WO2023001012A1 - 一种算力板和数据处理设备 - Google Patents

一种算力板和数据处理设备 Download PDF

Info

Publication number
WO2023001012A1
WO2023001012A1 PCT/CN2022/104978 CN2022104978W WO2023001012A1 WO 2023001012 A1 WO2023001012 A1 WO 2023001012A1 CN 2022104978 W CN2022104978 W CN 2022104978W WO 2023001012 A1 WO2023001012 A1 WO 2023001012A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid flow
liquid
flow channel
heat
adjacent
Prior art date
Application number
PCT/CN2022/104978
Other languages
English (en)
French (fr)
Inventor
吴超
周招娣
王文海
舒建军
张书浩
Original Assignee
北京比特大陆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京比特大陆科技有限公司 filed Critical 北京比特大陆科技有限公司
Publication of WO2023001012A1 publication Critical patent/WO2023001012A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the technical field of device heat dissipation, and in particular to a computing power board and data processing equipment.
  • the chip is mounted on the liquid cooling plate, and a liquid flow channel is provided inside the liquid cooling plate, and the heat of the chip is taken away by the water flow, so as to achieve the effect of cooling the chip.
  • the water flows in from the liquid inlet of the liquid flow channel, and several chips are arranged on the liquid cold plate at equal distances along the extension direction of the liquid flow channel, corresponding to the position of the liquid flow channel, and the water flow passes through all the chips in the liquid flow channel. position, and finally flow out from the outlet.
  • the existing chip cooling radiator has at least the following defects:
  • the temperature of the last chip at the liquid outlet may exceed the junction temperature of the chip, resulting in damage to the chip.
  • the purpose of this application is to provide a computing power board and data processing equipment, which aims to solve the problem that the chip cooling radiator in the prior art has poor chip temperature uniformity and affects chip performance.
  • a computing power board including a circuit board, a liquid cooling board and multiple sets of heating device groups
  • the circuit board has a first surface and a second surface opposite the first surface
  • the liquid cooling plate is provided with a liquid flow channel, and the liquid flow channel has a liquid inlet and a liquid outlet; the liquid cooling plate is stacked on the first surface;
  • Multiple sets of the heating device groups are arranged at intervals along the extending direction of the liquid flow channel on the second surface, and the plurality of the heating device groups correspond to the position of the liquid flow channel; At the liquid outlet, the liquid flow path between two adjacent heat-generating device groups is smaller than the liquid flow path between two adjacent heat-generating device groups near the liquid outlet.
  • the orthographic projection of the center of the flow path of the liquid flow channel on the first surface coincides with the orthographic projection of the center of the heating device group on the first surface.
  • the liquid flow paths between the plurality of heat generating device groups gradually increase.
  • each set of the heating device group includes a chip
  • each heating device group includes at least two chips, and the liquid flow path between two adjacent chips in the same heating device group is constant;
  • each heating device group includes at least two chips, and along the extending direction of the liquid flow channel, the liquid flow path between two adjacent chips in the same heating device group gradually increases. Big;
  • the number of chips in the heat generating device group gradually increases, and the liquid flow path between two adjacent three chips in the same heat generating device group gradually increases. increase;
  • the number of chips in the heat generating device group gradually increases, and near the liquid inlet, two adjacent three chips in the same heat generating device group
  • the liquid flow paths between the chips gradually increase, and near the liquid outlet, the liquid flow paths between two adjacent three chips in the same heating device group are constant.
  • the liquid flow paths between adjacent groups of heat generating devices gradually increase in an arithmetic progression or a geometric progression.
  • the liquid flow path between the heater components in the liquid flow channel with a length L gradually increases ;
  • K represents any value from 1 to 10
  • D represents the diameter of the liquid flow channel
  • c represents the specific heat capacity of the coolant
  • represents the flow rate of the coolant.
  • the space between the heater components gradually increases.
  • the liquid cooling plate includes a heat conduction plate and the liquid flow channel penetrating in the heat conduction plate, the heat conduction plate has a first end and a The direction from the first end to the second end is perpendicular to the direction from the first surface to the second surface; the liquid flow channel includes a plurality of straight pipes and a number one connecting pipe less than the number of the straight pipes; each of the straight pipes is arranged on the heat conducting plate along the straight line from the first end to the second end, and two adjacent There is a distance between the straight pipes, and two adjacent pipes are connected by one connecting pipe.
  • both the liquid inlet and the liquid outlet are arranged at the first end or the second end;
  • one of the liquid inlet and the liquid outlet is arranged at the first end, and the other is arranged at the second end.
  • the heat conduction plate further has a third end and a fourth end opposite to the third end, the third end and the fourth end are respectively connected to Between the first end and the second end, the liquid inlet is arranged close to the third end, the liquid outlet is arranged close to the fourth end, from the third end part to the fourth end, the distance between two adjacent straight pipes is the same;
  • the distance between adjacent groups of heat-generating devices on the same straight pipe is The liquid flow path gradually increases; on the straight pipe near the fourth end, the liquid flow paths between adjacent groups of heat-generating devices on the same straight pipe are the same;
  • a data processing device including the hash board described in any one of the above.
  • the computing power board and data processing equipment provided by this application are arranged on the liquid cold plate at intervals from the liquid inlet along the liquid flow channel to the liquid outlet by arranging multiple sets of heating device groups , and on the extension path, the path distance between two adjacent groups of heat-generating device groups gradually increases, that is, the density of the heat-generating devices gradually decreases on the extension path of the liquid flow channel, so that when the cooling liquid enters from the liquid inlet In the process of flowing out of the liquid flow channel and from the liquid outlet, the heating device group transfers heat to the cooling liquid in the extending direction of the liquid flow channel, so that the temperature of the cooling liquid increases gradually.
  • the temperature of the cooling liquid is low, and the temperature of the cooling liquid is high in the part where the density of the heating device group is low, so that the heating device group can be cooled and dissipated evenly, so that the temperature of each heating device group tends to be more balanced, and the heating device group can be improved. Uniform temperature and heat dissipation to ensure the performance of the heating device group in the hashboard and the computing performance and service life of the data processing equipment.
  • Figure 1 is a schematic diagram of the three-dimensional structure of the hash board provided by the embodiment of the present application.
  • Figure 2 is a schematic diagram of the exploded structure of the hash board provided by the embodiment of the present application.
  • Fig. 3 is a schematic top view of the hash board provided by the embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional view of a liquid cooling plate provided in an embodiment of the present application.
  • Circuit board 111. First surface; 112. Second surface;
  • Liquid cooling plate 1201, liquid inlet; 1202, liquid outlet; 121, heat conduction plate; 1211, first end; 1212, second end; 1213, third end; 1214, fourth end ; 122, liquid flow channel; 1220, flow center; 1221, straight pipe; 1222, connecting pipe;
  • the computing power board 10 of this embodiment includes a circuit board 11 , a liquid cooling board 12 and multiple sets of heating device groups 13 .
  • the circuit board 11 has a first surface 111 and a second surface 112, and the first surface 111 and the second surface 112 are arranged opposite to each other;
  • the liquid cooling plate 12 is stacked on the first surface 111, and the liquid cooling plate 12 has There is a liquid flow channel 122, the liquid flow channel 122 has a liquid inlet 1201 and a liquid outlet 1202, the cooling liquid can flow into the liquid flow channel 122 through the liquid inlet 1201, and flow out through the liquid outlet 1202, the cooling liquid is in the liquid flow channel When flowing in 122, the computing power board 10 can be cooled; multiple sets of heating device groups 13 are arranged on the second surface 112 at intervals along the extending direction of the liquid flow channel 122, and the multiple sets of heating device groups 13 and the liquid flow channel 122 The positions are corresponding;
  • multiple groups of heating device groups 13 are defined as the first heating device group 13, the second heating device group 13, and the third heating device group. 13. ..., the n-3th heating device group 13, the n-2th heating device group 13, the n-1th heating device group 13, and the nth heating device group 13, wherein n is a positive integer not less than 3, Then, the liquid flow path length between the first heat generating device group 13 and the second heat generating device group 13 is L 1 , the liquid flow path length between the second heat generating device group 13 and the third heat generating device group 13 is L 2 , The length of the liquid flow path between the third heat generating device group 13 and the fourth heat generating device group 13 is L 3 , ..., the liquid flow path between the n-3th heat generating device group 13 and the n-2th heat generating device group 13 The length of the liquid flow path between the n-2th heating element group 13 and the n-1th heating
  • the hashboard 10 of this embodiment is designed with such a structure that it can effectively cool and dissipate the hashboard 10 at a uniform temperature. Specifically, near the liquid inlet 1201, the temperature of the cooling liquid is relatively low, and the temperature difference between the cooling liquid and the heat-generating device groups 13 is large, which can effectively replace multiple groups of heat-generating device groups 13 with a high arrangement density.
  • the temperature difference among multiple heating element groups 13, therefore along the extension direction of the liquid flow channel 122, the liquid flow path between the heating element groups 13 close to the liquid outlet 1202 is relatively large, that is, in the part where the coolant temperature is low , the arrangement density of the heating device group 13 is relatively high, and the arrangement density of the heating device group 13 is relatively low in the part where the coolant temperature is high, so that the cooling and heat dissipation of the heating device group 13 at each position on the hash board 10
  • the rate tends to be the same, the temperature of each group of heating device groups 13 is more balanced, and they all have a better uniform temperature and heat dissipation effect, and finally the entire hashboard 10 can be effectively dissipated, so that the performance of the hashboard 10 can be effectively guaranteed.
  • the orthographic projection of the flow path center 1220 of the liquid flow channel 122 on the first surface 111 is the same as that of the heat generating device group
  • the orthographic projections of the center of 13 on the first surface 111 coincide, so as to ensure the shortest heat exchange distance between each heat generating device group 13 and the cooling liquid.
  • the orthographic projection of the center of each heating device in each group of heating device groups 13 on the first surface 111 coincides with the orthographic projection of the flow path center 1220 of the liquid flow channel 122 on the first surface 111, so that it can effectively
  • the heat exchange distance between each heat-generating device and the cooling liquid flowing through the liquid flow channel 122 is shortened as much as possible, so as to improve the overall uniform cooling effect of all the heat-generating devices and improve the overall heat dissipation effect.
  • the liquid flow paths between the multiple heat generating device groups 13 gradually increase, namely: L 1 ⁇ L 2 ⁇ L 3 ⁇ ... ⁇ Ln-3 ⁇ Ln-2 ⁇ Ln-1 .
  • each heat generating device group 13 includes one chip.
  • each heat generating device group 13 includes at least two chips, and the liquid flow path between two adjacent chips in the same heat generating device group 13 is constant.
  • each heat generating device group 13 includes at least two chips, and along the extending direction of the liquid flow channel 122, the liquid flow path between two adjacent chips in the same heat generating device group 13 gradually increases. Big.
  • the number of chips in the heat generating device group 13 gradually increases, and the liquid between two adjacent three chips in the same heat generating device group 13 The flow path gradually increases.
  • the number of chips in the heating element group 13 gradually increases, and near the liquid inlet 1201, two adjacent chips in the same heating element group 13
  • the liquid flow paths between the three chips gradually increase, and near the liquid outlet 1202, the liquid flow paths between two adjacent three chips in the same heating device group 13 are constant.
  • the liquid flow path between two adjacent groups of heat generating device groups 13 is in an arithmetic progression or a geometric progression. increase.
  • the heat generating device group 13 may only include chips.
  • the heating device group 13 also includes other electronic components that generate heat during operation, such as field effect transistors, triodes, and the like.
  • the liquid flow path between the heater components 13 in the liquid flow channel 122 with a length L gradually increases;
  • K represents any value from 1 to 10
  • D represents the diameter of the liquid flow channel
  • c represents the specific heat capacity of the coolant
  • represents the flow rate of the coolant.
  • the liquid flow path between the heater components 13 gradually increases. Big.
  • the liquid cooling plate 12 includes a heat conducting plate 121 and a liquid flow channel 122 .
  • the heat conducting plate 121 has a first end portion 1211 and a second end portion 1212, the first end portion 1211 and the second end portion 1212 are oppositely arranged, and the direction from the first end portion 1211 to the second end portion 1212 is consistent with the direction of the first surface.
  • the directions from 111 to the second surface 112 are perpendicular to each other; the liquid flow channel 122 penetrates inside the heat conducting plate 121 , and the liquid flow channel 122 has a liquid inlet 1201 and a liquid outlet 1202 arranged on the heat conducting plate 121 .
  • the liquid flow channel 122 includes a plurality of straight pipes 1221 and a plurality of connecting pipes, wherein the number of connecting pipes is one less than the number of straight pipes 1221; each straight pipe 1221 They are arranged on the heat conduction plate 121 along the straight line from the first end 1211 to the second end 1212. There is a distance between two adjacent straight pipes 1221, and two adjacent pipes are connected by a connecting pipe 1222. , thereby forming the liquid flow channel 122 .
  • the straight pipe 1221 in the liquid flow channel 122 can be replaced by a curved pipe, so that on the same length of the heat conduction plate 121, the cooling liquid flows through a longer path, so that the limited heat conduction can be more fully utilized.
  • the plate 121 conducts heat transfer and heat dissipation.
  • the connecting pipes can also use curved pipes, such as U-shaped pipes, S-shaped pipes, and the like.
  • the distance between two adjacent straight pipes 1221 is the same, that is, the heat conducting plate 121 also has a third end 1213 and a fourth end 1214, the third end 1213 and the fourth end 1214 are oppositely arranged, and the third end 1213 and the fourth end 1214 are respectively connected between the first end 1211 and the second end 1212, while the third end 1213 to the fourth end
  • the direction of the portion 1214 is perpendicular to the direction from the first surface 111 to the second surface 112
  • the liquid inlet 1201 is arranged near the third end 1213
  • the liquid outlet 1202 is arranged near the fourth end 1214, along the third end 1213
  • the distance between two adjacent straight pipes 1221 is the same.
  • the distance between two adjacent straight pipes 1221 gradually increases, that is, along the distance from the third end 1213 to the fourth end 1214 direction, the distance between two adjacent straight pipes 1221 increases gradually.
  • both the liquid inlet 1201 and the liquid outlet 1202 are disposed at the first end 1211 . In other embodiments, both the liquid inlet 1201 and the liquid outlet 1202 are disposed at the second end 1212 . In some other possible implementations, one of the liquid inlet 1201 and the liquid outlet 1202 is disposed at the first end 1211 , and the other is disposed at the second end 1212 . In some alternative embodiments, both the liquid inlet 1201 and the liquid outlet 1202 are disposed on the surface of the heat conducting plate 121 facing away from the circuit board 11.
  • one of the liquid inlet 1201 and the liquid outlet 1202 is arranged at the first end 1211 or the second end 1212, while the other is arranged at the side of the heat conducting plate 121 facing away from the circuit. on the surface of the plate 11.
  • the liquid inlet 1201 is arranged close to the third end 1213
  • the liquid outlet 1202 is arranged close to the fourth end 1214, along the extending direction of the liquid flow channel 122, close to the third end 1213.
  • the liquid flow path between adjacent heating element groups 13 on the same straight pipe 1221 gradually increases; on the straight pipe 1221 near the fourth end 1214, on the same straight pipe 1221
  • the liquid flow paths between adjacent heat generating device groups 13 are the same.
  • the liquid inlet 1201 is arranged close to the third end 1213, and the liquid outlet 1202 is arranged close to the fourth end 1214, along the extending direction of the liquid flow channel 122, in the straight pipe near the third end 1213 1221, the spacing between adjacent heating device groups 13 on the same straight pipe 1221 gradually increases, on the straight pipe 1221 near the fourth end 1214, between adjacent heating device groups 13 on the same straight pipe 1221
  • the liquid flow path is disordered, that is, under the premise that L 1 , L 2 and L 3 are smaller than L n-3 , L n-2 and L n-1 , L n-3 , L n-2 and L n- 1 and so on have no rules, for example, it can be L n-3 ⁇ L n -2 and L n-3 ⁇ L n-1 ; it can also be L n-3 ⁇ L n-2 and L n-3 ⁇ L n- 1 ; or L n-3 ⁇ L n-2 and L n-3 ⁇
  • the temperature difference between the cooling liquid and the heat-generating device group 13 is relatively small, and the heat exchange efficiency is not as high as that near the liquid inlet 1201, so that The heat-generating device group 13 is arranged on the liquid flow channel 122 near the liquid outlet 1202 as required, so that the liquid flow channel 122 can be fully used to dissipate heat from the heat-generating device group 13 .
  • this application further provides a data processing device including the above hashboard 10, a data processing device including the above hashboard 10, Due to the excellent heat dissipation performance of the computing power board 10, the computing power of the data processing equipment can be effectively improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请涉及器件散热技术领域,具体公开一种算力板和数据处理设备。所述算力板包括电路板、液冷板和多组发热器件组;电路板具有第一表面和与第一表面相背对的第二表面;液冷板内设有液流通道,液流通道具有进液口和出液口;液冷板叠设在第一表面上;多组发热器件组沿液流通道的延伸方向间隔布设在第二表面上,且多个发热器件组与液流通道的位置相对应;在靠近进液口处,相邻两个发热器件组之间的液流路径小于靠近出液口处相邻两个发热器件组之间的液流路径。本申请提供的算力板和数据处理设备具有良好的匀温冷却散热性能,从而保证算力板中发热器件组的性能以及数据处理设备的运算性能和使用寿命。

Description

一种算力板和数据处理设备 技术领域
本申请涉及器件散热技术领域,尤其涉及一种算力板和数据处理设备。
背景技术
现有的芯片冷却散热器是将芯片贴设在液冷板上,在液冷板的内部设有液流通道,通过水流将芯片的热量带走,以达到对芯片进行散热的效果。
水流从液流通道的进液口流入,若干芯片沿液流通道的延伸方向等距离的布设在液冷板上,并与液流通道的位置相对应,水流在液流通道中途经所有芯片所在的位置,最后从出液口流出。但是现有的芯片冷却散热器至少存在以下缺陷:
(1)、由于水流在进液口处的温度比较低,在液流通道中流动后温度越来越高,到达最后一块芯片所在的位置时温度达到最高。
(2)、进液口处的第一块芯片和出液口处的最后一块芯片温度相差比较大,导致芯片的均温性比较差,影响芯片的性能。
(3)、出液口处的最后一块芯片的温度可能会超过芯片结温,导致芯片损坏。
申请内容
本申请的目的在于提供一种算力板和数据处理设备,其旨在解决现有技术中的芯片冷却散热器存在芯片均温性差而影响芯片性能的问题。
为达到上述目的,本申请提供的方案是:
一种算力板,包括电路板、液冷板和多组发热器件组;
所述电路板具有第一表面和与所述第一表面相背对的第二表面;
所述液冷板内设有液流通道,所述液流通道具有进液口和出液口;所述液冷板叠设在所述第一表面上;
多组所述发热器件组沿所述液流通道的延伸方向间隔布设在所述第二表面上,且多个所述发热器件组与所述液流通道的位置相对应;在靠近所述进液口处,相邻两个所述发热器件组之间的液流路径小于靠近所述出液口处相邻两个所述发热器件组之间的液流路径。
在一些可能的实施方式中,所述液流通道的流路中心在所述第一表面上的正投影与所述发热器件组的中心在所述第一表面上的正投影重合。
在一些可能的实施方式中,沿所述液流通道的延伸方向,多个所述发热器件组之间的液流路径逐渐增大。
在一些可能的实施方式中,每组所述发热器件组中包括一块芯片;
或者,每组所述发热器件组中包括至少两块芯片,同一所述发热器件组中相邻的两块所述芯片之间的液流路径恒定不变;
或者,每组所述发热器件组中包括至少两块芯片,沿着所述液流通道的延伸方向,同一所述发热器件组中相邻的两块所述芯片之间的液流路径逐渐增大;
或者,沿着所述液流通道的延伸方向,所述发热器件组中的芯片数量逐渐增多,且同一所述发热器件组中两两相邻的三块所述芯片之间的液流路径逐渐增大;
或者,沿着所述液流通道的延伸方向,所述发热器件组中的芯片数量逐渐增多,且在靠近所述进液口处,同一所述发热器件组中两两相邻的三块所述芯片之间的液流路径逐渐增大,在靠近所述出液口处,同一所述发热器件组中两两相邻的三块所述芯片之间的液流路径恒定不变。
在一些可能的实施方式中,沿所述液流通道的延伸方向,相邻所述发热器件组之间的液流路径呈等差数列或者呈等比数列逐渐增大。
在一些可能的实施方式中,自所述进液口起,沿所述液流通道的延伸方向, 在长度为L的所述液流通道中所述发热器组件之间的液流路径逐渐增大;
其中,L=K×D×c×v;
K表示1~10任意数值;
D表示液流通道的直径;
c表示冷却液的比热容;
υ表示冷却液的流速。
在一些可能的实施方式中,自所述进液口起,沿所述液流通道的延伸方向,在1/3~1/2长度的所述液流通道中,所述发热器组件之间的液流路径逐渐增大。
在一些可能的实施方式中,所述液冷板包括导热板和穿设于所述导热板内的所述液流通道,所述导热板具有第一端部和与所述第一端部相对的第二端部,所述第一端部至所述第二端部的方向与所述第一表面至所述第二表面的方向相互垂直;所述液流通道包括多条直管道和数量比所述直管道的数量少一条的连接管道;每条所述直管道均沿所述第一端部至所述第二端部的直线方向布设于所述导热板上,相邻两条所述直管道之间具有间距,且相邻的两条所述管道之间通过一条所述连接管道连接。
在一些可能的实施方式中,所述进液口和所述出液口都设置在所述第一端部或者所述第二端部;
或者,所述进液口和所述出液口中的一者设置在所述第一端部、另一者设置在所述第二端部。
在一些可能的实施方式中,所述导热板还具有第三端部和与所述第三端部相对设置的第四端部,所述第三端部和所述第四端部分别连接于所述第一端部和所述第二端部之间,所述进液口靠近所述第三端部设置,所述出液口靠近所述第四端部设置,从所述第三端部至所述第四端部,相邻两条所述直管道之间的间距相同;
或者,从所述第三端部至所述第四端部,相邻两条所述直管道之间的间距逐渐增大。
在一些可能的实施方式中,沿所述液流通道的延伸方向,在靠近所述第三端部的所述直管道上,同一所述直管道上的相邻所述发热器件组之间的液流路径逐渐增大;在靠近所述第四端部的所述直管道上,同一所述直管道上的相邻所述发热器件组之间的液流路径相同;
或者,沿所述液流通道的延伸方向,在靠近所述第三端部的所述直管道上,同一所述直管道上的相邻所述发热器件组之间的间距逐渐增大,在靠近所述第四端部的所述直管道上,同一所述直管道上的相邻所述发热器件组之间的液流路径呈无序状态。
以及,一种数据处理设备,包括上述任一项所述的算力板。
本申请的有益效果如下:
与现有技术相比,本申请提供的算力板和数据处理设备,通过将多组发热器件组自进液口沿液流通道至出液口的延伸路径上相互间距布设在液冷板上,并且在该延伸路径上使相邻两组发热器件组之间的路径距离逐渐增大,即发热器件在液流通道的延伸路径上密度逐渐变小,从而当冷却液从进液口处进入液流通道,并从出液口流出的过程中,在液流通道的延伸方向上发热器件组将热量传递给冷却液,使得冷却液的温度逐渐升高,由于在发热器件组的密度高的部位,冷却液的温度低,而在发热器件组密度低的部位冷却液的温度高,从而能够对发热器件组匀温冷却散热,使得各个发热器件组的温度更加趋于均衡,提高发热器件组的均温散热性,以保证算力板中发热器件组的性能以及数据处理设备的运算性能和使用寿命。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本申请实施例提供的算力板的立体结构示意图;
图2是本申请实施例提供的算力板的分解结构示意图;
图3是本申请实施例提供的算力板的俯视示意图;
图4是本申请实施例提供的液冷板的剖视示意图。
附图标号说明:
10、算力板;
11、电路板;111、第一表面;112、第二表面;
12、液冷板;1201、进液口;1202、出液口;121、导热板;1211、第一端部;1212、第二端部;1213、第三端部;1214、第四端部;122、液流通道;1220、流路中心;1221、直管道;1222、连接管道;
13、发热器件组。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
还需要说明的是,当元件被称为“固定于”或“设置于”另一个元件上时,它可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为是“连接”另一个元件,它可以是直接连接另一个元件或者也可以是通过居中元件间接连接另一个元件。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此, 限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请实施例提供的算力板10及其零部件的结构示意图如图1至4所示。
请参阅图1、图2、图3以及图4,本实施例的算力板10包括电路板11、液冷板12和多组发热器件组13。其中,电路板11具有第一表面111和第二表面112,并且第一表面111和第二表面112相背对设置;液冷板12叠设在第一表面111上,液冷板12内设有液流通道122,液流通道122具有进液口1201和出液口1202,冷却液可以经由进液口1201流入液流通道122中,并经由出液口1202流出,冷却液在液流通道122中流动时,可以对算力板10进行冷却;多组发热器件组13沿液流通道122的延伸方向间隔布设在第二表面112上,且多组发热器件组13与液流通道122的位置相对应;在靠近进液口1201处,相邻两组发热器件组13之间的液流路径小于靠近出液口1202处相邻两组发热器件组13之间的液流路径。
具体地,沿液流通道122的延伸方向从进液口1201至出液口1202,将多组发热器件组13定义为第一发热器件组13、第二发热器件组13、第三发热器件组13、……、第n-3发热器件组13、第n-2发热器件组13、第n-1发热器件组13、第n发热器件组13,其中,n为不小于3的正整数,则,第一发热器件组13和第二发热器件组13之间的液流路径长度为L 1、第二发热器件组13和第三发热器件组13之间的液流路径长度为L 2、第三发热器件组13和第四发热器件组13之间的液流路径长度为L 3、……、第n-3发热器件组13和第n-2发热器件组13之间的液流路径长度为L n-3、第n-2发热器件组13和第n-1发热器件组13之间的液流路径长度为L n-2、第n-1发热器件组13和第n发热器件组13之间的液流路径长度为L n-1,那么有L 1、L 2及L 3小于L n-3、L n-2及L n-1。本实施例的算力板10设计成这样的结构,可以有效地对算力板10进行均温冷却 散热。具体地,在靠近进液口1201处,冷却液的温度比较低,冷却液与发热器件组13之间的温差较大,可以对排布密度较高的多组发热器件组13进行有效的换热,从而对发热器件组13起到散热的作用;而在靠近出液口1202处,由于冷却液对靠近进液口1201上的多组发热器件组13进行了热交换,使得冷却液的温度升高,这时候流至出液口1202的冷却液与靠近出液口1202的发热器件组13之间的温差较小,冷却液与发热器件组13的热交换效果会下降,为了使得靠近进液口1201的发热器件组13和流至出液口1202的冷却液之间具有较好的热交换效果,同时降低靠近进液口1201处的多组发热器件组13和靠近出液口1202的多组发热器件组13之间温差,因此沿着液流通道122的延伸方向,靠近出液口1202的发热器件组13之间的液流路径比较大,亦即在冷却液温度较低的部位,发热器件组13的排布密度较高,而在冷却液温度较高的部位,发热器件组13的排布密度较低,从而使得算力板10上各个部位的发热器件组13的冷却散热速率趋于相同,各组发热器件组13的温度更加均衡,都具有较好的均温散热效果,最终使得整个算力板10可以得到有效的散热,从而可以有效保障算力板10的性能,提高发热器件的工作寿命以及算力板10的工作寿命。
请参阅图2、图3和图4,在一些实施方式中,为了达到更好的热交换和散热效果,液流通道122的流路中心1220在第一表面111上的正投影与发热器件组13的中心在第一表面111上的正投影重合,从而可以确保每组发热器件组13与冷却液之间具有最短的热交换距离。进一步地,每组发热器件组13之每个发热器件的中心,在第一表面111上的正投影和液流通道122的流路中心1220在第一表面111上的正投影重合,从而可以有效地缩短个发热器件与流经液流通道122内的冷却液的热交换距离,从而提高所有发热器件的整体匀温冷却效果,以提高整体散热效果。
请参阅图3和图4,在一些实施方式中,沿液流通道122的延伸方向,多组发热器件组13之间的液流路径逐渐增大,即:L 1<L 2<L 3<……<L n-3<L n-2<L n-1
请参阅图2、图3和图4,在一些实施方式中,每组发热器件组13中包括一块芯片。而在一些实施方式中,每组发热器件组13中包括至少两块芯片,并且同一发热器件组13中相邻的两块芯片之间的液流路径恒定不变。在另一些实施方式中,每组发热器件组13中包括至少两块芯片,沿着液流通道122的延伸方向,同一发热器件组13中相邻的两块芯片之间的液流路径逐渐增大。在另一些可以替代的实施方式中,沿着液流通道122的延伸方向,发热器件组13中的芯片数量逐渐增多,且同一发热器件组13中两两相邻的三块芯片之间的液流路径逐渐增大。又或者另一些可能的实施方式中,沿着液流通道122的延伸方向,发热器件组13中的芯片数量逐渐增多,且在靠近进液口1201处,同一发热器件组13中两两相邻的三块芯片之间的液流路径逐渐增大,在靠近出液口1202处,同一发热器件组13中两两相邻的三块芯片之间的液流路径恒定不变。
请参阅图2、图3和图4,在一些实施方式中,沿液流通道122的延伸方向,相邻两组发热器件组13之间的液流路径呈等差数列或者呈等比数列逐渐增大。在一些实施方式中,发热器件组13可以只包括芯片。在另一些实施方式中,发热器件组13还包括其他工作过程中会产热的电子元器件,如,场效应管、三极管等。在一些实施方式中,自进液口1201起,沿液流通道122的延伸方向,在长度为L的液流通道122中发热器组件13之间的液流路径逐渐增大;
其中,L=K×D×c×v;
K表示1~10任意数值;
D表示液流通道的直径;
c表示冷却液的比热容;
υ表示冷却液的流速。
在一些实施方式中,自进液口1201起,沿液流通道122的延伸方向,在1/3~1/2长度的液流通道122中,发热器组件13之间的液流路径逐渐增大。
请参阅图2、图3和图4,在一些实施方式中,液冷板12包括导热板121和液流通道122。其中,导热板121具有第一端部1211和第二端部1212,第一 端部1211和第二端部1212相对设置,且第一端部1211至第二端部1212的方向与第一表面111至第二表面112的方向相互垂直;液流通道122穿设在导热板121内部,并且液流通道122具有设置在导热板121上的进液口1201和出液口1202。
请参阅图2和图4,在一些实施方式中,液流通道122包括多条直管道1221和多条连接管,其中,连接管的数量比直管道1221的数量少一条;每条直管道1221均沿第一端部1211至第二端部1212的直线方向布设于导热板121上,相邻两条直管道1221之间具有间距,且相邻的两条管道之间通过一条连接管道1222连接,从而形成液流通道122。在一些实施方式中,液流通道122中的直管道1221可以以弯曲管道来替代,使得在相同长度的导热板121上,冷却液流过的路径更长,从而可以更加充分地利用有限的导热板121进行传热、散热,此外,连接管也可以使用弯曲管,如U型管、S型管等。
请参阅图3和图4,在一些实施方式中,相邻两条直管道1221之间的间距相同,亦即,导热板121还具有第三端部1213和第四端部1214,第三端部1213和第四端部1214相对设置,并且第三端部1213和第四端部1214分别连接于第一端部1211和第二端部1212之间,同时第三端部1213至第四端部1214的方向与第一表面111至第二表面112的方向相互垂直,进液口1201靠近第三端部1213设置,出液口1202靠近第四端部1214设置,沿着第三端部1213至第四端部1214的方向,相邻两条直管道1221之间的间距相同。在另一些实施方式中,从进液口1201至出液口1202,相邻两条直管道1221之间的间距逐渐增大,亦即,沿着第三端部1213至第四端部1214的方向,相邻的两条直管道1221之间的间距逐渐增大。
请参阅图3和图4,在一些实施方式中,进液口1201和出液口1202都设置在第一端部1211。在另一些实施方式中,进液口1201和出液口1202都设置在第二端部1212。在又一些可能的实施方式中,进液口1201和出液口1202中的一者设置在第一端部1211、另一者设置在第二端部1212。在一些替代的实施 方式中,进液口1201和出液口1202都设置在导热板121之背对电路板11的表面上。在又一些可以替代的实施方式中,进液口1201和出液口1202中的一者设置在第一端部1211或第二端部1212,而另一者设置在导热板121之背对电路板11的表面上。
请参阅图3和图4,在一些实施方式中,进液口1201靠近第三端部1213设置,出液口1202靠近第四端部1214设置,沿液流通道122的延伸方向,在靠近第三端部1213的直管道1221上,同一直管道1221上相邻的发热器件组13之间的液流路径逐渐增大;在靠近第四端部1214的直管道1221上,同一直管道1221上相邻的发热器件组13之间的液流路径相同。
在另一些实施方式中,进液口1201靠近第三端部1213设置,出液口1202靠近第四端部1214设置,沿液流通道122的延伸方向,在靠近第三端部1213的直管道1221上,同一直管道1221上相邻的发热器件组13之间的间距逐渐增大,在靠近第四端部1214的直管道1221上,同一直管道1221上相邻的发热器件组13之间的液流路径呈无序状态,即在L 1、L 2及L 3小于L n-3、L n-2及L n-1的前提下L n-3、L n-2及L n-1等没有规律,如,可以是L n-3≥L n-2且L n-3≤L n-1;也可以是L n-3≤L n-2且L n-3≤L n-1;或者L n-3≤L n-2且L n-3≥L n-1;或者L n-3≤L n-2且L n-2≥L n-1;或者L n-3=L n-2且L n-3=L n-1等等。这是由于在靠近第四端部1214的直管道1221上,冷却液和发热器件组13之间的温差已经比较小,热交换效率不如靠近进液口1201处的换热效率高,这样可以在靠近出液口1202的液流通道122上根据需要设置发热器件组13,从而可以充分利用液流通道122对发热器件组13进行散热。
基于本申请实施例提供的算力板10具有良好的传热、散热性能,因此本申请还进一步提供一种包括上述算力板10的数据处理设备,包括上述算力板10的数据处理设备,由于具有算力板10的散热性能优异,因此可以有效提高数据处理设备的运算能力。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡 是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (12)

  1. 一种算力板,其特征在于,包括电路板、液冷板和多组发热器件组;
    所述电路板具有第一表面和与所述第一表面相背对的第二表面;
    所述液冷板内设有液流通道,所述液流通道具有进液口和出液口;所述液冷板叠设在所述第一表面上;
    多组所述发热器件组沿所述液流通道的延伸方向间隔布设在所述第二表面上,且多个所述发热器件组与所述液流通道的位置相对应;在靠近所述进液口处,相邻两个所述发热器件组之间的液流路径小于靠近所述出液口处相邻两个所述发热器件组之间的液流路径。
  2. 如权利要求1所述的算力板,其特征在于,所述液流通道的流路中心在所述第一表面上的正投影与所述发热器件组的中心在所述第一表面上的正投影重合。
  3. 如权利要求1所述的算力板,其特征在于,沿所述液流通道的延伸方向,多个所述发热器件组之间的液流路径逐渐增大。
  4. 如权利要求3所述的算力板,其特征在于,每组所述发热器件组中包括一块芯片;
    或者,每组所述发热器件组中包括至少两块芯片,同一所述发热器件组中相邻的两块所述芯片之间的液流路径恒定不变;
    或者,每组所述发热器件组中包括至少两块芯片,沿着所述液流通道的延伸方向,同一所述发热器件组中相邻的两块所述芯片之间的液流路径逐渐增大;
    或者,沿着所述液流通道的延伸方向,所述发热器件组中的芯片数量逐渐增多,且同一所述发热器件组中两两相邻的三块所述芯片之间的液流路径逐渐增大;
    或者,沿着所述液流通道的延伸方向,所述发热器件组中的芯片数量逐渐增多,且在靠近所述进液口处,同一所述发热器件组中两两相邻的三块所述芯 片之间的液流路径逐渐增大,在靠近所述出液口处,同一所述发热器件组中两两相邻的三块所述芯片之间的液流路径恒定不变。
  5. 如权利要求3所述的算力板,其特征在于,沿所述液流通道的延伸方向,相邻所述发热器件组之间的液流路径呈等差数列或者呈等比数列逐渐增大。
  6. 如权利要求1至5任一项所述的算力板,其特征在于,自所述进液口起,沿所述液流通道的延伸方向,在长度为L的所述液流通道中所述发热器组件之间的液流路径逐渐增大;
    其中,L=K×D×c×v;
    K表示1~10任意数值;
    D表示液流通道的直径;
    c表示冷却液的比热容;
    υ表示冷却液的流速。
  7. 如权利要求6所述的算力板,其特征在于,自所述进液口起,沿所述液流通道的延伸方向,在1/3~1/2长度的所述液流通道中,所述发热器组件之间的液流路径逐渐增大。
  8. 如权利要求1至5任一项所述的算力板,其特征在于,所述液冷板包括导热板和穿设于所述导热板内的所述液流通道,所述导热板具有第一端部和与所述第一端部相对的第二端部,所述第一端部至所述第二端部的方向与所述第一表面至所述第二表面的方向相互垂直;所述液流通道包括多条直管道和数量比所述直管道的数量少一条的连接管道;每条所述直管道均沿所述第一端部至所述第二端部的直线方向布设于所述导热板上,相邻两条所述直管道之间具有间距,且相邻的两条所述管道之间通过一条所述连接管道连接。
  9. 如权利要求8所述的算力板,其特征在于,所述进液口和所述出液口都设置在所述第一端部或者所述第二端部;
    或者,所述进液口和所述出液口中的一者设置在所述第一端部、另一者设置在所述第二端部。
  10. 如权利要求8所述的算力板,其特征在于,所述导热板还具有第三端部和与所述第三端部相对设置的第四端部,所述第三端部和所述第四端部分别连接于所述第一端部和所述第二端部之间,所述进液口靠近所述第三端部设置,所述出液口靠近所述第四端部设置,从所述第三端部至所述第四端部,相邻两条所述直管道之间的间距相同;
    或者,从所述第三端部至所述第四端部,相邻两条所述直管道之间的间距逐渐增大。
  11. 如权利要求10所述的算力板,其特征在于,沿所述液流通道的延伸方向,在靠近所述第三端部的所述直管道上,同一所述直管道上的相邻所述发热器件组之间的液流路径逐渐增大;在靠近所述第四端部的所述直管道上,同一所述直管道上的相邻所述发热器件组之间的液流路径相同;
    或者,沿所述液流通道的延伸方向,在靠近所述第三端部的所述直管道上,同一所述直管道上的相邻所述发热器件组之间的间距逐渐增大,在靠近所述第四端部的所述直管道上,同一所述直管道上的相邻所述发热器件组之间的液流路径呈无序状态。
  12. 一种数据处理设备,其特征在于,包括权利要求1至11任一项所述的算力板。
PCT/CN2022/104978 2021-07-20 2022-07-11 一种算力板和数据处理设备 WO2023001012A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121655686.X 2021-07-20
CN202121655686.XU CN215601717U (zh) 2021-07-20 2021-07-20 一种算力板和数据处理设备

Publications (1)

Publication Number Publication Date
WO2023001012A1 true WO2023001012A1 (zh) 2023-01-26

Family

ID=79878668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104978 WO2023001012A1 (zh) 2021-07-20 2022-07-11 一种算力板和数据处理设备

Country Status (2)

Country Link
CN (1) CN215601717U (zh)
WO (1) WO2023001012A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215601717U (zh) * 2021-07-20 2022-01-21 北京比特大陆科技有限公司 一种算力板和数据处理设备
CN114721490A (zh) * 2022-04-29 2022-07-08 深圳市瀚强科技股份有限公司 液冷计算设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203694A (ja) * 2009-03-04 2010-09-16 Showa Denko Kk 液冷式冷却装置
CN109417862A (zh) * 2018-09-30 2019-03-01 北京比特大陆科技有限公司 电路板、计算设备及散热机箱
CN209088029U (zh) * 2018-09-27 2019-07-09 北京新能源汽车股份有限公司 液冷板和电池包
CN111867338A (zh) * 2020-08-07 2020-10-30 深圳比特微电子科技有限公司 电子设备的均温散热装置
CN212461817U (zh) * 2020-06-22 2021-02-02 湖北亿纬动力有限公司 一种液冷板及电池模组
CN112928082A (zh) * 2021-02-07 2021-06-08 阳光电源股份有限公司 液冷板及功率模组
CN215601717U (zh) * 2021-07-20 2022-01-21 北京比特大陆科技有限公司 一种算力板和数据处理设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203694A (ja) * 2009-03-04 2010-09-16 Showa Denko Kk 液冷式冷却装置
CN209088029U (zh) * 2018-09-27 2019-07-09 北京新能源汽车股份有限公司 液冷板和电池包
CN109417862A (zh) * 2018-09-30 2019-03-01 北京比特大陆科技有限公司 电路板、计算设备及散热机箱
CN212461817U (zh) * 2020-06-22 2021-02-02 湖北亿纬动力有限公司 一种液冷板及电池模组
CN111867338A (zh) * 2020-08-07 2020-10-30 深圳比特微电子科技有限公司 电子设备的均温散热装置
CN112928082A (zh) * 2021-02-07 2021-06-08 阳光电源股份有限公司 液冷板及功率模组
CN215601717U (zh) * 2021-07-20 2022-01-21 北京比特大陆科技有限公司 一种算力板和数据处理设备

Also Published As

Publication number Publication date
CN215601717U (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2023001012A1 (zh) 一种算力板和数据处理设备
US10260781B2 (en) Liquid cooling device having diversion mechanism
US11291136B2 (en) Liquid-cooled cold plate device
US7021367B2 (en) Liquid cooling jacket
US10925183B2 (en) 3D extended cooling mechanism for integrated server
US20220316822A1 (en) Heat dissipation device and fin structure
US11280565B2 (en) Adapting device and heat dissipation system having the same
TW201217736A (en) A heat exchange chamber for liquid state cooling fluid
JP2009182313A (ja) 部品冷却構造
CN104735958A (zh) 一种液冷式热管散热器
CN209250984U (zh) 散热装置及电器件
CN215988927U (zh) 一种液冷系统与电池装置
CN111862792B (zh) 显示模组及显示装置
TWM612965U (zh) 水冷頭附加鰭片散熱器
CN114615866A (zh) 液冷板及电子设备
CN204598536U (zh) 液冷式热管散热器
JP3298016B2 (ja) ヒートパイプ式放熱器の放熱部
CN216980543U (zh) 一种单管功率器件的双面冷却散热结构
CN102455765A (zh) 液态冷却流体热交换室
CN221306365U (zh) 显示卡组件及散热模块
CN217606809U (zh) 用于高功率芯片的液冷散热装置和系统
CN210630140U (zh) 通讯设备散热壳体
CN221056886U (zh) 一种分体式水冷工控机
CN218413407U (zh) 散热组件和电器部件
CN218548419U (zh) 散热组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE