate on which a display body component pattern is formed up to the vicinity of the edge of the substrate; A method of bonding a display substrate to a second substrate formed up to the vicinity thereof, wherein the positions of the two substrates are shifted so that the characteristics of the first substrate and the characteristics of the second substrate can be observed at the same time. a step of performing preliminary position adjustment so that the amount of deviation in the plane direction becomes a predetermined value in the state in which the stage is placed, and then a step of moving the stage so that the amount of deviation becomes zero. do.
本発明の実施形態に係る装置の貼り合わせの対象とされる表示基板の断面図であり、(a)が第二基板のみを示したもの、(b)が第二基板の上方に第一基板が位置するようにされた貼り合わせ前の状態を示したもの、(c)が第一基板及び第二基板の貼り合わせが完了した状態を示したものである。FIG. 2A is a cross-sectional view of display substrates to be bonded to the device according to the embodiment of the present invention, where (a) shows only the second substrate, and (b) shows the first substrate above the second substrate; (c) shows the state after the bonding of the first substrate and the second substrate is completed. 本発明の第1実施形態に係る表示基板の貼り合わせ装置を示す説明図である。1 is an explanatory view showing a display substrate bonding apparatus according to a first embodiment of the present invention; FIG. 本発明の実施形態に係る表示基板の貼り合わせ装置により、予備処理を行う際の様子を示す説明図である。FIG. 4 is an explanatory view showing a state of preliminary processing performed by the display substrate bonding apparatus according to the embodiment of the present invention; 本発明の実施形態に係る表示基板の貼り合わせ装置が算出する第一基準点ないし第二基準点の算出手法の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a method of calculating a first reference point or a second reference point calculated by the display substrate bonding apparatus according to the embodiment of the present invention; 本発明の実施形態に係る表示基板の貼り合わせ装置が算出する第一基準点ないし第二基準点の算出手法の別の例を示す説明図である。FIG. 5 is an explanatory diagram showing another example of a method of calculating the first reference point and the second reference point calculated by the display substrate bonding apparatus according to the embodiment of the present invention; 本発明の第1実施形態に係る表示基板の貼り合わせ方法における第1工程及び第2工程を示す説明図である。FIG. 4 is an explanatory diagram showing a first step and a second step in the method of bonding display substrates according to the first embodiment of the present invention; 本発明の第1実施形態に係る表示基板の貼り合わせ方法における第3工程及び第4工程を示す説明図である。FIG. 4 is an explanatory view showing the third step and the fourth step in the bonding method of the display substrates according to the first embodiment of the present invention; 本発明の別の実施形態に係る表示基板の貼り合わせ装置を示す説明図であり、(a)は単一の構造の真空チャンバーが設けられた構造を、(b)は分割チャンバーが設けられた構造を示している。FIG. 10 is an explanatory diagram showing a display substrate bonding apparatus according to another embodiment of the present invention, in which (a) shows a structure provided with a vacuum chamber having a single structure, and (b) shows a structure provided with divided chambers. showing the structure. 本発明の応用例を説明するための図である。It is a figure for demonstrating the application example of this invention.
(表示基板について)
 先ず、本発明の実施形態に係る表示基板の貼り合わせ装置において、その貼り合わせ対象となる第一基板及び第二基板について説明する。図1(a)は第二基板のみを示しており、(b)は第二基板の上方に第一基板が位置するようにされた貼り合わせ前の状態を示しており、(c)は第一基板及び第二基板の貼り合わせが完了した状態を示している。
(About the display board)
First, the first substrate and the second substrate to be bonded in the display substrate bonding apparatus according to the embodiment of the present invention will be described. FIG. 1(a) shows only the second substrate, (b) shows the state before bonding in which the first substrate is positioned above the second substrate, and (c) shows the first substrate. It shows a state in which the bonding of the first substrate and the second substrate is completed.
 図1(a)等に示されるように、第二基板2の下地基板となる表示用配線基板24上に形成された電極(電極形成層23)には接着層22を介して、それぞれが平滑な矩形(正方形及び長方形を含む角が直角の四辺形)の薄板状に形成されたLED21が配置されている。LED21は、白色の単色基板が配置されるか、有色(青又は紫外)の単色基板が配置されるか、光の三原色に対応するRGBの3つのLEDが繰り返される形で配置される。ここでは、白色の単色基板が配置されるものとして描かれている。 As shown in FIG. 1A and the like, the electrodes (electrode forming layer 23) formed on the display wiring substrate 24 serving as the base substrate of the second substrate 2 are smoothed with the adhesive layer 22 interposed therebetween. The LEDs 21 are arranged in a rectangular thin plate shape (quadrilateral with right angles including squares and rectangles). The LEDs 21 are arranged with a white monochromatic substrate, with a colored (blue or ultraviolet) monochromatic substrate, or with three LEDs of RGB corresponding to the three primary colors of light arranged in a repeated manner. Here, it is drawn assuming that a white monochromatic substrate is arranged.
 一方、図1(b)等に示されるように第一基板1の下地基板となる透明基板12の上(ただし、図面は上下を逆にした状態で描かれている)には、第一基板1と第二基板2とが貼り合わせられた際の配向特性を良くするために、或いは、RGBのLEDが用いられる場合の三原色の構成要素となる光の混色を防ぐために、低屈折率材料の混色防止用隔壁11が配置されている。後述するように、混色防止用隔壁11で仕切られた各空間には、貼り合わせの際に樹脂が充填されることによって、配光上の損失を抑えるようにされる。LED21が対向する位置には、カラーフィルタ13が配置されており、白色光を赤・緑・青色に色変換するようにされている。LED21が有色(青又は紫外)の単色基板である場合には、対向する位置に色変換素子が配置されて、色変換素子によって赤・緑・青色への色変換が行われることになる。RGBのLED21の場合には、隔壁基板、カバーガラスの何れかが対向配置されることになるし、透明基板12については、ブラックマトリックス基板に代えられることもある。 On the other hand, as shown in FIG. 1(b) and the like, on the transparent substrate 12 serving as the base substrate of the first substrate 1 (however, the drawing is drawn upside down), the first substrate In order to improve the alignment characteristics when 1 and the second substrate 2 are bonded together, or to prevent color mixture of light that is a component of the three primary colors when RGB LEDs are used, a low refractive index material is used. A partition wall 11 for preventing color mixing is arranged. As will be described later, each space partitioned by the partition walls 11 for preventing color mixing is filled with resin during bonding, thereby suppressing loss in light distribution. A color filter 13 is arranged at a position facing the LED 21 to convert white light into red, green, and blue. When the LED 21 is a colored (blue or ultraviolet) single-color substrate, a color conversion element is arranged at a position facing each other, and color conversion to red, green, and blue is performed by the color conversion element. In the case of the RGB LEDs 21, either a partition substrate or a cover glass is arranged facing each other, and the transparent substrate 12 may be replaced with a black matrix substrate.
 LED21の具体例としては、主にマイクロLEDと呼ばれる50μm×50μm以下で厚みが50μm未満のLEDチップが挙げられる。この他、例えばミニLEDと呼ばれる100μm角前後のLEDチップ、また、200~300μm角などの一般的なLEDチップ、さらには、LDチップなどの一般的なサイズの半導体ダイオードにも本発明は適用可能である。 A specific example of the LED 21 is an LED chip with a size of 50 μm×50 μm or less and a thickness of less than 50 μm, which is mainly called a micro LED. In addition, for example, the present invention can be applied to LED chips of around 100 μm square called mini LEDs, general LED chips such as 200 to 300 μm squares, and general-sized semiconductor diodes such as LD chips. is.
(第1実施形態)
 次に、本発明の実施形態に係る表示基板の貼り合わせ装置について説明する。図2は、本発明の第1実施形態に係る表示基板の貼り合わせ装置100を示す説明図である。本発明の第1実施形態に係る表示基板の貼り合わせ装置100は、第一基板1を着脱自在に保持する上ベースプレート3と、第二基板2を着脱自在に保持する下ベースプレート4と複数の撮像手段5を有する。上ベースプレート3及び下ベースプレート4は、金属などの剛体で歪み(撓み)変形しない厚さの平板状に形成されており、着脱自在構成としては、真空吸着などの差圧チャックやメカニカルチャックなどが用いられる。また、本発明の第1実施形態に係る表示基板の貼り合わせ装置100は、上ベースプレート3及び下ベースプレート4の間に、第一基板1及び第二基板2を差し入れる投入機構(不図示)や、上ベースプレート3及び下ベースプレート4を移動させるための上下のベースプレート駆動機構(不図示)、これらの機構部を駆動制御する制御手段(不図示)を有する。上下のベースプレート駆動機構と制御手段は、本発明の第1実施形態に係る表示基板の貼り合わせ装置100における位置合わせ調整手段を構成することになる。
(First embodiment)
Next, a display substrate bonding apparatus according to an embodiment of the present invention will be described. FIG. 2 is an explanatory view showing the display substrate bonding apparatus 100 according to the first embodiment of the present invention. A display substrate bonding apparatus 100 according to the first embodiment of the present invention includes an upper base plate 3 detachably holding a first substrate 1, a lower base plate 4 detachably holding a second substrate 2, and a plurality of imaging devices. It has means 5. The upper base plate 3 and the lower base plate 4 are made of a rigid body such as metal, and are formed in a flat plate shape with a thickness that does not cause distortion (bending) deformation. be done. Further, the display substrate bonding apparatus 100 according to the first embodiment of the present invention includes a loading mechanism (not shown) for inserting the first substrate 1 and the second substrate 2 between the upper base plate 3 and the lower base plate 4, and , an upper and lower base plate drive mechanism (not shown) for moving the upper base plate 3 and the lower base plate 4, and a control means (not shown) for driving and controlling these mechanism portions. The upper and lower base plate driving mechanisms and the control means constitute alignment adjustment means in the display substrate bonding apparatus 100 according to the first embodiment of the present invention.
 上ベースプレート3及び下ベースプレート4は、図示されない上下のベースプレート駆動機構により、平面内でのx軸及びy軸方向への前後ないし並進移動が可能であると共に、θ方向への回転移動(z軸回りの回動)が可能である。また、上ベースプレート3及び下ベースプレート4は、相互に接近ないし離反できるようにz軸方向への上下移動も可能とされている。これら平面内でのx軸方向移動、y軸方向移動、θ軸回転移動により、予備処理ないし位置調整処理を行い、z軸方向上下移動により、貼り合わせを行う。なお、撮像手段5で第一基板1及び第二基板2を撮像する必要があることから、上ベースプレート3には、撮像手段5の視野部分に小さい孔が穿ってある。 The upper base plate 3 and the lower base plate 4 can be moved back and forth or translated in the x-axis and y-axis directions within a plane by upper and lower base plate drive mechanisms (not shown), and can be rotated in the θ direction (around the z-axis). rotation) is possible. Also, the upper base plate 3 and the lower base plate 4 can move up and down in the z-axis direction so that they can approach or separate from each other. Preliminary processing or position adjustment processing is performed by x-axis direction movement, y-axis direction movement, and θ-axis rotation movement within these planes, and bonding is performed by z-axis direction vertical movement. Since it is necessary to image the first substrate 1 and the second substrate 2 with the imaging means 5 , the upper base plate 3 is provided with a small hole in the field of view of the imaging means 5 .
 撮像手段5は、CCDカメラやCMOSイメージセンサ等、位置合わせに必要とされる分解能を有するものであれば任意の撮像手段を用いることができる。また、撮像手段5は、第一基板1及び第二基板2の対角線上に位置する2つの頂点を観測できる位置に2つ設けられている。この理由として、単眼であると位置合わせ精度が不十分となるし、さりとて、3つの頂点上に3つの撮像手段を配置したり、4つの頂点上に4つの撮像手段を配置したりすることは、後述するように、然程には有効でないからである。このため、撮像手段5は、第1実施形態においては2つとされている。 Any imaging means such as a CCD camera or a CMOS image sensor can be used as the imaging means 5 as long as it has the resolution required for alignment. Two imaging means 5 are provided at positions where two vertices located on the diagonal line of the first substrate 1 and the second substrate 2 can be observed. The reason for this is that the alignment accuracy is insufficient with a single eye, and it is difficult to arrange three imaging means on three vertices or four imaging means on four vertices. , as will be described later, is not so effective. For this reason, the number of imaging units 5 is two in the first embodiment.
(位置合わせ手順と予備処理について)
 位置合わせ手順の概略を述べると概ね、次のものとなる。先ず、(1)アライメント動作を行う前に、第一基板1と第二基板2との高さ方向のギャップを持った状態で、第一基板1と第二の基板2を平面方向にずらして装置内に投入する。次いで、(2)第一基板1の表示体構成要素の一部とこれに対応させるべき第二基板2の表示体構成要素の一部とのズレ量を設定ないし測定する。(3)その後、このずれ量をキャンセルするように第一基板1若しくは第二基板2又はその両方を平面方向にずらすようにして正確に位置合わせされた貼り合わせを行う。上記(2)のズレ量の設定ないし測定を行うことが、本発明の実施形態に係る表示基板の貼り合わせ装置100が実行する動作であるところの、或いは、本発明の実施形態に係る表示基板の貼り合わせ方法の一工程であるところの、予備処理に相当する。
(Regarding registration procedure and preliminary processing)
An outline of the alignment procedure is roughly as follows. First, (1) before performing the alignment operation, the first substrate 1 and the second substrate 2 are shifted in the plane direction while maintaining a gap in the height direction between the first substrate 1 and the second substrate 2. Insert into the device. Next, (2) the amount of deviation between a part of the display element of the first substrate 1 and a part of the display element of the second substrate 2 to be matched is set or measured. (3) After that, the first substrate 1 or the second substrate 2 or both of them are shifted in the plane direction so as to cancel the amount of this shift, and the substrates are bonded with the positions aligned accurately. Setting or measuring the amount of deviation in (2) above is the operation executed by the display substrate bonding apparatus 100 according to the embodiment of the present invention, or the display substrate according to the embodiment of the present invention. corresponds to a preliminary treatment, which is one step of the bonding method.
 図3は、予備処理を行う際の様子を説明するための図である。この説明図では、第一基板1の下地基板がブラックマトリックス基板として描かれており、また、二つの基板の平面内θ方向のズレ(z軸回りの回動ズレ)は誇張して描かれている。第一基板1及び第二基板2は予めオフセットされてズレを伴った状態で、装置内に投入される。この状態を示したものが図3の上方に描かれた図である。二つの基板のエッジ部分や表示体構成要素パターンを撮像して得られる画像に対して画像認識処理してローテーション補正を行う。画像認識処理としては、ルールベース、クラスタリング、決定木、ランダムフォレスト、CNN(Convolutional Neural Network)といった既知の手法を用いることができる。要は、二つの基板のエッジやパターンが平行になっているか否かを認識できればよい。第一基板1と第二基板2とが平行になった状態で、第一基板1の特徴である混色防止用隔壁11と第二基板2の特徴であるLED21とから第一基板1の第一基準点GFと第二基板2の第二基準点GRをそれぞれ算出する。このことについては、後述する。第一基準点GFと第二基準点GRのx方向のズレであるδxと第一基準点GFと第二基準点GRのy方向のズレであるδyとが予め定められた所定値となるように、第一基板1若しくは第二基板2又はその両方を平面方向に移動させる。このズレ量が所定値となるようにする処理が本発明の予備処理の一つの手法である。別の手法として、第一基板1と第二基板2とが平行になった状態で、第一基準点GFと第二基準点GRのx方向のズレであるδxと第一基準点GFと第二基準点GRのy方向のズレであるδyを測定し、測定値を一時記憶するようにしてもよい。この場合には、ズレ量を所定値とするような動作は行われないことになる。この手法も、本発明の予備処理の概念に含まれるものである。この設定された、ないし、測定されたズレ量がキャンセルされてゼロとなるように第一基板1若しくは第二基板2又はその両方を平面方向に移動させることで位置合わせが完了される。 FIG. 3 is a diagram for explaining how preliminary processing is performed. In this explanatory diagram, the base substrate of the first substrate 1 is depicted as a black matrix substrate, and the in-plane deviation of the two substrates in the θ direction (rotational deviation around the z-axis) is exaggerated. there is The first substrate 1 and the second substrate 2 are preliminarily offset and loaded into the apparatus with some deviation. This state is shown in the upper part of FIG. Image recognition processing is performed on the images obtained by imaging the edge portions of the two substrates and the component pattern of the display, and the rotation correction is performed. Known techniques such as rule base, clustering, decision tree, random forest, and CNN (Convolutional Neural Network) can be used for image recognition processing. In short, it is sufficient to be able to recognize whether or not the edges and patterns of the two substrates are parallel. In a state in which the first substrate 1 and the second substrate 2 are parallel to each other, the first substrate 1 of the first substrate 1 is separated from the color mixture preventing partition wall 11 which is a feature of the first substrate 1 and the LED 21 which is a feature of the second substrate 2 . A reference point GF and a second reference point GR of the second substrate 2 are calculated respectively. This will be discussed later. δx, which is the deviation in the x direction between the first reference point GF and the second reference point GR, and δy, which is the deviation in the y direction between the first reference point GF and the second reference point GR, are set to predetermined values. Then, the first substrate 1 or the second substrate 2 or both are moved in the plane direction. A process for making the amount of deviation equal to a predetermined value is one technique of the preliminary process of the present invention. As another method, in a state in which the first substrate 1 and the second substrate 2 are parallel, δx, which is the deviation in the x direction between the first reference point GF and the second reference point GR, and the first reference point GF and the first reference point GF It is also possible to measure δy, which is the deviation in the y direction between the two reference points GR, and temporarily store the measured value. In this case, an operation for setting the amount of deviation to a predetermined value is not performed. This technique is also included in the concept of preliminary processing of the present invention. Alignment is completed by moving the first substrate 1 or the second substrate 2 or both in the planar direction so that the set or measured amount of deviation is canceled and becomes zero.
 図3に示されるように、観察される位置は、第一基板1及び第二基板2の左上と右下の対角線上の二頂点となっている。この理由は、図3の下方に描かれた図の左下の頂点位置が示すように、第二基板2が第一基板1によって全て隠されてしまっている状態の箇所を観測することは無意味であるし、右上の頂点位置が示すように、第一基板1の外縁である上辺及び右片が両方とも第二基板2の外縁である上辺及び右片の内側に収まっている状態では画像認識の上で若干不利になるからである。このため、無駄を省くべく撮像手段5は2つとされている。この構成とした場合に、第一基板1及び第二基板2の投入時のオフセットの向きは予め決められた位置とされる。図3の例でいえば、第一基板1が第二基板2に対して、紙面上で下向きかつ左向きにずらされた状態で投入されることになる。
 一方、コストを度外視して撮像手段5を3つや4つ配置することが妨げられるものではない。4つの撮像手段5が備えられていれば、第一基板1及び第二基板2のオフセットの向きを無作為に投入して、第二基板2が第一基板1によって全て隠されてしまっている状態が四頂点のどの箇所で発生しても、第二基板2を観察できる撮像手段5を用いて対応すれば良いので、十分に意味がある。
As shown in FIG. 3, the observed positions are two vertices on the upper left and lower right corners of the first substrate 1 and the second substrate 2 . The reason for this is that it is meaningless to observe the part where the second substrate 2 is completely hidden by the first substrate 1, as indicated by the vertex position at the lower left of the figure drawn in the lower part of FIG. As shown by the upper right vertex position, image recognition is performed in a state in which both the upper side and the right side, which are the outer edges of the first substrate 1, are contained inside the upper side and the right side, which are the outer edges of the second substrate 2. This is because it is slightly disadvantageous in terms of For this reason, two imaging means 5 are provided in order to save waste. With this configuration, the orientation of the offset when the first substrate 1 and the second substrate 2 are loaded is set to a predetermined position. In the example of FIG. 3, the first substrate 1 is put in a state shifted downward and leftward with respect to the second substrate 2 on the paper surface.
On the other hand, disregarding cost, arranging three or four imaging means 5 is not prevented. If four imaging means 5 are provided, the orientation of the offset of the first substrate 1 and the second substrate 2 is randomly introduced, and the second substrate 2 is completely hidden by the first substrate 1. Even if the state occurs at any of the four vertices, it can be dealt with using the imaging means 5 that can observe the second substrate 2, so it is sufficiently significant.
(基準点の算出手法)
 図3では、δxとδyの寸法線は第一基板1及び第二基板2のエッジ間のものとして描かれているが、説明のためのものであって、実際には、第一基準点GFと第二基準点GRの間隔を設定ないし測定することになる。このことを説明するための図が図4である。LED21はマウンターで下地基板に配置されることになるところ、この配置精度によっては、各LED21の配置位置に僅かながらバラツキが生じる場合がある。基準点を求める対象として、基板全体のうちの、例えば、左上端の唯一のLED21を選択したならば、偶々この端のLED21に本来配置されるべき地点との位置ズレが生じていた場合に、それが基板全体の位置合わせに悪影響を及ぼすことになる。このため、第二基板2に多数マウントされているLED21の一部における、複数のLED21の重心位置を計算してこれを基準とする。図4では、RGBを構成するLED21の4セット、すなわち、12個のLED21から重心位置を算出する。重心位置の算出に際しては、最外縁に配置されたLED21であるか内側に配置されたLED21であるかの違いによる配置ズレ発生の期待値に応じて加重平均により求めるようにしてもよい。このようにして求められる基準点が図4に示される4隅に「+」が表示された地点と4隅の「+」を総合した基準点MGである。図4は、説明のために、一つの基準点MGとして描かれているが、実際には、2つの撮像手段5を有する場合にあっては、左上の基準点と右下の基準点とを用いて、ズレ量δx及びδyが設定ないし測定されることになる。理論上は、左上の基準点のズレ量δx及びδyと右下の基準点のズレ量δx及びδyは同じになる筈であるが、最初のローテーション補正が不十分であったり、基板に歪みがあったり、先述したマウンターでのLED21の配置のバラツキを要因として、左上と右下との間で値に違いが出る可能性がある。その場合には、再度ローテーション補正をかけて、左上と右下との間での値の差が最小となるようにする。
(Calculation method of reference point)
In FIG. 3, the dimension lines .delta.x and .delta.y are drawn between the edges of the first substrate 1 and the second substrate 2, but this is for illustration purposes only and is actually the first reference point GF and the second reference point GR is set or measured. FIG. 4 is a diagram for explaining this. Since the LEDs 21 are arranged on the underlying substrate by a mounter, the arrangement position of each LED 21 may vary slightly depending on the arrangement accuracy. If, for example, the sole LED 21 at the upper left end of the entire board is selected as a target for obtaining the reference point, if the LED 21 at this end happens to be misaligned with the point where it should be arranged, This will adversely affect the alignment of the entire substrate. For this reason, the position of the center of gravity of a plurality of LEDs 21 in some of the LEDs 21 mounted on the second substrate 2 is calculated and used as a reference. In FIG. 4, the center-of-gravity position is calculated from four sets of LEDs 21 forming RGB, that is, from 12 LEDs 21 . When calculating the position of the center of gravity, a weighted average may be obtained according to the expected value of occurrence of misalignment due to the difference between the LED 21 arranged at the outermost edge and the LED 21 arranged inside. The reference point obtained in this manner is the reference point MG, which is a synthesis of the points marked with "+" at the four corners and the "+" at the four corners shown in FIG. FIG. 4 is drawn as one reference point MG for the sake of explanation. are used to set or measure the amounts of deviation .delta.x and .delta.y. Theoretically, the amount of deviation δx and δy of the upper left reference point should be the same as the amount of deviation δx and δy of the lower right reference point. Otherwise, there is a possibility that the values may differ between the upper left and the lower right due to variations in the arrangement of the LEDs 21 on the mounter described above. In that case, the rotation correction is applied again so that the difference in value between the upper left and lower right is minimized.
 図5は、基準点の別の算出手法を示す説明図である。マウンターによるLED21の下地基板への配置精度が極めて高いものであるならば、最外端の一つのLED21のみを基準にしてもよい。この場合には、基準点は、図5に示されるように、4隅に「+」が表示された地点と4隅の「+」を総合した基準点MEとなる。図5は、説明のために、一つの基準点MEとして描かれているが、実際には、2つの撮像手段5を有する場合にあっては、左上の基準点と右下の基準点とを用いて、ズレ量δx及びδyが設定ないし測定されることになる。理論上は、左上の基準点のズレ量δx及びδyと右下の基準点のズレ量δx及びδyは同じになる筈であるが、最初のローテーション補正の不足や基板の歪みを要因して、左上と右下との間で値に違いが出る可能性がある。その場合には、再度ローテーション補正をかけて、左上と右下との間での値の差が最小となるようにする。 FIG. 5 is an explanatory diagram showing another method of calculating the reference point. If the placement accuracy of the LEDs 21 on the base substrate by the mounter is extremely high, only one LED 21 at the outermost end may be used as a reference. In this case, as shown in FIG. 5, the reference point is the reference point ME obtained by integrating the points marked with "+" at the four corners and the "+" at the four corners. FIG. 5 is drawn as one reference point ME for the sake of explanation. are used to set or measure the amounts of deviation .delta.x and .delta.y. Theoretically, the shift amounts δx and δy of the upper left reference point should be the same as the shift amounts δx and δy of the lower right reference point. There may be a difference in values between the upper left and lower right. In that case, the rotation correction is applied again so that the difference in value between the upper left and lower right is minimized.
(貼り合わせ手順)
 図6及び図7は、表示基板の貼り合わせ方法の一連の工程を示す説明図であって、左には、第一基板1及び第二基板2の状態が、右には、本発明の第1実施形態に係る表示基板の貼り合わせ装置100の状態が描かれている。
 第1工程では、第一基板1及び第二基板2が、予めオフセットされズレを伴った状態で装置内に投入され、上ベースプレート3及び下ベースプレート4にそれぞれ吸着される。第一基板1及び第二基板2が上ベースプレート3及び下ベースプレート4に吸着されている状態を示したものが、図6(a)である。なお、二つの基板の平面内θ方向のズレ(z軸回りの回動ズレ)は誇張して描かれているのであって、実際には、これ程のズレを伴うものではないし、可能であればθ方向のズレはゼロの状態で投入されることが好ましい。θ方向のズレがある場合には、二つの基板のエッジ部分等を撮像して得られる画像を画像認識処理して上ベースプレート3及び下ベースプレート4との間でローテーション補正を行う。2つの撮像手段5の観測下で第一基板1と第二基板2のエッジ部分を同時に観察できない不測の事態が生じた場合には、同時に観測できるまでステージを平行移動させる。撮像手段5が4つあれば、このような不測の事態は先ず生じない。生じるとすれば、それは、両基板が最初から正確に揃っているときである。
 第2工程では、第一基板1の特徴と第二基板2の特徴から第一基板1の第一基準点と第二基板2の第二基準点を算出し、次いで、第一基準点と第二基準点のx方向のズレであるδxと第一基準点と第二基準点のy方向のズレであるδyとが予め定められた所定値となるように、上ベースプレート3若しくは下ベースプレート4又はその両方を平面方向に移動させる。この様子を示したものが、図6(b)である。なお、基板を精度よく投入できるのであれば、δxとδyとが予め定められた所定値となるように移動させることなく、測定されたδxとδyを一時記憶するようにしてもよい。
 第3工程では、第2工程において所定値に設定されたズレ量、若しくは、第2工程において測定されて一時御記憶されたズレ量がキャンセルされてゼロとなるように上ベースプレート3若しくは下ベースプレート4又はその両方を平面方向に移動させる。図7(c)は、ズレ量がゼロになった状態を示している。
 第4工程では、図7(d)に示されるように、正確に位置合わせされた第一基板1と第二基板2を貼り合わせるべく、上ベースプレート3若しくは下ベースプレート4又はその両方をz軸方向に上下移動させて貼り合わせを完了させる。
 なお、第3工程と第4工程とを同時並行的に行うことも可能である。すなわち、基板間ギャップを狭めながら、アライメントを実施するようにしてもよい。第3工程の位置合わせ制御の際の残留偏差を最小化するのに時間を要する場合等に有効である。
(Lamination procedure)
6 and 7 are explanatory diagrams showing a series of steps of a method of bonding display substrates. The state of the display substrate bonding apparatus 100 according to one embodiment is depicted.
In the first step, the first substrate 1 and the second substrate 2 are loaded into the apparatus in a state of being preliminarily offset and misaligned, and are attracted to the upper base plate 3 and the lower base plate 4, respectively. FIG. 6A shows a state in which the first substrate 1 and the second substrate 2 are attracted to the upper base plate 3 and the lower base plate 4. As shown in FIG. It should be noted that the in-plane .theta. It is preferable that the shift in the .theta. direction is set to zero. If there is a deviation in the .theta. direction, the images obtained by imaging the edge portions of the two substrates are subjected to image recognition processing to perform rotation correction between the upper base plate 3 and the lower base plate 4. FIG. If an unexpected situation arises in which the edge portions of the first substrate 1 and the second substrate 2 cannot be observed simultaneously under the observation of the two imaging means 5, the stage is translated until they can be observed simultaneously. If there are four imaging means 5, such an unforeseen situation will not occur. If it does, it is when both substrates are aligned exactly the first time.
In the second step, a first reference point of the first substrate 1 and a second reference point of the second substrate 2 are calculated from the characteristics of the first substrate 1 and the characteristics of the second substrate 2, and then the first reference point and the second reference point are calculated. The upper base plate 3, the lower base plate 4, or the upper base plate 3 or the lower base plate 4 or Move both horizontally. This state is shown in FIG. 6(b). If the substrates can be loaded with high accuracy, the measured δx and δy may be temporarily stored without moving the substrate so that δx and δy become predetermined values.
In the third step, the upper base plate 3 or the lower base plate 4 is adjusted so that the displacement amount set to the predetermined value in the second step or the displacement amount measured and temporarily stored in the second step is canceled and becomes zero. Or move both in the plane direction. FIG. 7(c) shows a state where the amount of deviation is zero.
In a fourth step, as shown in FIG. 7(d), the upper base plate 3 or the lower base plate 4 or both are moved in the z-axis direction to bond the precisely aligned first substrate 1 and second substrate 2 together. to move up and down to complete the bonding.
In addition, it is also possible to perform the 3rd process and the 4th process concurrently. That is, the alignment may be performed while narrowing the inter-substrate gap. This is effective when it takes time to minimize the residual deviation in the alignment control of the third step.
(別の実施形態)
 本願発明の別の実施形態につき、説明する。混色防止用隔壁11で仕切られた空間に空気層が存在すると配向の上では損失が生じることになる。このため、配光上の損失を低減させるべく、混色防止用隔壁11で仕切られた空間には貼り合わせの際に樹脂が充填されることがある。しかし、樹脂中に気泡が混入されると、損失低減効果が弱まるばかりか、却って配光曲線に歪みを生じさせてしまう等の悪影響となってしまう。このようなことから、貼り合わせを真空の状態で行うことが望ましい。
 図8には、真空状態での基板貼り合わせに適した構造が示されている。図8(a)は、真空チャンバー6を設け、真空状態での雰囲気下で基板貼り合わせを行えるようにしたものである。撮像手段5の視野を妨げることが無いように、真空チャンバー6の撮像手段5の直下に位置する上面部分には透明窓が設けられている。
 図8(b)は、チャンバーを上下二分割にしたものであって、上チャンバー部材61と下チャンバー部材62とから構成されている。撮像手段5の視野を妨げることが無いように、上チャンバー部材61の撮像手段5の直下に位置する上面部分には透明窓が設けられている。
 また、図示はしないが、チャンバーを透明チャンバーによって構成したならば、チャンバーに窓を設けることなく、撮像手段5の視野を妨げないようにすることが可能となる。チャンバーと透視窓の組付け作業が省略できて有利である。
(another embodiment)
Another embodiment of the present invention will be described. If there is an air layer in the space partitioned by the partition wall 11 for preventing color mixing, loss occurs in orientation. For this reason, in order to reduce loss in light distribution, the space partitioned by the color mixing prevention partition 11 may be filled with resin during bonding. However, if air bubbles are mixed into the resin, not only the loss reduction effect is weakened, but also adverse effects such as distorting the light distribution curve occur. For this reason, it is desirable to perform bonding in a vacuum state.
FIG. 8 shows a structure suitable for bonding substrates in a vacuum state. In FIG. 8A, a vacuum chamber 6 is provided so that the substrates can be bonded together under a vacuum atmosphere. A transparent window is provided on the upper surface portion of the vacuum chamber 6 located directly below the imaging means 5 so as not to obstruct the field of view of the imaging means 5 .
FIG. 8(b) shows that the chamber is divided into upper and lower halves, and is composed of an upper chamber member 61 and a lower chamber member 62. FIG. A transparent window is provided on the upper surface portion of the upper chamber member 61 located directly below the imaging means 5 so as not to obstruct the field of view of the imaging means 5 .
Also, although not shown, if the chamber is configured by a transparent chamber, it is possible to prevent the visual field of the imaging means 5 from being obstructed without providing a window in the chamber. Advantageously, the work of assembling the chamber and the see-through window can be omitted.
(本発明の応用例)
 図4で説明した12個のLED21から重心位置を算出して基準とする手法、或いは、図5で説明した最外端の一つのLED21のみを基準とする手法、何れの手法も、基板エッジが検出できて、エッジ近傍に配置されたLED21を検出できていることを前提としている。ところが、ある状況の下では、エッジが検出できない事態も生じえる。この場合の対応について説明する。
 まず、ローテーション補正については、二つの基板の表示体構成要素パターンを撮像して得られる画像に対して、ルールベース、クラスタリング、決定木、ランダムフォレスト、CNN(Convolutional Neural Network)といった既知の画像処理を適用して、二つの基板が平行となるように、上ベースプレート3若しくは下ベースプレート4又はその両方を回転制御すれば良いので、エッジが検出できなくても問題とはならない。
 問題となるのは、ズレ量δx及びδyの補正である。本発明は、表示基板に表示体構成要素パターンが規則正しく配列されていることを利用して位置合わせを行うものであるが、配列が規則正しいが故に、仮にエッジが検出できない状態であると、マトリクスの2行目を1行目と誤認識してしまったり、2列目を1列目と誤認識してしまったりする事態が発生する虞がある。図9は、そのような事態が発生してしまった状況を示しており、破線として描かれている線分が、第一基板1の下に配置されて隠れてしまっている第二基板2のエッジを表している。図9(a)は、第二基板2の1行目のLED21が第一基板1の2行目の混色防止用隔壁11に配置されてしまったため、第一基板1の1行目の混色防止用隔壁11に対してLED21が配置されていない状況を示している。また、図9(b)は、第二基板2の1列目のLED21が第一基板1の2列目の混色防止用隔壁11に配置されてしまったため、第一基板1の1列目の混色防止用隔壁11に対してLED21が配置されていない状況を示している。
(Example of application of the present invention)
The method of calculating the position of the center of gravity from the 12 LEDs 21 described with reference to FIG. It is assumed that the LEDs 21 arranged near the edge can be detected. However, under certain circumstances, it is possible that an edge cannot be detected. How to deal with this case will be described.
First, for rotation correction, known image processing such as rule base, clustering, decision tree, random forest, and CNN (Convolutional Neural Network) is applied to the images obtained by imaging the display element patterns of the two substrates. In application, the rotation of the upper base plate 3 or the lower base plate 4 or both of them may be controlled so that the two substrates are parallel.
The problem is the correction of the deviation amounts δx and δy. According to the present invention, alignment is performed by utilizing the fact that the display component element patterns are regularly arranged on the display substrate. There is a possibility that the second row may be erroneously recognized as the first row, or the second column may be erroneously recognized as the first column. FIG. 9 shows a situation in which such a situation has occurred, and the line segment drawn as a dashed line shows the second substrate 2 that is arranged and hidden under the first substrate 1. represents an edge. In FIG. 9A, since the LEDs 21 in the first row of the second substrate 2 are arranged in the color mixture prevention partition walls 11 in the second row of the first substrate 1, the first row of the first substrate 1 prevents color mixture. It shows a situation in which the LEDs 21 are not arranged with respect to the partition wall 11. FIG. 9(b), the LEDs 21 in the first row of the second substrate 2 are arranged in the second row of the color mixing prevention partition walls 11 of the first substrate 1, so the first row of the first substrate 1 A situation is shown in which the LEDs 21 are not arranged with respect to the color mixing prevention partition wall 11 .
 図9(a)及び図9(b)のLED21の一部はベタ塗で示されているが、これは本発明の実施形態に係る表示基板の貼り合わせ装置100に対してアドオンされている付加機能構成によりLED21が発光されていることを示したものである。当該付加機能構成とは、装置内に設置された点灯治具(不図示)である。この点灯治具には、LED21のアレイ表示体である第一基板1の駆動回路(不図示)を接続しておき、位置合わせ後の動作確認時に、駆動回路を駆動させて、LED21の素子の一部を点灯させる。図9(a)及び図9(b)では、1行目と1列目のRのLED21のみを点灯させている。このことによって、位置合わせが完了したと思われた第一基板1と第二基板2とが、実は、1行分のズレ或いは1列分のズレを伴った状態で対向していたということが検出できるのである。このように、点灯治具(不図示)は、基板エッジが検出できない状況下で、基板にアドレスを与える役目を果たすことになる。
 このような付加機能構成を有する本発明の実施形態に係る表示基板の貼り合わせ装置100の動作工程は概ね、次のようなものとなる。
(1)予め第二基板2(LEDアレイ表示体)の駆動回路を、測定装置内に設置された点灯治具に接続しておき、
(2)アライメント動作時及び/又はアライメント後の確認動作時に、第二基板2(LEDアレイ表示体)の駆動回路を駆動させてLEDの一部を点灯させ、
(3)点灯させた一部のLEDを素子アドレスの指標として、第一基板(カラーフィルタ基板や色変換機能基板)の予備処理を行い、
(4)設定ないし測定一時記憶されたズレ量をキャンセルするように、基板面に沿った方向にずらし、
(5)必要に応じて、点灯させた一部のLEDを素子アドレスの指標として、合せ後の検証確認を行い、
(6)第一基板と第二基板を貼り合わせる。
 このようにすることで、第二基板2のエッジが上手く検出できない場合にも適正に位置合わせを行うことができる。なお、第一基板1のエッジについては、撮像手段5の近位側に配置されていることから、第二基板2のアドレス点灯によってコントラストが高まるため、エッジを十分に検出することができる。
A part of the LED 21 in FIGS. 9(a) and 9(b) is shown solid, but this is an add-on to the display substrate bonding apparatus 100 according to the embodiment of the present invention. It shows that the LED 21 is emitting light due to the functional configuration. The additional functional configuration is a lighting jig (not shown) installed in the device. A driving circuit (not shown) for the first substrate 1, which is an array display body of the LEDs 21, is connected to this lighting jig, and the driving circuit is driven when checking the operation after the alignment, so that the elements of the LEDs 21 are turned on. Light some. In FIGS. 9A and 9B, only the R LEDs 21 in the first row and first column are lit. As a result, the first substrate 1 and the second substrate 2, which were thought to have been aligned, actually faced each other with a deviation of one row or one column. It can be detected. Thus, the lighting jig (not shown) plays a role of giving an address to the board under the condition that the board edge cannot be detected.
The operation steps of the display substrate bonding apparatus 100 according to the embodiment of the present invention having such an additional functional configuration are generally as follows.
(1) Connect the drive circuit of the second substrate 2 (LED array display body) in advance to a lighting jig installed in the measuring device,
(2) driving the drive circuit of the second substrate 2 (LED array display) to light up part of the LEDs during the alignment operation and/or the confirmation operation after the alignment;
(3) performing preliminary processing of the first substrate (color filter substrate or color conversion function substrate) using some of the lit LEDs as indices of element addresses;
(4) shift in the direction along the substrate surface so as to cancel the temporarily stored amount of deviation set or measured;
(5) If necessary, some of the LEDs that are lit are used as an index of the element address to perform verification confirmation after alignment,
(6) Bond the first substrate and the second substrate together.
By doing so, even when the edge of the second substrate 2 cannot be detected well, it is possible to perform proper alignment. Since the edge of the first substrate 1 is arranged on the proximal side of the imaging means 5, the address lighting of the second substrate 2 increases the contrast, so that the edge can be sufficiently detected.
 以上、本発明の実施形態に係る表示基板の貼り合わせ装置及び貼り合わせ方法について、図面を参照して詳述してきたが、具体的な構成は、これらの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
 例えば、本発明が対象とする表示体構成要素パターンが基板端部近傍まで形成された基板とはベゼルレス基板に限定されるものでなく、狭ベゼルの基板であってもよい。すなわち、アライメントマークを設けることが不可能な基板に止まることなく、アライメントマークを設けることが困難な基板も、本発明の対象とされるものである。換言すれば、基板が本来的に有する固有の特徴(LEDや混色防止用隔壁)を利用して位置合わせを行う態様であれば、本発明の技術的思想に含まれるものである。
 このように、本発明は、表示基板に表示体構成要素パターンが規則正しく配列されていることを利用して位置合わせを行う点に、その技術的思想が存するということは十分に理解されるべきものである。
The apparatus and method for bonding display substrates according to the embodiments of the present invention have been described above in detail with reference to the drawings. Even if there is a change in design without departing from the gist of the invention, it is included in the present invention.
For example, the substrate on which the display element pattern is formed up to the vicinity of the edge of the substrate, which is the object of the present invention, is not limited to the bezelless substrate, and may be a substrate with a narrow bezel. That is, the present invention is not limited to substrates on which alignment marks cannot be provided, but also substrates on which alignment marks are difficult to be provided. In other words, the technical idea of the present invention encompasses any mode in which alignment is performed using the intrinsic features of the substrate (LEDs and partition walls for preventing color mixing).
As described above, it should be fully understood that the technical idea of the present invention resides in the point that alignment is performed by utilizing the regular arrangement of the display component element patterns on the display substrate. is.
100  表示基板の貼り合わせ装置
1    第一基板
11   混色防止用隔壁
12   透明基板(ブラックマトリクス基板)
13   カラーフィルタ(色変換素子)
2    第二基板
21   LED
22   接着層
23   電極形成層
24   表示用配線基板
3    上ベースプレート
4    下ベースプレート
5    撮像手段
6    真空チャンバー
61   上チャンバー部材
62   下チャンバー部材
REFERENCE SIGNS LIST 100 display substrate bonding apparatus 1 first substrate 11 color mixture preventing partition wall 12 transparent substrate (black matrix substrate)
13 Color filter (color conversion element)
2 second substrate 21 LED
22 Adhesive layer 23 Electrode forming layer 24 Display wiring board 3 Upper base plate 4 Lower base plate 5 Imaging means 6 Vacuum chamber 61 Upper chamber member 62 Lower chamber member

Claims (9)

  1.  表示体構成要素パターンが基板端部近傍まで形成された第一基板と表示体構成要素パターンが基板端部近傍まで形成された第二基板との貼り合わせを行う表示基板の貼り合わせ装置であって、
     撮像手段と、画像認識手段と、位置合わせ調整手段とを備え、
     前記画像認識手段は、前記撮像手段が撮像した前記第一基板の特徴及び前記第二基板の特徴から第一基板の第一基準点と第二基板の第二基準点を算出し、
     前記位置合わせ調整手段は、前記第一基準点と前記第二基準点を同時に観察できるように二つの基板の位置が平面方向にずらされた状態での予備処理を行い、その後に位置合わせを完了させつつ、貼り合わせを行う
     ことを特徴とする表示基板の貼り合わせ装置。
    A display substrate bonding apparatus for bonding a first substrate on which a display body component pattern is formed up to the vicinity of the edge of the substrate and a second substrate on which the display body component pattern is formed up to the vicinity of the edge of the substrate. ,
    An imaging means, an image recognition means, and an alignment adjustment means,
    The image recognition means calculates a first reference point of the first substrate and a second reference point of the second substrate from the characteristics of the first substrate and the characteristics of the second substrate imaged by the imaging means,
    The alignment adjustment means performs preliminary processing in a state in which the positions of the two substrates are shifted in the plane direction so that the first reference point and the second reference point can be observed at the same time, and then completes the alignment. A device for bonding display substrates, wherein bonding is performed while
  2.  前記予備処理は、前記第一基準点と前記第二基準点との平面方向のズレ量が所定値となるようにステージを移動させる位置調整処理であり、
     前記位置合わせ調整手段は、前記所定値のズレ量がゼロとなるようにステージを移動させつつ、貼り合わせを行う
     ことを特徴とする請求項1記載の表示基板の貼り合わせ装置。
    the preliminary processing is a position adjustment processing for moving the stage so that the amount of deviation in the plane direction between the first reference point and the second reference point is a predetermined value;
    2. The apparatus for bonding display substrates according to claim 1, wherein the alignment adjustment means performs bonding while moving the stage so that the deviation amount of the predetermined value becomes zero.
  3.  前記予備処理は、前記第一基準点と前記第二基準点との平面方向のズレ量を検出する処理であり、
     前記位置合わせ調整手段は、検出されたズレ量がゼロとなるようにステージを移動させつつ、貼り合わせを行う
     ことを特徴とする請求項1記載の表示基板の貼り合わせ装置。
    The preliminary processing is processing for detecting a deviation amount in a plane direction between the first reference point and the second reference point,
    2. The apparatus for bonding display substrates according to claim 1, wherein the alignment adjusting means performs bonding while moving the stage so that the detected amount of misalignment becomes zero.
  4.  前記位置合わせ調整手段は、前記撮像手段が前記第一基板と前記第二基板の特徴を同時に観察できない場合には、これらの特徴を同時に観測できるようにステージを移動させる
     ことを特徴とする請求項1から3のいずれか一項に記載の表示基板の貼り合わせ装置。
    3. The alignment adjustment means moves the stage so that, when the imaging means cannot simultaneously observe the features of the first substrate and the second substrate, the features can be observed at the same time. 4. The display substrate bonding apparatus according to any one of 1 to 3.
  5.  前記第一基板の特徴と前記第二基板の特徴は、一方が発光素子であり、他方がカラーフィルタ、色変換素子、カバーガラス、混色防止用隔壁、ブラックマトリクス基板の少なくとも一である
     ことを特徴とする請求項1から4のいずれか一項に記載の表示基板の貼り合わせ装置。
    The features of the first substrate and the features of the second substrate are characterized in that one of them is a light emitting element and the other is at least one of a color filter, a color conversion element, a cover glass, a partition for preventing color mixing, and a black matrix substrate. The display substrate bonding apparatus according to any one of claims 1 to 4.
  6.  前記第一基準点と前記第二基準点は、前記第一基板の基板端部に位置する一の特徴及び前記第二基板の基板端部に位置する一の特徴から算出される
     ことを特徴とする請求項5に記載の表示基板の貼り合わせ装置。
    The first reference point and the second reference point are calculated from one feature located at the edge of the first substrate and one feature located at the edge of the second substrate. 6. The display substrate bonding apparatus according to claim 5.
  7.  前記第一基準点と前記第二基準点は、前記第一基板の基板端部に位置する複数の特徴及び前記第二基板の基板端部に位置する複数の特徴から算出される
     ことを特徴とする請求項5に記載の表示基板の貼り合わせ装置。
    The first reference point and the second reference point are calculated from a plurality of features located at the edge of the first substrate and a plurality of features located at the edge of the second substrate. 6. The display substrate bonding apparatus according to claim 5.
  8.  表示体構成要素パターンが形成された第一基板と表示体構成要素パターンが形成された第二基板との貼り合わせを行う表示基板の貼り合わせ装置であって、
     撮像手段と、画像認識手段と、位置合わせ調整手段とを備え、
     前記画像認識手段は、前記撮像手段が撮像した前記第一基板が本来的に有する固有の特徴及び前記第二基板が本来的に有する固有の特徴から第一基板の第一基準点と第二基板の第二基準点を算出し、
     前記位置合わせ調整手段は、前記第一基準点と前記第二基準点を同時に観察できるように二つの基板の位置が平面方向にずらされた状態での予備処理を行い、その後に位置合わせを完了させつつ、貼り合わせを行う
     ことを特徴とする表示基板の貼り合わせ装置。
    A display substrate bonding apparatus for bonding a first substrate on which a display body component pattern is formed and a second substrate on which a display body component pattern is formed,
    An imaging means, an image recognition means, and an alignment adjustment means,
    The image recognizing means recognizes the first reference point of the first substrate and the second substrate from the inherent characteristics of the first substrate and the inherent characteristics of the second substrate captured by the imaging means. Calculate the second reference point of
    The alignment adjustment means performs preliminary processing in a state in which the positions of the two substrates are shifted in the plane direction so that the first reference point and the second reference point can be observed at the same time, and then completes the alignment. A device for bonding display substrates, wherein bonding is performed while
  9.  表示体構成要素パターンが基板端部近傍まで形成された第一基板と表示体構成要素パターンが基板端部近傍まで形成された第二基板との貼り合わせを行う表示基板の貼り合わせ方法であって、
     前記第一基板の特徴及び前記第二基板の特徴を同時に観察できるように二つの基板の位置がずらされた状態で平面方向のズレ量が所定値となるように予備的な位置調整を行う工程、
     次いで、ズレ量がゼロとなるようにステージを移動させる工程、
     とを、少なくとも含むことを特徴とする表示基板の貼り合わせ方法。
    A display substrate bonding method for bonding a first substrate on which a display body component pattern is formed up to the vicinity of the edge of the substrate and a second substrate on which the display body component pattern is formed up to the vicinity of the edge of the substrate. ,
    A step of preliminarily adjusting the positions of the two substrates so that the two substrates are displaced so that the characteristics of the first substrate and the characteristics of the second substrate can be observed at the same time so that the amount of deviation in the plane direction is a predetermined value. ,
    Next, a step of moving the stage so that the amount of displacement is zero;
    A method of bonding display substrates, comprising at least:
PCT/JP2021/027064 2021-07-20 2021-07-20 Display substrate bonding device and bonding method WO2023002550A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/027064 WO2023002550A1 (en) 2021-07-20 2021-07-20 Display substrate bonding device and bonding method
JP2021569468A JP7038932B1 (en) 2021-07-20 2021-07-20 Display board bonding device and bonding method
KR1020237029730A KR20230132876A (en) 2021-07-20 2021-07-20 Bonding device and bonding method for display substrate
CN202180094651.XA CN117043836A (en) 2021-07-20 2021-07-20 Bonding device and bonding method for display substrate
TW111106967A TW202306193A (en) 2021-07-20 2022-02-25 Display substrate bonding device and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027064 WO2023002550A1 (en) 2021-07-20 2021-07-20 Display substrate bonding device and bonding method

Publications (1)

Publication Number Publication Date
WO2023002550A1 true WO2023002550A1 (en) 2023-01-26

Family

ID=81213695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027064 WO2023002550A1 (en) 2021-07-20 2021-07-20 Display substrate bonding device and bonding method

Country Status (5)

Country Link
JP (1) JP7038932B1 (en)
KR (1) KR20230132876A (en)
CN (1) CN117043836A (en)
TW (1) TW202306193A (en)
WO (1) WO2023002550A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117043836A (en) * 2021-07-20 2023-11-10 信越工程株式会社 Bonding device and bonding method for display substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287937A (en) * 1998-02-06 1999-10-19 Sharp Corp Device for sticking optical element
JP2005202431A (en) * 2000-11-30 2005-07-28 Fujitsu Ltd System for manufacturing bonded substrate
JP2008140876A (en) * 2006-11-30 2008-06-19 Sharp Corp Device and method of laminating substrates
WO2009022457A1 (en) * 2007-08-10 2009-02-19 Nikon Corporation Substrate bonding apparatus and substrate bonding method
CN103336381A (en) * 2013-02-18 2013-10-02 方宗尧 Method of pasting contraposition of three-dimensional film
US20180088372A1 (en) * 2016-01-04 2018-03-29 Boe Technology Group Co., Ltd. Cell alignment device
JP2020046660A (en) * 2018-09-14 2020-03-26 エーピーエス ホールディングス コーポレイション Sticking device and sticking method
CN109555766B (en) * 2018-10-30 2021-04-30 信利半导体有限公司 Full-lamination manufacturing method of display module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6703826B2 (en) 2015-12-02 2020-06-03 日東電工株式会社 Film bonding method
KR102375893B1 (en) * 2017-10-24 2022-03-17 삼성디스플레이 주식회사 Organic light emitting diode display and method for manufacturing organic light emitting diode display
JP6916525B2 (en) 2018-02-06 2021-08-11 株式会社ブイ・テクノロジー LED display manufacturing method
CN117043836A (en) * 2021-07-20 2023-11-10 信越工程株式会社 Bonding device and bonding method for display substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287937A (en) * 1998-02-06 1999-10-19 Sharp Corp Device for sticking optical element
JP2005202431A (en) * 2000-11-30 2005-07-28 Fujitsu Ltd System for manufacturing bonded substrate
JP2008140876A (en) * 2006-11-30 2008-06-19 Sharp Corp Device and method of laminating substrates
WO2009022457A1 (en) * 2007-08-10 2009-02-19 Nikon Corporation Substrate bonding apparatus and substrate bonding method
CN103336381A (en) * 2013-02-18 2013-10-02 方宗尧 Method of pasting contraposition of three-dimensional film
US20180088372A1 (en) * 2016-01-04 2018-03-29 Boe Technology Group Co., Ltd. Cell alignment device
JP2020046660A (en) * 2018-09-14 2020-03-26 エーピーエス ホールディングス コーポレイション Sticking device and sticking method
CN109555766B (en) * 2018-10-30 2021-04-30 信利半导体有限公司 Full-lamination manufacturing method of display module

Also Published As

Publication number Publication date
JP7038932B1 (en) 2022-03-18
CN117043836A (en) 2023-11-10
JPWO2023002550A1 (en) 2023-01-26
KR20230132876A (en) 2023-09-18
TW202306193A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
US10832610B2 (en) Display panel of micro light emitting diode
KR100402662B1 (en) LCD and its manufacturing method
US10347698B2 (en) Electrooptical device, manufacturing method of electrooptical device, and electronic equipment
CN110161739A (en) A kind of display panel and display device
US10866452B2 (en) Color filter substrate, production method thereof, display panel, and display apparatus
CN110794604A (en) Display device and manufacturing method thereof
US8644591B2 (en) Alignment method for assembling substrates without fiducial mark
JP5173079B2 (en) Display device
US8531631B2 (en) Color display apparatus
JP6345439B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
WO2023002550A1 (en) Display substrate bonding device and bonding method
WO2014042062A1 (en) Display device
US7290489B2 (en) Substrate inspecting apparatus and control method thereof
US11782289B2 (en) Display device and panel bonding system including the same
KR20190091923A (en) LED Transfer device and transferring method using the same
JP5793457B2 (en) Transfer method and transfer apparatus
JP5158895B2 (en) Imaging device
CN112305800A (en) Display device
JP7283278B2 (en) electro-optical devices and electronics
TW201407294A (en) Printing device, exposure printing device, printing method and storage medium
JP2004061633A5 (en)
JP2005227743A (en) Light valve, light valve substrate, microlens member used for the same, electro-optic device and electronic appliance
CN116963528A (en) Display panel, manufacturing method thereof and display device
KR20220022915A (en) Backight unit for improved mura and manufacturing method of that
KR101346826B1 (en) Method for attaching substrates

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021569468

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094651.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237029730

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE