WO2023001075A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023001075A1
WO2023001075A1 PCT/CN2022/106030 CN2022106030W WO2023001075A1 WO 2023001075 A1 WO2023001075 A1 WO 2023001075A1 CN 2022106030 W CN2022106030 W CN 2022106030W WO 2023001075 A1 WO2023001075 A1 WO 2023001075A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
time domain
cell
time
domain resource
Prior art date
Application number
PCT/CN2022/106030
Other languages
English (en)
French (fr)
Inventor
李军
焦淑蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22845240.5A priority Critical patent/EP4366430A1/en
Publication of WO2023001075A1 publication Critical patent/WO2023001075A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • Data transmission reliability is an important performance indicator in a communication system.
  • a network device sends data to a terminal device, and the terminal device usually feeds back hybrid automatic repeat request acknowledgment (HARQ) information to the network device.
  • the HARQ information may also be referred to as HARQ feedback information or HARQ-acknowledgment (acknowledgment, ACK) information, and the network device determines whether data transmission is successful according to the HARQ feedback information sent by the terminal device, thereby improving data transmission reliability.
  • HARQ feedback information may also be referred to as HARQ feedback information or HARQ-acknowledgment (acknowledgment, ACK) information, and the network device determines whether data transmission is successful according to the HARQ feedback information sent by the terminal device, thereby improving data transmission reliability.
  • ACK HARQ-acknowledgment
  • ACK HARQ-acknowledgment
  • ACK HARQ-acknowledgment
  • ACK HARQ-acknowledgment
  • a PUCCH group (PUCCH group) is defined, and the PUCCH group corresponds to one or more cells. It can be considered that the one or more cells are packaged together.
  • the PUCCH can only be transmitted in the uplink time slot or flexible time slot of the cell, and the PUCCH cannot be transmitted in the downlink time slot of the cell, which will increase the feedback delay of the HARQ feedback information.
  • the number of cells used to transmit PUCCH in the PUCCH group can be increased. For example, two cells are used to transmit PUCCH. In this way, on the downlink time slot of one cell, another cell can be used.
  • the uplink time slot of a cell is used to send the PUCCH, thereby increasing the sending opportunity of the PUCCH and reducing the feedback delay of the HARQ feedback information.
  • the scheduling of data may be out of order, resulting in complex processing by the terminal.
  • the PUCCH of HARQ-ACK information is allowed to be transmitted in multiple cells, how to ensure the order of data scheduling is a problem that needs to be considered.
  • Embodiments of the present application provide a communication method and device, in order to ensure the orderliness of data scheduling in a scenario where multiple cells transmit PUCCHs carrying HARQ-ACK information.
  • a communication method is provided, and the method may be executed by a terminal device, or may be executed by components of the terminal device.
  • the method may be implemented by the following steps: receiving first scheduling information and second scheduling information from a network device, where the first scheduling information is used to indicate time domain resources of the first physical downlink shared channel PDSCH and the first physical uplink control channel PUCCH
  • the time domain resources of the second PDSCH the second scheduling information is used to indicate the time domain resources of the second PDSCH and the time domain resources of the second PUCCH
  • the time domain resources of the second PDSCH are after the time domain resources of the first PDSCH
  • the second A PUCCH is used to carry the hybrid automatic repeat request confirmation HARQ feedback information of the first PDSCH
  • the second PUCCH is used to carry the HARQ feedback information of the second PDSCH
  • the first PUCCH is on the first cell
  • the second PUCCH On the second cell when the condition is satisfied, it is determined to be a scheduling error; wherein, the condition is: (1)
  • the PUCCH carrying HARQ-ACK information When the PUCCH carrying HARQ-ACK information is transmitted in multiple cells, it can be determined whether the data scheduling is ordered scheduling by setting the conditions. When the setting conditions are met, it is determined as a scheduling error. When the setting conditions are not satisfied, it is determined Orderly scheduling means that the scheduling is correct. Network devices and terminal devices can avoid out-of-order data scheduling results according to set conditions, thereby ensuring the orderliness of data scheduling.
  • the condition (1) only needs to be judged according to the positional relationship between the time domain resources of the second PUCCH and the time domain resources of the first PUCCH, and it is not necessary to judge whether the two time domain resources are in the same time unit, so that the terminal device
  • the judgment logic is relatively simple and easy to implement.
  • the conditions (2) and (3) are judged by referring to the time unit, and in a scenario where the lengths of the time units of multiple cells transmitting the PUCCH are different, the judgment of out-of-sequence can be realized.
  • the length of the reference time unit is the time unit with the smallest length among the M time units corresponding to the M cells included in the cell group, the cell group includes the first cell and the second cell, and the cell group includes the first cell and the second cell.
  • Each cell included in the group is a cell allowed to transmit PUCCH, M is a positive integer, and M is greater than 1.
  • the length of the reference time unit may also be the cell with the largest subcarrier spacing among the M cells.
  • the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are located in different reference time units, and the time domain resources of the first PUCCH are ahead of the time domain resources of the second PUCCH, so the scheduling can be normal.
  • the cell that transmits the PUCCH can be switched at the granularity of the reference time unit. The smaller the length of the reference time unit, the more opportunities to send the PUCCH, and the lower the feedback delay of the HARQ-ACK information.
  • the length of the reference time unit is the longest time unit among the M time units corresponding to the M cells included in the cell group, the cell group includes the first cell and the second cell, and the cell group includes the first cell and the second cell.
  • Each cell included in the group is a cell allowed to transmit PUCCH, and M is a positive integer.
  • the cell for PUCCH transmission may be switched at the granularity of the reference time unit. The larger the length of the reference time unit, the greater the granularity of switching the cell for PUCCH transmission, and the lower the implementation complexity of the terminal device.
  • the method further includes: when the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are located in the same reference time unit, using the time domain resources of the first PUCCH and the second PUCCH
  • the PUCCH scheduled later carries the HARQ feedback information of the first PDSCH and the HARQ feedback information of the second PDSCH.
  • the reference time where the start symbol of the time domain resource of the third PUCCH is located The unit is used as the reference time unit where the time domain resource of the third PUCCH is located, or the reference time unit where the end symbol of the third PUCCH time domain resource is located is used as the reference time unit where the time domain resource of the third PUCCH is located unit, the third PUCCH is the first PUCCH or the second PUCCH.
  • the design does not allow the time domain resources of the PUCCH to span two reference time units, which can facilitate the judgment of the above conditions.
  • information on the number of PUCCHs is sent to the network device, where the information on the number of PUCCHs indicates at most the number of PUCCHs for carrying HARQ-ACK information sent within one reference time unit.
  • the number of PUCCHs to be sent in a reference time unit can be flexibly set, and the number of PUCCHs to be transmitted can be increased when it is necessary to increase the chance of PUCCH transmission.
  • the number of PUCCHs set is small, for example, one, transmission resources can be saved and implementation complexity of the terminal equipment can be reduced.
  • a communication method is provided, and the method may be executed by a network device, or may be executed by components of the network device.
  • the method can be realized by the following steps: generating first scheduling information and second scheduling information, and sending the first scheduling information and the second scheduling information to the terminal device.
  • first scheduling information and the second scheduling information For descriptions of the first scheduling information and the second scheduling information, reference may be made to the foregoing first aspect, and details are not repeated here.
  • the network device When the network device generates and sends the first scheduling information and the second scheduling information, it needs to schedule according to the rules.
  • the rules do not allow scheduling results that meet the conditions.
  • the conditions here can refer to the description of "conditions" in the first aspect above. .
  • a communication device in a third aspect, is provided, and the device may be a terminal device, or may be a component (for example, a chip, or a chip system, or a circuit) located in the terminal device.
  • the device has the function of implementing the first aspect and the method in any possible design of the first aspect.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may include a processing unit and a transceiver unit.
  • the transceiving unit is configured to receive the first scheduling information and the second scheduling information from the network device; the processing unit is configured to determine a scheduling error when the condition is met. More detailed descriptions of the above processing unit and the transceiver unit can be directly obtained by referring to the relevant description in the above first aspect.
  • the beneficial effects of the third aspect and various possible designs reference may be made to the description of the corresponding part of the first aspect.
  • a communication device in a fourth aspect, is provided, and the device may be a network device, or may be a component (for example, a chip, or a chip system, or a circuit) located in the network device.
  • the device has the function of realizing the above-mentioned second aspect and the method in any possible design of the second aspect.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may include a processing unit and a transceiver unit. Exemplarily: the transceiver unit is configured to send the first scheduling information and the second scheduling information to the terminal device; the processing unit is configured to generate the first scheduling information and the second scheduling information. More detailed descriptions of the processing unit and the transceiver unit can be directly obtained by referring to the relevant descriptions in the second aspect above. For the beneficial effects of the fourth aspect and various possible designs, reference may be made to the description of the corresponding part of the second aspect.
  • the embodiment of the present application provides a communication device, where the communication device includes an interface circuit and a processor, and the processor and the interface circuit are coupled to each other.
  • the processor implements the method described in the above first aspect and each possible design of the first aspect through a logic circuit or executing code instructions.
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor to other communication devices other than the communication device. It can be understood that the interface circuit may be a transceiver or an input/output interface.
  • the communication device may further include a memory for storing instructions executed by the processor, or storing input data required by the processor to execute the instructions, or storing data generated after the processor executes the instructions.
  • the memory may be a physically independent unit, or may be coupled with the processor, or the processor includes the memory.
  • the embodiment of the present application provides a communication device, where the communication device includes an interface circuit and a processor, and the processor and the interface circuit are coupled to each other.
  • the processor implements the method described in the above second aspect and each possible design of the second aspect through a logic circuit or executing code instructions.
  • the interface circuit is used to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor to other communication devices other than the communication device. It can be understood that the interface circuit may be a transceiver or an input/output interface.
  • the communication device may further include a memory for storing instructions executed by the processor, or storing input data required by the processor to execute the instructions, or storing data generated after the processor executes the instructions.
  • the memory may be a physically independent unit, or may be coupled with the processor, or the processor includes the memory.
  • the embodiment of the present application provides a computer-readable storage medium, where a computer program or readable instruction is stored in the computer-readable storage medium, and when the computer program or readable instruction is executed by a communication device, the The methods described in the above aspects or in each possible design of the aspects are executed.
  • the embodiment of the present application provides a chip system, where the chip system includes a processor and may further include a memory.
  • the memory is used to store programs, instructions or codes; the processor is used to execute the programs, instructions or codes stored in the memory, so as to implement the methods described in the above aspects or possible designs of each aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a computer program product including instructions, which, when executed by a communication device, cause the method described in the first aspect or each possible design of the aspect to be executed.
  • FIG. 1 is a schematic diagram of the architecture of a communication system in an embodiment of the present application
  • FIG. 2 is one of the schematic diagrams of PUCCH transmission in scenario 1 in the embodiment of the present application.
  • FIG. 3 is the second schematic diagram of PUCCH transmission in scenario 1 in the embodiment of the present application.
  • FIG. 4 is the third schematic diagram of PUCCH transmission in scenario 1 in the embodiment of the present application.
  • FIG. 5 is a fourth schematic diagram of PUCCH transmission in scenario 1 in the embodiment of the present application.
  • FIG. 6 is a schematic flow chart of a communication method in an embodiment of the present application.
  • FIG. 7 is one of the schematic diagrams of scheduling in the embodiment of the present application.
  • Figure 8 is the second schematic diagram of scheduling in the embodiment of the present application.
  • Figure 9 is the third schematic diagram of scheduling in the embodiment of the present application.
  • FIG. 10 is the fourth schematic diagram of scheduling in the embodiment of the present application.
  • Figure 11 is the fifth schematic diagram of scheduling in the embodiment of the present application.
  • Figure 12 is the sixth schematic diagram of scheduling in the embodiment of the present application.
  • Figure 13 is the seventh schematic diagram of scheduling in the embodiment of the present application.
  • Figure 14 is the eighth schematic diagram of scheduling in the embodiment of the present application.
  • Figure 15 is the ninth schematic diagram of scheduling in the embodiment of the present application.
  • Figure 16 is the tenth schematic diagram of scheduling in the embodiment of the present application.
  • Figure 17 is the eleventh schematic diagram of scheduling in the embodiment of this application.
  • Figure 18 is the twelveth schematic diagram of scheduling in the embodiment of the present application.
  • Figure 19 is the thirteenth schematic diagram of scheduling in the embodiment of this application.
  • Figure 20 is the fourteenth schematic diagram of scheduling in the embodiment of this application.
  • Figure 21 is the fifteenth schematic diagram of scheduling in the embodiment of the present application.
  • Figure 22 is the sixteenth schematic diagram of scheduling in the embodiment of this application.
  • Figure 23 is the seventeenth schematic diagram of scheduling in the embodiment of this application.
  • Figure 24 is the eighteenth of the scheduling schematic diagram in the embodiment of the present application.
  • Figure 25 is the nineteenth schematic diagram of scheduling in the embodiment of this application.
  • Figure 26 is the twentieth schematic diagram of scheduling in the embodiment of this application.
  • FIG. 27 is one of the structural schematic diagrams of the communication device in the embodiment of the present application.
  • FIG. 28 is the second structural diagram of the communication device in the embodiment of the present application.
  • Embodiments of the present application provide a communication method and device, in order to ensure the orderliness of data scheduling in a scenario where multiple cells transmit PUCCHs.
  • the method and the device are conceived based on the same or similar technology. Since the principle of solving the problem of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the communication method provided in the embodiment of the present application can be applied to a fourth generation (4th generation, 4G) communication system, such as long term evolution (long term evolution, LTE), and can also be applied to a fifth generation (5th generation, 5G) communication system,
  • 4th generation, 4G fourth generation
  • 5th generation, 5G fifth generation
  • 5G new radio new radio, NR
  • 6th generation, 6G sixth generation
  • 6G air-space-sea-ground integrated communication system.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 200 , and optionally, the communication system 1000 may also include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the wireless access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same physical equipment, or it can be a physical equipment It integrates some functions of core network equipment and some functions of wireless access network equipment. Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the radio access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and the next generation in the fifth generation (5th generation, 5G) mobile communication system
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete the base station part
  • a functional module or unit for example, can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part of the physical layer or all of the physical layer.
  • 3rd generation partnership project, 3GPP third generation partnership project
  • the radio access network device may be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively referred to as a communication device, 110a and 110b in FIG. 1 can be referred to as a communication device with a base station function, and 120a-120j in FIG. 1 can be referred to as a communication device with a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or communications may be performed on frequency spectrums above 6 GHz, or communications may be performed using both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • the network device sends downlink signals or downlink information to the terminal device, and the downlink information is carried on the downlink channel; the terminal device sends uplink signals or uplink information to the network device, and the uplink information is carried on the uplink channel.
  • the terminal device In order to communicate with the network device, the terminal device needs to establish a wireless connection with the cell controlled by the network device.
  • a PUCCH group is a combination of cells, and one PUCCH group may correspond to one or more cells.
  • the cell corresponding to the PUCCH group may be a cell serving the terminal device.
  • One PUCCH group corresponds to L cells, L is a positive integer, M cells in the L cells can transmit PUCCH, and the remaining (L-M) cells in the L cells are not allowed to transmit PUCCH.
  • M cells that are allowed to transmit PUCCH can be defined as a cell group.
  • Each cell included in the cell group is a cell that is allowed to transmit the PUCCH.
  • the network device configures the information of the PUCCH group for the terminal device, and the information of the PUCCH group may include cells in the PUCCH group and cells in the cell group allowed to transmit the PUCCH.
  • the network device configures 8 cells for the terminal device, and the 8 cells are serving cells for the terminal device.
  • the network device configures a PUCCH group for the terminal device.
  • the PUCCH group corresponds to the 8 cells, 2 of which are cells that are allowed to transmit the PUCCH, and these 2 cells form a cell group, and the remaining 6 cells are not allowed to transmit the PUCCH.
  • the terminal device may receive the downlink data of the 8 cells corresponding to the PUCCH group.
  • the terminal device needs to perform HARQ feedback on the received downlink data.
  • the terminal device can only transmit the HARQ feedback information on the cell that is allowed to transmit the PUCCH, that is, the remaining 6 cells above.
  • the HARQ feedback information of a cell needs to be transmitted on the two cells that are allowed to transmit the P
  • the network device may configure at most two PUCCH groups for the terminal device, and the two PUCCH groups may include a primary PUCCH group and a secondary PUCCH group.
  • the network device configures 8 cells for the terminal device, respectively denoted as cell 1, cell 2, ..., cell 8, and the 8 cells are serving cells of the terminal device.
  • the network device configures two PUCCH groups for the terminal device, denoted as PUCCH group 1 and PUCCH group 2.
  • PUCCH group 1 corresponds to cell 1 to cell 4.
  • the cell allowed to transmit PUCCH in PUCCH group 1 is cell 1, and the terminal device can receive downlink data from cell 1 to cell 4, and can only transmit cell 1 on cell 1. ⁇ HARQ feedback information of downlink data of cell 4.
  • PUCCH group 2 corresponds to cell 5 to cell 8 .
  • the cell allowed to transmit PUCCH in PUCCH group 2 is cell 5
  • the terminal device can receive the downlink data of cells 5-8, and can only transmit the HARQ feedback information of the downlink data of cells 5-8 on cell 5.
  • a terminal device may access multiple cells under the same network device, and multiple cells may include a primary cell (PCell) and a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • a primary cell and a secondary cell can be set as A cell that is allowed to transmit PUCCH.
  • the application scenarios of the above PUCCH group are only for illustration, and do not constitute a limitation on the application scenarios that can be used in the embodiment of this application.
  • the solution provided by this application can be applied to other application scenarios where multiple cells form a PUCCH group.
  • the HARQ feedback information is carried by the PUCCH.
  • the PUCCH may also bear other uplink control information, such as scheduling request (scheduling request, SR) or channel state information (channel state information, CSI).
  • scheduling request scheduling request
  • SR scheduling request
  • channel state information channel state information
  • the group of cells allowed to transmit the PUCCH may only include one cell, that is, only one cell is allowed to transmit the PUCCH.
  • a PUCCH group includes a primary cell and a secondary cell, and only the primary cell is allowed to send the PUCCH. And at most one PUCCH carrying HARQ-ACK is transmitted in one time slot.
  • the PUCCH can only be transmitted in the primary cell, and only one PUCCH can be transmitted in one time slot of the primary cell. Considering that a time slot of the primary cell may be a downlink time slot, the PUCCH cannot be sent in the downlink time slot.
  • a PUCCH group includes a primary cell and a secondary cell, and the PUCCH is allowed to be sent on the primary cell and the secondary cell.
  • the terminal device can send the PUCCH on the time slot 1 of the secondary cell aligned with the time slot 1 of the primary cell, so that Reduce the feedback delay of HARQ-ACK information.
  • the PUCCH transmission can be switched between multiple cells, thereby increasing the PUCCH transmission opportunity and reducing the feedback delay of HARQ-ACK information.
  • the scheduling of data must be in order, that is, it cannot be out of order.
  • the orderliness of data scheduling is an important prerequisite to ensure that terminals can receive and parse data correctly.
  • PUCCH 1 is used to carry the HARQ feedback information of PDSCH 1
  • PUCCH 2 is used to carry the HARQ feedback information of PDSCH 2.
  • Network devices need to schedule data in order, that is, to ensure the orderliness of data scheduling.
  • FIG. 4 it is an example of scheduling data in normal order.
  • the network device indicates the time domain resource of PDSCH 1 and the time domain resource of PUCCH 1 through DCI 1, and indicates the time domain resource of PDSCH 2 and the time domain resource of PUCCH 2 through DCI 2.
  • the time domain resources of PDSCH 2 are located behind the time domain resources of PDSCH 1, and the time domain resources of PUCCH 2 are located behind the time domain resources of PUCCH 1.
  • the terminal device can receive PDSCH1 and PDSCH 2 in sequence, and send PUCCH 1 and PUCCH 2 in sequence.
  • the UE has low implementation complexity and can ensure normal data transmission and reception.
  • the out-of-order can be defined as: the time domain resources of PDSCH 2 are after the time domain resources of PDSCH 1, the time domain resources of PUCCH 2 are located before the time domain resources of PUCCH 1, and the time domain resources of PUCCH 2 The time domain resource and the time domain resource of PUCCH 1 are located in different time slots.
  • the network device indicates the time domain resource of PDSCH 1 and the time domain resource of PUCCH 1 through DCI 1, and indicates the time domain resource of PDSCH 2 and the time domain resource of PUCCH 2 through DCI 2.
  • the time domain resources of PDSCH 2 are located behind the time domain resources of PDSCH 1, while the time domain resources of PUCCH 2 are located before the time domain resources of PUCCH 1, and the time domain resources of PUCCH 2 and PUCCH 1 are located at different times. If there is a gap, then this situation causes disorder.
  • the scheduling results of PDSCH 1 and PDSCH 2 by the network equipment should not appear in the above out-of-order situation, and the terminal equipment does not expect to receive out-of-order scheduling. Once the scheduling results are out of sequence, the terminal device needs to receive PDSCH 2 to prepare for PUCCH 2 when receiving PDSCH 1 to prepare for PUCCH 1, which will make the implementation of the terminal device more complicated.
  • the time slot lengths of different cells may be different, and some cells may use sub-slots as the unit for transmitting PUCCH , that is, at most one PUCCH carrying HARQ-ACK is transmitted in one sub-slot.
  • the time unit may be used to represent the unit of PUCCH transmission, and at most one PUCCH for carrying HARQ-ACK information can be transmitted in one time unit of a cell.
  • a time unit may be a slot or a sub-slot.
  • the length of a time slot may be 14 orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, and the length of a sub-slot may be 7 OFDM symbols or 2 OFDM symbols.
  • OFDM symbol may also be simply referred to as a symbol.
  • an embodiment of the present application provides a communication method.
  • the method is executed by terminal equipment and network equipment.
  • the method performed by the terminal device may be performed by the terminal device, or may be performed by components of the terminal device (such as a processor, a chip, a circuit, or a chip system, etc.).
  • the method performed by the network device may be performed by the network device, or may be performed by a component of the network device (such as a processor, a chip, a circuit, or a chip system, etc.).
  • the following description of the method steps takes the terminal device and the network device as an example for the introduction.
  • the network device generates first scheduling information and second scheduling information.
  • the network device sends the first scheduling information and the second scheduling information to the terminal device, and correspondingly, the terminal device receives the first scheduling information and the second scheduling information from the network device.
  • the first scheduling information is used to indicate the time domain resource of the first PDSCH and the time domain resource of the first PUCCH
  • the second scheduling information is used to indicate the time domain resource of the second PDSCH and the time domain resource of the second PUCCH.
  • the scheduling information may be downlink control information (downlink control information, DCI)
  • the first scheduling information may be recorded as the first DCI
  • the second scheduling information may be recorded as the second DCI.
  • both the first scheduling information and the second scheduling information are radio resource control (radio resource control, RRC) signaling.
  • the first scheduling information is DCI
  • the second scheduling information is RRC signaling
  • the first scheduling information is RRC signaling
  • the second scheduling information is DCI.
  • first scheduling information and or the second scheduling information may also include DCI and RRC signaling, for example, RRC configures semi-persistent scheduling (semi-persistent scheduling, SPS) related parameters, such as periods, etc., and then uses DCI to activate Scheduling of SPS.
  • SPS semi-persistent scheduling
  • the PDSCH can be scheduled by DCI or semi-persistently.
  • the first scheduling information indicates the time domain resource of the first PDSCH and the time domain resource of the first PUCCH
  • it may specifically include, for example, that the DCI indicates the time domain resource of the first PDSCH, and at the same time, the DCI indicates the time domain resource of the first PDSCH and the first PUCCH.
  • An interval between PUCCHs is the number of time units in the middle interval. In the 3GPP protocol, this interval may be the interval between PDSCH and HARQ-ACK feedback.
  • the interval can be 0, which means that PDSCH and PUCCH are in the same time unit, or when the time unit length of the cell transmitting PDSCH is different from the time unit length of the cell transmitting PUCCH, one time unit of the cell transmitting PDSCH is the same as the time unit of transmitting PUCCH.
  • the multiple time units of the PUCCH cell overlap, and the interval is 0 to indicate that the PUCCH is on the last time unit in the multiple time units overlapping with the time unit where the PDSCH is located.
  • the index of the time unit where the PUCCH is located is marked as X; If the interval is 1, it means that the PUCCH is in the time unit X+1, that is, in the time unit after the time unit determined with the interval being 0; if the interval is 2, it means that the PUCCH is in the time unit X+2.
  • the method for the second scheduling information to indicate the time domain resources of the second PDSCH and the time domain resources of the second PUCCH is the same as that of the first scheduling information, and will not be repeated here.
  • the time domain resource of the second PDSCH is behind the time domain resource of the first PDSCH, or in other words, the start position of the second PDSCH resource in the time domain is behind the end position of the first PDSCH resource in the time domain.
  • the first PUCCH is used to carry the HARQ feedback information of the first PDSCH
  • the second PUCCH is used to carry the HARQ feedback information of the second PDSCH.
  • the HARQ feedback information may specifically include a negative acknowledgment (negative acknowledgment, NACK) or a positive acknowledgment (acknowledgment, ACK).
  • the first PUCCH is on the first cell, and the second PUCCH is on the second cell. That is, if the first PUCCH is transmitted, the first PUCCH will be transmitted on the first cell. If the second PUCCH is transmitted, the second PUCCH will be transmitted on the second cell.
  • a cell may also be understood as a carrier, that is, the first PUCCH is on the first carrier, and the second PUCCH is on the second carrier.
  • a cell can be configured with one carrier, or multiple carriers, for example, a cell is configured with an uplink (uplink, UL) carrier and a supplementary uplink (supplementary uplink, SUL) carrier at the same time.
  • the terminal device determines that it is a scheduling error.
  • the conditions may include the following types.
  • the "conditions" described in S602 may be described as the first condition, the second condition, and the third condition respectively.
  • the first condition is: the time domain resource of the second PUCCH is located before the time domain resource of the first PUCCH. It can be understood that as long as the time domain resource of the second PUCCH is located before the time domain resource of the first PUCCH, it is determined to be a scheduling error, and it is not necessary to consider whether the time domain resource of the second PUCCH and the time domain resource of the first PUCCH in different time units.
  • the terminal device determines that it is a scheduling error. It can also be understood that the terminal device does not expect the time domain resource of the second PUCCH to be located at the time domain resource of the first PUCCH. Before the time domain resource.
  • the network device should not schedule in this way, that is, the time domain resource of the second PUCCH should not be located before the time domain resource of the first PUCCH.
  • the time domain resource of the second PUCCH when it comes to the description that "the time domain resource of the second PUCCH is located before the time domain resource of the first PUCCH", it can be understood that the end position of the time domain resource of the second PUCCH is at the time of the first PUCCH. Before the start position of the domain resource, or, it can be understood that the end position of the time domain resource of the second PUCCH is before the end position of the time domain resource of the first PUCCH.
  • the second condition is: the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are located in different reference time units, and the time domain resources of the second PUCCH are located before the time domain resources of the first PUCCH.
  • the terminal device determines that it is a scheduling error, which can also be understood as: the terminal device does not expect such scheduling, that is, it does not expect that the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are located in different reference time units , and the time domain resource of the second PUCCH is located before the time domain resource of the first PUCCH. Network devices should not be scheduled this way.
  • the third condition is: the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are located within a reference time unit. It can be understood that when it is satisfied that the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are located within a reference time unit, it is determined to be a scheduling error, and it is not necessary to consider whether the time domain resources of the second PUCCH are located in the first Before the time domain resource of PUCCH.
  • the terminal device determines that it is a scheduling error, which can also be understood as: the terminal device does not expect such scheduling, that is, it does not expect the time domain resources of the first PUCCH and the time domain resources of the second PUCCH to be within a reference time unit. Network devices should not be scheduled this way.
  • the third condition may also be understood as: within one reference time unit, the first PUCCH is transmitted on the first cell, and the second PUCCH is transmitted on the second cell.
  • condition in S602 may be any one of the first condition, the second condition, or the third condition, and may also satisfy multiple conditions among them at the same time. For example, if the first condition and the third condition are satisfied at the same time , then when "the time domain resource of the second PUCCH is located before the time domain resource of the first PUCCH, and the time domain resource of the first PUCCH and the time domain resource of the second PUCCH are located within a reference time unit", the terminal determines that Scheduling error.
  • the terminal device determines that the scheduling is wrong, and this condition can be regarded as a condition for determining out-of-sequence.
  • the agreement can stipulate that the scheduling of the data channel by the network equipment should not have the above-mentioned out-of-order situation, or that the terminal equipment does not expect to receive the data scheduling in the above-mentioned out-of-order situation.
  • the network device can schedule the time domain resources of the first PUCCH before the time domain resources of the second PUCCH, which is sequential scheduling and satisfies the orderliness of data scheduling.
  • the network device can schedule in the following manner: the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are located in different reference time units, and the time domain resources of the first PUCCH are located in the second Before the time domain resources of the PUCCH, this is sequential scheduling, which satisfies the orderliness of data scheduling.
  • the network device may schedule in the following manner: the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are located in the same reference time unit.
  • the network device can schedule in the following manner: within one reference time unit, only one of the first PUCCH and the second PUCCH is scheduled.
  • the terminal device expects to send the PUCCH in the following manner: within one reference time unit, only one of the first PUCCH and the second PUCCH is sent.
  • the second and third conditions above involve the concept of a reference time unit.
  • the length of the reference time unit can be preset. For example, the length of the reference time unit is specified in advance through the agreement, and the network device and the terminal device store the reference time unit in advance.
  • the length of the reference time unit may also be indicated by the network device to the terminal device, for example, it may be indicated by RRC signaling or MAC control element (control element, CE) or DCI.
  • the length of the reference time unit may be one time slot or one sub-slot.
  • the length of the reference time unit may be N symbols, for example, the value of N may be 2, 7, or 14.
  • the reference time unit may be determined according to the length of a time unit corresponding to a certain cell in the cell group, or determined according to the subcarrier spacing of a certain cell in the cell group.
  • a PUCCH group includes L cells, and only M cells among the L cells are allowed to transmit PUCCH, and these M cells form a cell group.
  • the M cells may include the first cell and the second cell, and the network device may schedule the first cell and the second cell among the M cells to transmit the PUCCH of the terminal device.
  • M and L are positive integers, and L is greater than or equal to M.
  • the network device may configure information of M cells that can transmit PUCCH in the PUCCH group through RRC signaling, and instruct the terminal device to transmit PUCCH on the first cell and the second cell in the M cells through DCI.
  • Each of the M cells corresponds to its own time unit for transmitting the PUCCH, and in one time unit for transmitting the PUCCH, the cell only transmits at most one PUCCH carrying HARQ-ACK information.
  • cell A in the M cells corresponds to a time unit for transmitting the PUCCH as time unit A, and time unit A includes one or more symbols. Either one PUCCH is transmitted in one time unit A, or no PUCCH is transmitted.
  • the M cells included in the cell group correspond to M time units, and the lengths of the M time units may be the same or different.
  • the reference time unit may be determined according to the length of the time unit corresponding to a certain cell in the cell group. In an embodiment, the length of the reference time unit may be the time unit with the smallest length among the M time units. In another embodiment, the length of the reference time unit may be the longest time unit among the M time units.
  • the time unit corresponding to the first cell may be different from the time unit corresponding to the second cell, so it is impossible to judge the time domain resources of the first PUCCH and the second PUCCH. Whether the time domain resources of the PUCCH are in different time units makes it inconvenient to define whether the scheduling is out of order. Referring to the definition of the time unit, it may be beneficial to judge whether the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are in different reference time units.
  • the terminal device determines that it is a scheduling error.
  • the first PDSCH can be represented by PDSCH 1
  • the second PDSCH can be represented by PDSCH 2
  • the first PUCCH can be represented by PUCCH 1
  • the second PUCCH can be represented by PUCCH2.
  • the first scheduling information is represented by DCI 1
  • the second scheduling information is represented by DCI 2.
  • the time unit is a time slot
  • the subcarrier spacing of the first cell is 15kHz
  • the subcarrier spacing of the second cell is 30kHz
  • the length of the time unit corresponding to the first cell is the time corresponding to the second cell twice the length of the unit.
  • the first cell and the second cell are two cells in the M cells.
  • the reference time unit is the time unit with the smallest time length among the M time units corresponding to M cells in the cell group, and the M time units with the smallest time length are a time slot with a subcarrier spacing of 30kHz
  • the reference time unit The length of is the length of one time slot of the second cell.
  • the time unit is a time slot
  • the subcarrier spacing of the first cell is 15 kHz
  • the subcarrier spacing of the second cell is 30 kHz.
  • the reference time unit is the time unit with the largest time length among the M time units corresponding to the M cells in the cell group, and the M time units with the largest time length are a time slot with a subcarrier spacing of 15KHz
  • the reference time unit The length of is the length of one time slot of the first cell. Slot 0 of the first cell is aligned with slot 0 and slot 1 of the second cell, and slot 1 of the first cell is aligned with slot 2 and slot 3 of the second cell.
  • the time domain resources of PUCCH 2 and PUCCH 1 are located in different reference time units, and the time domain resources of PUCCH 2 are located before the time domain resources of PUCCH 1.
  • the scheduling shown in Figure 8 satisfies the second condition , the terminal device determines that it is a scheduling error.
  • the length of the reference time unit is the smallest time unit among the M time units, there are more opportunities to send the PUCCH, and the feedback delay of the HARQ-ACK information is lower.
  • the network device schedules the time domain resources of the first PUCCH and the time domain resources of the second PUCCH to be located in different reference time units, the time domain resources of the first PUCCH are located before the time domain resources of the second PUCCH.
  • the reference time unit is the granularity to switch the cell that transmits the PUCCH. The smaller the length of the reference time unit, the more opportunities to send the PUCCH, and the lower the feedback delay of the HARQ-ACK information.
  • PUCCH 1 is sent on the first cell in the first 0.5ms
  • PUCCH 2 is sent on the second cell in the second 0.5ms, that is to say, it can be done at a granularity of 0.5ms Switch the cell that sends the PUCCH.
  • the second condition has two conditions, one of which is that the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are located in different reference time units, under this condition, the time domain resources of the second PUCCH need to be considered and the position of the time domain resource of the first PUCCH. If the time-domain resources of the first PUCCH and the time-domain resources of the second PUCCH are located in the same reference time unit, then an override method can be used to avoid out-of-sequence, so as to ensure the smooth progress of scheduling, which can also be understood as A method for updating a PUCCH.
  • the time domain resource of the first PUCCH and the time domain resource of the second PUCCH are located in the same reference time unit, use the PUCCH scheduled later in the first PUCCH and the second PUCCH to carry the HARQ of the first PDSCH Feedback information and HARQ feedback information of the second PDSCH.
  • the HARQ feedback information carried on the PUCCH may be referred to as a HARQ-ACK codebook (codebook).
  • being scheduled later means that the time of receiving the DCI for scheduling the PUCCH is later than the time of another DCI, that is, the time of receiving the second DCI is later than the time of receiving the first DCI, or it can be understood as carrying the second DCI
  • the end position of the resource of the physical downlink control channel (physical downlink control channel, PDCCH) in the time domain is located after the end position of the resource of the PDCCH bearing the first DCI in the time domain, or the resource of the PDCCH bearing the second DCI is in
  • the starting position in the time domain is located after the starting position in the time domain of the resource of the PDCCH carrying the first DCI.
  • the PUCCH scheduled later refers to the second PUCCH, that is, the PUCCH scheduled by DCI.
  • the PUCCH scheduled by DCI i.e. The second PUCCH
  • carries the HARQ feedback information of the semi-persistent scheduling ie, the HARQ feedback information of the first PDSCH
  • the HARQ feedback information of the dynamically scheduled PDSCH ie, the HARQ feedback information of the second PDSCH.
  • the later scheduled PUCCH is the second PUCCH
  • the first PUCCH is not sent, and the second PUCCH is used to carry the HARQ feedback information of the first PDSCH and the HARQ feedback information of the second PDSCH.
  • the second PUCCH covers the first PUCCH. Since only one of the first PUCCH and the second PUCCH is sent, there will be no out-of-sequence problem.
  • the reference time unit is the time unit with the smallest time length among the M time units corresponding to M cells in the cell group, and the M time units with the smallest time length are a time slot with a subcarrier spacing of 30kHz
  • the reference time unit The length of is the length of one time slot of the second cell.
  • the time domain resources of PUCCH 2 and PUCCH 1 are located in the same reference time unit, and the time domain resources of PUCCH 2 are located before the time domain resources of PUCCH 1. Since PUCCH 2 is scheduled later, PUCCH 2 is used to carry PDSCH 1. HARQ feedback information and HARQ feedback information of PDSCH 2, PUCCH 1 is not sent.
  • FIG. 9 is described by taking the reference time unit whose length is the time unit with the smallest time length among the M time units corresponding to M cells as an example. It can be understood that when the length of the reference time unit is the time unit with the largest time length among the M time units corresponding to the M cells, the above coverage method can also be sampled, which will not be repeated here.
  • the second condition and coverage method will be further described with examples in combination with some scenarios below.
  • the time unit corresponding to the first cell is a time slot with a subcarrier spacing of 15 kHz, and a time slot includes 14 symbols.
  • the time unit corresponding to the second cell is a sub-slot with a sub-carrier spacing of 15 kHz, and the sub-slot includes 7 symbols.
  • the length of the time unit corresponding to the first cell is twice the length of the time unit corresponding to the second cell.
  • PUCCH 2 is represented by 2 in Figure 10
  • PUCCH 1 is represented by 1 in Figure 10.
  • the reference time unit is the time unit with the smallest time length among the M time units corresponding to the M cells in the cell group, and the M time units with the smallest time length are a sub-time including 7 symbols with a subcarrier spacing of 15KHz slot
  • the length of the reference time unit is the length of one sub-slot of the second cell. Slot 0 of the first cell is aligned with two sub-slots of the second cell.
  • the time unit corresponding to the first cell is a sub-slot with a sub-carrier spacing of 15 kHz, and a sub-slot includes 7 symbols.
  • the time unit corresponding to the second cell is a sub-slot with a sub-carrier spacing of 15 kHz, and the sub-slot includes 2 symbols.
  • PUCCH 2 is represented by 2 in Figure 11
  • PUCCH 1 is represented by 1 in Figure 11.
  • the reference time unit is the time unit with the smallest time length among the M time units corresponding to the M cells in the cell group, and the M time units with the smallest time length are a sub-time including 2 symbols with a subcarrier spacing of 15KHz slot, the length of the reference time unit is the length of one sub-slot of the second cell.
  • one example is outside the circle, and another example is inside the circle.
  • the time domain resources of PUCCH 2 and the time domain resources of PUCCH 1 are located in the same reference time unit, that is, the time domain resources of PUCCH 2 are located in a sub-slot of the second cell, and the time domain resources of PUCCH 1 are located in a sub-slot of the second cell. The location is contained within a time overlap with one subslot of the second cell. Then adopt the coverage method, use PUCCH 2 to transmit the HARQ feedback information of PDSCH 1 and the HARQ feedback information of PDSCH 2, and not send PUCCH 1.
  • time domain resource of PUCCH 2 is located before the time domain resource of PUCCH 1, since PUCCH 1 is not sent, there will be no problem of out-of-order data scheduling.
  • the time domain resource of PUCCH 2 and the time domain resource of PUCCH 1 are located in different reference time units, and the time domain resource of PUCCH 2 is located before the time domain resource of PUCCH 1, if the second condition is satisfied, then it is chaos order, that is, scheduling errors.
  • the time domain resources of the first PUCCH and the time domain resources of the second PUCCH all fall within a reference time unit, or, the time domain resources of the first PUCCH and the time domain resources of the second PUCCH fall within In different reference time units, in some scenarios, it may happen that only part of the time domain resources of PUCCH falls in one reference time unit, and the other part falls in another reference time unit, that is, the time domain resources of PUCCH span two Referring to the situation of the time unit, for the convenience of description, the PUCCH spanning the reference time unit may be recorded as the third PUCCH.
  • the third PUCCH crosses the reference time unit, the start symbol and the end symbol of the time domain resource of the third PUCCH are located in two different reference time units.
  • the reference time unit where the start symbol of the time domain resource of the third PUCCH is located may be used as the reference time unit where the time domain resource of the third PUCCH is located, or the time domain resource of the third PUCCH
  • the reference time unit where the termination symbol is located serves as the reference time unit where the time domain resource of the third PUCCH is located. Both the time domain resource of the first PUCCH and the time domain resource of the second PUCCH may cross the reference time unit.
  • the start symbol of the time domain resource of the first PUCCH can be
  • the reference time unit where the time domain resource of the first PUCCH is located is used as the reference time unit where the time domain resource of the first PUCCH is located, or the reference time unit where the end symbol of the time domain resource of the first PUCCH is located is used as the reference time unit where the time domain resource of the first PUCCH is located unit of time.
  • the reference time unit where the start symbol of the time domain resource of the second PUCCH is located may be used as the reference time unit where the time domain resource of the second PUCCH is located, or, The reference time unit where the end symbol of the time domain resource of the second PUCCH is located is used as the reference time unit where the time domain resource of the second PUCCH is located.
  • the time domain resources of the first PUCCH and the time domain resources of the second PUCCH can use the same rule to determine the reference time unit where they are located.
  • the time domain resources of the first PUCCH and the time domain resources of the second PUCCH both conform to:
  • the reference time unit where the start symbol of the time domain resource is located is used as the reference time unit where the time domain resource of the PUCCH is located.
  • both the time domain resource of the first PUCCH and the time domain resource of the second PUCCH conform to: the reference time unit where the end symbol of the PUCCH time domain resource is located is used as the reference time unit where the PUCCH time domain resource is located.
  • the reference time unit where any specified symbol of the time domain resource of the third PUCCH is located may also be used as the reference time unit where the time domain resource of the third PUCCH is located.
  • the time unit is one time slot, and the subcarrier spacing of the first cell is 15 kHz.
  • the subcarrier spacing of the second cell is 30 kHz.
  • the reference time unit is the time unit with the smallest time length among the M time units corresponding to M cells in the cell group, and the M time units with the smallest time length are a time slot with a subcarrier spacing of 30kHz, then the reference time unit The length of is the length of one time slot of the second cell.
  • the time domain resource of PUCCH 2 spans time slot 0 and time slot 1 of the second cell, and the reference time unit where the start symbol of the time domain resource of PUCCH 2 is located can be used as the reference time unit where the time domain resource of PUCCH 2 is located, That is, it is considered that the time domain resource of PUCCH 2 is located in the reference time unit corresponding to time slot 0 of the second cell, then the time domain resource of PUCCH 2 is located in the same reference time unit as the time domain resource of PUCCH 1.
  • the reference time unit where the termination symbol of the time domain resource of PUCCH 2 is located is used as the reference time unit where the time domain resource of PUCCH 2 is located, and the time domain resource of PUCCH 2 is located in the reference time unit corresponding to time slot 1 of the second cell, Then the time domain resources of PUCCH 2 and the time domain resources of PUCCH 1 are located in different reference time units. Further, according to the fact that the time domain resources of PUCCH 2 and the time domain resources of PUCCH 1 are located in the same reference time unit, an overlay method can be used.
  • the time domain resources of PUCCH 2 and the time domain resources of PUCCH 1 are located in different reference time units, when the time domain resources of PUCCH 2 are located before the time domain resources of PUCCH 1, the second condition is met, that is, a scheduling error;
  • the scheduling conforms to the order, that is, the scheduling is correct.
  • PUCCH 3 is also transmitted in time slot 1 of the second cell, and the order of scheduling is PUCCH 1, PUCCH 2, and PUCCH 3.
  • PUCCH 3 is represented by 3 in FIG. 13 .
  • the time domain resource of PUCCH 2 spans slot 0 and slot 1 of the second cell. If the reference time unit where the start symbol of the time domain resource of PUCCH 2 is located is taken as the reference time unit where the time domain resource of PUCCH 2 is located, it is considered that the time domain resource of PUCCH 2 is located in the reference time slot corresponding to slot 0 of the second cell.
  • time unit then the time domain resource of PUCCH 2 is located in the same reference time unit as the time domain resource of PUCCH 1, PUCCH 2 is scheduled later than PUCCH 1, PUCCH 2 covers PUCCH 1, only PUCCH 2 is sent, PUCCH 1 is not sent. In time slot 1 of the second cell, there is only PUCCH 3, so PUCCH 3 can be sent.
  • the reference time unit where the end symbol of the time domain resource of PUCCH 2 is located is taken as the reference time unit where the time domain resource of PUCCH 2 is located, it is considered that the time domain resource of PUCCH 2 is located at the reference time corresponding to time slot 1 of the second cell unit, then the time domain resource of PUCCH 2 is located in the same reference time unit as the time domain resource of PUCCH 3, PUCCH 3 is scheduled later than PUCCH 2, PUCCH 3 covers PUCCH 2, only PUCCH 3 is sent, and PUCCH 2 is not sent. In time slot 0 of the second cell, there is only PUCCH 1, so PUCCH 1 can be sent.
  • the time domain resource of a PUCCH crosses the reference time unit. More generally speaking, the time domain resource of the PUCCH in one cell may cross the time unit of another cell, that is, the scenario of crossing time units , the cross-time unit refers to the time unit spanning one cell, not the reference time unit above. If the time domain resource of the PUCCH in one cell spans the time unit of another cell, in this case, the PUCCH cannot be sent in the two spanned time units of the other cell. For example, as shown in FIG. 14 , assuming that the time unit is a time slot, the subcarrier spacing of the first cell is 15 kHz, and the subcarrier spacing of the second cell is 30 kHz.
  • the time domain resource of PUCCH 1 is located in time slot 0 and time slot 1 of the second cell, so neither time slot 0 nor time slot 1 of the second cell is allowed to send PUCCH. Then the second cell can only send PUCCH 2 on the next uncrossed time slot. It can be understood that, if the PUCCH is sent in a time unit corresponding to a cell (for example, the first time unit), then the PUCCH is not allowed to be sent in the time unit overlapping with the first time unit of other cells. Overlap can be understood as partial or complete overlap in the time domain.
  • the time domain resources of PUCCH are not allowed to cross time units, or that the network device is not allowed to schedule the time domain resources of PUCCH of a cell to span other Two time units of a cell. From the perspective of the terminal equipment, the terminal equipment does not expect that the time domain resource of the PUCCH on one cell overlaps with two time units of other cells. With reference to the embodiment in FIG. 6 , the time domain resources of the first PUCCH should not be in the two time units of the second cell, and the time domain resources of the second PUCCH should not be in the two time units of the first cell. If the start symbol and end symbol of the time domain resource of the first PUCCH are located in different reference time units, or the start symbol and end symbol of the time domain resource of the second PUCCH are located in different reference time units, it is determined as Scheduling error.
  • the third condition is: the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are located within a reference time unit.
  • the length of the reference time unit may be the longest time unit among the M time units.
  • the network device does not allow such scheduling, and the terminal device does not expect such scheduling, that is, the terminal device does not expect the time domain resource of the first PUCCH and the time domain resource of the second PUCCH to be within a reference time unit.
  • only one cell is allowed to send PUCCH.
  • the terminal device does not expect to transmit the PUCCH on different cells within one reference time unit, and the network device does not allow scheduling the PUCCH transmission on different cells within one reference time unit.
  • the time unit is a time slot
  • the subcarrier spacing of the first cell is 15kHz
  • the subcarrier spacing of the second cell is 30kHz.
  • the reference time unit is the time unit with the largest time length among the M time units corresponding to the M cells in the cell group, and the M time units with the largest time length are a time slot with a subcarrier spacing of 15kHz
  • the reference time unit The length of is the length of one time slot of the first cell. Slot 0 of the first cell is aligned with slot 0 and slot 1 of the second cell. Slot 1 of the first cell is aligned with slots 2 and 3 of the second cell.
  • the terminal device does not expect to send PUCCH 2 on the second cell on the basis of sending PUCCH 1 on the first cell.
  • the terminal device does not expect to send PUCCH 1 on the first cell on the basis of sending PUCCH 2 on the second cell. That is, within one reference time unit, the terminal equipment does not expect to switch the PUCCH transmission cell. If the first PUCCH is transmitted on the first cell and the second PUCCH is transmitted on the second cell within one reference time unit, it is considered that the scheduling is wrong.
  • the PUCCH can be sent on two time units on the second cell, and of course, the PUCCH can also be sent on one of the time units on the second cell.
  • one cell may also send one or more PUCCHs within one reference time unit.
  • the terminal device may also send PUCCH number information to the network device, the PUCCH number information indicates the maximum number of PUCCHs used to carry HARQ-ACK information sent within one reference time unit . For example, it may be stipulated that at most one PUCCH for carrying HARQ-ACK information is sent within one reference time unit.
  • the PUCCH number information may be a capability of the terminal device, and the terminal device may notify the network device of the information through capability reporting signaling.
  • the terminal device may send capability information to the network device, and the capability information may include information about the number of PUCCHs and/or the number of cells.
  • the PUCCH number information indicates the maximum number of PUCCHs used to carry HARQ-ACK information transmitted within one reference time unit.
  • the information on the number of cells may indicate the maximum number of cells used to transmit PUCCH within one reference time unit.
  • transmitting PUCCH here refers to transmitting PUCCH for carrying HARQ-ACK information.
  • the time unit corresponding to the first cell is a sub-slot including 7 symbols when the sub-carrier spacing is 15KHz
  • the time unit corresponding to the second cell is a sub-slot including 7 symbols when the sub-carrier spacing is 30KHz.
  • Symbol subslots Assuming that the reference time unit is the time unit with the largest time length among the M time units corresponding to the M cells in the cell group, and the time unit with the largest time length among the M time units is a sub-slot with a subcarrier spacing of 15 kHz, Then the length of the reference time unit is the length of one sub-slot of the first cell.
  • the terminal device within a reference time unit corresponding to the first sub-slot of the first cell, the terminal device only transmits PUCCH on the first cell; in a reference time unit corresponding to the second sub-slot of the first cell Within a reference time unit corresponding to the third sub-slot of the first cell, the terminal device only sends PUCCH on the first cell; on the second cell, the terminal device only sends PUCCH; Within a reference time unit corresponding to the time slot, the terminal device only sends the PUCCH on the second cell. Likewise, within a reference time unit, the terminal device does not expect to switch the PUCCH transmission cell. If the first PUCCH is transmitted on the first cell and the second PUCCH is transmitted on the second cell within one reference time unit, it is considered that the scheduling is wrong.
  • the third condition is: the time domain resources of the first PUCCH and the time domain resources of the second PUCCH are located within a reference time unit.
  • the length of the reference time unit may be the time unit with the smallest length among the M time units.
  • Network devices do not allow such scheduling, and terminal devices do not expect such scheduling.
  • one reference time unit only one cell is allowed to send PUCCH. The terminal device does not expect to transmit the PUCCH on different cells within one reference time unit, and the network device does not allow scheduling the PUCCH transmission on different cells within one reference time unit.
  • the network device is only allowed to schedule PUCCH transmission on one cell within a reference time unit, or, under the constraints of the third condition, the terminal device only expects to transmit on one cell PUCCH.
  • an overlay method can be used, and the specific overlay method can refer to the above description.
  • the second condition or the first condition can be combined to determine whether it is a scheduling error, specifically the first condition or the second condition.
  • the length of the reference time unit is the smallest time unit among the M time units, and in combination with the third condition, the scenario in the embodiment in FIG. 6 will be described as an example.
  • the terminal device does not expect to send the PUCCH on the second cell on the basis of sending the PUCCH on the first cell.
  • the terminal device does not expect to send the PUCCH on the first cell on the basis of sending the PUCCH on the second cell.
  • the terminal device within a reference time unit corresponding to time slot 0 of the second cell, the terminal device only transmits PUCCH on the first cell and does not transmit PUCCH on the second cell;
  • the terminal device only sends PUCCH on the second cell, and does not send PUCCH on the first cell; within a reference time unit corresponding to time slot 2 of the second cell, the terminal device only sends PUCCH on the second cell , do not send PUCCH on the first cell; within a reference time unit corresponding to time slot 3 of the second cell, the terminal device only sends PUCCH on the first cell, and does not send PUCCH on the second cell. That is, within one reference time unit, the terminal equipment does not expect to switch the PUCCH transmission cell. If the first PUCCH is transmitted on the first cell and the second PUCCH is
  • the first condition is: the time domain resource of the second PUCCH is located before the time domain resource of the first PUCCH. Whether the time domain resources of the second PUCCH and the time domain resources of the first PUCCH are in different time units is not considered.
  • the length of the time unit of the second cell may be the same as that of the first cell, or may be different.
  • the subcarrier spacing of the first cell is different from that of the second cell
  • the time units of the first cell and the second cell are both time slots
  • the number of symbols contained in a time slot is the same .
  • the time unit corresponding to the first cell is a time slot with a subcarrier spacing of 15kHz, and a time slot contains 14 symbols
  • the time unit corresponding to the second cell is a time slot with a subcarrier spacing of 30kHz, and a time slot contains 14 symbols.
  • the length of the time unit corresponding to the first cell is twice the length of the time unit corresponding to the second cell.
  • the time domain resource of PUCCH 2 is located before the time domain resource of PUCCH 1, the scheduling shown in Figure 19 satisfies the first condition, and the terminal device determines that it is a scheduling error.
  • the time domain resources of PUCCH 2 are located after the time domain resources of PUCCH 1, the first condition is not satisfied, and it is normal scheduling, which satisfies the orderliness of scheduling.
  • the subcarrier spacing of the first cell is the same as that of the second cell, but the time unit of the first cell is different from the time unit of the second cell.
  • the time unit corresponding to the first cell is a time slot with a subcarrier spacing of 15kHz
  • the time unit corresponding to the second cell is a subslot containing 7 symbols with a subcarrier spacing of 15kHz.
  • the time domain resource of PUCCH 2 is located before the time domain resource of PUCCH 1, the scheduling shown in Figure 21 satisfies the first condition, and the terminal device determines that it is a scheduling error.
  • the time unit corresponding to the first cell is a sub-slot containing 7 symbols when the sub-carrier spacing is 15 kHz
  • the time unit corresponding to the second cell is a sub-slot containing 2 symbols when the sub-carrier spacing is 15 kHz.
  • PUCCH 2 is represented by 2.
  • the time domain resource of PUCCH 2 is located before the time domain resource of PUCCH 1, the scheduling shown in Figure 22 satisfies the first condition, and the terminal device determines that it is a scheduling error.
  • the time unit corresponding to the first cell is a sub-slot containing 7 symbols when the sub-carrier spacing is 15 kHz
  • the time unit corresponding to the second cell is a sub-slot containing 7 symbols when the sub-carrier spacing is 15 kHz. Symbol subslots.
  • the length of the time unit corresponding to the first cell is the same as the length of the time unit corresponding to the second cell.
  • the time domain resource of PUCCH 2 is located before the time domain resource of PUCCH 1, the scheduling shown in Figure 23 satisfies the first condition, and the terminal device determines that it is a scheduling error.
  • the subcarrier spacing of the first cell is different from that of the second cell
  • the time units of the first cell and the second cell are both subslots
  • the number of symbols contained in a subslot is also identical.
  • the time unit corresponding to the first cell is a sub-slot with a sub-carrier spacing of 15 kHz, and a sub-slot contains 7 symbols;
  • the time unit corresponding to the second cell is a sub-slot with a sub-carrier spacing of 30 kHz.
  • One sub-slot, one sub-slot contains 7 symbols.
  • the length of the time unit corresponding to the first cell is twice the length of the time unit corresponding to the second cell.
  • the time domain resource of PUCCH 2 is located before the time domain resource of PUCCH 1, the scheduling shown in Figure 24 satisfies the first condition, and the terminal device determines that it is a scheduling error.
  • the time unit corresponding to the first cell is a sub-slot with a sub-carrier spacing of 15 kHz, and a sub-slot contains 2 symbols;
  • the time unit corresponding to the second cell is a sub-slot with a sub-carrier spacing of 30 kHz.
  • a sub-slot, a sub-slot contains 2 symbols.
  • the length of the time unit corresponding to the first cell is twice the length of the time unit corresponding to the second cell.
  • the time domain resource of PUCCH 2 is located before the time domain resource of PUCCH 1, the scheduling shown in Figure 25 satisfies the first condition, and the terminal device determines that it is a scheduling error.
  • the subcarrier spacing of the first cell and the second cell are the same, and the time units of the first cell and the second cell are time slots, and the number of symbols contained in a time slot is the same.
  • the time unit corresponding to the first cell is a time slot with a subcarrier spacing of 15kHz, and a time slot contains 14 symbols;
  • the time unit corresponding to the second cell is a time slot with a subcarrier spacing of 15kHz, and a time slot contains 14 symbols.
  • the length of the time unit corresponding to the first cell is the same as the length of the time unit corresponding to the second cell.
  • the time domain resource of PUCCH 2 is located before the time domain resource of PUCCH 1, that is, the first condition is met, and the terminal device determines that it is a scheduling error. That is, within a time unit, the time domain resource of PUCCH 2 is located before the time domain resource of PUCCH 1, and the terminal device determines that it is a scheduling error. It can also be understood that, within a reference time unit, the time domain resource of PUCCH 2 is located before the time domain resource of PUCCH 1, and the terminal device determines that it is a scheduling error. At this time, PUCCH 2 does not cover PUCCH 1, that is, the coverage between PUCCHs can only be performed within one cell, not between cells.
  • the terminal device is scheduled to transmit the PUCCH carrying HARQ-ACK information on two cells. It can be understood that the terminal device can also be scheduled to transmit the PUCCH carrying HARQ-ACK information on a larger number of cells.
  • the transmission rule or method may refer to the method on two cells, and it may be considered that the first cell and the second cell are any two cells among the plurality of scheduled cells.
  • PUCCHs used to transmit and carry HARQ-ACK information on different cells do not overlap in time domain.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 27 and FIG. 28 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication apparatuses may be used to realize the functions of the terminal device or the network device in the foregoing method embodiments, and thus also realize the beneficial effects of the foregoing method embodiments.
  • the communication device may be one of the terminals 120a-120j shown in FIG. 1, or the base station 110a or 110b shown in FIG. 1, or a terminal or a base station Modules (such as chips).
  • a communication device 2700 includes a processing unit 2710 and a transceiver unit 2720 .
  • the communication device 2700 is configured to realize the functions of the terminal device or the network device in the method embodiment shown in FIG. 6 above.
  • the transceiver unit 2720 is used to receive the first scheduling information and the second scheduling information from the network device; the processing unit 2710 is used to identified as a scheduling error.
  • the processing unit 2710 is used to generate the first scheduling information and the second scheduling information
  • the transceiver unit 2720 is used to send the first scheduling information to the terminal device information and second dispatch information
  • processing unit 2710 and the transceiver unit 2720 can be directly obtained by referring to related descriptions in the method embodiment shown in FIG. 6 , and details are not repeated here.
  • a communication device 2800 includes a processor 2810 and an interface circuit 2820 .
  • the processor 2810 and the interface circuit 2820 are coupled to each other.
  • the interface circuit 2820 may be a transceiver or an input/output interface.
  • the communication device 2800 may further include a memory 2830 for storing instructions executed by the processor 2810 or storing input data required by the processor 2810 to execute the instructions or storing data generated after the processor 2810 executes the instructions.
  • the processor 2810 is used to implement the functions of the above-mentioned processing unit 2710
  • the interface circuit 2820 is used to implement the functions of the above-mentioned transceiver unit 2720 .
  • the chip of the terminal device implements the functions of the terminal device in the above method embodiment.
  • the chip of the terminal device receives information from other modules in the terminal device (such as radio frequency modules or antennas), which is sent by the network device to the terminal device; or, the chip of the terminal device sends information to other modules in the terminal device (such as radio frequency modules) module or antenna) to send information, which is sent by the terminal device to the network device.
  • the network equipment module implements the functions of the network equipment in the above method embodiments.
  • the network device module receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent to the network device by the terminal; or, the network device module sends information to other modules in the network device (such as radio frequency modules or antennas) ) to send information, which is sent by the network device to the terminal.
  • the network device module here may be a baseband chip of the network device, or a DU or other modules, and the DU here may be a DU under the open radio access network (O-RAN) architecture.
  • OF-RAN open radio access network
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; and it may also be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • At least one means one or more
  • multiple means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,以期在多个小区传输PUCCH的场景下保证数据调度的有序性。网络设备向终端设备发送第一调度信息和第二调度信息,第一调度信息用于调度第一PDSCH和第一PUCCH,第二调度信息用于调度第二PDSCH和第二PUCCH,第二PDSCH的时域资源在第一PDSCH之后,PUCCH用于承载PDSCH的HARQ反馈信息,第一PUCCH和第二PUCCH在不同小区上;不期望出现如下调度结果:第二PUCCH位于第一PUCCH之前;或,第一PUCCH与第二PUCCH位于不同的参考时间单元内、且第二PUCCH位于第一PUCCH之前;或,第一PUCCH和第二PUCCH位于一个参考时间单元内。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年07月23日提交中国专利局、申请号为202110839073.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
数据传输可靠性是通信系统中重要的性能指标,在通信系统中,网络设备向终端设备发送数据,终端设备通常会向网络设备反馈混合自动重传请求(hybrid automatic repeat request acknowledgment,HARQ)信息。HARQ信息也可以称为HARQ反馈信息或HARQ-确认(acknowledgement,ACK)信息,网络设备根据终端设备发送的HARQ反馈信息确定数据是否传输成功,以此提高数据传输可靠性。通常会使用物理上行控制信道(physical uplink control channel,PUCCH)承载HARQ反馈信息。
现有技术中,定义一个PUCCH组(PUCCH group),该PUCCH组对应一个或者多个小区,可以认为该一个或多个小区被打包在一起,在传输HARQ反馈信息时,只允许PUCCH在该PUCCH组对应的多个小区中的其中一个小区传输。但是,传输PUCCH只能在小区的上行时隙或者灵活时隙,在小区的下行时隙不能传输PUCCH,这样会导致HARQ反馈信息的反馈时延增大。基于此,为了降低HARQ反馈信息的反馈时延,可以增加PUCCH组中用于传输PUCCH的小区数量,例如,使用两个小区传输PUCCH,这样,在其中一个小区的下行时隙上,可以使用另一个小区的上行时隙来发送PUCCH,从而增加PUCCH的发送机会,降低HARQ反馈信息的反馈时延。
当允许在多个小区传输HARQ-ACK信息的PUCCH时,数据的调度可能乱序,导致终端处理复杂。当允许在多个小区传输HARQ-ACK信息的PUCCH时,如何保证数据调度的有序性,是需要考虑的问题。
发明内容
本申请实施例提供一种通信方法及装置,以期在多个小区传输承载HARQ-ACK信息的PUCCH的场景下保证数据调度的有序性。
第一方面,提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件执行。该方法可以通过以下步骤实现:接收来自网络设备的第一调度信息和第二调度信息,该第一调度信息用于指示第一物理下行共享信道PDSCH的时域资源和第一物理上行控制信道PUCCH的时域资源,该第二调度信息用于指示第二PDSCH的时域资源和第二PUCCH的时域资源,该第二PDSCH的时域资源在该第一PDSCH的时域资源之后,该第一PUCCH用于承载该第一PDSCH的混合自动重传请求确认HARQ反馈信息,该第二 PUCCH用于承载该第二PDSCH的HARQ反馈信息,该第一PUCCH在第一小区上、该第二PUCCH在第二小区上;当条件满足时,确定为调度错误;其中,该条件为:(1)该第二PUCCH的时域资源位于该第一PUCCH的时域资源之前;或者,(2)该第一PUCCH的时域资源与该第二PUCCH的时域资源位于不同的参考时间单元内、且该第二PUCCH的时域资源位于该第一PUCCH的时域资源之前;或者,(3)该第一PUCCH的时域资源和该第二PUCCH的时域资源位于一个参考时间单元内;其中,该参考时间单元的长度为预设的或者该网络设备指示的。当在多个小区传输承载HARQ-ACK信息的PUCCH的场景下,通过设定条件能够判断数据调度是否为有序调度,当设定条件满足时确定为调度错误,当设定条件不满足时确定为有序调度即调度正确。网络设备和终端设备可以根据设定的条件避免数据调度结果出现乱序,从而保证数据调度的有序性。其中,条件(1)只需要根据第二PUCCH的时域资源和第一PUCCH的时域资源的位置关系来判断,不需要判断两个时域资源是否在同一个时间单元内,这样终端设备的判断逻辑较为简单,易于实现。条件(2)和条件(3)通过参考时间单元来判断,能够在传输PUCCH的多个小区的时间单元长度不同的场景下,实现是否乱序的判断。
在一个可能的设计中,该参考时间单元的长度为小区组包含的M个小区对应的M个时间单元中长度最小的时间单元,该小区组包括该第一小区和该第二小区,该小区组中包括的每个小区均为允许传输PUCCH的小区,M为正整数,M大于1。可选的,如果M个小区对应的时间单元包含的符号个数是相同的,那么参考时间单元的长度也可以是M个小区中子载波间隔最大的小区。第一PUCCH的时域资源和第二PUCCH的时域资源位于不同的参考时间单元内,第一PUCCH的时域资源在第二PUCCH的时域资源之前,就可以调度正常。可以以参考时间单元为粒度,切换传输PUCCH的小区,参考时间单元的长度越小,PUCCH的发送机会更多,HARQ-ACK信息的反馈时延更低。
在一个可能的设计中,该参考时间单元的长度为小区组包含的M个小区对应的M个时间单元中长度最大的时间单元,该小区组包括该第一小区和该第二小区,该小区组中包括的每个小区均为允许传输PUCCH的小区,M为正整数。可以以参考时间单元为粒度,切换传输PUCCH的小区,参考时间单元的长度越大,切换传输PUCCH的小区的粒度越大,终端设备的实现复杂度越低。
在一个可能的设计中,该方法还包括:当该第一PUCCH的时域资源与该第二PUCCH的时域资源位于同一个参考时间单元内时,使用该第一PUCCH和该第二PUCCH中较晚被调度的PUCCH,来承载该第一PDSCH的HARQ反馈信息和该第二PDSCH的HARQ反馈信息。可以在一个参考时间单元内出现多个PUCCH时,通过只传输一个PUCCH可以避免乱序的现象,以保证调度的顺利进行。
在一个可能的设计中,若第三PUCCH的时域资源的起始符号和终止符号位于两个不同的参考时间单元,则:将该第三PUCCH的时域资源的起始符号所在的参考时间单元作为该第三PUCCH的时域资源所位于的参考时间单元,或者,将该第三PUCCH的时域资源的终止符号所在的参考时间单元作为该第三PUCCH的时域资源所位于的参考时间单元,该第三PUCCH为该第一PUCCH或该第二PUCCH。
在一个可能的设计中,若该第一PUCCH的时域资源的起始符号和终止符号位于不同的参考时间单元内,和/或,该第二PUCCH的时域资源的起始符号和终止符号位于不同的参考时间单元内,则确定为调度错误。这样,通过设计不允许PUCCH的时域资源跨越两 个参考时间单元,能够有利于上述条件的判断。
在一个可能的设计中,向该网络设备发送PUCCH个数信息,该PUCCH个数信息指示在一个该参考时间单元内至多发送的用于承载HARQ-ACK信息的PUCCH的个数。这样可以灵活设置一个参考时间单元内发送的PUCCH的个数,当需要增加PUCCH传输机会时可以增加传输PUCCH的个数。当设置PUCCH的个数较少时,例如1个,可以节省传输资源,降低终端设备的实现复杂度。
第二方面,提供一种通信方法,该方法可以由网络设备执行,也可以由网络设备的部件执行。该方法可以通过以下步骤实现:生成第一调度信息和第二调度信息,向终端设备发送第一调度信息和第二调度信息。第一调度信息和第二调度信息的描述可以参考上述第一方面,在此不予赘述。网络设备在生成并发送第一调度信息和第二调度信息时,需要按照规则进行调度,该规则即不允许出现满足条件的调度结果,这里的条件可以参考上述第一方面对“条件”的描述。
第二方面的各个可能的设计可以参考第一方面的各个可能的设计的描述。
第三方面,提供一种通信装置,该装置可以是终端设备,也可以是位于终端设备中的部件(例如,芯片,或者芯片系统,或者电路)。该装置具有实现上述第一方面和第一方面的任一种可能的设计中的方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。一种设计中,该装置可以包括处理单元和收发单元。示例性地:收发单元用于接收来自网络设备的第一调度信息和第二调度信息;处理单元用于当条件满足时确定为调度错误。上述处理单元和收发单元更详细的描述可以参考上述第一方面中相关描述直接得到。第三方面以及各个可能的设计的有益效果可以参考第一方面对应部分的描述。
第四方面,提供一种通信装置,该装置可以是网络设备,也可以是位于网络设备中的部件(例如,芯片,或者芯片系统,或者电路)。该装置具有实现上述第二方面和第二方面的任一种可能的设计中的方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。一种设计中,该装置可以包括处理单元和收发单元。示例性地:收发单元用于向终端设备发送第一调度信息和第二调度信息;处理单元用于生成第一调度信息和第二调度信息。上述处理单元和收发单元更详细的描述可以参考上述第二方面中相关描述直接得到。第四方面以及各个可能的设计的有益效果可以参考第二方面对应部分的描述。
第五方面,本申请实施例提供一种通信装置,该通信装置包括接口电路和处理器,处理器和接口电路之间相互耦合。处理器通过逻辑电路或执行代码指令用于实现上述第一方面、第一方面各个可能的设计所描述的方法。接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置。可以理解的是,接口电路可以为收发器或输入输出接口。
可选的,通信装置还可以包括存储器,用于存储处理器执行的指令或存储处理器运行指令所需要的输入数据或存储处理器运行指令后产生的数据。所述存储器可以是物理上独立的单元,也可以与所述处理器耦合,或者所述处理器包括所述存储器。
第六方面,本申请实施例提供一种通信装置,该通信装置包括接口电路和处理器,处理器和接口电路之间相互耦合。处理器通过逻辑电路或执行代码指令用于实现上述第二方面、第二方面各个可能的设计所描述的方法。接口电路用于接收来自所述通信装置之外的 其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置。可以理解的是,接口电路可以为收发器或输入输出接口。
可选的,通信装置还可以包括存储器,用于存储处理器执行的指令或存储处理器运行指令所需要的输入数据或存储处理器运行指令后产生的数据。所述存储器可以是物理上独立的单元,也可以与所述处理器耦合,或者所述处理器包括所述存储器。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或可读指令,当所述计算机序或可读指令被通信装置执行时,使得如上述各方面或各方面各个可能的设计中所述的方法被执行。
第八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器。存储器用于存储程序、指令或代码;处理器用于执行存储器存储的程序、指令或代码,以实现上述各方面或各方面各个可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,提供了一种包含指令的计算机程序产品,当其被通信装置执行时,使得如第各方面或各方面各个可能的设计中所述的方法被执行。
附图说明
图1为本申请实施例中通信系统的架构示意图;
图2为本申请实施例中场景1中PUCCH传输示意图之一;
图3为本申请实施例中场景1中PUCCH传输示意图之二;
图4为本申请实施例中场景1中PUCCH传输示意图之三;
图5为本申请实施例中场景1中PUCCH传输示意图之四;
图6为本申请实施例中通信方法流程示意图;
图7为本申请实施例中调度示意图之一;
图8为本申请实施例中调度示意图之二;
图9为本申请实施例中调度示意图之三;
图10为本申请实施例中调度示意图之四;
图11为本申请实施例中调度示意图之五;
图12为本申请实施例中调度示意图之六;
图13为本申请实施例中调度示意图之七;
图14为本申请实施例中调度示意图之八;
图15为本申请实施例中调度示意图之九;
图16为本申请实施例中调度示意图之十;
图17为本申请实施例中调度示意图之十一;
图18为本申请实施例中调度示意图之十二;
图19为本申请实施例中调度示意图之十三;
图20为本申请实施例中调度示意图之十四;
图21为本申请实施例中调度示意图之十五;
图22为本申请实施例中调度示意图之十六;
图23为本申请实施例中调度示意图之十七;
图24为本申请实施例中调度示意图之十八;
图25为本申请实施例中调度示意图之十九;
图26为本申请实施例中调度示意图之二十;
图27为本申请实施例中通信装置结构示意图之一;
图28为本申请实施例中通信装置结构示意图之二。
具体实施方式
本申请实施例提供一种通信方法及装置,以期在多个小区传输PUCCH的场景下保证数据调度的有序性。其中,方法和装置是基于相同或相似技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的通信方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE),也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR),也可以应用于未来演进的各种通信系统,例如第六代(6th generation,6G)通信系统、或者空天海地一体化通信系统。可理解的,本申请实施例描述的系统架构和应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
下面将结合附图,对本申请实施例进行详细描述。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。本申请在描述具体通信方法时,以实现基站功能的设备为网络设备为例进行描述,以实现终端功能的设备为终端设备为例进行描述。
在本申请中,网络设备向终端设备发送下行信号或下行信息,下行信息承载在下行信道上;终端设备向网络设备发送上行信号或上行信息,上行信息承载在上行信道上。终端设备为了与网络设备进行通信,需要与网络设备控制的小区建立无线连接。
上述内容阐述了本申请实施例的系统架构和可能的应用场景,为更好地理解本申请实施例的技术方案,下面介绍一下PUCCH组的概念。
PUCCH组为小区的组合,一个PUCCH组可以对应一个或多个小区。PUCCH组对应的小区可以是为终端设备服务的小区,例如载波聚合的应用场景或者双连接的应用场景中,可能会有多个小区为终端设备提供服务。一个PUCCH组对应L个小区,L为正整数,L个小区中的M个小区可以传输PUCCH,L个小区中的其余(L-M)个小区不允许传输PUCCH。允许传输PUCCH的M个小区可以定义为一个小区组。该小区组中包括的每个小区均为允许传输PUCCH的小区。网络设备为终端设备配置PUCCH组的信息,PUCCH组的信息可以包括PUCCH组中的小区以及允许传输PUCCH的小区组中的小区。举例来 说,网络设备为终端设备配置8个小区,8个小区为终端设备的服务小区。网络设备为终端设备配置一个PUCCH组,该PUCCH组对应该8个小区,其中2个小区为允许传输PUCCH的小区,这2个小区组成小区组,其余6个小区不允许传输PUCCH。终端设备可能会接收到PUCCH组对应的8个小区的下行数据,终端设备需要对接收到的下行数据进行HARQ反馈,终端设备只能在允许传输PUCCH的小区上传输HARQ反馈信息,即上述其余6个小区的HARQ反馈信息需要在允许传输PUCCH的这2个小区上进行传输。
网络设备可以为终端设备配置至多两个PUCCH组,两个PUCCH组可以包括主PUCCH组和辅PUCCH组。举例来说,网络设备为终端设备配置8个小区,分别记为小区1、小区2、……、小区8,该8个小区为终端设备的服务小区。网络设备为终端设备配置两个PUCCH组,记为PUCCH组1和PUCCH组2。其中,PUCCH组1对应小区1~小区4,例如,PUCCH组1中允许传输PUCCH的小区为小区1,终端设备可以接收小区1~小区4的下行数据,且只能在小区1上传输小区1~小区4的下行数据的HARQ反馈信息。PUCCH组2对应小区5~小区8。例如,PUCCH组2中允许传输PUCCH的小区为小区5,终端设备可以接收小区5~小区8的下行数据,且只能在小区5上传输小区5~小区8的下行数据的HARQ反馈信息。
在载波聚合场景中,终端设备可能接入同一个网络设备下的多个小区,多个小区中可以包括主小区(PCell)和辅小区(SCell),例如,可以设置主小区和一个辅小区为允许传输PUCCH的小区。上述PUCCH组的应用场景仅仅为举例说明,不构成对本申请实施例可以使用的应用场景的限制,本申请提供的方案可以应用到其它多个小区构成PUCCH组的应用场景中。
本申请实施例中,HARQ反馈信息是通过PUCCH承载的。可选的,PUCCH上还可以承载其它上行控制信息,例如调度请求(scheduling request,SR)或者信道状态信息(channel state information,CSI)等。
在一个场景1中,允许传输PUCCH的小区组中可以只包括一个小区,即只允许在一个小区上发送PUCCH。例如,如图2所示,在载波聚合的场景中,PUCCH组中包括一个主小区和一个辅小区,只允许在主小区上发送PUCCH。并且在一个时隙内至多传输一个承载HARQ-ACK的PUCCH。在图2所示的例子中,PUCCH只能在主小区传输,且在主小区的一个时隙内只能传输一个PUCCH。考虑到主小区的某个时隙可能是下行时隙,下行时隙不能发送PUCCH。这样只能等到下一个上行时隙才能发送PUCCH,导致HARQ-ACK信息的反馈时延较大。基于此,为了降低HARQ-ACK信息的反馈时延,可以在场景1方案的基础上改变规定,增加PUCCH组中用于传输PUCCH的小区数量,允许使用两个或两个以上的小区传输PUCCH。例如,如图3所示,在载波聚合的场景中,PUCCH组中包括一个主小区和一个辅小区,允许在主小区和该辅小区上发送PUCCH。如果按照场景1的方案,只允许一个小区(例如主小区)上发送PUCCH,假设主小区的时隙1为下行时隙,那么在主小区的时隙1上是不能发送PUCCH的。当允许主小区和辅小区上发送PUCCH时,如果辅小区的时隙1为上行时隙,则终端设备可以在与主小区的时隙1对齐的辅小区的时隙1上发送PUCCH,这样可以降低HARQ-ACK信息的反馈时延。
一个PUCCH组中,当PUCCH允许在多个小区上发送时,PUCCH的发送可以在多个小区之间切换,从而增加PUCCH的发送机会,降低HARQ-ACK信息的反馈时延。
数据的调度必须按照顺序进行,即不能乱序。数据调度的有序性是保证终端能够正确 接收以及解析数据的重要前提。以物理下行共享信道(physical downlink shared channel,PDSCH)1和PDSCH 2的调度为例,PUCCH 1用于承载PDSCH 1的HARQ反馈信息,PUCCH 2用于承载PDSCH 2的HARQ反馈信息。在上述场景1的方案的基础上,即只允许在一个小区上发送PUCCH。网络设备需要按顺序进行数据调度,即要保证数据调度的有序性。如图4所示,为正常顺序调度数据的举例。网络设备通过DCI 1来指示PDSCH 1的时域资源以及PUCCH 1的时域资源,通过DCI 2来指示PDSCH 2的时域资源以及PUCCH 2的时域资源。PDSCH 2的时域资源位于PDSCH 1的时域资源之后,PUCCH 2的时域资源位于PUCCH 1的时域资源之后。这样,终端设备能够按照顺序依次接收PDSCH1和PDSCH 2,并依次发送PUCCH 1和PUCCH 2,UE实现复杂度低,并且能够保证数据的正常收发。
如果数据调度不按照顺序进行,就会造成乱序。在上述场景1的方案的基础上,可以定义乱序为:PDSCH 2的时域资源在PDSCH 1的时域资源之后,PUCCH 2的时域资源位于PUCCH 1的时域资源之前,且PUCCH 2的时域资源和PUCCH 1的时域资源位于不同时隙。如图5所示,网络设备通过DCI 1来指示PDSCH 1的时域资源以及PUCCH 1的时域资源,通过DCI 2来指示PDSCH 2的时域资源以及PUCCH 2的时域资源。PDSCH 2的时域资源位于PDSCH 1的时域资源之后,而PUCCH 2的时域资源却位于PUCCH 1的时域资源之前,且PUCCH 2的时域资源和PUCCH 1的时域资源位于不同的时隙,那么这种情况就造成了乱序。网络设备对PDSCH 1和PDSCH 2的调度结果不应出现上述乱序的情况,终端设备也不期望接收到出现乱序的调度。一旦调度结果出现乱序的情况,终端设备在接收PDSCH 1准备PUCCH 1时,又需要去接收PDSCH 2准备PUCCH 2,会导致终端设备的实现变得复杂。
上述数据调度以及乱序的定义是基于场景1的,即只能在一个小区上发送PUCCH。当PUCCH组中的多个小区可以传输PUCCH时,如何进行数据调度以及如何定义乱序,是需要考虑的问题。
当PUCCH组中的多个小区可以传输PUCCH时,由于不同小区的子载波间隔可能不同,因此不同小区的时隙长度可能是不同的,也可能有的小区采用子时隙来作为传输PUCCH的单位,即一个子时隙内至多传输一个承载HARQ-ACK的PUCCH。为方便叙述,本申请实施例中,可以用时间单元表示传输PUCCH的单位,在一个小区的一个时间单元内至多只能发送一个用于承载HARQ-ACK信息的PUCCH。时间单元可以是时隙或者子时隙。一个时隙的长度可以为14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,一个子时隙的长度可以为7个OFDM符号或者2个OFDM符号。OFDM符号也可以简称为符号。
当PUCCH组中的多个小区可以传输PUCCH时,若存在不同小区对应的时间单元的长度不同,那么无法判断两个PUCCH是否在同一个时间单元内,也就无法判断数据调度是否存在乱序。
基于此,本申请实施例提供一种通信方法。如图6所示,该通信方法的具体流程如下所述。该方法由终端设备和网络设备来执行。终端设备执行的方法,可以由终端设备执行,也可以由终端设备的部件(例如处理器、芯片、电路或芯片系统等)执行。网络设备执行的方法,可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片、电路或芯片系统等)执行。以下对方法步骤的描述,以执行主体为终端设备和网络设备为例进行介 绍。
S600.网络设备生成第一调度信息和第二调度信息。
S601.网络设备向终端设备发送第一调度信息和第二调度信息,对应地,终端设备接收来自网络设备的第一调度信息和第二调度信息。
第一调度信息用于指示第一PDSCH的时域资源和第一PUCCH的时域资源,第二调度信息用于指示第二PDSCH的时域资源和第二PUCCH的时域资源。在本申请的实施例中,调度信息可以是下行控制信息(downlink control information,DCI),第一调度信息可以记为第一DCI,第二调度信息可以记为第二DCI。又例如,第一调度信息和第二调度信息都是无线资源控制(radio resource control,RRC)信令。或者,第一调度信息是DCI,第二调度信息是RRC信令。或者,第一调度信息是RRC信令,第二调度信息是DCI。应理解,第一调度信息和或第二调度信息,还可以包括DCI以及RRC信令,例如,RRC配置半静态调度(semi-persistent scheduling,SPS)的相关参数,例如周期等,然后用DCI激活SPS的调度。PDSCH可以是DCI调度的,也可以是半静态调度的。
应理解,第一调度信息指示第一PDSCH的时域资源和第一PUCCH的时域资源时,具体可以包括,例如,DCI指示第一PDSCH的时域资源,同时DCI又指示第一PDSCH与第一PUCCH之间的间隔,即中间间隔的时间单元的个数,在3GPP协议中,该间隔可以是PDSCH到HARQ-ACK反馈之间的间隔。具体可以是,间隔为0,即表示PDSCH和PUCCH在同一个时间单元,或者,传输PDSCH的小区的时间单元长度与传输PUCCH的小区的时间单元长度不同时,传输PDSCH的小区一个时间单元与传输PUCCH的小区的多个时间单元重叠,则间隔为0表示PUCCH在与PDSCH所在的时间单元重叠的多个时间单元内的最后一个时间单元上,此时PUCCH所在的时间单元的索引记为X;间隔为1,则表示PUCCH在时间单元X+1,即在以间隔为0确定的时间单元的后一个时间单元;间隔为2,则表示PUCCH在时间单元X+2。第二调度信息指示第二PDSCH的时域资源和第二PUCCH的时域资源的方法与第一调度信息一样,不再赘述。
第二PDSCH的时域资源在第一PDSCH的时域资源之后,或者说,第二PDSCH的资源在时域上的起始位置位于第一PDSCH的资源在时域上的结束位置之后。
第一PUCCH用于承载第一PDSCH的HARQ反馈信息,第二PUCCH用于承载第二PDSCH的HARQ反馈信息。HARQ反馈信息具体可以包括否定应答(negative acknowledgement,NACK),或者肯定应答(acknowledgement,ACK)。
第一PUCCH在第一小区上、第二PUCCH在第二小区上。即,若传输第一PUCCH,则将会在第一小区上传输第一PUCCH。若传输第二PUCCH,则将会在第二小区上传输第二PUCCH。小区还可以理解为载波,即第一PUCCH在第一载波上、第二PUCCH在第二载波上。一个小区可以配置一个载波,也可以配置多个载波,例如一个小区同时配置上行(uplink,UL)载波和辅助上行(supplementary uplink,SUL)载波。
S602.当条件满足时,终端设备确定为调度错误。
条件可以包括以下几种,为方便说明,可以将S602中所述的“条件”分别用第一条件、第二条件、第三条件来说明。
第一条件为:第二PUCCH的时域资源位于第一PUCCH的时域资源之前。可以理解的是,只要是满足第二PUCCH的时域资源位于第一PUCCH的时域资源之前,即确定为调度错误,不需要考虑第二PUCCH的时域资源与第一PUCCH的时域资源是否位于不同 的时间单元。当第二PUCCH的时域资源位于所述第一PUCCH的时域资源之前,终端设备确定为调度错误,也可以理解为,终端设备不期望第二PUCCH的时域资源位于所述第一PUCCH的时域资源之前。网络设备不应该这样调度,即不应该让第二PUCCH的时域资源位于所述第一PUCCH的时域资源之前。本申请实施例中,当涉及到“第二PUCCH的时域资源位于第一PUCCH的时域资源之前”的描述时,可以理解为第二PUCCH的时域资源的结束位置在第一PUCCH的时域资源的起始位置之前,或者,可以理解为第二PUCCH的时域资源的结束位置在第一PUCCH的时域资源的结束位置之前。
第二条件为:第一PUCCH的时域资源与第二PUCCH的时域资源位于不同的参考时间单元内、且第二PUCCH的时域资源位于第一PUCCH的时域资源之前。当第二条件满足,终端设备确定为调度错误,也可以理解为:终端设备不期望这样调度,即不期望第一PUCCH的时域资源与第二PUCCH的时域资源位于不同的参考时间单元内、且第二PUCCH的时域资源位于第一PUCCH的时域资源之前。网络设备不应该这样调度。
第三条件为:第一PUCCH的时域资源和第二PUCCH的时域资源位于一个参考时间单元内。可以理解的是,当满足第一PUCCH的时域资源和第二PUCCH的时域资源位于一个参考时间单元内时,即确定为调度错误,不需要考虑第二PUCCH的时域资源是否位于第一PUCCH的时域资源之前。当第三条件满足,终端设备确定为调度错误,也可以理解为:终端设备不期望这样调度,即不期望第一PUCCH的时域资源和第二PUCCH的时域资源位于一个参考时间单元内。网络设备不应该这样调度。第三条件还可以理解为:在一个参考时间单元内,在第一小区上传输第一PUCCH,且在第二小区上传输第二PUCCH。
需要说明的是,S602中的条件可以是第一条件、第二条件或第三条件中的任意一个,也可以是同时满足其中的多个条件,例如,若同时满足第一条件和第三条件,则在满足“第二PUCCH的时域资源位于第一PUCCH的时域资源之前、且第一PUCCH的时域资源和第二PUCCH的时域资源位于一个参考时间单元内”时,终端确定为调度错误。
S602中,条件满足时终端设备确定为调度错误,该条件可以认为是判定为乱序的条件。协议中可以规定网络设备对数据信道的调度不应该出现上述乱序的情况,或者说终端设备不期望接收出现上述乱序情况的数据调度。
基于此,上述几个条件也可以作如下理解。
基于第一条件,可以理解为:网络设备可以调度第一PUCCH的时域资源在第二PUCCH的时域资源之前,这样即为顺序调度,满足数据调度的有序性。
基于第二条件,可以理解为网络设备可以按照以下方式调度:第一PUCCH的时域资源与第二PUCCH的时域资源位于不同的参考时间单元内、且第一PUCCH的时域资源位于第二PUCCH的时域资源之前,这样即为顺序调度,满足数据调度的有序性。或者,网络设备还可以按照以下方式调度:第一PUCCH的时域资源与第二PUCCH的时域资源位于同一个参考时间单元。
基于第三条件,可以理解为网络设备可以按照以下方式调度:在一个参考时间单元内,只调度第一PUCCH和第二PUCCH中的一个。终端设备期望按照如下方式发送PUCCH:在一个参考时间单元内,只发送第一PUCCH和第二PUCCH中的一个。
上述第二条件和第三条件中涉及到参考时间单元的概念,该参考时间单元的长度可以是预设的,例如通过协议提前规定好参考时间单元的长度,网络设备和终端设备预先存储该参考时间单元的长度。该参考时间单元的长度也可以是网络设备向终端设备指示的,例 如可以通过RRC信令或MAC控制元素(control element,CE)或DCI指示。该参考时间单元的长度可能是一个时隙,也可以是一个子时隙,该参考时间单元的长度可以是N个符号,例如N的值可以是2、7、或14。该参考时间单元可以是根据小区组中某个小区对应的时间单元的长度来确定的,或者根据小区组中的某个小区的子载波间隔来确定的。
如上文中对小区组的概念的说明,PUCCH组中包括L个小区,L个小区中只允许其中M个小区传输PUCCH,这M个小区组成小区组。结合上述图6实施例,M个小区中可以包括第一小区和第二小区,网络设备可能会调度M个小区中的第一小区和第二小区来传输终端设备的PUCCH。M、L为正整数,L大于或者等于M。例如,网络设备可以通过RRC信令配置PUCCH组中可以传输PUCCH的M个小区的信息,通过DCI向终端设备指示在M个小区中的第一小区和第二小区上传输PUCCH。
M个小区中的每个小区都会对应各自的用于传输PUCCH的时间单元,在一个用于传输PUCCH的时间单元里该小区只会传输至多一个承载HARQ-ACK信息的PUCCH。例如,M个小区中的小区A对应用于传输PUCCH的时间单元为时间单元A,时间单元A包括一个或多个符号。在一个时间单元A上要么会传输一个PUCCH,要么不传输PUCCH。
小区组包含的M个小区对应M个时间单元,该M个时间单元的长度可能相同也可能不同。参考时间单元可以是根据小区组中某个小区对应的时间单元的长度来确定的。在一个实施例中,参考时间单元的长度可以是M个时间单元中长度最小的时间单元。在另一个实施例中,参考时间单元的长度可以是M个时间单元中长度最大的时间单元。下面在不同长度的参考时间单元的基础上,结合上述第二条件,对图6实施例的可选实现方式进行说明。
由于第一PUCCH在第一小区上、第二PUCCH在第二小区上,第一小区对应的时间单元可能与第二小区对应的时间单元不同,这样无法判断第一PUCCH的时域资源和第二PUCCH的时域资源是否在不同的时间单元内,从而不便于定义是否调度乱序。参考时间单元的定义,可以有利于判断第一PUCCH的时域资源和第二PUCCH的时域资源是否在不同的参考时间单元内。这样,若第一PUCCH的时域资源与第二PUCCH的时域资源位于不同的参考时间单元内、且第二PUCCH的时域资源位于第一PUCCH的时域资源之前,即第二条件满足,终端设备确定为调度错误。
在本申请的实施例中,为方便示意,第一PDSCH可以用PDSCH 1表示,第二PDSCH可以用PDSCH 2表示,第一PUCCH可以用PUCCH 1表示,第二PUCCH可以用PUCCH2表示。第一调度信息用DCI 1表示,第二调度信息用DCI 2表示。
下面结合场景,对第二条件是否满足进行举例说明。
如图7所示,假设时间单元为一个时隙,第一小区的子载波间隔为15kHz,第二小区的子载波间隔为30kHz,这样第一小区对应的时间单元长度为第二小区对应的时间单元的长度的二倍。在本申请的实施例中,第一小区和第二小区是M个小区中的两个小区。假设参考时间单元为小区组中M个小区对应的M个时间单元中时间长度最小的时间单元,且M个时间长度最小的时间单元为子载波间隔为30kHz下的一个时隙,则参考时间单元的长度为第二小区的一个时隙的长度。第一小区的时隙0与第二小区的时隙0和时隙1对齐。可以看出,PUCCH 2和PUCCH 1的时域资源位于不同的参考时隙内,且PUCCH 2的时域资源位于PUCCH 1的时域资源之前,这样,图7所示的调度即满足第二条件,终端设备确定为调度错误。
如图8所示,假设时间单元为一个时隙,第一小区的子载波间隔为15kHz,第二小区的子载波间隔为30kHz。假设参考时间单元为小区组中M个小区对应的M个时间单元中时间长度最大的时间单元,且M个时间长度最大的时间单元为子载波间隔为15KHz下的一个时隙,则参考时间单元的长度为第一小区的一个时隙的长度。第一小区的时隙0与第二小区的时隙0和时隙1对齐,第一小区的时隙1与第二小区的时隙2和时隙3对齐。可以看出,PUCCH 2和PUCCH 1的时域资源位于不同的参考时间单元内,且PUCCH 2的时域资源位于PUCCH 1的时域资源之前,这样,图8所示的调度即满足第二条件,终端设备确定为调度错误。
可以看出,当参考时间单元的长度为M个时间单元中长度最小的时间单元时,PUCCH的发送机会更多,HARQ-ACK信息的反馈时延更低。例如,网络设备调度第一PUCCH的时域资源与第二PUCCH的时域资源位于不同的参考时间单元内时,第一PUCCH的时域资源位于第二PUCCH的时域资源之前,这样,可以以参考时间单元为粒度,切换传输PUCCH的小区,参考时间单元的长度越小,PUCCH的发送机会更多,HARQ-ACK信息的反馈时延更低。假设参考时间单元的长度是0.5ms,在第一个0.5ms在第一小区上发送PUCCH 1,在第二个0.5ms在第二小区上发送PUCCH 2,也就是说可以以0.5ms的粒度来切换发送PUCCH的小区。
以上给出了两种不同的参考时间长度下,基于第二条件的具体实现方法。第二条件具有两个条件,其中一个条件为第一PUCCH的时域资源与第二PUCCH的时域资源位于不同的参考时间单元内,在这个条件下,才需要考虑第二PUCCH的时域资源与第一PUCCH的时域资源的位置。如果第一PUCCH的时域资源与第二PUCCH的时域资源位于同一个参考时间单元内,那么可以采用覆盖(override)的方法来避免乱序,以保证调度的顺利进行,也可以理解为是一种PUCCH的更新的方法。具体地,如果第一PUCCH的时域资源与第二PUCCH的时域资源位于同一个参考时间单元内,使用第一PUCCH和第二PUCCH中较晚被调度的PUCCH,来承载第一PDSCH的HARQ反馈信息和第二PDSCH的HARQ反馈信息。应理解,PUCCH上承载的HARQ反馈信息可以称为一个HARQ-ACK码本(codebook)。其中,较晚被调度是指,接收调度该PUCCH的DCI的时刻比另一个DCI的时刻较晚,即接收第二DCI的时刻晚于接收第一DCI的时刻,或者理解为,承载第二DCI的物理下行控制信道(physical downlink control channel,PDCCH)的资源在时域上的结束位置位于承载第一DCI的PDCCH的资源在时域上的结束位置之后,或者承载第二DCI的PDCCH的资源在时域上的起始位置位于承载第一DCI的PDCCH的资源在时域上的起始位置之后。当第一PUCCH是半静态调度SPS的PUCCH,第二PUCCH是DCI调度的PUCCH,则较晚被调度的PUCCH是指第二PUCCH,即DCI调度的PUCCH,此时,用DCI调度的PUCCH(即第二PUCCH)来承载半静态调度的HARQ反馈信息(即第一PDSCH的HARQ反馈信息)以及动态调度的PDSCH的HARQ反馈信息(即第二PDSCH的HARQ反馈信息)。
如果较晚被调度的PUCCH为第二PUCCH,则只发送第二PUCCH,不发送第一PUCCH,使用第二PUCCH,来承载第一PDSCH的HARQ反馈信息和第二PDSCH的HARQ反馈信息。可以理解为第二PUCCH覆盖第一PUCCH。由于第一PUCCH和第二PUCCH只发送了其中一个,因此不会存在乱序的问题。
以下结合场景对覆盖的实施例进行举例。
如图9所示,假设时间单元为一个时隙,第一小区的子载波间隔为15kHz,第二小区的子载波间隔为30kHz。假设参考时间单元为小区组中M个小区对应的M个时间单元中时间长度最小的时间单元,且M个时间长度最小的时间单元为子载波间隔为30kHz下的一个时隙,则参考时间单元的长度为第二小区的一个时隙的长度。PUCCH 2和PUCCH 1的时域资源位于同一个参考时间单元内,且PUCCH 2的时域资源位于PUCCH 1的时域资源之前,由于PUCCH 2较晚被调度,因此,使用PUCCH 2承载PDSCH 1的HARQ反馈信息和PDSCH 2的HARQ反馈信息,不发送PUCCH 1。
图9是以参考时间单元的长度为M个小区对应的M个时间单元中时间长度最小的时间单元为例进行描述的。可以理解的是,当参考时间单元的长度为M个小区对应的M个时间单元中时间长度最大的时间单元时,同样可以采样上述覆盖的方法,在此不予赘述。
假设第一PUCCH和第二PUCCH中较晚被调度的为第二PUCCH,以下结合一些场景,对第二条件和覆盖方法进一步进行举例说明。
如图10所示,第一小区对应的时间单元为子载波间隔为15kHz下的一个时隙,一个时隙包括14个符号。第二小区对应的时间单元为子载波间隔为15kHz下的一个子时隙,子时隙包括7个符号。这样第一小区对应的时间单元长度为第二小区对应的时间单元的长度的二倍。PUCCH 2在图10中用2表示,PUCCH 1在图10中用1表示。假设参考时间单元为小区组中M个小区对应的M个时间单元中时间长度最小的时间单元,且M个时间长度最小的时间单元为子载波间隔为15KHz下的一个包括7个符号的子时隙,则参考时间单元的长度为第二小区的一个子时隙的长度。第一小区的时隙0与第二小区的两个子时隙对齐。
如图11所示,第一小区对应的时间单元为子载波间隔为15kHz下的一个子时隙,一个子时隙包括7个符号。第二小区对应的时间单元为子载波间隔为15kHz下的一个子时隙,子时隙包括2个符号。PUCCH 2在图11中用2表示,PUCCH 1在图11中用1表示。假设参考时间单元为小区组中M个小区对应的M个时间单元中时间长度最小的时间单元,且M个时间长度最小的时间单元为子载波间隔为15KHz下的一个包括2个符号的子时隙,则参考时间单元的长度为第二小区的一个子时隙的长度。
结合图10和图11,圆圈外为一个例子,圆圈内为另一个例子。在一个例子中,PUCCH2的时域资源和PUCCH 1的时域资源位于同一个参考时间单元内,即PUCCH 2的时域资源位于第二小区的一个子时隙内,PUCCH 1的时域资源的位置包含于与第二小区的一个子时隙重叠的时间内。则采用覆盖的方法,使用PUCCH 2传输PDSCH 1的HARQ反馈信息和PDSCH 2的HARQ反馈信息,不发送PUCCH 1。这样,即便是PUCCH 2的时域资源位于PUCCH 1的时域资源之前,由于不发送PUCCH 1,因此不会存在数据调度乱序的问题。在另一个例子中,PUCCH 2的时域资源和PUCCH 1的时域资源位于不同的参考时间单元,且PUCCH 2的时域资源位于PUCCH 1的时域资源之前,满足第二条件,则为乱序,即调度错误。
以上给出各个场景中,第一PUCCH的时域资源和第二PUCCH的时域资源都全部落在一个参考时间单元内,或者,第一PUCCH的时域资源和第二PUCCH的时域资源落在不同的参考时间单元内,在一些场景中,可能会出现PUCCH的时域资源只有部分落在一个参考时间单元内,另一部分在另一个参考时间单元内,即PUCCH的时域资源跨两个参考时间单元的情况,为方便描述,跨参考时间单元的PUCCH可以记为第三PUCCH。第三 PUCCH跨参考时间单元也可以认为是,第三PUCCH的时域资源的起始符号和终止符号位于两个不同的参考时间单元。在这种情况下,可以将第三PUCCH的时域资源的起始符号所在的参考时间单元作为第三PUCCH的时域资源所位于的参考时间单元,或者,将第三PUCCH的时域资源的终止符号所在的参考时间单元作为第三PUCCH的时域资源所位于的参考时间单元。第一PUCCH的时域资源和第二PUCCH的时域资源都有可能跨参考时间单元,当第一PUCCH的时域资源跨参考时间单元时,可以将第一PUCCH的时域资源的起始符号所在的参考时间单元作为第一PUCCH的时域资源所位于的参考时间单元,或者,将第一PUCCH的时域资源的终止符号所在的参考时间单元作为第一PUCCH的时域资源所位于的参考时间单元。当第二PUCCH的时域资源跨参考时间单元时,可以将第二PUCCH的时域资源的起始符号所在的参考时间单元作为第二PUCCH的时域资源所位于的参考时间单元,或者,将第二PUCCH的时域资源的终止符号所在的参考时间单元作为第二PUCCH的时域资源所位于的参考时间单元。第一PUCCH的时域资源和第二PUCCH的时域资源可以使用相同的规则确定所位于的参考时间单元,例如,第一PUCCH的时域资源和第二PUCCH的时域资源都符合:将PUCCH的时域资源的起始符号所在的参考时间单元作为PUCCH的时域资源所位于的参考时间单元。又例如,第一PUCCH的时域资源和第二PUCCH的时域资源都符合:将PUCCH的时域资源的终止符号所在的参考时间单元作为PUCCH的时域资源所位于的参考时间单元。
当然,除起始符号和终止符号之外,还可以将第三PUCCH的时域资源的任意指定的符号所在的参考时间单元作为第三PUCCH的时域资源所位于的参考时间单元。
下面给出跨参考时间单元的场景举例。
如图12所示,假设时间单元为一个时隙,第一小区的子载波间隔为15kHz。第二小区的子载波间隔为30kHz。假设参考时间单元为小区组中M个小区对应的M个时间单元中时间长度最小的时间单元,且M个时间长度最小的时间单元为子载波间隔为30kHz下的一个时隙,则参考时间单元的长度为第二小区的一个时隙的长度。PUCCH 2的时域资源跨越第二小区的时隙0和时隙1,可以将PUCCH 2的时域资源的起始符号所在的参考时间单元作为PUCCH 2的时域资源所位于的参考时间单元,即认为PUCCH 2的时域资源位于第二小区的时隙0对应的参考时间单元,那么PUCCH 2的时域资源就与PUCCH 1的时域资源位于同一个参考时间单元。如果将PUCCH 2的时域资源的终止符号所在的参考时间单元作为PUCCH 2的时域资源所位于的参考时间单元,PUCCH 2的时域资源位于第二小区的时隙1对应的参考时间单元,那么PUCCH 2的时域资源与PUCCH 1的时域资源位于不同参考时间单元。进一步地,根据PUCCH 2的时域资源与PUCCH 1的时域资源位于相同的参考时间单元,则可以采用覆盖的方法。或者,根据PUCCH 2的时域资源与PUCCH 1的时域资源位于不同的参考时间单元,则当PUCCH 2的时域资源位于PUCCH 1的时域资源之前时,符合第二条件,即调度错误;当PUCCH 2的时域资源位于PUCCH 1的时域资源之后时,调度符合有序性,即调度正确。
如图13所示,在图12实施例的基础上,假设在第二小区的时隙1还传输PUCCH 3,调度的顺序依次为PUCCH 1、PUCCH 2和PUCCH 3。PUCCH 3在图13中用3表示。PUCCH 2的时域资源跨越第二小区的时隙0和时隙1。若将PUCCH 2的时域资源的起始符号所在的参考时间单元作为PUCCH 2的时域资源所位于的参考时间单元,即认为PUCCH 2的时域资源位于第二小区的时隙0对应的参考时间单元,那么PUCCH 2的时域 资源就与PUCCH 1的时域资源位于同一个参考时间单元,PUCCH 2被调度晚于PUCCH 1,PUCCH 2覆盖PUCCH 1,只发送PUCCH 2,不发送PUCCH 1。在第二小区的时隙1,只有PUCCH 3,则发送PUCCH 3即可。若将PUCCH 2的时域资源的终止符号所在的参考时间单元作为PUCCH 2的时域资源所位于的参考时间单元,即认为PUCCH 2的时域资源位于第二小区的时隙1对应的参考时间单元,那么PUCCH 2的时域资源就与PUCCH 3的时域资源位于同一个参考时间单元,PUCCH 3被调度晚于PUCCH 2,PUCCH 3覆盖PUCCH 2,只发送PUCCH3,不发送PUCCH 2。在第二小区的时隙0,只有PUCCH 1,则发送PUCCH 1即可。
以上描述了当一个PUCCH的时域资源跨参考时间单元时的解决方案,更一般的来讲,一个小区上的PUCCH的时域资源可能会跨另一个小区的时间单元,即跨时间单元的场景,跨时间单元是指跨越一个小区的时间单元,并非上文中的参考时间单元。如果一个小区上的PUCCH的时域资源跨另一个小区的时间单元,这种情况下,那么该另一个小区的被跨的两个时间单元上都不能发送PUCCH。例如,如图14所示,假设时间单元为一个时隙,第一小区的子载波间隔为15kHz,第二小区的子载波间隔为30kHz。PUCCH 1的时域资源位于第二小区的时隙0和时隙1,那么第二小区的时隙0和时隙1上都不允许发送PUCCH。那么第二小区只能在下一个未被跨越的时隙上发送PUCCH 2。可以理解为,在一个小区对应的时间单元(例如记为第一时间单元)内发送PUCCH,则在其它小区的与第一时间单元重叠的时间单元上,不允许发送PUCCH。重叠可以理解为是时域部分重叠,或者全部重叠。
基于跨时间单元的场景下,需要额外的规则,在一个实施例中,可以规定PUCCH的时域资源不允许跨时间单元,或者说,网络设备不允许调度一个小区的PUCCH的时域资源跨越其他小区的两个时间单元。从终端设备角度来讲,终端设备不期望一个小区上的PUCCH的时域资源与其他小区的两个时间单元重叠。结合图6实施例,第一PUCCH的时域资源不应在第二小区的两个时间单元上,第二PUCCH的时域资源不应在第一小区的两个时间单元上。若第一PUCCH的时域资源的起始符号和终止符号位于不同的参考时间单元内,或,第二PUCCH的时域资源的起始符号和终止符号位于不同的参考时间单元内,则确定为调度错误。
以下在不同长度的参考时间单元的基础上,结合上述第三条件,对图6实施例的可选实现方式进行说明。
第三条件为:第一PUCCH的时域资源和第二PUCCH的时域资源位于一个参考时间单元内。在一个实施例中,参考时间单元的长度可以是M个时间单元中长度最大的时间单元。在一个参考时间单元内,只要是第一PUCCH和第二PUCCH都被调度在这同一个参考时间单元内,则认为调度错误。网络设备不允许这样调度,终端设备也不期望这样调度,即终端设备不期望第一PUCCH的时域资源和第二PUCCH的时域资源位于一个参考时间单元内。在一个参考时间单元内,只允许在一个小区上发送PUCCH。终端设备不期望在一个参考时间单元内在不同的小区上传输PUCCH,网络设备不允许在一个参考时间内调度在不同的小区上传输PUCCH。
以下在参考时间单元的长度为M个时间单元中长度最大的时间单元的基础上,结合第三条件,对图6实施例的几种场景进行举例说明。
如图15所示,假设时间单元为一个时隙,第一小区的子载波间隔为15kHz,第二小区 的子载波间隔为30kHz。假设参考时间单元为小区组中M个小区对应的M个时间单元中时间长度最大的时间单元,且M个时间长度最大的时间单元为子载波间隔为15kHz下的一个时隙,则参考时间单元的长度为第一小区的一个时隙的长度。第一小区的时隙0与第二小区的时隙0和时隙1对齐。第一小区的时隙1与第二小区的时隙2和时隙3对齐。图15中,在第一小区的时隙0对应的一个参考时间单元内,终端设备在第一小区上发送PUCCH 1的基础上,不期望还在第二小区上发送PUCCH 2。在第一小区的时隙1对应的一个参考时间单元内,终端设备在第二小区上发送PUCCH2的基础上,不期望还在第一小区上发送PUCCH 1。即,在一个参考时间单元内,终端设备不期望发生PUCCH传输小区的切换。如果在一个参考时间单元内,在第一小区上传输第一PUCCH,且在第二小区上传输第二PUCCH,那么,认为调度错误。
从图15中可以看出,在一个参考时间单元内,在第二小区上可以在两个时间单元上发送PUCCH,当然,也可以在第二小区上在其中一个时间单元上发送PUCCH。本申请实施例中,在除图15实施例之外的其他应用场景下,一个参考时间单元内,一个小区也可能会发送一个或多个PUCCH。基于此,在一个可能的设计中,终端设备还可以向网络设备发送PUCCH个数信息,该PUCCH个数信息指示在一个参考时间单元内至多发送的用于承载HARQ-ACK信息的PUCCH的个数。例如,可以规定在一个参考时间单元内至多发送一个用于承载HARQ-ACK信息的PUCCH。那么,基于图15的实施例,当规定在一个参考时间单元内至多发送一个PUCCH时,可以如图16所示,在第一小区的时隙1对应的参考时间单元内,第二小区上只发送一个PUCCH。应理解,该PUCCH个数信息可以是终端设备的一个能力,终端设备可以通过能力上报的信令将该信息告诉给网络设备。
在图6实施例的基础上,本申请还可以提供一种可选的实现方法,终端设备可以向网络设备发送能力信息,该能力信息可以包括PUCCH个数信息和或小区个数信息。PUCCH个数信息指示在一个参考时间单元内至多发送的用于承载HARQ-ACK信息的PUCCH的个数。小区个数信息可以指示在一个参考时间单元内至多使用的传输PUCCH的小区的个数,当然,这里传输PUCCH是指传输用于承载HARQ-ACK信息的PUCCH。
如图17所示,第一小区对应的时间单元为子载波间隔为15KHz下的一个包括7个符号的子时隙,第二小区对应的时间单元为子载波间隔为30KHz下的一个包括7个符号的子时隙。假设参考时间单元为小区组中M个小区对应的M个时间单元中时间长度最大的时间单元,且M个时间单元中时间长度最大的时间单元为子载波间隔为15kHz下的一个子时隙,则参考时间单元的长度为第一小区的一个子时隙的长度。图17中,在第一小区的第一个子时隙对应的一个参考时间单元内,终端设备只在第一小区上发送PUCCH;在第一小区的第二个子时隙对应的一个参考时间单元内,终端设备只在第一小区上发送PUCCH;在第一小区的第三个子时隙对应的一个参考时间单元内,终端设备只在第二小区上发送PUCCH;在第一小区的第四个子时隙对应的一个参考时间单元内,终端设备只在第二小区上发送PUCCH。同样的,在一个参考时间单元内,终端设备不期望发生PUCCH传输小区的切换。如果在一个参考时间单元内,在第一小区上传输第一PUCCH,且在第二小区上传输第二PUCCH,那么,认为调度错误。
第三条件为:第一PUCCH的时域资源和第二PUCCH的时域资源位于一个参考时间单元内。在另一个实施例中,参考时间单元的长度可以是M个时间单元中长度最小的时间单元。在一个参考时间单元内,只要是第一PUCCH和第二PUCCH都被调度在这同一个 参考时间单元内,则认为调度错误。网络设备不允许这样调度,终端设备也不期望这样调度。在一个参考时间单元内,只允许在一个小区上发送PUCCH。终端设备不期望在一个参考时间单元内在不同的小区上传输PUCCH,网络设备不允许在一个参考时间内调度在不同的小区上传输PUCCH。基于第三条件,在一个参考时间单元内,只允许在一个小区上传输PUCCH。可以理解的是,基于第三条件的约束下,网络设备在一个参考时间单元内只允许调度在一个小区上传输PUCCH,或者,基于第三条件的约束下,终端设备只期望在一个小区上传输PUCCH。在第三条件的约束调度下,若在一个参考时间单元内在不同小区上都调度了PUCCH的传输,则可以采用覆盖的方法,具体覆盖的方法可以参考上文中的描述。或者,在第三条件的约束调度下,在一个参考时间单元内只在一个小区发送PUCCH,那么可以结合第二条件或第一条件,来判断是否为调度错误,具体第一条件或第二条件可以参考本文相关的描述,在此不予赘述。
以下对参考时间单元的长度为M个时间单元中长度最小的时间单元的基础上,结合第三条件,对图6实施例的场景进行举例说明。
如图18所示,假设时间单元为一个时隙,第一小区的子载波间隔为15kHz,第二小区的子载波间隔为30kHz。假设参考时间单元为小区组中M个小区对应的M个时间单元中时间长度最小的时间单元,且M个时间单元中时间长度最小的时间单元为子载波间隔为15kHz下的一个时隙,则参考时间单元的长度为第一小区的一个时隙的长度。图18中,在第二小区的时隙0对应的一个参考时间单元内,终端设备在第一小区上发送PUCCH的基础上,不期望还在第二小区上发送PUCCH。在第二小区的时隙1对应的一个参考时间单元内,终端设备在第二小区上发送PUCCH的基础上,不期望还在第一小区上发送PUCCH。换句话说,在第二小区的时隙0对应的一个参考时间单元内,终端设备只在第一小区上发送PUCCH,不在第二小区上发送PUCCH;在第二小区的时隙1对应的一个参考时间单元内,终端设备只在第二小区上发送PUCCH,不在第一小区上发送PUCCH;在第二小区的时隙2对应的一个参考时间单元内,终端设备只在第二小区上发送PUCCH,不在第一小区上发送PUCCH;在第二小区的时隙3对应的一个参考时间单元内,终端设备只在第一小区上发送PUCCH,不在第二小区上发送PUCCH。即,在一个参考时间单元内,终端设备不期望发生PUCCH传输小区的切换。如果在一个参考时间单元内,在第一小区上传输第一PUCCH,且在第二小区上传输第二PUCCH,那么,认为调度错误。
至此,完成了对第二条件和第三条件的各种实施例的说明。
下面结合第一条件对应的实施例,对可选的实现方式进行说明。
第一条件为:第二PUCCH的时域资源位于第一PUCCH的时域资源之前。不考虑第二PUCCH的时域资源和第一PUCCH的时域资源是否在不同的时间单元内。第二小区的时间单元可以和第一小区的时间单元的长度相同,也可以不同。
以下结合场景,对第一条件是否满足进行举例说明。
在一种场景下,第一小区的子载波间隔和第二小区的子载波间隔不同,第一小区和第二小区的时间单元都是时隙,一个时隙内包含的符号个数是相同的。第一小区对应的时间单元为子载波间隔为15kHz下的一个时隙,一个时隙包含14个符号;第二小区对应的时间单元为子载波间隔为30kHz下的一个时隙,一个时隙包含14个符号。第一小区对应的时间单元长度为第二小区对应的时间单元的长度的二倍。基于此场景,如图19所示,PUCCH 2的时域资源位于PUCCH 1的时域资源之前,图19所示的调度即满足第一条件, 终端设备确定为调度错误。如图20所示,PUCCH 2的时域资源位于PUCCH 1的时域资源之后,则不满足第一条件,为正常调度,满足调度的有序性。
在另一个场景下,第一小区的子载波间隔和第二小区的子载波间隔相同,但是第一小区的时间单元和第二小区的时间单元不同。
如图21所示,第一小区对应的时间单元为子载波间隔为15kHz下的一个时隙,第二小区对应的时间单元为子载波间隔为15kHz下的一个包含7个符号的子时隙。图21中,PUCCH 2的时域资源位于PUCCH 1的时域资源之前,图21所示的调度即满足第一条件,终端设备确定为调度错误。
如图22所示,第一小区对应的时间单元为子载波间隔为15kHz下的一个包含7个符号的子时隙,第二小区对应的时间单元为子载波间隔为15kHz下的一个包含2个符号的子时隙。图22中,PUCCH 2用2表示。PUCCH 2的时域资源位于PUCCH 1的时域资源之前,图22所示的调度即满足第一条件,终端设备确定为调度错误。
如图23所示,第一小区对应的时间单元为子载波间隔为15kHz下的一个包含7个符号的子时隙,第二小区对应的时间单元为子载波间隔为15kHz下的一个包含7个符号的子时隙。第一小区对应的时间单元长度与第二小区对应的时间单元的长度相同。图23中,PUCCH 2的时域资源位于PUCCH 1的时域资源之前,图23所示的调度即满足第一条件,终端设备确定为调度错误。
在又一个场景下,第一小区的子载波间隔和第二小区的子载波间隔不同,第一小区和第二小区的时间单元都是子时隙,一个子时隙内包含的符号个数也是相同的。
如图24所示,第一小区对应的时间单元为子载波间隔为15kHz下的一个子时隙,一个子时隙包含7个符号;第二小区对应的时间单元为子载波间隔为30kHz下的一个子时隙,一个子时隙包含7个符号。第一小区对应的时间单元长度为第二小区对应的时间单元的长度的二倍。PUCCH 2的时域资源位于PUCCH 1的时域资源之前,图24所示的调度即满足第一条件,终端设备确定为调度错误。
如图25所示,第一小区对应的时间单元为子载波间隔为15kHz下的一个子时隙,一个子时隙包含2个符号;第二小区对应的时间单元为子载波间隔为30kHz下的一个子时隙,一个子时隙包含2个符号。第一小区对应的时间单元长度为第二小区对应的时间单元的长度的二倍。PUCCH 2的时域资源位于PUCCH 1的时域资源之前,图25所示的调度即满足第一条件,终端设备确定为调度错误。
在又一个场景下,第一小区和第二小区的子载波间隔相同,且第一小区和第二小区的时间单元都是时隙,一个时隙内包含的符号个数是相同的。第一小区对应的时间单元为子载波间隔为15kHz下的一个时隙,一个时隙包含14个符号;第二小区对应的时间单元为子载波间隔为15kHz下的一个时隙,一个时隙包含14个符号。第一小区对应的时间单元长度与第二小区对应的时间单元的长度相同。基于此场景,如图26所示,PUCCH 2的时域资源位于PUCCH 1的时域资源之前,即满足第一条件,终端设备确定为调度错误。即在一个时间单元内,PUCCH 2的时域资源位于PUCCH 1的时域资源之前,终端设备确定为调度错误。也可以理解为,在一个参考时间单元内,PUCCH 2的时域资源位于PUCCH 1的时域资源之前,终端设备确定为调度错误。此时PUCCH 2并没有覆盖PUCCH 1,即PUCCH之间的覆盖只能在一个小区内进行,不能在小区间进行。
以上实施例中,终端设备被调度可以在两个小区上传输承载HARQ-ACK信息的 PUCCH,可以理解的是,终端设备还可以被调度在更多数量的小区上传输承载HARQ-ACK信息的PUCCH,传输规则或者方法可以参考在两个小区上的方法,可以认为第一小区和第二小区是被调度的多个小区中的任意两个小区。
可选的,本申请实施例中,不同小区上用于传输承载HARQ-ACK信息的PUCCH在时域上不重叠。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图27和图28为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,也可以是如图1所示的基站110a或110b,还可以是应用于终端或基站的模块(如芯片)。
如图27所示,通信装置2700包括处理单元2710和收发单元2720。通信装置2700用于实现上述图6中所示的方法实施例中终端设备或网络设备的功能。
当通信装置2700用于实现图6所示的方法实施例中终端设备的功能时:收发单元2720用于接收来自网络设备的第一调度信息和第二调度信息;处理单元2710用于当条件满足时确定为调度错误。
当通信装置2700用于实现图6所示的方法实施例中网络设备的功能时:处理单元2710用于生成第一调度信息和第二调度信息,收发单元2720用于向终端设备发送第一调度信息和第二调度信息;
有关上述处理单元2710和收发单元2720更详细的描述可以直接参考图6所示的方法实施例中相关描述直接得到,这里不加赘述。
如图28所示,通信装置2800包括处理器2810和接口电路2820。处理器2810和接口电路2820之间相互耦合。可以理解的是,接口电路2820可以为收发器或输入输出接口。可选的,通信装置2800还可以包括存储器2830,用于存储处理器2810执行的指令或存储处理器2810运行指令所需要的输入数据或存储处理器2810运行指令后产生的数据。
当通信装置2800用于实现图6所示的方法时,处理器2810用于实现上述处理单元2710的功能,接口电路2820用于实现上述收发单元2720的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备的芯片实现上述方法实施例中终端设备的功能。该终端设备的芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备的芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的模块时,网络设备模块实现上述方法实施例中网络设备的功能。该网络设备模块从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给网络设备的;或者,该网络设备模块向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端的。这里的网络设备模块可以是网络设备的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open  radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (19)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第一调度信息和第二调度信息,所述第一调度信息用于指示第一物理下行共享信道PDSCH的时域资源和第一物理上行控制信道PUCCH的时域资源,所述第二调度信息用于指示第二PDSCH的时域资源和第二PUCCH的时域资源,所述第二PDSCH的时域资源在所述第一PDSCH的时域资源之后,所述第一PUCCH用于承载所述第一PDSCH的混合自动重传请求确认HARQ反馈信息,所述第二PUCCH用于承载所述第二PDSCH的HARQ反馈信息,所述第一PUCCH在第一小区上、所述第二PUCCH在第二小区上;
    当条件满足时,确定为调度错误;其中,所述条件为:所述第二PUCCH的时域资源位于所述第一PUCCH的时域资源之前;或者,所述第一PUCCH的时域资源与所述第二PUCCH的时域资源位于不同的参考时间单元内、且所述第二PUCCH的时域资源位于所述第一PUCCH的时域资源之前;或者,所述第一PUCCH的时域资源和所述第二PUCCH的时域资源位于一个参考时间单元内;其中,所述参考时间单元的长度为预设的或者所述网络设备指示的。
  2. 如权利要求1所述的方法,其特征在于,
    所述参考时间单元的长度为小区组包含的M个小区对应的M个时间单元中长度最小的时间单元,所述小区组包括所述第一小区和所述第二小区,所述小区组中包括的每个小区均为允许传输PUCCH的小区,M为正整数。
  3. 如权利要求1所述的方法,其特征在于,
    所述参考时间单元的长度为小区组包含的M个小区对应的M个时间单元中长度最大的时间单元,所述小区组包括所述第一小区和所述第二小区,所述小区组中包括的每个小区均为允许传输PUCCH的小区,M为正整数。
  4. 如权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:当所述第一PUCCH的时域资源与所述第二PUCCH的时域资源位于同一个参考时间单元内时,使用所述第一PUCCH和所述第二PUCCH中较晚被调度的PUCCH,来承载所述第一PDSCH的HARQ反馈信息和所述第二PDSCH的HARQ反馈信息。
  5. 如权利要求1~3任一项所述的方法,其特征在于,若第三PUCCH的时域资源的起始符号和终止符号位于两个不同的参考时间单元,则:将所述第三PUCCH的时域资源的起始符号所在的参考时间单元作为所述第三PUCCH的时域资源所位于的参考时间单元,或者,将所述第三PUCCH的时域资源的终止符号所在的参考时间单元作为所述第三PUCCH的时域资源所位于的参考时间单元,所述第三PUCCH为所述第一PUCCH或所述第二PUCCH。
  6. 如权利要求1~3任一项所述的方法,其特征在于,若所述第一PUCCH的时域资源的起始符号和终止符号位于不同的参考时间单元内,和/或,所述第二PUCCH的时域资源的起始符号和终止符号位于不同的参考时间单元内,则确定为调度错误。
  7. 如权利要求1~6任一项所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送PUCCH个数信息,所述PUCCH个数信息指示在一个所述参考时间单元内至多发送的用于承载HARQ-ACK信息的PUCCH的个数。
  8. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第一调度信息和第二调度信息,所述第一调度信息用于指示第一物理下行共享信道PDSCH的时域资源和第一物理上行控制信道PUCCH的时域资源,所述第二调度信息用于指示第二PDSCH的时域资源和第二PUCCH的时域资源,所述第二PDSCH的时域资源在所述第一PDSCH的时域资源之后,所述第一PUCCH用于承载所述第一PDSCH的混合自动重传请求确认HARQ反馈信息,所述第二PUCCH用于承载所述第二PDSCH的HARQ反馈信息,所述第一PUCCH在第一小区上、所述第二PUCCH在第二小区上;
    处理单元,用于:当条件满足时,确定为调度错误;其中,所述条件为:所述第二PUCCH的时域资源位于所述第一PUCCH的时域资源之前;或者,所述第一PUCCH的时域资源与所述第二PUCCH的时域资源位于不同的参考时间单元内、且所述第二PUCCH的时域资源位于所述第一PUCCH的时域资源之前;或者,所述第一PUCCH的时域资源和所述第二PUCCH的时域资源位于一个参考时间单元内;其中,所述参考时间单元的长度为预设的或者所述网络设备指示的。
  9. 如权利要求8所述的装置,其特征在于,所述参考时间单元的长度为小区组包含的M个小区对应的M个时间单元中长度最小的时间单元,所述小区组包括所述第一小区和所述第二小区,所述小区组中包括的每个小区均为允许传输PUCCH的小区,M为正整数。
  10. 如权利要求8所述的装置,其特征在于,所述参考时间单元的长度为小区组包含的M个小区对应的M个时间单元中长度最大的时间单元,所述小区组包括所述第一小区和所述第二小区,所述小区组中包括的每个小区均为允许传输PUCCH的小区,M为正整数。
  11. 如权利要求8~10任一项所述的装置,其特征在于,所述处理单元还用于:
    当所述第一PUCCH的时域资源与所述第二PUCCH的时域资源位于同一个参考时间单元内时,使用所述第一PUCCH和所述第二PUCCH中较晚被调度的PUCCH,来承载所述第一PDSCH的HARQ反馈信息和所述第二PDSCH的HARQ反馈信息。
  12. 如权利要求8~10任一项所述的装置,其特征在于,若第三PUCCH的时域资源的起始符号和终止符号位于两个不同的参考时间单元,则将所述第三PUCCH的时域资源的起始符号所在的参考时间单元作为所述第三PUCCH的时域资源所位于的参考时间单元,或者,将所述第三PUCCH的时域资源的终止符号所在的参考时间单元作为所述第三PUCCH的时域资源所位于的参考时间单元,所述第三PUCCH为所述第一PUCCH或所述第二PUCCH。
  13. 如权利要求8~10任一项所述的装置,其特征在于,若所述第一PUCCH的时域资源的起始符号和终止符号位于不同的参考时间单元内,和/或,所述第二PUCCH的时域资源的起始符号和终止符号位于不同的参考时间单元内,则确定为调度错误。
  14. 如权利要求8~13任一项所述的装置,其特征在于,所述收发单元还用于:
    向所述网络设备发送PUCCH个数信息,所述PUCCH个数信息指示在一个所述参考时间单元内至多发送的用于承载HARQ-ACK信息的PUCCH的个数。
  15. 一种通信装置,其特征在于,包括用于执行如权利要求1至7中的任一项所述方法的模块。
  16. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信 号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至7中任一项所述的方法。
  17. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至7中任一项所述的方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品中存储有计算机可读指令,当所述计算机可读指令运行时,如权利要求1至7中任一项所述的方法被执行。
  19. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以执行如权利要求1至7中任一项所述的方法。
PCT/CN2022/106030 2021-07-23 2022-07-15 一种通信方法及装置 WO2023001075A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22845240.5A EP4366430A1 (en) 2021-07-23 2022-07-15 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110839073.X 2021-07-23
CN202110839073.XA CN115694750A (zh) 2021-07-23 2021-07-23 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023001075A1 true WO2023001075A1 (zh) 2023-01-26

Family

ID=84978908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106030 WO2023001075A1 (zh) 2021-07-23 2022-07-15 一种通信方法及装置

Country Status (3)

Country Link
EP (1) EP4366430A1 (zh)
CN (1) CN115694750A (zh)
WO (1) WO2023001075A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108476101A (zh) * 2015-10-17 2018-08-31 康卡斯特有线通信有限责任公司 局部子帧和全子帧中的控制信道配置
US20190103951A1 (en) * 2016-03-07 2019-04-04 Lg Electronics Inc. Method for transmitting and receiving uplink/downlink data in wireless communication system and apparatus therefor
WO2020204528A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
WO2021040918A1 (en) * 2019-08-27 2021-03-04 Qualcomm Incorporated Techniques for managing physical uplink control channel grouping for multiple transmit receive points

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108476101A (zh) * 2015-10-17 2018-08-31 康卡斯特有线通信有限责任公司 局部子帧和全子帧中的控制信道配置
US20190103951A1 (en) * 2016-03-07 2019-04-04 Lg Electronics Inc. Method for transmitting and receiving uplink/downlink data in wireless communication system and apparatus therefor
WO2020204528A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
WO2021040918A1 (en) * 2019-08-27 2021-03-04 Qualcomm Incorporated Techniques for managing physical uplink control channel grouping for multiple transmit receive points

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "HARQ-ACK enhancement for IOT and URLLC", 3GPP DRAFT; R1-2103163, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177963 *
ZTE: "Discussion on HARQ-ACK enhancements for eURLLC", 3GPP DRAFT; R1-2104326, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010761 *

Also Published As

Publication number Publication date
EP4366430A1 (en) 2024-05-08
CN115694750A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN110741587B (zh) 用于上行链路资源的策略性映射的方法和装置
CN108781140B (zh) 用于针对缩短的tti确定harq-ack传输定时的系统和方法
CN110547019A (zh) 新无线(nr)网络中的灵活调度
EP3493618B1 (en) Uplink information transmission method, device and system
EP4104335A1 (en) Reliable harq-ack transmission in unlicensed spectrum
CN108370571A (zh) 用于低延迟无线通信的用户设备、基站和方法
CN112088515A (zh) 针对重叠资源块集的速率匹配行为
CN114885431A (zh) 一种通信方法及装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
CN115004760A (zh) 使用下行链路控制信息动态启用和禁用物理下行链路共享信道调度
WO2023011542A1 (zh) 控制信息的传输方法和装置
US20230097059A1 (en) Method and apparatus for transceiving data and control information in wireless communication system
CN114451017A (zh) 一种激活和释放非动态调度传输的方法及装置
WO2023001075A1 (zh) 一种通信方法及装置
WO2022056885A1 (zh) 一种通信方法和装置
WO2023134619A1 (zh) Harq-ack信息反馈方法和装置
CN113271181A (zh) 发送反馈信息的方法及装置
WO2022027643A1 (zh) 上行信息复用传输的方法和装置
WO2023186005A1 (zh) 一种通信方法及装置
WO2022151380A1 (zh) 传输pucch的方法及装置
WO2023005872A1 (zh) 一种通信方法及通信装置
WO2023011090A1 (zh) 一种重传反馈信息的方法及装置
WO2022141068A1 (zh) 一种通信方法与装置
WO2024032732A1 (zh) Harq-ack码本反馈方法和通信装置
WO2023011372A1 (zh) 数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022845240

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022845240

Country of ref document: EP

Effective date: 20240131

NENP Non-entry into the national phase

Ref country code: DE