WO2023000964A1 - 纹路识别模组及显示装置 - Google Patents
纹路识别模组及显示装置 Download PDFInfo
- Publication number
- WO2023000964A1 WO2023000964A1 PCT/CN2022/103449 CN2022103449W WO2023000964A1 WO 2023000964 A1 WO2023000964 A1 WO 2023000964A1 CN 2022103449 W CN2022103449 W CN 2022103449W WO 2023000964 A1 WO2023000964 A1 WO 2023000964A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- layer
- recognition module
- base substrate
- shielding
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 59
- 239000002184 metal Substances 0.000 claims abstract description 52
- 229910052751 metal Inorganic materials 0.000 claims abstract description 52
- 230000009467 reduction Effects 0.000 claims abstract description 10
- 238000003909 pattern recognition Methods 0.000 claims description 43
- 230000005540 biological transmission Effects 0.000 claims description 32
- 230000003287 optical effect Effects 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000003292 glue Substances 0.000 claims description 13
- 230000017525 heat dissipation Effects 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 8
- 238000005401 electroluminescence Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 227
- 238000010586 diagram Methods 0.000 description 40
- 230000000694 effects Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 240000006829 Ficus sundaica Species 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/60—OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
- H10K59/65—OLEDs integrated with inorganic image sensors
Definitions
- the present disclosure relates to the field of display technology, in particular to a texture recognition module and a display device.
- biometric technology has been more and more widely used.
- fingerprint recognition technology has been widely used in mobile terminals and smart homes. Provide security protection for user information.
- Optical fingerprint recognition is one of the means to realize fingerprint recognition.
- the principle of optical fingerprint recognition is as follows: When the finger is placed on the display product, the emitted light of the light source contained in the display product shines on the valley and ridge of the finger, and is reflected by the valley and ridge of the finger before entering the display product Contains photosensitive devices. Since the light intensity reflected by the positions of valleys and ridges is different, the photosensitive device generates different electrical signals according to the above-mentioned difference in reflected light intensity to realize fingerprint recognition.
- the pattern recognition module and the display device provided by the embodiment of the present disclosure, the specific scheme is as follows:
- an embodiment of the present disclosure provides a texture recognition module, including:
- bias metal layer located on a side of the photosensitive device layer away from the base substrate
- a noise reduction metal layer located on the side of the bias metal layer away from the photosensitive device layer;
- the light-guiding film layer includes at least two layers of light-shielding layers stacked, each of the light-shielding layers has light-transmitting holes arranged in an array, and the light-transmitting holes in each of the light-shielding layers correspond one-to-one and are arranged on the base substrate
- the orthographic projections on the base substrate at least partly coincide, and the orthographic projections of the correspondingly arranged light transmission holes on the base substrate are located within the orthographic projections of the photosensitive device on the base substrate, and are adjacent to the photosensitive device layer
- the light-shielding layer is set in the same layer as at least one of the bias metal layer and the noise reduction metal layer;
- the microlens layer is located on the side of the light guide film layer away from the photosensitive device layer, the microlens layer includes a plurality of microlenses, and the orthographic projection of the microlenses on the base substrate covers and is larger than the The orthographic projection of the light transmission hole on the base substrate.
- the apertures of the light-transmitting holes correspondingly provided in each of the light-shielding layers increase sequentially.
- the orthographic projections of the centers of the light-transmitting holes correspondingly provided in each of the light-shielding layers on the base substrate coincide.
- the light guiding film layer includes a first light-shielding layer, a first light-transmitting layer, a second A light-shielding layer, a second light-transmitting layer, a third light-shielding layer, and a third light-transmitting layer;
- the first light shielding layer includes first light transmission holes arranged in an array
- the second light shielding layer includes second light transmission holes arranged in an array
- the third light shielding layer includes third light transmission holes arranged in an array .
- the first light-shielding layer is multiplexed with the bias metal layer.
- the first light-shielding layer is of the same layer and material as the noise-reducing metal layer.
- the first light-shielding layer is multiplexed with the bias metal layer
- the second light-shielding layer is in the same layer as the noise-reducing metal layer, Same material.
- the light guide film layer and the microlens satisfy the following relational expression:
- L is the distance between the upper surface of the microlens and the first light-shielding layer; ⁇ is the light collection angle, K is a specific coefficient related to the microlens, and W 0 is the first light transmission
- W 1 is the aperture of the second light-transmitting hole
- W 2 is the aperture of the third light-transmitting hole
- W 3 is the aperture of the microlens
- h 1 is the first light-transmitting layer
- h2 is the thickness of the second light-transmitting layer
- h3 is the thickness of the third light-transmitting layer
- h x1 is the thickness of the second light-shielding layer
- h x2 is the thickness of the third light-shielding layer thickness of.
- each of the photosensitive devices includes at least one sub-photosensitive device that is independent from each other, and the sub-photosensitive devices include a stacked first electrode, a photoelectric conversion layer and a second electrode;
- the sub-photosensitive devices are arranged in one-to-one correspondence with the microlenses, and the orthographic projection of the photoelectric conversion layer on the base substrate is located within the corresponding orthographic projection of the microlenses on the base substrate.
- the pattern recognition module provided by the embodiment of the present disclosure, it further includes a plurality of pixel driving circuits and a plurality of connection electrodes located between the photosensitive device layer and the substrate;
- Each of the photosensitive devices includes a plurality of sub-photosensitive devices that are independent of each other, wherein the first electrode and the connecting electrode are arranged on the same layer, and the first electrodes of all the sub-photosensitive devices are connected to each other through the connecting electrodes.
- the pixel driving circuit is electrically connected, and the second electrodes of all the sub-photosensitive devices are respectively electrically connected to the bias metal layer.
- the bias metal layer includes a plurality of bias lines, each of the bias lines includes a main body extending along the column direction, and a plurality of protruding parts on the same side of the main body part, and each of the protruding parts is electrically connected to each of the second electrodes in one of the photosensitive devices.
- the pixel drive circuit includes: a reset transistor, an amplification transistor, and a read transistor, wherein the reset transistor and the read transistor are double-gate transistor.
- the distance between the surface of the base substrate facing the photosensitive device layer and the apex of the microlens is greater than or equal to 30 ⁇ m and less than Or equal to 50 ⁇ m.
- an embodiment of the present disclosure provides a display device, including the above-mentioned texture recognition module provided by the embodiment of the present disclosure, and a display module located on the texture recognition module, the display module and the The above texture recognition modules are fixed by optical glue.
- the orthographic projection of the texture recognition module on the plane where the display device is located is the same as the orthographic projection of the display module on the plane where the display device is located Roughly coincident, the optical glue is located in the frame area of the display module.
- the display module includes an organic electroluminescent display panel, a heat dissipation film disposed on a side away from the display surface of the organic electroluminescent display panel, And the middle frame located on the side of the heat dissipation film away from the organic electroluminescent display panel, wherein the heat dissipation film includes a hollow structure, the texture recognition module is arranged in the hollow structure, and the texture recognition The module is fixed to the middle frame through the optical glue.
- FIG. 1 is a schematic structural diagram of a texture recognition module provided by an embodiment of the present disclosure
- Fig. 2 is a schematic diagram of a cross-sectional structure along line I-II in a display device including the pattern recognition module shown in Fig. 1;
- Fig. 3 is another kind of cross-sectional structure schematic diagram along I-II line in the display device that comprises pattern identification module shown in Fig. 1;
- Fig. 4 is a schematic diagram of another cross-sectional structure along line I-II in the display device including the texture recognition module shown in Fig. 1;
- FIG. 5 is a collimated optical path diagram provided by an embodiment of the present disclosure.
- Fig. 6 is a graph of the receiving angle and the transmittance of the collimated light path shown in Fig. 5;
- Fig. 7 is a fingerprint identification effect diagram of the collimated optical path shown in Fig. 5;
- FIG. 8 is a schematic structural diagram of a pattern recognition module provided by an embodiment of the present disclosure.
- Fig. 9 is a schematic diagram of a cross-sectional structure along the line I'-II' in a display device including the pattern recognition module shown in Fig. 8;
- Fig. 10 is a schematic diagram of another cross-sectional structure along the I'-II' line in the display device including the pattern recognition module shown in Fig. 8;
- Fig. 11 is a schematic diagram of another cross-sectional structure along the line I'-II' in the display device including the texture recognition module shown in Fig. 8;
- FIG. 12 is a schematic structural diagram of one photosensitive device corresponding to nine microlenses provided by the present disclosure.
- FIG. 13 is a schematic structural diagram of a photosensitive device corresponding to sixteen microlenses provided by the present disclosure.
- Fig. 14 is a fingerprint recognition effect diagram of the pattern recognition module shown in Fig. 1;
- Fig. 15 is a graph of the fingerprint semaphore of the pattern recognition module shown in Fig. 1;
- Fig. 16 is a fingerprint recognition effect diagram of the pattern recognition module shown in Fig. 8;
- Fig. 17 is a graph of the fingerprint semaphore of the pattern recognition module shown in Fig. 8;
- Fig. 18 is a fingerprint recognition effect diagram of the pattern recognition module shown in Fig. 12;
- Fig. 19 is a graph of the fingerprint semaphore of the pattern recognition module shown in Fig. 12;
- Fig. 20 is a fingerprint recognition effect diagram of the pattern recognition module shown in Fig. 13;
- Fig. 21 is a graph of the fingerprint semaphore of the pattern recognition module shown in Fig. 13;
- Fig. 22 is a normalized graph of the fingerprint semaphore of the pattern identification module shown in Fig. 15, Fig. 17, Fig. 19 and Fig. 21;
- Fig. 23 is a schematic diagram of a laminated structure of a pixel area in the fingerprint identification module shown in Fig. 1;
- FIG. 24 is a schematic structural diagram of the active layer in FIG. 23;
- FIG. 25 is a schematic structural diagram of the gate metal layer in FIG. 23;
- FIG. 26 is a schematic structural diagram of a gate insulating layer and an interlayer dielectric layer in FIG. 23;
- FIG. 27 is a schematic structural diagram of the source-drain metal layer in FIG. 23;
- FIG. 28 is a schematic structural diagram of the first insulating layer in FIG. 23;
- Fig. 29 is a schematic structural diagram of the first flat layer in Fig. 23;
- FIG. 30 is a schematic structural diagram of the layer where the first electrode is located in FIG. 23;
- Fig. 31 is a schematic structural diagram of the photoelectric conversion layer and the layer where the second electrode is located in Fig. 23;
- Fig. 32 is a schematic structural view of the protective layer and the resin layer in Fig. 23;
- FIG. 33 is a schematic structural diagram of a second insulating layer in FIG. 23;
- FIG. 34 is a schematic structural diagram of the bias metal layer in FIG. 23;
- Fig. 35 is a schematic structural diagram of the shielding layer in Fig. 23;
- Fig. 36 is a schematic structural diagram of the second light-shielding layer in Fig. 23;
- Fig. 37 is a schematic structural diagram of the third light-shielding layer in Fig. 23;
- Figure 38 is a schematic structural view of the microlens layer in Figure 23;
- FIG. 39 is a schematic diagram of the pixel driving circuit in FIG. 23;
- Fig. 40 is a schematic diagram of the laminated structure of a pixel area in the fingerprint identification module shown in Fig. 8;
- FIG. 41 is a schematic structural diagram of the layer where the first electrode is located in FIG. 40;
- Fig. 42 is a schematic structural diagram of the photoelectric conversion layer and the layer where the second electrode is located in Fig. 40;
- FIG. 43 is a schematic structural diagram of the bias metal layer in FIG. 40.
- Fig. 44 is a schematic structural diagram of the second light-shielding layer in Fig. 40;
- Fig. 45 is a schematic structural diagram of the third light-shielding layer in Fig. 40;
- Figure 46 is a schematic structural view of the microlens layer in Figure 40;
- FIG. 47 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
- FIG. 48 is another schematic structural diagram of a display device provided by an embodiment of the present disclosure.
- the display device for fingerprint identification under the screen includes an alignment film and a fingerprint identification module, and the alignment film and the fingerprint identification module are bonded by optical adhesive (OCA); wherein, the alignment film includes a light-transmitting The single-layer aperture of the hole, and the microlens on the side of the single-layer aperture away from the fingerprint recognition module.
- OCA optical adhesive
- the collimation film has spatial noise such as slanted lines, and because the lens and the photosensitive device in the fingerprint recognition substrate are not aligned, there are moiré patterns between the lens and the optical path, and the oblique moiré has a negative impact on the image ISP algorithm. higher difficulty.
- the single-layer aperture of the collimation film uses organic resin materials. After bonding with optical glue, the inside of the single-layer aperture is an air medium. During the verification, the mechanical properties of the single-layer aperture change due to the heating of the material, which changes the overall optical path and the appearance of the collimation film, causing reliability problems.
- an embodiment of the present disclosure provides a texture recognition module, as shown in Fig. 1 and Fig. 2 , including:
- the photosensitive device layer is located on the base substrate 101, and the photosensitive device layer includes a plurality of photosensitive devices 102;
- the bias metal layer 103 is located on the side of the photosensitive device layer away from the base substrate 101;
- the noise reduction metal layer 104 is located on the side of the bias metal layer 103 away from the photosensitive device layer;
- the light-guiding film layer 105 includes at least two layers of light-shielding layers a stacked. Each light-shielding layer has light-transmitting holes H arranged in an array.
- the orthographic projections on the base substrate 101 are at least partly overlapped, and the orthographic projections of the corresponding light transmission holes H on the base substrate 101 are located within the orthographic projection of the photosensitive device 102 on the base substrate 101, and the light-shielding layer a adjacent to the photosensitive device layer and the polarizer
- At least one of the pressure metal layer 103 and the noise reduction metal layer 104 is provided on the same layer; wherein, the shape of the light transmission hole H can be a circle or a square, etc., which is not limited here;
- the microlens layer is located on the side of the light guide film layer 105 away from the photosensitive device layer.
- the microlens layer includes a plurality of microlenses 106.
- the orthographic projection of the microlenses 106 on the substrate substrate 101 covers and is larger than the light transmission hole H on the substrate. Orthographic projection on a substrate.
- the light-shielding layer a adjacent to the photosensitive device layer on the same layer as at least one of the bias metal layer 103 and the noise reduction metal layer 104, directly on the photosensitive device
- the light guide film layer 105 and the microlens 106 including a multi-layer light-shielding layer a are integrated above 102, which can effectively improve the large-angle crosstalk, film twill/moiré, poor reliability, etc. Therefore, the accuracy of the identified fingerprint information can be improved in the process of optical fingerprint identification.
- the optical glue in the related art is saved, and the thickness of the optical glue is generally greater than 25 ⁇ m. Therefore, the thickness of the texture recognition module of the present disclosure can be greatly reduced.
- the surface of the base substrate 101 facing the photosensitive device layer ie, the upper surface of the base substrate 101
- the apex of the microlens 106 The distance between them is greater than or equal to 30 ⁇ m and less than or equal to 50 ⁇ m.
- the apertures of the light transmission holes H correspondingly provided in each light shielding layer a may increase sequentially.
- the area where the orthographic projections of the light-shielding layers a on the base substrate 101 completely overlap between the light transmission holes H at the same position constitutes a collimation hole structure, which serves to collimate the light rays incident at the position at various angles.
- the function is to make the light rays at a certain angle (for example, less than or equal to 10°) with the normal line perpendicular to the surface of the light guide film layer 105 pass through the collimation hole structure, and the light rays exceeding the angle (for example, greater than 10°) is closed.
- the difference between the smallest and largest angles through which light can pass is the receiving angle.
- the projections overlap to ensure that the light-shielding layers a can form a collimating hole structure with better collimating effect between the light-transmitting holes H at the same position.
- the orthographic projections of the center of the light transmission hole H at the same position of each light-shielding layer a on the base substrate 101 overlap completely as much as possible, but according to the alignment error of the actual manufacturing process, each light-shielding layer a is at the same position. There may be a certain offset in the center of the light transmission hole H at the position, and complete overlap cannot be guaranteed, that is, there may be a partial overlap.
- the first light-shielding layer b1 can function as a field stop
- the first light-shielding layer a1 includes the first light-transmitting holes H1 arranged in an array
- the second light-shielding layer a2 and the third light-shielding layer a3 play a role in preventing light crosstalk
- the second light-shielding layer a2 includes the first light-shielding hole H1 arranged in an array
- the third light-shielding layer a3 includes third light-transmitting holes H3 arranged in an array.
- the apertures of the first light transmission hole H1, the second light transmission hole H2, and the third light transmission hole H3 gradually increase, and the center of the first light transmission hole H1, the second light transmission hole Orthographic projections of the center of the hole H2 and the center of the third light transmission hole H3 on the base substrate 101 are approximately coincident.
- the texture recognition module includes a display area AA and a light-shielding area BB.
- the pattern of the noise reduction metal layer 104 is generally located in the light-shielding area BB, and the pattern of the bias metal layer 103 is generally is located in the display area AA, and the light transmission hole H of the present disclosure is located in the display area AA. Therefore, in the above-mentioned pattern recognition module provided by the embodiment of the present disclosure, in order to reduce the number of film layers, as shown in FIG. 2, the first light-shielding layer a1 can be reused with the bias metal layer 103; or, as shown in FIG. 3 , the first light-shielding layer a1 is the same layer and material as the noise-reducing metal layer 104; or, as shown in FIG. 104 is the same layer and same material, which is not specifically limited here.
- the thermal reflow process can be used to fabricate the microlens 106 on the third transparent layer b3 with a step size of 2.5 ⁇ m.
- the height h of the microlens 106 ranges from 1 ⁇ m to 10 ⁇ m
- the diameter W 3 of the microlens 106 ranges from 10 ⁇ m to 30 ⁇ m.
- the value range of the aperture W 0 of the first light transmission hole H1 is 2 ⁇ m-10 ⁇ m
- the value range of the aperture W 1 of the second light transmission hole H2 is 4 ⁇ m-15 ⁇ m
- the value range of the aperture W 2 of the third light transmission hole H3 The value range is 6 ⁇ m-18 ⁇ m; the value range of the thickness h1 of the first transparent layer b1 is 1 ⁇ m-10 ⁇ m, the value range of the thickness h2 of the second transparent layer b2 is 1 ⁇ m-5 ⁇ m, and the value range of the third transparent layer
- the thickness h3 of b3 ranges from 1 ⁇ m to 10 ⁇ m
- the thickness h x1 of the second light shielding layer a2 ranges from 1 ⁇ m to 2 ⁇ m
- the thickness h x2 of the third light shielding layer a3 ranges from 1 ⁇ m to 2 ⁇ m.
- the distance L between the upper surface of the microlens 106 and the first light-shielding layer a1 satisfies the following formula:
- K is a specific coefficient related to the microlens 106;
- the light guide film layer 105 and the microlens 106 satisfy the following relationship:
- the light guide film layer 105 and the microlens 106 are designed according to the manufacturing capacity of the production line.
- the design parameters include: the diameter W3 of the microlens 106 is 16 ⁇ m, the crown height h of the microlens 106 is 4 ⁇ m, and the first
- the aperture W 0 of the light-transmitting hole H1 is 2.5 ⁇ m
- the aperture W 1 of the second light-transmitting hole H2 in the second light-shielding layer a2 is 6.6 ⁇ m
- the aperture W 2 of the third light-transmitting hole H3 in the third light-shielding layer a3 is 10.7 ⁇ m.
- the thickness h1 of the first light-transmitting layer b1 is 6.44 ⁇ m
- the thickness h2 of the second light-transmitting layer b2 is 3.7 ⁇ m
- the thickness h3 of the third light-transmitting layer b3 is 6 ⁇ m
- the thickness of the second light-shielding layer a2 h x1 is 1 ⁇ m
- the thickness h x2 of the third light-shielding layer a3 is 1 ⁇ m.
- the present disclosure has carried out an optical test on the light guide film layer 105 and the microlens 106 with the above design parameters, and the results are shown in FIGS. 6 and 7 . It can be seen from Fig. 6 that the light guide film layer 105 and the microlens 106 of the above-mentioned design parameters can pass through the light of 0°-10°, and can make each beam of light filtered out one by one accurately match the valleys and ridges of the fingerprint. Correspondingly, there will be no other stray light crosstalk, which can realize accurate identification of fingerprints.
- the photosensitive device S includes a stacked first electrode 1021, a photoelectric conversion layer 1022, and a second electrode 1023; wherein, the sub-photosensitive device S is arranged in a one-to-one correspondence with the microlens 106, and the positive side of the photoelectric conversion layer 1022 on the base substrate 101
- the projection is located in the orthographic projection of the corresponding microlens 106 on the substrate 101, so that all the fingerprint reflection light collected by the microlens 106 is absorbed by the corresponding photoelectric conversion layer 1022, thereby increasing the signal amount and increasing the signal-to-noise ratio.
- each photosensitive device 102 includes one sub-photosensitive device S
- FIG. 8 shows that each photosensitive device 102 includes four sub-photosensitive devices S.
- each photosensitive device 102 may further include nine sub-photosensitive devices S; or, as shown in FIG. 13 , each photosensitive device 102 may further include sixteen sub-photosensitive devices S.
- the number of sub-photosensitive devices 102 included in each photosensitive device 102 may also be other values, which are not limited here.
- each photosensitive device 102 corresponds to one, four, nine and sixteen microlenses 106 respectively.
- there is a constant period (lens space) in the manufacturing process of the microlenses 106 that is, the distance between the centers of two adjacent microlenses 106 is fixed.
- Fig. 14 and Fig. 15 are the optical test results for the one-to-one correspondence shown in Fig. 1 for the photosensitive device 102 and the microlens 106;
- Fig. 18 and Fig. 19 are the optical test results for the photosensitive device 102 and the microlens 106 having a one-to-nine corresponding relationship shown in Fig.
- the texture recognition module may further include: layer (Poly) 108, gate insulating layer (GI) 109, gate metal layer (Gate) 110, interlayer dielectric layer (ILD) 111, source-drain metal layer (SD1) 112, first insulating layer (PVX1) 113, First flat layer (PLN1) 114, protective layer (Cover) 115, resin layer (Resin) 116, second insulating layer (PVX2) 117, third insulating layer (PVX3) 118, barrier layer (Barrier) 119, shielding layer (ITO) 120 and the fourth insulating layer (OC) 121; Wherein, in Figure 2 and Figure 9, the third insulating layer 118, barrier layer 119, shielding layer 120 and the fourth insulating layer 121 are equivalent to the first light-transmitting layer a1;
- the barrier layer 119, the shielding layer 120 and the fourth insulating layer 121 are equivalent to the first transparent layer a1; in Fig. 4 and Fig. 11, the third insulating layer 118 is equivalent to the first transparent layer
- the optical layer a1, the blocking layer 119, the shielding layer 120 and the fourth insulating layer 121 are equivalent to the second transparent layer a2.
- each pixel area can also include the pixel driving circuit shown in FIG.
- the pixel driving circuit includes a reset transistor (Reset TFT) T1, an amplification transistor (AMP TFT) T2 and a read transistor (Read TFT) ) T3, wherein the gate of the reset transistor T1 is electrically connected to the first scanning signal line G1, the first pole of the reset transistor T1 is electrically connected to the power line VDD, and the second pole of the reset transistor T1 is electrically connected to the first electrode 1021;
- the gate of the amplifying transistor T2 is electrically connected to the first electrode 1021, the first pole of the amplifying transistor T2 is electrically connected to the power supply line VDD, and the second pole of the amplifying transistor T2 is electrically connected to the first pole of the read transistor T3;
- the read transistor The gate of T3 is electrically connected to the second scanning signal line G2, and the second pole of the reading transistor T3 is electrically connected to the reading line Test;
- the first electrode plate of the capacitor C is grounded to GND, and the second electrode plate of the capacitor C is connected to the first The electrode
- FIG. 23 shows a stacked diagram of a pixel region.
- FIG. 24 shows the pattern of the active layer 108 in a pixel region, specifically the active layer including the reset transistor T1 , the amplifier transistor T2 and the read transistor T3 .
- FIG. 25 shows the pattern of the gate metal layer 110 in a pixel region, specifically including the gates of the reset transistor T1, the amplifier transistor T2 and the read transistor T3, and the first scanning signal line G1 and the second scanning signal line G2, wherein , the reset transistor T1 and the read transistor T3 may include two gates, that is, double-gate transistors, to reduce noise.
- FIG. 26 shows the pattern of the gate insulating layer 109 and the interlayer dielectric layer 111 in a pixel region, specifically including a via hole for connecting the active layer and the source and drain of the reset transistor T1, and a hole for connecting the amplifying transistor T2.
- FIG. 27 shows the pattern of the source-drain metal layer 112 in a pixel region, specifically including the sources and drains of the reset transistor T1, the amplifier transistor T2 and the read transistor T3, the power supply line VDD and the read line Test, wherein the reset transistor T1
- the source/drain and the gate of the amplifying transistor T2 have an overlapping area T1+T2 to realize the electrical connection between them.
- FIG. 28 shows the pattern of the first insulating layer 113 in a pixel region, specifically including a through hole for connecting the gate of the amplifying transistor T2 and the first electrode 1021 of the sub-photosensitive device S.
- FIG. 28 shows the pattern of the first insulating layer 113 in a pixel region, specifically including a through hole for connecting the gate of the amplifying transistor T2 and the first electrode 1021 of the sub-photosensitive device S.
- FIG. 29 shows the pattern of the first planar layer 114 in a pixel region, specifically including a through hole for connecting the gate of the amplifying transistor T2 and the first electrode 1021 of the sub-photosensitive device S.
- FIG. 30 shows the pattern of the first electrode 1021 (also referred to as SD2 ) in a pixel area, specifically including the first electrode 1021 of a sub-photosensitive device S.
- Figure 31 shows the pattern of the photoelectric conversion layer 1022 (also referred to as PIN) and the second electrode 1023 (also referred to as ITO cap) in a pixel region, specifically including the photoelectric conversion layer 1022 and the second electrode of a sub-photosensitive device S 1023.
- FIG. 32 shows the pattern of the resin layer 116 and the protection layer 115 in a pixel area, specifically including the through hole for connecting the second electrode 1023 of a sub-photosensitive device S and the bias metal layer 103 (also referred to as TM).
- FIG. 33 shows the pattern of the second insulating layer 117 in a pixel region, specifically including a via hole for connecting the second electrode 1023 of a sub-photosensitive device S and the bias metal layer 103 (also referred to as TM).
- Fig. 34 shows the pattern of the bias metal layer 103 in a pixel area, which specifically includes a main body M extending along the column direction, and a plurality of protrusions T on the same side of the main body, the protrusions T and a sub-photosensitive
- the second electrode 1023 of the device S is electrically connected, and FIG. 32 specifically shows that the bias metal layer 103 is multiplexed as the first light-shielding layer b1, therefore, the protrusion T has a first light-transmitting hole H1.
- FIG. 35 shows the pattern of the shielding layer 120 in one pixel region.
- FIG. 36 shows the pattern of the second light-shielding layer b2 in a pixel area, specifically including the second light-transmitting hole H2 overlapped with the first light-transmitting hole H1 .
- FIG. 37 shows the pattern of the third light-shielding layer b3 in a pixel area, specifically including the third light-transmitting hole H3 overlapped with the first light-transmitting hole H1 and the second light-transmitting hole H2 .
- FIG. 38 shows the pattern of the microlens layer lens in a pixel area, specifically including the microlens 106 completely covering the photoelectric conversion layer 1022 , the first light hole H1 , the second light hole H2 and the third light hole H3 .
- a photosensitive device 102 including a sub-photosensitive device S and being arranged corresponding to a microlens 106 as an example. It should be understood that, as shown in FIGS. 40 to 46 , in the present disclosure, a photosensitive device 102 may also include a plurality of sub-photosensitive devices S, and each sub-photosensitive device S is set corresponding to a microlens 106 .
- a photosensitive device 102 may also include a plurality of sub-photosensitive devices S, and each sub-photosensitive device S is set corresponding to a microlens 106 .
- the layout design of a pixel area in this case, only the structure of the layer where the photosensitive device 102, the light guiding film layer 105 and the microlens 106 are located will be described below, and the rest of the film layer structure can be referred to above. The relevant content corresponding to one microlens 106 is not repeated here.
- each photosensitive device 102 includes a plurality of sub-photosensitive devices S that are independent of each other, and the pattern identification module can also include a plurality of connecting electrodes 122 connected to The electrode 122 is set on the same layer as the first electrode 1021, and the first electrodes 1021 of all the sub-photosensitive devices S are electrically connected to the pixel driving circuit (specifically, the gate of the amplifying transistor T2) through the connecting electrode 122, and the first electrodes 1021 of all the sub-photosensitive devices S
- the two electrodes 1023 are electrically connected to the bias metal layer 103 through the through holes penetrating the resin layer 116 and the second insulating layer 117 respectively, so as to load the photosensitive device 102 with a driving signal through the pixel driving circuit and the bias metal layer 103 .
- the bias line may include a main body M extending along the column direction, and a plurality of protrusions T on the same side of the main body M, each protrusion T is connected to a photosensitive
- the respective second electrodes 1022 in the device 102 are electrically connected.
- an embodiment of the present disclosure provides a display device, as shown in FIG. 47 , including the above-mentioned pattern recognition module 01 provided by the embodiment of the present disclosure, and a display module 02 located on the pattern recognition module 01 , the display module 02 and the texture recognition module 01 are fixed by optical glue 03 . Since the problem-solving principle of the display device is similar to the problem-solving principle of the above-mentioned texture recognition module, the implementation of the display device provided by the embodiment of the present disclosure can refer to the implementation of the above-mentioned texture recognition module provided by the embodiment of the present disclosure, repeat The place will not be repeated.
- the orthographic projections are approximately coincident, and the optical glue 03 is located in the frame area of the display module 01, so that there is an air gap between the texture recognition module 01 and the display module 02, which is beneficial to maintain the direction of the light path propagation of the reflected light from the finger; At the same time, full-screen fingerprint recognition can be realized.
- the display module 02 may include an organic electroluminescence display panel 201, and the The heat dissipation film 202 provided on one side of the heat dissipation film 202, and the middle frame 203 located on the side of the heat dissipation film 202 facing away from the organic electroluminescence display panel 201, wherein the heat dissipation film 202 includes a hollow structure, and the texture recognition module 01 is arranged in the hollow structure, and The pattern recognition module 01 is fixed to the middle frame 203 through optical glue 03, so as to realize local fingerprint recognition in the area where the hollow structure is located.
- the heat dissipation film 202 may include graphite in contact with the organic electroluminescence display panel 201 , foam in contact with the middle frame 203 , and copper foil between the graphite and the foam.
- the organic electroluminescent display panel 201 includes: a protective cover, an optical glue, a polarizer, a packaging layer, a cathode, a light-emitting functional layer, an anode and a driving backplane arranged in sequence from top to bottom.
- the light guide film layer 105 and the microlens 106 can filter out the light at a small angle close to collimation, so that it reaches the photosensitive device 102 below. on the photoelectric conversion layer 1022.
- the photoelectric conversion layer 1022 can detect the intensity of light reflected by the fingerprint. Since the energy of the diffusely reflected light is different between valleys and ridges, the light intensity detected by the array of photosensitive devices 102 is different, thereby obtaining fingerprint image information.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
本公开提供的纹路识别模组及显示装置,包括:衬底基板;光敏器件层,位于衬底基板之上,光敏器件层包括多个光敏器件;偏压金属层,在光敏器件层背离衬底基板的一侧依次设置的偏压金属层和降噪金属层;导光膜层,包括至少两层层叠设置的遮光层,各遮光层具有呈阵列排布的透光孔,各遮光层中的透光孔一一对应且在衬底基板上的正投影至少部分重合,对应设置的透光孔在衬底基板上的正投影位于光敏器件在衬底基板上的正投影内,且邻近光敏器件层的遮光层与偏压金属层和降噪金属层中的至少之一同层设置;微透镜层,位于导光膜层背离光敏器件层的一侧,微透镜层包括多个微透镜,微透镜在衬底基板上的正投影覆盖且大于透光孔在衬底基板上的正投影。
Description
相关申请的交叉引用
本申请要求在2021年07月22日提交中国专利局、申请号为202110831284.9、申请名称为“纹路识别模组及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本公开涉及显示技术领域,尤其涉及一种纹路识别模组及显示装置。
随着信息行业的高速发展,生物识别技术受到了越来越广泛的应用,特别地,由于不同用户的指纹不同,便于进行用户身份确认,因此,指纹识别技术已经广泛应用在移动终端、智能家居等多个领域,为用户信息提供安全保障。
光学式指纹识别是实现指纹识别的手段之一。光学式指纹识别的原理如下:当手指置于显示产品上方时,显示产品所含光源的发射光线照射到手指的谷和脊的位置,并经手指的谷和脊的反射后再入射到显示产品所含光敏器件。由于谷和脊的位置反射的光强不同,光敏器件根据上述反射光强的差异生成不同电信号,实现指纹识别。
发明内容
本公开实施例提供的纹路识别模组及显示装置,具体方案如下:
一方面,本公开实施例提供了一种纹路识别模组,包括:
衬底基板;
光敏器件层,位于所述衬底基板之上,所述光敏器件层包括多个光敏器 件;
偏压金属层,位于所述光敏器件层背离所述衬底基板的一侧;
降噪金属层,位于所述偏压金属层背离所述光敏器件层的一侧;
导光膜层,包括至少两层层叠设置的遮光层,各所述遮光层具有呈阵列排布的透光孔,各所述遮光层中的透光孔一一对应且在所述衬底基板上的正投影至少部分重合,对应设置的所述透光孔在所述衬底基板上的正投影位于所述光敏器件在所述衬底基板上的正投影内,且邻近所述光敏器件层的所述遮光层与所述偏压金属层和所述降噪金属层中的至少之一同层设置;
微透镜层,位于所述导光膜层背离所述光敏器件层的一侧,所述微透镜层包括多个微透镜,所述微透镜在所述衬底基板上的正投影覆盖且大于所述透光孔在所述衬底基板上的正投影。
可选地,在本公开实施例提供的上述纹路识别模组中,在背离所述光敏器件层的方向上,各所述遮光层中对应设置的所述透光孔的孔径依次增大。
可选地,在本公开实施例提供的上述纹路识别模组中,各所述遮光层中对应设置所述透光孔的中心在所述衬底基板上的正投影重合。
可选地,在本公开实施例提供的上述纹路识别模组中,所述导光膜层包括在所述光敏器件层之上依次层叠设置的第一遮光层、第一透光层、第二遮光层、第二透光层、第三遮光层和第三透光层;其中,
所述第一遮光层包括阵列排布的第一透光孔,所述第二遮光层包括阵列排布的第二透光孔,所述第三遮光层包括阵列排布的第三透光孔。
可选地,在本公开实施例提供的上述纹路识别模组中,所述第一遮光层与所述偏压金属层复用。
可选地,在本公开实施例提供的上述纹路识别模组中,所述第一遮光层与所述降噪金属层同层、同材料。
可选地,在本公开实施例提供的上述纹路识别模组中,所述第一遮光层与所述偏压金属层复用,所述第二遮光层与所述降噪金属层同层、同材料。
可选地,在本公开实施例提供的上述纹路识别模组中,所述导光膜层和 所述微透镜满足以下关系式:
L=h+h
1+h
2+h
3+h
x1+h
x2;
L=[W
3
2/(8h)+h/2]*K;
W
0=L*tanθ;
(W
1-W
0)/(2h
1)≤(W
2-W
1)/[2(h
2+h
x1)]≤(W
3-W
2)/[2(h
3+h
x2)];
其中,L为所述微透镜的上表面到所述第一遮光层之间的距离;θ为收光角,K为与所述微透镜相关的特定系数,W
0为所述第一透光孔的孔径,W
1为所述第二透光孔的孔径,W
2为所述第三透光孔的孔径,W
3为所述微透镜的口径,h
1为所述第一透光层的厚度,h
2为所述第二透光层的厚度,h
3为所述第三透光层的厚度,h
x1为所述第二遮光层的厚度,h
x2为所述第三遮光层的厚度。
可选地,在本公开实施例提供的上述纹路识别模组中,1°≤θ≤10°,2μm≤W
0≤10μm,4μm≤W
1≤15μm,6μm≤W
2≤18μm,10μm≤W
3≤30μm,1μm≤h
1≤10μm,1μm≤h
2≤5μm,1μm≤h
3≤10μm,1μm≤h
x1≤2μm,1μm≤h
x2≤2μm。
可选地,在本公开实施例提供的上述纹路识别模组中,每个所述光敏器件包括相互独立的至少一个子光敏器件,所述子光敏器件包括层叠设置的第一电极、光电转换层和第二电极;
所述子光敏器件与所述微透镜一一对应设置,且所述光电转换层在所述衬底基板上的正投影位于对应所述微透镜在所述衬底基板上的正投影内。
可选地,在本公开实施例提供的上述纹路识别模组中,还包括位于所述光敏器件层与所述衬底基板之间的多个像素驱动电路和多个连接电极;
每个所述光敏器件包括相互独立的多个子光敏器件,其中,所述第一电极与所述连接电极同层设置,且全部所述子光敏器件的所述第一电极通过所述连接电极与所述像素驱动电路电连接,全部所述子光敏器件的所述第二电极分别与所述偏压金属层电连接。
可选地,在本公开实施例提供的上述纹路识别模组中,所述偏压金属层包括多条偏压线,每条所述偏压线包括沿列方向延伸的主体部,以及在所述主体部同侧的多个凸出部,每个所述凸出部分别与一个所述光敏器件中的各所述第二电极电连接。
可选地,在本公开实施例提供的上述纹路识别模组中,所述像素驱动电路包括:复位晶体管、放大晶体管和读取晶体管,其中,所述复位晶体管和所述读取晶体管为双栅晶体管。
可选地,在本公开实施例提供的上述纹路识别模组中,所述衬底基板面向所述光敏器件层一侧的表面到所述微透镜的顶点之间的距离大于或等于30μm且小于或等于50μm。
另一方面,本公开实施例提供了一种显示装置,包括本公开实施例提供的上述纹路识别模组,以及位于所述纹路识别模组之上的显示模组,所述显示模组与所述纹路识别模组之间通过光学胶固定。
可选地,在本公开实施例提供的上述显示装置中,所述纹路识别模组在所述显示装置所在平面上的正投影与所述显示模组在所述显示装置所在平面上的正投影大致重合,所述光学胶位于所述显示模组的边框区域。
可选地,在本公开实施例提供的上述显示装置中,所述显示模组包括有机电致发光显示面板,在背离所述有机电致发光显示面板的显示面的一侧设置的散热膜,以及位于所述散热膜背离所述有机电致发光显示面板一侧的中框,其中,所述散热膜包括镂空结构,所述纹路识别模组设置于所述镂空结构内,且所述纹路识别模组通过所述光学胶与所述中框相固定。
图1为本公开实施例提供的纹路识别模组的一种结构示意图;
图2为在包括图1所示纹路识别模组的显示装置中沿I-II线的一种剖面结构示意图;
图3为在包括图1所示纹路识别模组的显示装置中沿I-II线的又一种剖面结 构示意图;
图4为在包括图1所示纹路识别模组的显示装置中沿I-II线的又一种剖面结构示意图;
图5为本公开实施例提供的准直光路图;
图6为图5所示准直光路的收光角与透过率的曲线图;
图7为图5所示准直光路的指纹识别效果图;
图8为本公开实施例提供的纹路识别模组的一种结构示意图;
图9为在包括图8所示纹路识别模组的显示装置中沿I’-II’线的一种剖面结构示意图;
图10为在包括图8所示纹路识别模组的显示装置中沿I’-II’线的又一种剖面结构示意图;
图11为在包括图8所示纹路识别模组的显示装置中沿I’-II’线的又一种剖面结构示意图;
图12为本公开提供的一个光敏器件对应九个微透镜的结构示意图;
图13为本公开提供的一个光敏器件对应十六个微透镜的结构示意图;
图14为图1所示纹路识别模组的指纹识别效果图;
图15为图1所示纹路识别模组的指纹信号量的曲线图;
图16为图8所示纹路识别模组的指纹识别效果图;
图17为图8所示纹路识别模组的指纹信号量的曲线图;
图18为图12所示纹路识别模组的指纹识别效果图;
图19为图12所示纹路识别模组的指纹信号量的曲线图;
图20为图13所示纹路识别模组的指纹识别效果图;
图21为图13所示纹路识别模组的指纹信号量的曲线图;
图22为图15、图17、图19和图21所示纹路识别模组的指纹信号量的归一化曲线图;
图23为图1所示指纹识别模组中一个像素区域的叠层结构示意图;
图24为图23中有源层的结构示意图;
图25为图23中栅金属层的结构示意图;
图26为图23中栅绝缘层和层间介电层的结构示意图;
图27为图23中源漏金属层的结构示意图;
图28为图23中第一绝缘层的结构示意图;
图29为图23中第一平坦层的结构示意图;
图30为图23中第一电极所在层的结构示意图;
图31为图23中光电转换层和第二电极所在层的结构示意图;
图32为图23中保护层和树脂层的结构示意图;
图33为图23中第二绝缘层的结构示意图;
图34为图23中偏压金属层的结构示意图;
图35为图23中屏蔽层的结构示意图;
图36为图23中第二遮光层的结构示意图;
图37为图23中第三遮光层的结构示意图;
图38为图23中微透镜层的结构示意图;
图39为图23中像素驱动电路的示意图;
图40为图8所示指纹识别模组中一个像素区域的叠层结构示意图;
图41为图40中第一电极所在层的结构示意图;
图42为图40中光电转换层和第二电极所在层的结构示意图;
图43为图40中偏压金属层的结构示意图;
图44为图40中第二遮光层的结构示意图;
图45为图40中第三遮光层的结构示意图;
图46为图40中微透镜层的结构示意图;
图47为本公开实施例提供的显示装置的一种结构示意图;
图48为本公开实施例提供的显示装置的另一种结构示意图。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
相关技术中,屏下指纹识别的显示装置包括准直膜和指纹识别模组,并通过光学胶(OCA)将准直膜与指纹识别模组进行贴合;其中,准直膜包括具有透光孔的单层光阑、以及位于单层光阑背离指纹识别模组一侧的微透镜。然而,受准直膜工艺、单层光阑结构等限制,光路在40°~50°的范围内存在串扰,使得在室外强光下的指纹图像质量下降,影响用户使用体验。另外因为压印透镜工艺的原因,准直膜存在斜纹等空域噪音,同时由于透镜与指纹识别基板中的光敏器件未进行对位,导致透镜与光路存在摩尔纹,斜摩尔纹对图像ISP算法有较高难度。此外,现阶段准直膜的单层光阑使用有机树脂材料,在采用光学胶贴合以后,单层光阑内部为空气介质,在准直膜进行双85、冷热冲击等温度类信赖性验证时,单层光阑由于材料受热发生机械特性变化,使得整体光路、准直膜外观发生变化,造成信赖性问题。
为了至少解决相关技术中存在是上述技术问题,本公开实施例提供了一种纹路识别模组,如图1和图2所示,包括:
衬底基板101;
光敏器件层,位于衬底基板101之上,光敏器件层包括多个光敏器件102;
偏压金属层103,位于光敏器件层背离衬底基板101的一侧;
降噪金属层104,位于偏压金属层103背离光敏器件层的一侧;
导光膜层105,包括至少两层层叠设置的遮光层a,各遮光层具有呈阵列排布的透光孔H,各遮光层a中的透光孔H一一对应且在衬底基板101上的正投影至少部分重合,对应设置的透光孔H在衬底基板101上的正投影位于光敏器件102在衬底基板101上的正投影内,且邻近光敏器件层的遮光层a与偏压金属层103和降噪金属层104中的至少之一同层设置;其中,透光孔H的形状可以为圆形或方形等,在此不做限定;
微透镜层,位于导光膜层105背离光敏器件层的一侧,微透镜层包括多个微透镜106,微透镜106在衬底基板101上的正投影覆盖且大于透光孔H在衬底基板上的正投影。
在本公开实施例提供的上述纹路识别模组中,通过将邻近光敏器件层的遮光层a与偏压金属层103和降噪金属层104中的至少之一同层设置的方式,直接在光敏器件102上方集成了包含多层遮光层a的导光膜层105和微透镜106,可有效改善相关技术中贴合准直膜方案的大角度串扰、膜材斜纹/摩尔纹、信赖性不佳等问题,从而在光学指纹识别过程中可以提高识别出的指纹信息的准确性。
另外,在本公开中通过直接集成导光膜层105和微透镜106,节省了相关技术中的光学胶,一般光学胶的厚度大于25μm。因此,本公开的纹路识别模组厚度可大大减小,具体地,在本公开中衬底基板101面向光敏器件层一侧的表面(即衬底基板101的上表面)到微透镜106的顶点之间的距离大于或等于30μm且小于或等于50μm。
在一些实施例中,在本公开实施例提供的上述纹路识别模组中,为削弱相邻透光孔H之间的光线串扰,获得较好的准直效果,如图1和图2所示,在背离光敏器件层的方向Y上,各遮光层a中对应设置的透光孔H的孔径可以依次增大。各遮光层a在同一位置处的透光孔H之间在衬底基板101上的正投影完全重叠的区域构成准直孔结构,起到对入射至该位置的各个角度的 光线进行准直的作用,使与垂直于导光膜层105表面的法线成在一定夹角(例如小于或等于10°)的光线可以通过该准直孔结构,超过该夹角(例如大于10°)的光线被截止。可以通过光线的最小角度和最大角度之间的差值即为收光角。
在一些实施例中,在本公开实施例提供的上述纹路识别模组中,如图1和图2所示,各遮光层a中对应设置透光孔H的中心在衬底基板101上的正投影重合,以保证各遮光层a在同一位置处的透光孔H之间可以形成准直效果较好的准直孔结构。在制作时,各遮光层a在同一位置处的透光孔H的中心在衬底基板101上的正投影尽可能的完全重叠,但是根据实际制作工艺的对位误差,各遮光层a在同一位置处的透光孔H的中心可能会存在一定的偏移,并不能保证完全重叠,即可能存在部分重叠的情况。
在一些实施例中,在本公开实施例提供的上述纹路识别模组中,如图2至图4所示,导光膜层105可以包括在光敏器件层之上依次层叠设置的第一遮光层a1、第一透光层b1、第二遮光层a2、第二透光层b2、第三遮光层a3和第三透光层b3;其中,第一遮光层a1可以起到视场光阑作用,且第一遮光层a1包括阵列排布的第一透光孔H1,第二遮光层a2和第三遮光层a3起到防止光线串扰的作用,且第二遮光层a2包括阵列排布的第二透光孔H2,第三遮光层a3包括阵列排布的第三透光孔H3。在一些实施例中,第一透光孔H1的孔径、第二透光孔H2的孔径和第三透光孔H3的孔径逐渐增大,且第一透光孔H1的中心、第二透光孔H2的中心和第三透光孔H3的中心在衬底基板101上的正投影大致重合。
在一些实施例中,如图1所示,纹路识别模组包括显示区AA和遮光区BB,相关技术中降噪金属层104的图案一般位于遮光区BB内、偏压金属层103的图案一般位于显示区AA内,并且本公开的透光孔H位于显示区AA内。因此,在本公开实施例提供的上述纹路识别模组中,为了减少膜层数量,如图2所示,第一遮光层a1可以与偏压金属层103复用;或者,如图3所示,第一遮光层a1与降噪金属层104同层、同材料;或者,如图4所示,第一遮 光层a1与偏压金属层103复用,第二遮光层a2与降噪金属层104同层、同材料,在此不做具体限定。
在一些实施例中,可以采用热回流工艺在第三透光层b3上以2.5μm的步长进行制作微透镜106。根据当前工艺能力,如图5所示,微透镜106的高度h的取值范围为1μm-10μm,其口径W
3的取值范围为10μm-30μm。第一透光孔H1的孔径W
0的取值范围为2μm-10μm,第二透光孔H2的孔径W
1的取值范围为4μm-15μm,第三透光孔H3的孔径W
2的取值范围为6μm-18μm;第一透光层b1的厚度h
1的取值范围为1μm-10μm,第二透光层b2的厚度h
2的取值范围为1μm-5μm,第三透光层b3的厚度h
3的取值范围为1μm-10μm,第二遮光层a2的厚度h
x1的取值范围为1μm-2μm,第三遮光层a3的厚度h
x2的取值范围为1μm-2μm。
此外,如图5所示,要想实现准直功能必须规避杂散光的干扰,即需要合理控制上述参数之间的关系:
其中,微透镜106的上表面到第一遮光层a1之间的距离L满足以下公式:
L=h+h
1+h
2+h
3+h
x1+h
x2 (1);
L=[W
3
2/(8h)+h/2]*K (2),K为与微透镜106相关的特定系数;
第一透光孔H1的孔径W
0满足条件:W
0=L*tanθ,其中θ为收光角,θ的取值范围为1°-10°;
导光膜层105和微透镜106满足以下关系式:
(W
1-W
0)/(2h
1)≤(W
2-W
1)/[2(h
2+h
x1)]≤(W
3-W
2)/[2(h
3+h
x2)] (3)。
本公开根据产线制作能力设计了导光膜层105和微透镜106,设计参数包括:微透镜106口径W
3为16μm,微透镜106的拱高h为4μm,第一遮光层a1中第一透光孔H1的孔径W
0为2.5μm,第二遮光层a2中第二透光孔H2的孔径W
1为6.6μm,第三遮光层a3中第三透光孔H3的孔径W
2为10.7μm,第一透光层b1的厚度h
1为6.44μm,第二透光层b2的厚度h
2为3.7μm,第三透光层b3的厚度h
3为6μm,第二遮光层a2的厚度h
x1为1μm,第三遮光层a3 的厚度h
x2为1μm。
并且,本公开针对上述设计参数的导光膜层105和微透镜106进行了光学测试,结果如图6和图7所示。由图6可以看出,上述设计参数的导光膜层105和微透镜106可以透过0°-10°的光线,且可以使所筛选出来的每束光线一一精确地与指纹的谷脊对应,不会有其他杂散光串扰,可实现精确识别指纹。
可选地,在本公开实施例提供的上述纹路识别模组中,如图1至图4、图8至图11所示,每个光敏器件102包括相互独立的至少一个子光敏器件S,子光敏器件S包括层叠设置的第一电极1021、光电转换层1022和第二电极1023;其中,子光敏器件S与微透镜106一一对应设置,且光电转换层1022在衬底基板101上的正投影位于对应微透镜106在衬底基板101上的正投影内,以使得被微透镜106汇聚后的指纹反射光全部被对应的光电转换层1022吸收,从而提高信号量,增大信噪比。
具体地,图1示出了每个光敏器件102包括一个子光敏器件S,图8示出了每个光敏器件102包括四个子光敏器件S。在一些实施例中,如图12所示,每个光敏器件102还可以包括九个子光敏器件S;或者,如图13所示,每个光敏器件102还可以包括十六个子光敏器件S。当然,每个光敏器件102包括子光敏器件102的数量还可以为其他数值,在此不做限定。相应地,在图1、图8、图12和图13中,每个光敏器件102分别与一个、四个、九个、十六个微透镜106对应。可选地,在微透镜106的制作过程中存在恒定的周期(lens space),即相邻两个微透镜106的中心之间的距离是固定的。
图14和图15是针对光敏器件102与微透镜106存在图1所示一对一的对应关系的光学测试结果,图16和图17是针对光敏器件102与微透镜106存在图8所示一对四的对应关系的光学测试结果,图18和图19是针对光敏器件102与微透镜106存在图12所示一对九的对应关系的光学测试结果,图20和图21是针对光敏器件102与微透镜106存在图13所示一对十六的对应关系的光学测试结果,图22中自上而下的曲线依次代表图1、图8、图12和 图13所示显示基板中准直孔结构的收光角与透过率的关系。由图14至图22可以看出,在相同的收光角(0°-10°)情况下,图1、图8、图12和图13所示显示基板中准直孔结构的中心透过率依次减小,整个曲线与横坐标围成的面积依次减小。面积越大,指纹的信号值越高。
在一些实施例中,在本公开实施例提供的上述纹路识别模组中,如图2至图4、以及如图9至图11所示,还可以包括:缓冲层(buffer)107、有源层(Poly)108、栅绝缘层(GI)109、栅金属层(Gate)110、层间介电层(ILD)111、源漏金属层(SD1)112、第一绝缘层(PVX1)113、第一平坦层(PLN1)114、保护层(Cover)115、树脂层(Resin)116、第二绝缘层(PVX2)117、第三绝缘层(PVX3)118、阻挡层(Barrier)119、屏蔽层(ITO)120和第四绝缘层(OC)121;其中,在图2和图9中,第三绝缘层118、阻挡层119、屏蔽层120和第四绝缘层121相当于第一透光层a1;在图3和图10中,阻挡层119、屏蔽层120和第四绝缘层121相当于第一透光层a1;在图4和图11中,第三绝缘层118相当于第一透光层a1,阻挡层119、屏蔽层120和第四绝缘层121相当于第二透光层a2。
在一个光敏器件102包括一个子光敏器件S,并与一个微透镜106对应设置时,一个光敏器件102所在区域为一个像素区域(Pixel),其版图设计如图23至图38所示。在一些实施例中,每个像素区域还可以包括图39所示的像素驱动电路,其中,像素驱动电路包括复位晶体管(Reset TFT)T1、放大晶体管(AMP TFT)T2和读取晶体管(Read TFT)T3,其中,复位晶体管T1的栅极与第一扫描信号线G1电连接,复位晶体管T1的第一极与电源线VDD电连接,复位晶体管T1的第二极与第一电极1021电连接;放大晶体管T2的栅极与第一电极1021电连接,放大晶体管T2的第一极与电源线VDD电连接,放大晶体管T2的第二极与读取晶体管T3的第一极电连接;读取晶体管T3的栅极与第二扫描信号线G2电连接,读取晶体管T3的第二极与读取线Test电连接;电容C的第一电极板接地GND,电容C的第二电极板与第一电极1021电连接。
具体地,图23示出了一个像素区域的叠层图。
在图24中示出了一个像素区域中有源层108的图案,具体包括复位晶体管T1、放大晶体管T2和读取晶体管T3的有源层。
图25示出了一个像素区域中栅金属层110的图案,具体包括复位晶体管T1、放大晶体管T2和读取晶体管T3的栅极、以及第一扫描信号线G1和第二扫描信号线G2,其中,复位晶体管T1和读取晶体管T3可以包括两个栅极,即为双栅晶体管,以降低噪声。
图26示出了一个像素区域中栅绝缘层109和层间介电层111的图案,具体包括用于连接复位晶体管T1的有源层和源漏极的通孔、用于连接放大晶体管T2的有源层和源漏极的通孔、用于连接读取晶体管T3的有源层和源漏极的通孔、以及用于放大晶体管T2栅极与复位晶体管T1源/漏极的通孔。
图27示出了一个像素区域中源漏金属层112的图案,具体包括复位晶体管T1、放大晶体管T2和读取晶体管T3的源漏极、电源线VDD和读取线Test,其中复位晶体管T1的源/漏极与放大晶体管T2的栅极具有交叠面积T1+T2,以通过实现二者的电连接。
图28示出了一个像素区域中第一绝缘层113的图案,具体包括用于连接放大晶体管T2的栅极与子光敏器件S的第一电极1021的通孔。
图29示出了一个像素区域中第一平坦层114的图案,具体包括用于连接放大晶体管T2的栅极与子光敏器件S的第一电极1021的通孔。
图30示出了一个像素区域中第一电极1021(也称为SD2)的图案,具体包括一个子光敏器件S的第一电极1021。
图31示出了一个像素区域中光电转换层1022(也称为PIN)和第二电极1023(也称为ITO cap)的图案,具体包括一个子光敏器件S的光电转换层1022和第二电极1023。
图32示出了一个像素区域中树脂层116和保护层115的图案,具体包括用于连接一个子光敏器件S的第二电极1023与偏压金属层103(也称为TM)的通孔。
图33示出了一个像素区域中第二绝缘层117的图案,具体包括用于连接一个子光敏器件S的第二电极1023与偏压金属层103(也称为TM)的通孔。
图34示出了一个像素区域中偏压金属层103的图案,具体包括沿列方向延伸的主体部M,以及在主体部同侧的多个凸出部T,凸出部T与一个子光敏器件S的第二电极1023电连接,且图32具体示出了偏压金属层103复用为第一遮光层b1,因此,凸出部T上具有第一透光孔H1。
图35示出了一个像素区域中屏蔽层120的图案。
图36示出了一个像素区域中第二遮光层b2的图案,具体包括与第一透光孔H1交叠设置的第二透光孔H2。
图37示出了一个像素区域中第三遮光层b3的图案,具体包括与第一透光孔H1及第二透光孔H2均交叠设置的第三透光孔H3。
图38示出了一个像素区域中微透镜层lens的图案,具体包括完全覆盖光电转换层1022、第一透光孔H1、第二透光孔H2和第三透光孔H3的微透镜106。
以上以一个光敏器件102包括一个子光敏器件S,并与一个微透镜106对应设置为例,对本公开提供的一个像素区域的版图设计进行了说明。应当理解的是,如图40至图46所示,在本公开中一个光敏器件102还可能包括多个子光敏器件S,并且每个子光敏器件S与一个微透镜106对应设置,为了便于说明在此情况下一个像素区域的版图设计,以下仅对光敏器件102、导光膜层105和微透镜106所在层的结构进行说明,其余膜层结构可参见上述一个光敏器件102包括一个子光敏器件S,并与一个微透镜106对应设置的相关内容,在此不做赘述。
在一些实施例中,如图9至图11、图40至图46所示,每个光敏器件102包括相互独立的多个子光敏器件S,纹路识别模组还可以包括多个连接电极122,连接电极122与第一电极1021同层设置,且全部子光敏器件S的第一电极1021通过连接电极122与像素驱动电路(具体为放大晶体管T2的栅极)电连接,全部子光敏器件S的第二电极1023分别通过贯穿树脂层116和第二 绝缘层117的通孔与偏压金属层103电连接,以通过像素驱动电路和偏压金属层103为光敏器件102加载驱动信号。
在一些实施例中,在本公开实施例提供的上述纹路识别模组中,如图34和图43所示,偏压金属层103可以包括多条偏压线,每条偏压线与一列光敏器件102电连接,具体地如上所述,偏压线可以包括沿列方向延伸的主体部M,以及在主体部M同侧的多个凸出部T,每个凸出部T分别与一个光敏器件102中的各第二电极1022电连接。
一般地,在本公开实施例提供的上述纹路识别模组中,如图1和图8所示,还可以包括位于绑定区域BD内的栅极驱动芯片(Gate IC)123和源极驱动芯片(Source IC)123等,对于纹路识别模组的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述。
基于同一发明构思,本公开实施例提供了一种显示装置,如图47所示,包括本公开实施例提供的上述纹路识别模组01,以及位于纹路识别模组01之上的显示模组02,显示模组02与纹路识别模组01之间通过光学胶03固定。由于该显示装置解决问题的原理与上述纹路识别模组解决问题的原理相似,因此,本公开实施例提供的该显示装置的实施可以参见本公开实施例提供的上述纹路识别模组的实施,重复之处不再赘述。
在一些实施例中,在本公开实施例提供的上述显示装置中,如图47所示,纹路识别模组01在显示装置所在平面上的正投影与显示模组02在显示装置所在平面上的正投影大致重合,光学胶03位于显示模组01的边框区域,使得纹路识别模组01与显示模组02之间具有空气层(air gap),利于维持手指反射光的光路传播方向不变;同时可实现全屏指纹识别。
在一些实施例中,在本公开实施例提供的上述显示装置中,如图48所示,显示模组02可以包括有机电致发光显示面板201,在背离有机电致发光显示面板201的显示面的一侧设置的散热膜202,以及位于散热膜202背离有机电致发光显示面板201一侧的中框203,其中,散热膜202包括镂空结构,纹路识别模组01设置于镂空结构内,且纹路识别模组01通过光学胶03与中框203 相固定,以在镂空结构所在区域内实现局部指纹识别。
在一些实施例中,散热膜202可以包括与有机电致发光显示面板201接触的石墨,与中框203接触的泡棉,以及位于石墨与泡棉之间的铜箔。有机电致发光显示面板201包括:自上而下依次设置的保护盖板、光学胶、偏光片、封装层、阴极、发光功能层、阳极和驱动背板。
在进行指纹识别时,当手指触摸到有机电致发光显示面板201时,导光膜层105和微透镜106可将小角度的光线近于准直化的筛选出,使其到达下方光敏器件102的光电转换层1022上。光电转换层1022可以探测处指纹反射光的强度,由于谷与脊向下漫反射光的能量不同,光敏器件102阵列探测得到的光强不同,由此获取指纹图像信息。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
Claims (17)
- 一种纹路识别模组,其中,包括:衬底基板;光敏器件层,位于所述衬底基板之上,所述光敏器件层包括多个光敏器件;偏压金属层,位于所述光敏器件层背离所述衬底基板的一侧;降噪金属层,位于所述偏压金属层背离所述光敏器件层的一侧;导光膜层,包括至少两层层叠设置的遮光层,各所述遮光层具有呈阵列排布的透光孔,各所述遮光层中的透光孔一一对应且在所述衬底基板上的正投影至少部分重合,对应设置的所述透光孔在所述衬底基板上的正投影位于所述光敏器件在所述衬底基板上的正投影内,且邻近所述光敏器件层的所述遮光层与所述偏压金属层和所述降噪金属层中的至少之一同层设置;微透镜层,位于所述导光膜层背离所述光敏器件层的一侧,所述微透镜层包括多个微透镜,所述微透镜在所述衬底基板上的正投影覆盖且大于所述透光孔在所述衬底基板上的正投影。
- 如权利要求1所述的纹路识别模组,其中,在背离所述光敏器件层的方向上,各所述遮光层中对应设置的所述透光孔的孔径依次增大。
- 如权利要求2所述的纹路识别模组,其中,各所述遮光层中对应设置所述透光孔的中心在所述衬底基板上的正投影重合。
- 如权利要求1所述的纹路识别模组,其中,所述导光膜层包括在所述光敏器件层之上依次层叠设置的第一遮光层、第一透光层、第二遮光层、第二透光层、第三遮光层和第三透光层;其中,所述第一遮光层包括阵列排布的第一透光孔,所述第二遮光层包括阵列排布的第二透光孔,所述第三遮光层包括阵列排布的第三透光孔。
- 如权利要求4所述的纹路识别模组,其中,所述第一遮光层与所述偏压金属层复用。
- 如权利要求4所述的纹路识别模组,其中,所述第一遮光层与所述降噪金属层同层、同材料。
- 如权利要求4所述的纹路识别模组,其中,所述第一遮光层与所述偏压金属层复用,所述第二遮光层与所述降噪金属层同层、同材料。
- 如权利要求4所述的纹路识别模组,其中,所述导光膜层和所述微透镜满足以下关系式:L=h+h 1+h 2+h 3+h x1+h x2;L=[W 3 2/(8h)+h/2]*K;W 0=L*tanθ;(W 1-W 0)/(2h 1)≤(W 2-W 1)/[2(h 2+h x1)]≤(W 3-W 2)/[2(h 3+h x2)];其中,L为所述微透镜的上表面到所述第一遮光层之间的距离;θ为收光角,K为与所述微透镜相关的特定系数,W 0为所述第一透光孔的孔径,W 1为所述第二透光孔的孔径,W 2为所述第三透光孔的孔径,W 3为所述微透镜的口径,h 1为所述第一透光层的厚度,h 2为所述第二透光层的厚度,h 3为所述第三透光层的厚度,h x1为所述第二遮光层的厚度,h x2为所述第三遮光层的厚度。
- 如权利要求8所述的纹路识别模组,其中,1°≤θ≤10°,2μm≤W 0≤10μm,4μm≤W 1≤15μm,6μm≤W 2≤18μm,10μm≤W 3≤30μm,1μm≤h 1≤10μm,1μm≤h 2≤5μm,1μm≤h 3≤10μm,1μm≤h x1≤2μm,1μm≤h x2≤2μm。
- 如权利要求1所述的纹路识别模组,其中,每个所述光敏器件包括相互独立的至少一个子光敏器件,所述子光敏器件包括层叠设置的第一电极、光电转换层和第二电极;所述子光敏器件与所述微透镜一一对应设置,且所述光电转换层在所述衬底基板上的正投影位于对应所述微透镜在所述衬底基板上的正投影内。
- 如权利要求10所述的纹路识别模组,其中,还包括位于所述光敏器 件层与所述衬底基板之间的多个像素驱动电路和多个连接电极;每个所述光敏器件包括相互独立的多个子光敏器件,其中,所述第一电极与所述连接电极同层设置,且全部所述子光敏器件的所述第一电极通过所述连接电极与所述像素驱动电路电连接,全部所述子光敏器件的所述第二电极分别与所述偏压金属层电连接。
- 如权利要求11所述的纹路识别模组,其中,所述偏压金属层包括多条偏压线,每条所述偏压线包括沿列方向延伸的主体部,以及在所述主体部同侧的多个凸出部,每个所述凸出部分别与一个所述光敏器件中的各所述第二电极电连接。
- 如权利要求11所述的纹路识别模组,其中,所述像素驱动电路包括:复位晶体管、放大晶体管和读取晶体管,其中,所述复位晶体管和所述读取晶体管为双栅晶体管。
- 如权利要求1-13任一项所述的纹路识别模组,其中,所述衬底基板面向所述光敏器件层一侧的表面到所述微透镜的顶点之间的距离大于或等于30μm且小于或等于50μm。
- 一种显示装置,其中,包括如权利要求1-14任一项所述的纹路识别模组,以及位于所述纹路识别模组之上的显示模组,所述显示模组与所述纹路识别模组之间通过光学胶固定。
- 如权利要求15所述的显示装置,其中,所述纹路识别模组在所述显示装置所在平面上的正投影与所述显示模组在所述显示装置所在平面上的正投影大致重合,所述光学胶位于所述显示模组的边框区域。
- 如权利要求15所述的显示装置,其中,所述显示模组包括有机电致发光显示面板,在背离所述有机电致发光显示面板的显示面的一侧设置的散热膜,以及位于所述散热膜背离所述有机电致发光显示面板一侧的中框,其中,所述散热膜包括镂空结构,所述纹路识别模组设置于所述镂空结构内,且所述纹路识别模组通过所述光学胶与所述中框相固定。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110831284.9A CN115700832A (zh) | 2021-07-22 | 2021-07-22 | 纹路识别模组及显示装置 |
CN202110831284.9 | 2021-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023000964A1 true WO2023000964A1 (zh) | 2023-01-26 |
Family
ID=84978931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/103449 WO2023000964A1 (zh) | 2021-07-22 | 2022-07-01 | 纹路识别模组及显示装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115700832A (zh) |
WO (1) | WO2023000964A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160037099A1 (en) * | 2014-07-31 | 2016-02-04 | Invisage Technologies, Inc. | Image sensors with noise reduction |
US20160037114A1 (en) * | 2014-08-04 | 2016-02-04 | Emanuele Mandelli | Scaling down pixel sizes in image sensors |
CN112001337A (zh) * | 2020-08-27 | 2020-11-27 | 京东方科技集团股份有限公司 | 一种指纹识别基板及显示装置 |
CN113128475A (zh) * | 2021-05-17 | 2021-07-16 | 京东方科技集团股份有限公司 | 指纹识别模组及其制备方法、指纹识别显示装置 |
-
2021
- 2021-07-22 CN CN202110831284.9A patent/CN115700832A/zh active Pending
-
2022
- 2022-07-01 WO PCT/CN2022/103449 patent/WO2023000964A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160037099A1 (en) * | 2014-07-31 | 2016-02-04 | Invisage Technologies, Inc. | Image sensors with noise reduction |
US20160037114A1 (en) * | 2014-08-04 | 2016-02-04 | Emanuele Mandelli | Scaling down pixel sizes in image sensors |
CN112001337A (zh) * | 2020-08-27 | 2020-11-27 | 京东方科技集团股份有限公司 | 一种指纹识别基板及显示装置 |
CN113128475A (zh) * | 2021-05-17 | 2021-07-16 | 京东方科技集团股份有限公司 | 指纹识别模组及其制备方法、指纹识别显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115700832A (zh) | 2023-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10339359B2 (en) | Display panel and display device | |
US11003886B2 (en) | Display apparatus including a fingerprint identification device | |
US10361255B2 (en) | Display panel and display device | |
CN107065274B (zh) | 阵列基板、显示面板及显示装置 | |
WO2018153068A1 (zh) | 指纹识别器件和oled显示装置 | |
CN112001337B (zh) | 一种指纹识别基板及显示装置 | |
WO2020102949A1 (zh) | 指纹识别装置和电子设备 | |
CN111291710B (zh) | 指纹识别模组及显示装置 | |
WO2021051737A1 (zh) | 指纹识别装置、背光模组、液晶显示屏和电子设备 | |
WO2022068129A1 (zh) | 感测手指生物特征的光学感测装置及使用其的电子装置 | |
CN111095277A (zh) | 光学指纹装置和电子设备 | |
WO2022016547A1 (zh) | 指纹识别装置和电子设备 | |
CN111095278B (zh) | 指纹识别装置和电子设备 | |
WO2022061602A1 (zh) | 一种有机发光显示面板及显示装置 | |
WO2023000964A1 (zh) | 纹路识别模组及显示装置 | |
US11740503B2 (en) | Display screen and electronic device | |
WO2021008088A1 (zh) | 指纹检测装置和电子设备 | |
US12073650B2 (en) | Display panel and electronic device | |
TWI785858B (zh) | 生物特徵辨識裝置 | |
TWI758093B (zh) | 生物特徵辨識裝置 | |
WO2022061769A1 (zh) | 指纹识别模组、其制作方法及显示装置 | |
WO2022041145A1 (zh) | 指纹识别装置及电子设备 | |
TWM602668U (zh) | 具有抗雜光干擾結構的光學生物特徵感測器 | |
CN215814199U (zh) | 光学感测装置及电子设备 | |
WO2023070498A1 (zh) | 纹路识别模组及显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/06/2024) |