WO2023000822A1 - 作业机械的防倾覆预警方法、装置、作业机械及电子设备 - Google Patents

作业机械的防倾覆预警方法、装置、作业机械及电子设备 Download PDF

Info

Publication number
WO2023000822A1
WO2023000822A1 PCT/CN2022/095606 CN2022095606W WO2023000822A1 WO 2023000822 A1 WO2023000822 A1 WO 2023000822A1 CN 2022095606 W CN2022095606 W CN 2022095606W WO 2023000822 A1 WO2023000822 A1 WO 2023000822A1
Authority
WO
WIPO (PCT)
Prior art keywords
overturning
working machine
intersection point
early warning
coordinates
Prior art date
Application number
PCT/CN2022/095606
Other languages
English (en)
French (fr)
Inventor
胡立辛
李守明
Original Assignee
上海三一重机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海三一重机股份有限公司 filed Critical 上海三一重机股份有限公司
Publication of WO2023000822A1 publication Critical patent/WO2023000822A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00

Definitions

  • the present application relates to the field of engineering technology, and in particular to an anti-overturning warning method and device for an operating machine, an operating machine and electronic equipment.
  • the attitude state of each part of the working machine is calculated by installing gravity sensors, inclination sensors, etc.
  • the force balance calculates whether there is a risk of tipping over at this center of gravity location.
  • the risk of overturning is judged by installing gravity sensors on various parts of the vehicle body to calculate the center of gravity of the working machine.
  • this judgment method may have the risk of misjudgment.
  • the existing anti-overturning early warning method for the working machine has the risk that the overturning early warning is not timely and there is a risk of misjudgment.
  • This application provides an anti-overturning warning method, device, operating machinery and electronic equipment for working machinery, which are used to solve the defects in the prior art that the overturning warning is not timely and there is a risk of wrong judgment, and realize the improvement of the overturning risk judgment of the working machinery Accuracy, timely warning of the overturning danger of the operating machinery.
  • the application provides an anti-overturning early warning method for a working machine, including:
  • the positions of the outer contours of the plurality of supporting wheels are acquired, and based on the position of the intersection point and the positions of the outer contours of the plurality of supporting wheels, an early warning is given to the risk of overturning of the working machine.
  • the position corresponding to the intersection point of the working machine's gravity direction and the ground is obtained based on the plurality of positive pressures, including:
  • the multiple normal pressures are decomposed along the coordinate axis direction to obtain multiple horizontal axis pressures and multiple vertical axis pressures;
  • the target coordinate system includes horizontal axes and vertical axes, and the horizontal axis
  • the axis is the front-rear direction of the working machine, and the longitudinal axis is a direction perpendicular to the front-back direction of the working machine and parallel to the ground;
  • the coordinates of the intersection point are obtained based on the plurality of transverse axis pressures, the plurality of longitudinal axis pressures and the plurality of positive pressures.
  • the positions of the outer contours of the plurality of rollers including the coordinates of the apex rollers among the plurality of rollers, in the target coordinate system;
  • the early warning of the overturning danger of the working machine based on the position of the intersection point and the positions of the outer contours of the plurality of rollers includes:
  • the overturning warning boundary of the working machine is obtained based on the coordinates of the apex rollers, including:
  • the target safety factor is greater than 1.
  • the warning of the overturning danger of the working machine based on the coordinates of the intersection point and the overturning warning boundary includes:
  • the coordinates of the apex roller at the current moment, the coordinates of the intersection point at the current moment, the coordinates of the intersection point at the previous moment, and the current moment and The time difference of the last moment, to obtain the capsizing hazard level including:
  • T f is the equivalent overturning time
  • ⁇ t is the time difference between the current moment and the previous moment
  • C e is the absolute value of the abscissa of the apex roller
  • C O (t) is the intersection point at the current
  • Ce is the absolute value of the ordinate of the apex roller
  • C O (t) is the intersection point At the ordinate of the current moment
  • C O (t- ⁇ t) is the ordinate of the intersection point at the previous moment
  • the overturning risk level is obtained based on the equivalent overturning occurrence time; wherein, the overturning risk level is inversely proportional to the equivalent overturning occurrence time.
  • the present application also provides an anti-overturn early warning device for a working machine, including:
  • An acquisition module configured to acquire a plurality of positive pressures collected by a plurality of pressure sensors; wherein the plurality of pressure sensors are respectively arranged at a plurality of rollers of the working machine;
  • a calculation module configured to obtain the position corresponding to the intersection point of the working machine's gravity direction and the ground based on the plurality of positive pressures
  • the early warning module is configured to obtain the positions of the outer contours of the plurality of rollers, and based on the position of the intersection point and the positions of the outer contours of the plurality of rollers, give an early warning of the overturning danger of the working machine.
  • the present application also provides an operating machine, including the above-mentioned anti-overturning warning device for the operating machine.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the program, it can realize the Describe the steps of the anti-overturning early warning method for the working machine.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the anti-overturning warning method for an operating machine as described in any one of the above items are implemented.
  • the anti-overturning warning method, device, operating machinery and electronic equipment provided by the present application use the positive pressure collected by the pressure sensor at the track roller, that is, the reverse force on the corresponding track roller from the ground, and Gravity distribution data is not collected through gravity sensors installed in various parts of the working machine.
  • the method provided in this application fully considers the road conditions of the driving road, and can accurately detect the operating machine even if the operating machine is driving on a loose road or a cliff.
  • Gravity distribution and then calculate the location of the intersection of the gravity direction of the working machine and the ground, and then judge whether the working machine will overturn based on the location of the intersection and the outer contour positions of multiple rollers, and then based on the judged overturning risk Forewarning.
  • Calculating the position corresponding to the intersection of the direction of gravity of the working machine and the ground through the positive pressure at the supporting wheels can improve the accuracy of the calculation results of the intersection of the direction of gravity of the working machine and the ground, even if the road conditions on which the working machine is driving change. In this way, the position corresponding to the intersection point between the direction of gravity of the operating machine and the ground will also change accordingly, so as to provide timely early warning and avoid early warning after the overturning of the operating machine. Therefore, the method provided by this application improves the overturning early warning Accuracy, reducing false positives.
  • Fig. 1 is one of the schematic flow charts of the anti-overturning early warning method for working machinery provided by the present application;
  • Fig. 2 is a schematic diagram of the supporting wheels of the working machine provided by the present application.
  • Fig. 3 is a schematic diagram of the intersection point between the gravity direction of the working machine and the ground provided by the present application;
  • Fig. 4 is a schematic diagram of the overturning warning boundary provided by the present application.
  • Fig. 5 is the second schematic flow diagram of the anti-overturning early warning method for the working machine provided by the present application.
  • Fig. 6 is a functional block diagram of the anti-overturning warning device of the working machine provided by the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by the present application.
  • 200 operating machinery; 210: supporting wheel; 211: apex supporting wheel;
  • Chassis Chassis
  • 600 Anti-overturn warning device
  • 610 Acquisition module
  • 620 calculation module
  • 630 early warning module.
  • the present application provides an anti-overturning early warning method for an operating machine
  • the anti-overturning early warning method for an operating machine includes:
  • Step 110 acquiring a plurality of positive pressures collected by a plurality of pressure sensors; wherein the plurality of pressure sensors are respectively arranged at a plurality of support wheels 210 of the working machine shown in FIG. 2 .
  • the working machine may be an excavator, and the multiple support wheels 210 are respectively located on the chassis 220 of the working machine.
  • a pressure sensor is installed at each supporting wheel 210 of the body of the work machine, through multiple Pressure sensors may pick up the positive pressure at the plurality of rollers 210 .
  • Step 120 based on the plurality of positive pressures, obtain the position corresponding to the intersection point of the working machine's gravity direction and the ground.
  • the gravity G of the work machine passes through the intersection O of the ground as shown in FIG. 3 .
  • the normal pressure at the supporting wheel 210 is the pressure exerted by the supporting wheel 210 in a direction perpendicular to the ground.
  • the multiple pressure sensors can collect the positive pressure at the multiple supporting wheels 210 , the coordinates of the intersection O where the gravity G of the working machine 200 passes through the ground can be calculated.
  • Step 130 acquiring the positions of the outer contours of the multiple supporting wheels 210 , and based on the position of the intersection point and the positions of the outer contours of the multiple supporting wheels 210 , giving an early warning of the overturning danger of the working machine 200 .
  • the position of the intersection point and the outer contour positions of the plurality of rollers 210 can be used to determine the relative positional relationship between the intersection point and the outer contours of the plurality of rollers 210 . outside the outer contour of , it may indicate that work machine 200 is in danger of overturning. Therefore, through the positions of the intersection points and the positions of the outer contours of the plurality of support wheels 210 , early warning of the overturning danger of the working machine 200 can be realized.
  • the position corresponding to the intersection of the gravity direction of the working machine 200 and the ground is obtained, including:
  • multiple positive pressures are decomposed along the coordinate axis direction to obtain multiple horizontal axis pressures and multiple vertical axis pressures;
  • the target coordinate system includes horizontal axes and vertical axes, and the horizontal axis is the working machine 200
  • the longitudinal axis is a direction perpendicular to the front-to-back direction of the working machine 200 and parallel to the ground, and the coordinate origin can be the center point of multiple pressure sensors, or the pressure sensor at the top roller 211 shown in FIG. 4 Location;
  • the coordinates of the intersection points are obtained.
  • the left-right direction of the working machine 200 is the horizontal axis
  • the front-back direction of the working machine 200 is the vertical axis.
  • the front-rear direction of the work machine 200 is the forward and backward direction of the work machine 200
  • the left-right direction of the work machine 200 is the direction perpendicular to the front-rear direction of the work machine 200 .
  • the coordinates of the intersection point can be obtained, that is, based on multiple horizontal axis pressures and multiple positive pressures, the horizontal axis of the intersection point can be calculated. Coordinates, based on multiple vertical axis pressures and multiple positive pressures, the vertical coordinates of the intersection points can be calculated.
  • the vertical coordinate y O (t) of the intersection point O is:
  • N i (t) x i is the horizontal axis pressure corresponding to N i (t)
  • N i (t) y i is the vertical axis pressure corresponding to N i (t).
  • the positions of the outer contours of the plurality of rollers 210 including the coordinates of the apex roller 211 among the plurality of rollers 210, in the target coordinate system;
  • the outer contours of the plurality of support wheels 210 correspond to the support wheels 210 at the four apexes, that is, the apex support wheels 211 .
  • an early warning is given to the overturning danger of the working machine 200, including:
  • the overturning warning boundary of the working machine 200 is obtained;
  • the overturning danger of the working machine 200 is given an early warning.
  • the overturning danger of the work machine 200 is given an early warning. If the coordinates of the intersection point do not cross the overturn warning boundary, the overturn danger of the work machine 200 is not given an early warning.
  • the overturning warning boundary of the working machine 200 is shown in Figure 4. It should be noted that the overturning boundary is the critical position where the working machine 200 is overturned. Therefore, the overturning warning boundary can be located inside the overturning boundary. , early warning.
  • the overturning warning boundary of the working machine 200 is obtained, including:
  • the overturning warning boundary of the operation machine 200 is obtained;
  • the longitudinal axis overturning warning boundary of the working machine 200 is obtained.
  • the overturning danger of the working machine 200 is warned, including:
  • the overturning warning boundary of the working machine 200 is obtained, including:
  • the target safety factor is greater than 1.
  • each vertex support wheel 211 The coordinates of each vertex support wheel 211 are (x e , y e ), (x e ,-y e ), (-x e , y e ), (-x e ,-y e ), (x e , y e >0), then the overturning safety range corresponding to the working machine 200 satisfies:
  • the overturning danger of the working machine 200 is given an early warning, including:
  • the overturning danger level represents the urgency and possibility of the overturning danger of the working machine 200 .
  • the overturning risk level is obtained, including:
  • T f is the equivalent overturning time
  • ⁇ t is the time difference between the current moment and the previous moment
  • C e is the absolute value of the abscissa of the apex roller 211
  • C O (t) is the abscissa of the intersection point at the current moment
  • C O (t- ⁇ t) is the abscissa of the intersection point at the previous moment
  • C e is the absolute value of the ordinate of the apex roller 211
  • C O (t) is the ordinate of the intersection point at the current moment
  • C O (t- ⁇ t) is the ordinate of the intersection point at the previous moment.
  • the overturning hazard level is obtained; among them, the overturning hazard level is inversely proportional to the equivalent overturning occurrence time.
  • the warning level can be determined according to the change rate of the intersection point O away from the overturning warning boundary.
  • T f1 is to calculate the equivalent overturning occurrence time in the direction of the horizontal axis of the working machine 200
  • x e is the abscissa of the apex roller 211
  • x O (t) is the abscissa of the intersection point at the current moment
  • x O (t- ⁇ t) is the abscissa of the intersection point at the previous moment
  • ⁇ t is the time difference between the current moment and the previous moment.
  • T f2 is to calculate the equivalent overturning occurrence time in the longitudinal axis direction of the working machine 200
  • y e is the vertical coordinate of the supporting wheel 211 at the apex
  • y O (t) is the vertical coordinate of the intersection point at the current moment
  • y O (t- ⁇ t) is the ordinate of the intersection point at the previous moment
  • ⁇ t is the time difference between the current moment and the previous moment.
  • t may be a certain moment, such as the current moment, and ⁇ t may be the time interval between two readings of the pressure sensor.
  • T f1 or T f2 The smaller the T f1 or T f2 is, the higher the risk level of overturning of the working machine 200 is, and the greater the need for intervention is. Further, the smaller the T f1 is, the higher the risk level of the working machine 200 will be overturned in the horizontal direction; the smaller the T f2 is, the higher the risk level of the working machine 200 will be overturned in the longitudinal direction.
  • the anti-overturning early warning method for operating machinery provided by this application first obtains multiple positive pressures collected by pressure sensors respectively arranged at multiple supporting wheels 210; then based on the multiple positive pressures, obtains 200 the position corresponding to the intersection point between the direction of gravity and the ground; finally, obtain the outer contour positions of the plurality of supporting wheels 210, and based on the positions of the intersection points and the outer contour positions of the plurality of supporting wheels 210, the overturning danger of the working machine 200 Forewarning.
  • the positive pressure collected by the pressure sensor at the supporting wheel 210 that is, the reverse force of the ground on the corresponding supporting wheel 210, is not through the gravity sensor installed in each part of the working machine 200 Collect gravity distribution data.
  • the method provided in this application fully considers the road conditions of the driving road, even if the work machine 200 is driving on a loose road or on a cliff, it can accurately Detect the gravity distribution of the working machine 200, and then calculate the position of the intersection point between the direction of gravity of the working machine 200 and the ground, and then judge whether the working machine 200 is in danger of overturning based on the position of the intersection and the outer contour positions of the plurality of rollers 210 , and then give an early warning based on the judged overturning danger.
  • Calculating the position corresponding to the intersection point of the direction of gravity of the working machine 200 with the ground through the positive pressure at the supporting wheel 210 can improve the accuracy of the calculation result of the intersection point of the direction of gravity of the working machine 200 and the ground, even if the road conditions on which the working machine 200 is running In the case of changes, the position corresponding to the intersection point between the direction of gravity of the working machine 200 and the ground calculated in this way will also change accordingly, so as to provide a timely warning and avoid giving an early warning after the working machine 200 overturns. Therefore, the present application provides The method improves the accuracy of overturning early warning and reduces false positives.
  • the anti-overturning early warning device for the working machine 200 provided in the present application is described below, and the anti-overturning early warning device for the working machine 200 described below and the anti-overturning early warning method for the working machine described above can be referred to in correspondence.
  • the anti-overturning early warning method of the working machine can be summarized into three steps: the pressure sensor collects positive pressure data, then judges the overturning danger, and then gives an early warning based on the degree of danger.
  • the anti-overturning early warning device 600 of the working machine 200 includes: a collection module 610 , a calculation module 620 and an early warning module 630 .
  • the collection module 610 is used to obtain a plurality of positive pressures collected by a plurality of pressure sensors; wherein the plurality of pressure sensors are respectively arranged at the plurality of support wheels 210 of the working machine 200 .
  • the calculation module 620 is used to obtain the position corresponding to the intersection point of the gravity direction of the working machine 200 and the ground based on a plurality of positive pressures.
  • the early warning module 630 is used to obtain the positions of the outer contours of the plurality of rollers 210 , and give an early warning of the overturning danger of the working machine 200 based on the position of the intersection point and the outer contour positions of the plurality of rollers 210 .
  • the calculation module 620 includes: a pressure decomposition unit and an intersection coordinate calculation unit.
  • the pressure decomposition unit is used to decompose the multiple normal pressures along the coordinate axes under the target coordinate system to obtain multiple horizontal axis pressures and multiple vertical axis pressures.
  • the target coordinate system includes a horizontal axis and a vertical axis
  • the horizontal axis is the front-rear direction of the working machine 200
  • the vertical axis is the direction perpendicular to the front-back direction of the working machine 200 and parallel to the ground
  • the origin of the coordinates can be the position of multiple pressure sensors.
  • the center point may also be the position of the pressure sensor at the apex roller 211.
  • intersection point coordinate calculation unit is used to obtain the coordinates of the intersection point based on multiple horizontal axis pressures, multiple vertical axis pressures and multiple positive pressures.
  • the position of the outer contour of the plurality of rollers 210 includes the coordinates of the apex roller 211 of the plurality of rollers 210 in the target coordinate system.
  • the early warning module 630 includes: a boundary calculation unit and an early warning unit.
  • the boundary calculation unit is used to obtain the overturning warning boundary of the working machine 200 based on the coordinates of the supporting wheels 211 at the apex.
  • the early warning unit is used for early warning of the overturning danger of the working machine 200 based on the coordinates of the intersection point and the overturning early warning boundary.
  • the boundary calculation unit is further used to divide the coordinates of the apex roller 211 by the target safety factor to obtain the overturning warning boundary; wherein, the target safety factor is greater than 1.
  • the early warning unit includes: a capsizing hazard classification unit and a graded early warning unit.
  • the overturning risk classification unit is used for when the coordinates of the intersection point cross the overturning warning boundary, based on the coordinates of the apex roller 211 at the current moment, the coordinates of the intersection point at the current moment, the coordinates of the intersection point at the previous moment, and the difference between the current moment and the previous moment.
  • the time difference of the moment to get the capsize hazard level is used for when the coordinates of the intersection point cross the overturning warning boundary, based on the coordinates of the apex roller 211 at the current moment, the coordinates of the intersection point at the current moment, the coordinates of the intersection point at the previous moment, and the difference between the current moment and the previous moment.
  • the hierarchical early warning unit is used for early warning based on the level of risk of overturning.
  • the overturning risk classification unit includes: an overturning time calculation unit and a danger level calculation unit.
  • the overturning time calculation unit is used to calculate the equivalent overturning occurrence time based on the following formula:
  • T f is the equivalent overturning time
  • ⁇ t is the time difference between the current moment and the previous moment
  • C e is the absolute value of the abscissa of the apex roller 211
  • C O (t) is the abscissa of the intersection point at the current moment
  • C O (t- ⁇ t) is the abscissa of the intersection point at the previous moment
  • C e is the absolute value of the ordinate of the apex roller 211
  • C O (t) is the ordinate of the intersection point at the current moment
  • C O (t- ⁇ t) is the ordinate of the intersection point at the previous moment.
  • the hazard level calculation unit is used to obtain the overturning hazard level based on the equivalent overturning occurrence time; wherein, the overturning hazard level is inversely proportional to the equivalent overturning occurrence time.
  • the present application also provides an operating machine 200 , which includes the anti-overturning warning device 600 of the above-mentioned operating machine 200 .
  • the electronic device and the storage medium provided by the present application are described below, and the electronic device and the storage medium described below and the anti-overturning early warning method for the working machine described above can be referred to in correspondence with each other.
  • FIG. 7 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 710, a communication interface (Communications Interface) 720, a memory (memory) 730 and a communication bus 740, Wherein, the processor 710 , the communication interface 720 , and the memory 730 communicate with each other through the communication bus 740 .
  • the processor 710 can call the logic instructions in the memory 730 to execute the anti-overturn warning method of the work machine, the method includes:
  • Step 110 acquiring a plurality of positive pressures collected by a plurality of pressure sensors; wherein, the plurality of pressure sensors are respectively set at the plurality of rollers 210 of the working machine 200;
  • Step 120 based on a plurality of positive pressures, obtain the position corresponding to the intersection of the gravity direction of the working machine 200 and the ground;
  • Step 130 acquiring the positions of the outer contours of the multiple supporting wheels 210 , and based on the position of the intersection point and the positions of the outer contours of the multiple supporting wheels 210 , giving an early warning of the overturning danger of the working machine 200 .
  • the above-mentioned logic instructions in the memory 730 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the present application also provides a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, and when the program instructions are executed by a computer During execution, the computer can execute the anti-overturning early warning method of the working machine provided by the above-mentioned methods, and the method includes:
  • Step 110 acquiring a plurality of positive pressures collected by a plurality of pressure sensors; wherein, the plurality of pressure sensors are respectively set at the plurality of rollers 210 of the working machine 200;
  • Step 120 based on a plurality of positive pressures, obtain the position corresponding to the intersection of the gravity direction of the working machine 200 and the ground;
  • Step 130 acquiring the positions of the outer contours of the multiple supporting wheels 210 , and based on the position of the intersection point and the positions of the outer contours of the multiple supporting wheels 210 , giving an early warning of the overturning danger of the working machine 200 .
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the anti-overturning early warning method for each of the above-mentioned working machines, the Methods include:
  • Step 110 acquiring a plurality of positive pressures collected by a plurality of pressure sensors; wherein, the plurality of pressure sensors are respectively set at the plurality of rollers 210 of the working machine 200;
  • Step 120 based on a plurality of positive pressures, obtain the position corresponding to the intersection of the gravity direction of the working machine 200 and the ground;
  • Step 130 obtain the outer contour positions of the plurality of rollers 210, and based on the position of the intersection point and the outer contour positions of the plurality of rollers 210, give an early warning of the overturning danger of the working machine 200.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Abstract

本申请提供一种作业机械的防倾覆预警方法、装置、作业机械及电子设备,作业机械的防倾覆预警方法包括:获取多个压力传感器所采集的多个正压力;其中,所述多个压力传感器分别设置于作业机械的多个支重轮处;基于所述多个正压力,得到作业机械重力方向与地面的交点所对应的位置;获取所述多个支重轮的外轮廓位置,并基于所述交点的位置以及所述多个支重轮的外轮廓位置,对所述作业机械的倾覆危险进行预警。本申请提供的作业机械的防倾覆预警方法,用以解决现有技术中倾覆预警不及时,以及存在错误判断的风险的缺陷,实现提高作业机械倾覆危险判断的准确性,对作业机械倾覆危险及时预警。

Description

作业机械的防倾覆预警方法、装置、作业机械及电子设备
相关申请的交叉引用
本申请要求于2021年7月22日提交的申请号为202110830053.6,发明名称为“作业机械的防倾覆预警方法、装置、作业机械及电子设备”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及工程技术领域,尤其涉及一种作业机械的防倾覆预警方法、装置、作业机械及电子设备。
背景技术
作业机械运行在复杂地面工程时,容易发生倾覆的危险。目前,为了防止作业机械发生倾覆,通过在车身各部位安装重力传感器,倾角传感器等,推算出作业机械各部件的姿态状态,再根据姿态等算出挖掘机各部件的总重心坐标,最后再根据受力平衡计算出该重心位置是否有倾覆的风险。
现有的技术方案中,由于是通过在车身各部位安装重力传感器计算作业机械的重心,来判断倾覆风险。在作业机械周围环境发生变化时,该判断方式会存在错误判断的风险,比如作业机械行驶上一块松软的泥土或滑坡处,等作业机械由于环境改变导致自身姿态发生变化后再报警,可能已经来不及阻止倾覆了。因此,现有的作业机械的防倾覆预警方法存在倾覆预警不及时,以及存在错误判断的风险。
发明内容
本申请提供一种作业机械的防倾覆预警方法、装置、作业机械及电子设备,用以解决现有技术中倾覆预警不及时,以及存在错误判断的风险的缺陷,实现提高作业机械倾覆危险判断的准确性,对作业机械倾覆危险及时预警。
本申请提供一种作业机械的防倾覆预警方法,包括:
获取多个压力传感器所采集的多个正压力;其中,所述多个压力传感 器分别设置于作业机械的多个支重轮处;
基于所述多个正压力,得到作业机械重力方向与地面的交点所对应的位置;
获取所述多个支重轮的外轮廓位置,并基于所述交点的位置以及所述多个支重轮的外轮廓位置,对所述作业机械的倾覆危险进行预警。
根据本申请提供的作业机械的防倾覆预警方法,所述基于所述多个正压力,得到作业机械重力方向与地面的交点所对应的位置,包括:
在目标坐标系下,将所述多个正压力沿坐标轴方向分解,得到多个横轴压力和多个纵轴压力;其中,所述目标坐标系包含有横轴和纵轴,所述横轴为所述作业机械的前后方向,所述纵轴为与所述作业机械的前后方向垂直且平行于地面的方向;
基于所述多个横轴压力、所述多个纵轴压力和所述多个正压力,得到所述交点的坐标。
根据本申请提供的作业机械的防倾覆预警方法,所述多个支重轮的外轮廓位置,包括所述多个支重轮中的顶点支重轮,在所述目标坐标系下的坐标;
所述基于所述交点的位置以及所述多个支重轮的外轮廓位置,对所述作业机械的倾覆危险进行预警,包括:
基于所述顶点支重轮的坐标,得到所述作业机械的倾覆预警边界;
基于所述交点的坐标,以及所述倾覆预警边界,对所述作业机械的倾覆危险进行预警。
根据本申请提供的作业机械的防倾覆预警方法,所述基于所述顶点支重轮的坐标,得到所述作业机械的倾覆预警边界,包括:
将所述顶点支重轮的坐标除以目标安全系数,得到所述倾覆预警边界;
其中,所述目标安全系数大于1。
根据本申请提供的作业机械的防倾覆预警方法,所述基于所述交点的坐标,以及所述倾覆预警边界,对所述作业机械的倾覆危险进行预警,包括:
在所述交点的坐标越过所述倾覆预警边界的情况下,基于所述顶点支重轮在当前时刻的坐标、所述交点在当前时刻的坐标、所述交点在上一时 刻的坐标以及当前时刻与上一时刻的时间差,得到倾覆危险等级;
基于所述倾覆危险等级进行预警。
根据本申请提供的作业机械的防倾覆预警方法,所述基于所述顶点支重轮在当前时刻的坐标、所述交点在当前时刻的坐标、所述交点在上一时刻的坐标以及当前时刻与上一时刻的时间差,得到倾覆危险等级,包括:
基于如下公式,计算等效倾覆发生时间:
Figure PCTCN2022095606-appb-000001
其中,T f为所述等效倾覆发生时间,Δt为当前时刻与上一时刻的时间差;C e为所述顶点支重轮的横坐标绝对值,C O(t)为所述交点在当前时刻的横坐标,C O(t-Δt)为所述交点在上一时刻的横坐标,或者,C e为所述顶点支重轮的纵坐标绝对值,C O(t)为所述交点在当前时刻的纵坐标,C O(t-Δt)为所述交点在上一时刻的纵坐标;
基于所述等效倾覆发生时间,得到所述倾覆危险等级;其中,所述倾覆危险等级与所述等效倾覆发生时间呈反比关系。
本申请还提供一种作业机械的防倾覆预警装置,包括:
采集模块,用于获取多个压力传感器所采集的多个正压力;其中,所述多个压力传感器分别设置于作业机械的多个支重轮处;
计算模块,用于基于所述多个正压力,得到作业机械重力方向与地面的交点所对应的位置;
预警模块,用于获取所述多个支重轮的外轮廓位置,并基于所述交点的位置以及所述多个支重轮的外轮廓位置,对所述作业机械的倾覆危险进行预警。
本申请还提供一种作业机械,包括上述的作业机械的防倾覆预警装置。
本申请还提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一项所述作业机械的防倾覆预警方法的步骤。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一项所述作业机械的防倾覆预警方法的步骤。
本申请提供的作业机械的防倾覆预警方法、装置、作业机械及电子设备,通过支重轮处的压力传感器所采集的正压力,也即是地面给对应支重轮的反向作用力,而不是通过作业机械各部位安装的重力传感器采集重力分布数据。
由于作业机械所运行的路况,是影响作业机械发生倾覆的直接因素,本申请提供的方法,充分考虑了行驶路面的路况,即使作业机械行驶在松动的路面或者悬崖上,也可以准确检测作业机械的重力分布,进而计算出作业机械的重力方向与地面交点所在位置,再基于该交点所在位置以及多个支重轮的外轮廓位置,判断作业机械是否会发生倾覆危险,再基于判断的倾覆危险进行预警。
通过支重轮处的正压力计算作业机械重力方向与地面的交点所对应的位置,可以提高作业机械的重力方向与地面交点计算结果的准确性,即使在作业机械行驶的路况发生变化的情况下,通过该种方式计算作业机械重力方向与地面的交点所对应的位置也会随之发生变化,及时预警,避免在作业机械发生倾覆后再进行预警,因而,本申请提供的方法提高倾覆预警的准确性,减少误报的情况。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的作业机械的防倾覆预警方法的流程示意图之一;
图2是本申请提供的作业机械的支重轮的示意图;
图3是本申请提供的作业机械重力方向与地面的交点的示意图;
图4是本申请提供的倾覆预警边界的示意图;
图5是本申请提供的作业机械的防倾覆预警方法的流程示意图之二;
图6是本申请提供的作业机械的防倾覆预警装置的原理框图;
图7是本申请提供的电子设备的结构示意图;
附图标记:
200:作业机械;   210:支重轮;         211:顶点支重轮;
220:底盘;       600:防倾覆预警装置; 610:采集模块;
620:计算模块;   630:预警模块。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1至图7描述本申请的作业机械的防倾覆预警方法、装置、作业机械及电子设备。
如图1所示,本申请提供一种作业机械的防倾覆预警方法,作业机械的防倾覆预警方法包括:
步骤110、获取多个压力传感器所采集的多个正压力;其中,多个压力传感器分别设置于图2所示的作业机械的多个支重轮210处。
可以理解的是,作业机械可以是挖掘机,多个支重轮210分别位于作业机械的底盘220上。
由于作业机械的重心变化最直接的体现在于作业机械与地面接触的正压力的分布的变化,所以本申请提供的方法中,在作业机械下车身各个支重轮210处安装压力传感器,通过多个压力传感器可以采集多个支重轮210处的正压力。
步骤120、基于多个正压力,得到作业机械重力方向与地面的交点所对应的位置。
在一些实施例中,作业机械的重力G穿过地面的交点O如图3所示。
可以理解的是,支重轮210处的正压力,也即是支重轮210与地面垂直方向所施加的压力。在多个压力传感器可以采集多个支重轮210处的正压力后,可推算出作业机械200的重力G穿过地面的交点O的坐标。
步骤130、获取多个支重轮210的外轮廓位置,并基于交点的位置以及多个支重轮210的外轮廓位置,对作业机械200的倾覆危险进行预警。
可以理解的是,可以通过交点的位置与多个支重轮210的外轮廓位置,判断交点与多个支重轮210的外轮廓之间的相对位置关系,如果交点在多个支重轮210的外轮廓之外,可以表示作业机械200有倾覆的危险。因此,通过交点的位置以及多个支重轮210的外轮廓位置,可以实现对作业机械200的倾覆危险进行预警。在一些实施例中,基于多个正压力,得到作业机械200重力方向与地面的交点所对应的位置,包括:
在目标坐标系下,将多个正压力沿坐标轴方向分解,得到多个横轴压力和多个纵轴压力;其中,目标坐标系包含有横轴和纵轴,横轴为作业机械200的前后方向,纵轴为与作业机械200的前后方向垂直且平行于地面的方向,坐标原点可以是多个压力传感器的中心点,也可以是图4所示的顶点支重轮211处压力传感器的位置;
基于多个横轴压力、多个纵轴压力和多个正压力,得到交点的坐标。
需要说明的是,在目标坐标系下,作业机械200左右方向为横轴,作业机械200的前后方向为纵轴。作业机械200的前后方向,也即是作业机械200的前进和后退方向,作业机械200的左右方向,也即是与作业机械200的前后方向垂直的方向。
可以理解的是,基于多个横轴压力、多个纵轴压力和多个正压力,得到交点的坐标,也即是,基于多个横轴压力与多个正压力,可以计算得到交点的横坐标,基于多个纵轴压力和多个正压力,可以计算得到交点的纵坐标。
假设1~m号压力传感器在目标坐标系下的位置坐标分别为(x 1,y 1),……,(x m,y m),压力传感器压力读数为N 1(t),……,N m(t),则交点O的横坐标x O(t)为:
Figure PCTCN2022095606-appb-000002
交点O的纵坐标y O(t)为:
Figure PCTCN2022095606-appb-000003
其中,N i(t)x i为N i(t)对应的横轴压力,N i(t)y i为N i(t)对应的纵轴压力。
在一些实施例中,如图4所示,多个支重轮210的外轮廓位置,包括多个支重轮210中的顶点支重轮211,在目标坐标系下的坐标;
需要说明的是,多个支重轮210的外轮廓对应四个顶点处的支重轮210,也即是顶点支重轮211。
基于交点的位置以及多个支重轮210的外轮廓位置,对作业机械200的倾覆危险进行预警,包括:
基于顶点支重轮211的坐标,得到作业机械200的倾覆预警边界;
基于交点的坐标,以及倾覆预警边界,对作业机械200的倾覆危险进行预警。
需要说明的是,交点的坐标越过了倾覆预警边界,就对作业机械200的倾覆危险进行预警。交点的坐标没有越过倾覆预警边界,就不对作业机械200的倾覆危险进行预警。
作业机械200的倾覆预警边界如图4所示,需要说明的是,倾覆发生边界是作业机械200发生倾覆的临界位置,因此,倾覆预警边界可位于倾覆发生边界内侧,在作业机械200将发送倾覆时,提前预警。
需要说明的是,基于顶点支重轮211的坐标,得到作业机械200的倾覆预警边界,包括:
基于顶点支重轮211的横坐标,得到作业机械200的横轴倾覆预警边界;
基于顶点支重轮211的纵坐标,得到作业机械200的纵轴倾覆预警边界。
基于交点的坐标,以及倾覆预警边界,对作业机械200的倾覆危险进行预警,包括:
基于交点的横坐标和纵坐标,以及横轴倾覆预警边界和纵轴倾覆预警 边界,对作业机械200的倾覆危险进行预警。
需要说明的是,交点的横坐标越过了横轴倾覆预警边界,或者交点的纵坐标越过了纵轴倾覆预警边界,则对作业机械200的倾覆危险进行预警。
如果交点的横坐标没有越过横轴倾覆预警边界,且交点的纵坐标没有越过纵轴倾覆预警边界,则不对作业机械200的倾覆危险进行预警。
在一些实施例中,基于顶点支重轮211的坐标,得到作业机械200的倾覆预警边界,包括:
将顶点支重轮211的坐标除以目标安全系数,得到倾覆预警边界;
其中,目标安全系数大于1。
可以理解的是,由于如果交点O坐标落在支重轮210边界上即表示着倾覆正在发生或者已经发生,故需要设定一安全系数k(k>1),使得作业机械200的重量G需要被约束在如4图所示的倾覆预警边界内,则表示作业机械200安全无倾覆风险。
各顶点支重轮211坐标为(x e,y e),(x e,-y e),(-x e,y e),(-x e,-y e),(x e,y e>0),则作业机械200对应的倾覆安全范围满足:
Figure PCTCN2022095606-appb-000004
Figure PCTCN2022095606-appb-000005
满足如下条件,则表示作业机械200有倾覆的危险:
Figure PCTCN2022095606-appb-000006
Figure PCTCN2022095606-appb-000007
在一些实施例中,基于交点的坐标,以及倾覆预警边界,对作业机械200的倾覆危险进行预警,包括:
在交点的坐标越过倾覆预警边界的情况下,基于顶点支重轮211在当前时刻的坐标、交点在当前时刻的坐标、交点在上一时刻的坐标以及当前时刻与上一时刻的时间差,得到倾覆危险等级;
基于倾覆危险等级进行预警。
需要说明的是,倾覆危险等级,也即是表征作业机械200发生倾覆危险的紧迫性和可能性。倾覆危险等级越高,表示作业机械200越容易、越快发生倾覆危险。
在一些实施例中,基于顶点支重轮211在当前时刻的坐标、交点在当前时刻的坐标、交点在上一时刻的坐标以及当前时刻与上一时刻的时间差,得到倾覆危险等级,包括:
基于如下公式,计算等效倾覆发生时间:
Figure PCTCN2022095606-appb-000008
其中,T f为等效倾覆发生时间,Δt为当前时刻与上一时刻的时间差;
C e为顶点支重轮211的横坐标绝对值,C O(t)为交点在当前时刻的横坐标,C O(t-Δt)为交点在上一时刻的横坐标,
或者,C e为顶点支重轮211的纵坐标绝对值,C O(t)为交点在当前时刻的纵坐标,C O(t-Δt)为交点在上一时刻的纵坐标。
基于等效倾覆发生时间,得到倾覆危险等级;其中,倾覆危险等级与等效倾覆发生时间呈反比关系。
当交点O到达或越过倾覆预警边界后,可根据交点O远离倾覆预警边界的变化速率确定预警等级,例如,可分为仅报警,降低输出档位,停机等等。
可以理解的是,基于如下公式,计算作业机械200横轴方向的等效倾覆发生时间:
Figure PCTCN2022095606-appb-000009
其中,T f1为计算作业机械200横轴方向的等效倾覆发生时间,x e为顶点支重轮211的横坐标,x O(t)为交点在当前时刻的横坐标,x O(t-Δt)为交点在上一时刻的横坐标,Δt为当前时刻与上一时刻的时间差。
基于如下公式,计算作业机械200纵轴方向的等效倾覆发生时间:
Figure PCTCN2022095606-appb-000010
其中,T f2为计算作业机械200纵轴方向的等效倾覆发生时间,y e为顶点支重轮211的纵坐标,y O(t)为交点在当前时刻的纵坐标,y O(t-Δt)为交点在上一时刻的纵坐标,Δt为当前时刻与上一时刻的时间差。
t可以是某个时刻,例如当前时刻,Δt可以取压力传感器两次读数的时间间隔。
T f1或者T f2越小,则表示作业机械200发生倾覆的危险等级越高,需要干预程度的需要也越大。进一步,T f1越小,则表示作业机械200横轴方向发生倾覆的危险等级越高;T f2越小,则表示作业机械200纵轴方向发生倾覆的危险等级越高。
综上所述,本申请提供的作业机械的防倾覆预警方法,先获取分别设置于多个支重轮210处的压力传感器所采集的多个正压力;再基于多个正压力,得到作业机械200重力方向与地面的交点所对应的位置;最后,获取多个支重轮210的外轮廓位置,并基于交点的位置以及多个支重轮210的外轮廓位置,对作业机械200的倾覆危险进行预警。
本申请提供的方法中,通过支重轮210处的压力传感器所采集的正压力,也即是地面给对应支重轮210的反向作用力,而不是通过作业机械200各部位安装的重力传感器采集重力分布数据。
由于作业机械200所运行的路况,是影响作业机械200发生倾覆的直接因素,本申请提供的方法,充分考虑了行驶路面的路况,即使作业机械200行驶在松动的路面或者悬崖上,也可以准确检测作业机械200的重力分布,进而计算出作业机械200的重力方向与地面交点所在位置,再基于该交点所在位置以及多个支重轮210的外轮廓位置,判断作业机械200是否会发生倾覆危险,再基于判断的倾覆危险进行预警。
通过支重轮210处的正压力计算作业机械200重力方向与地面的交点所对应的位置,可以提高作业机械200的重力方向与地面交点计算结果的准确性,即使在作业机械200行驶的路况发生变化的情况下,通过该种方式计算作业机械200重力方向与地面的交点所对应的位置也会随之发生变化,及时预警,避免在作业机械200发生倾覆后再进行预警,因而,本申请提供的方法提高倾覆预警的准确性,减少误报的情况。
下面对本申请提供的作业机械200的防倾覆预警装置进行描述,下文描述的作业机械200的防倾覆预警装置与上文描述的作业机械的防倾覆预警方法可相互对应参照。
在一些实施例中,如图5所示,作业机械的防倾覆预警方法可以概括为三个步骤:压力传感器采集正压力数据,然后进行倾覆危险判断,再基于危险程度进行预警。
如图6所示,本申请提供的作业机械200的防倾覆预警装置600包括:采集模块610、计算模块620和预警模块630。
采集模块610用于获取多个压力传感器所采集的多个正压力;其中,多个压力传感器分别设置于作业机械200的多个支重轮210处。
计算模块620用于基于多个正压力,得到作业机械200重力方向与地面的交点所对应的位置。
预警模块630用于获取多个支重轮210的外轮廓位置,并基于交点的位置以及多个支重轮210的外轮廓位置,对作业机械200的倾覆危险进行预警。
在一些实施例中,计算模块620包括:压力分解单元和交点坐标计算单元。
压力分解单元用于在目标坐标系下,将多个正压力沿坐标轴方向分解,得到多个横轴压力和多个纵轴压力。其中,目标坐标系包含有横轴和纵轴,横轴为作业机械200的前后方向,纵轴为与作业机械200的前后方向垂直且平行于地面的方向,坐标原点可以是多个压力传感器的中心点,也可以是顶点支重轮211处压力传感器的位置。
交点坐标计算单元用于基于多个横轴压力、多个纵轴压力和多个正压力,得到交点的坐标。
在一些实施例中,多个支重轮210的外轮廓位置,包括多个支重轮210中的顶点支重轮211,在目标坐标系下的坐标。
预警模块630包括:边界计算单元和预警单元。
边界计算单元用于基于顶点支重轮211的坐标,得到作业机械200的倾覆预警边界。
预警单元用于基于交点的坐标,以及倾覆预警边界,对作业机械200的倾覆危险进行预警。
在一些实施例中,边界计算单元进一步用于将顶点支重轮211的坐标除以目标安全系数,得到倾覆预警边界;其中,目标安全系数大于1。
在一些实施例中,预警单元包括:倾覆危险分级单元和分级预警单元。
倾覆危险分级单元用于在交点的坐标越过倾覆预警边界的情况下,基于顶点支重轮211在当前时刻的坐标、交点在当前时刻的坐标、交点在上 一时刻的坐标以及当前时刻与上一时刻的时间差,得到倾覆危险等级。
分级预警单元用于基于倾覆危险等级进行预警。
在一些实施例中,倾覆危险分级单元包括:倾覆时间计算单元和危险等级计算单元。
倾覆时间计算单元用于基于如下公式,计算等效倾覆发生时间:
Figure PCTCN2022095606-appb-000011
其中,T f为等效倾覆发生时间,Δt为当前时刻与上一时刻的时间差;
C e为顶点支重轮211的横坐标绝对值,C O(t)为交点在当前时刻的横坐标,C O(t-Δt)为交点在上一时刻的横坐标,
或者,C e为顶点支重轮211的纵坐标绝对值,C O(t)为交点在当前时刻的纵坐标,C O(t-Δt)为交点在上一时刻的纵坐标。
危险等级计算单元用于基于等效倾覆发生时间,得到倾覆危险等级;其中,倾覆危险等级与等效倾覆发生时间呈反比关系。
本申请还提供一种作业机械200,该作业机械200包括上述的作业机械200的防倾覆预警装置600。
进一步,在本申请提供的作业机械200中,由于具备如上所述的作业机械200的防倾覆预警装置600,因此同样具备如上所述的各种优势。
下面对本申请提供的电子设备及存储介质进行描述,下文描述的电子设备及存储介质与上文描述的作业机械的防倾覆预警方法可相互对应参照。
图7示例了一种电子设备的实体结构示意图,如图7所示,该电子设备可以包括:处理器(processor)710、通信接口(Communications Interface)720、存储器(memory)730和通信总线740,其中,处理器710,通信接口720,存储器730通过通信总线740完成相互间的通信。处理器710可以调用存储器730中的逻辑指令,以执行作业机械的防倾覆预警方法,该方法包括:
步骤110、获取多个压力传感器所采集的多个正压力;其中,多个压力传感器分别设置于作业机械200的多个支重轮210处;
步骤120、基于多个正压力,得到作业机械200重力方向与地面的交 点所对应的位置;
步骤130、获取多个支重轮210的外轮廓位置,并基于交点的位置以及多个支重轮210的外轮廓位置,对作业机械200的倾覆危险进行预警。
此外,上述的存储器730中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的作业机械的防倾覆预警方法,该方法包括:
步骤110、获取多个压力传感器所采集的多个正压力;其中,多个压力传感器分别设置于作业机械200的多个支重轮210处;
步骤120、基于多个正压力,得到作业机械200重力方向与地面的交点所对应的位置;
步骤130、获取多个支重轮210的外轮廓位置,并基于交点的位置以及多个支重轮210的外轮廓位置,对作业机械200的倾覆危险进行预警。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的作业机械的防倾覆预警方法,该方法包括:
步骤110、获取多个压力传感器所采集的多个正压力;其中,多个压力传感器分别设置于作业机械200的多个支重轮210处;
步骤120、基于多个正压力,得到作业机械200重力方向与地面的交点所对应的位置;
步骤130、获取多个支重轮210的外轮廓位置,并基于交点的位置以 及多个支重轮210的外轮廓位置,对作业机械200的倾覆危险进行预警。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种作业机械的防倾覆预警方法,包括:
    获取多个压力传感器所采集的多个正压力;其中,所述多个压力传感器分别设置于作业机械的多个支重轮处;
    基于所述多个正压力,得到作业机械重力方向与地面的交点所对应的位置;
    获取所述多个支重轮的外轮廓位置,并基于所述交点的位置以及所述多个支重轮的外轮廓位置,对所述作业机械的倾覆危险进行预警。
  2. 根据权利要求1所述的作业机械的防倾覆预警方法,其中,所述基于所述多个正压力,得到作业机械重力方向与地面的交点所对应的位置,包括:
    在目标坐标系下,将所述多个正压力沿坐标轴方向分解,得到多个横轴压力和多个纵轴压力;其中,所述目标坐标系包含有横轴和纵轴,所述横轴为所述作业机械的前后方向,所述纵轴为与所述作业机械的前后方向垂直且平行于地面的方向;
    基于所述多个横轴压力、所述多个纵轴压力和所述多个正压力,得到所述交点的坐标。
  3. 根据权利要求2所述的作业机械的防倾覆预警方法,其中,
    所述多个支重轮的外轮廓位置,包括所述多个支重轮中的顶点支重轮,在所述目标坐标系下的坐标;
    所述基于所述交点的位置以及所述多个支重轮的外轮廓位置,对所述作业机械的倾覆危险进行预警,包括:
    基于所述顶点支重轮的坐标,得到所述作业机械的倾覆预警边界;
    基于所述交点的坐标,以及所述倾覆预警边界,对所述作业机械的倾覆危险进行预警。
  4. 根据权利要求3所述的作业机械的防倾覆预警方法,其中,所述基于所述顶点支重轮的坐标,得到所述作业机械的倾覆预警边界,包括:
    将所述顶点支重轮的坐标除以目标安全系数,得到所述倾覆预警边 界;
    其中,所述目标安全系数大于1。
  5. 根据权利要求3所述的作业机械的防倾覆预警方法,其中,所述基于所述交点的坐标,以及所述倾覆预警边界,对所述作业机械的倾覆危险进行预警,包括:
    在所述交点的坐标越过所述倾覆预警边界的情况下,基于所述顶点支重轮在当前时刻的坐标、所述交点在当前时刻的坐标、所述交点在上一时刻的坐标以及当前时刻与上一时刻的时间差,得到倾覆危险等级;
    基于所述倾覆危险等级进行预警。
  6. 根据权利要求5所述的作业机械的防倾覆预警方法,其中,所述基于所述顶点支重轮在当前时刻的坐标、所述交点在当前时刻的坐标、所述交点在上一时刻的坐标以及当前时刻与上一时刻的时间差,得到倾覆危险等级,包括:
    基于如下公式,计算等效倾覆发生时间:
    Figure PCTCN2022095606-appb-100001
    其中,T f为所述等效倾覆发生时间,Δt为当前时刻与上一时刻的时间差;C e为所述顶点支重轮的横坐标绝对值,C O(t)为所述交点在当前时刻的横坐标,C O(t-Δt)为所述交点在上一时刻的横坐标,或者,C e为所述顶点支重轮的纵坐标绝对值,C O(t)为所述交点在当前时刻的纵坐标,C O(t-Δt)为所述交点在上一时刻的纵坐标;
    基于所述等效倾覆发生时间,得到所述倾覆危险等级;其中,所述倾覆危险等级与所述等效倾覆发生时间呈反比关系。
  7. 一种作业机械的防倾覆预警装置,包括:
    采集模块,用于获取多个压力传感器所采集的多个正压力;其中,所述多个压力传感器分别设置于作业机械的多个支重轮处;
    计算模块,用于基于所述多个正压力,得到作业机械重力方向与地面的交点所对应的位置;
    预警模块,用于获取所述多个支重轮的外轮廓位置,并基于所述交点的位置以及所述多个支重轮的外轮廓位置,对所述作业机械的倾覆危 险进行预警。
  8. 一种作业机械,包括权利要求7所述的作业机械的防倾覆预警装置。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至6任一项所述作业机械的防倾覆预警方法的步骤。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述作业机械的防倾覆预警方法的步骤。
PCT/CN2022/095606 2021-07-22 2022-05-27 作业机械的防倾覆预警方法、装置、作业机械及电子设备 WO2023000822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110830053.6A CN113724469B (zh) 2021-07-22 2021-07-22 作业机械的防倾覆预警方法、装置、作业机械及电子设备
CN202110830053.6 2021-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/409,427 Continuation US20240141620A1 (en) 2021-07-22 2024-01-10 Anti-overturning warning method and apparatus for work machine, work machine and electronic device

Publications (1)

Publication Number Publication Date
WO2023000822A1 true WO2023000822A1 (zh) 2023-01-26

Family

ID=78673678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095606 WO2023000822A1 (zh) 2021-07-22 2022-05-27 作业机械的防倾覆预警方法、装置、作业机械及电子设备

Country Status (2)

Country Link
CN (1) CN113724469B (zh)
WO (1) WO2023000822A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113724469B (zh) * 2021-07-22 2023-02-03 上海三一重机股份有限公司 作业机械的防倾覆预警方法、装置、作业机械及电子设备
CN114701952B (zh) * 2022-06-06 2022-09-02 中联重科股份有限公司 用于工程机械的防倾覆方法及装置、处理器及工程机械
CN115383758B (zh) * 2022-08-23 2023-09-19 中国人民解放军63653部队 一种工程作业机器人防倾覆预警方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204384774U (zh) * 2015-01-16 2015-06-10 山东理工大学 一种用于履带式起重机的防侧翻装置
WO2018092980A1 (ko) * 2016-11-16 2018-05-24 오철규 무한궤도식 건설장비의 전도 방지 장치 및 방법
CN112758011A (zh) * 2020-12-29 2021-05-07 徐州徐工施维英机械有限公司 一种混凝土泵车防倾覆预警方法和装置
CN112875583A (zh) * 2021-01-27 2021-06-01 三一海洋重工有限公司 叉车防倾翻方法及其装置与叉车
CN113724469A (zh) * 2021-07-22 2021-11-30 上海三一重机股份有限公司 作业机械的防倾覆预警方法、装置、作业机械及电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2718688B2 (ja) * 1988-03-01 1998-02-25 日立建機株式会社 多自由度作業機械の位置と力の制御装置
JP2702015B2 (ja) * 1991-10-25 1998-01-21 日立建機株式会社 力制御作業機械の重量・重心位置補正装置
JP3373668B2 (ja) * 1994-08-23 2003-02-04 住友電気工業株式会社 重機接近監視システム
JP3542289B2 (ja) * 1998-09-22 2004-07-14 株式会社アルティア 車両重心位置算出早見表及びこれを用いた車両重心位置算出方法
WO2016059794A1 (ja) * 2014-10-15 2016-04-21 坂東機工株式会社 スクライブ方法及びスクライブ装置
CN105822264B (zh) * 2016-03-18 2018-08-17 西南石油大学 天然气水合物层钻井井筒水合物动态分解位置检测方法
CN205580440U (zh) * 2016-04-15 2016-09-14 杨杰 一种压电加速度寻地传感器
CN106087809A (zh) * 2016-07-20 2016-11-09 湖南红太阳新能源科技有限公司 一种智能型交通护栏管理系统及护栏
CN207833664U (zh) * 2018-01-17 2018-09-07 上海摩亭网络科技有限公司 童车报警装置及移动电子装置
CN109048942A (zh) * 2018-08-31 2018-12-21 浙江三星机电股份有限公司 快速通过复杂地形的排爆机器人
CN110838244B (zh) * 2019-10-17 2021-02-02 惠州市德赛西威智能交通技术研究院有限公司 一种基于超声波的垂直泊车位的车位航向调整方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204384774U (zh) * 2015-01-16 2015-06-10 山东理工大学 一种用于履带式起重机的防侧翻装置
WO2018092980A1 (ko) * 2016-11-16 2018-05-24 오철규 무한궤도식 건설장비의 전도 방지 장치 및 방법
CN112758011A (zh) * 2020-12-29 2021-05-07 徐州徐工施维英机械有限公司 一种混凝土泵车防倾覆预警方法和装置
CN112875583A (zh) * 2021-01-27 2021-06-01 三一海洋重工有限公司 叉车防倾翻方法及其装置与叉车
CN113724469A (zh) * 2021-07-22 2021-11-30 上海三一重机股份有限公司 作业机械的防倾覆预警方法、装置、作业机械及电子设备

Also Published As

Publication number Publication date
CN113724469A (zh) 2021-11-30
CN113724469B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2023000822A1 (zh) 作业机械的防倾覆预警方法、装置、作业机械及电子设备
JP6067807B2 (ja) 2次事故防止システムおよび2次事故防止方法
EP2634555A1 (en) Measurement device of position of center of gravity of vehicle to be measured on truck scale and truck scale
CN103544485B (zh) 基于智能终端的司机识别方法和装置
CN105074382B (zh) 自卸卡车
KR20170140231A (ko) 차량의 임박한 팁 오버를 검출하기 위한 시스템 및 방법
CN112660112A (zh) 一种车辆侧倾状态及侧翻预测方法及系统
CN106679626B (zh) 一种通信铁塔倾斜与倒塌实时监测方法及系统
WO2023138480A1 (zh) 作业机械的轮胎离地检测方法、装置及作业机械
CN112815907A (zh) 车辆涉水监测方法、装置、系统、计算机设备和存储介质
CN115880252B (zh) 一种集装箱吊具检测方法、装置、计算机设备及存储介质
Guizhen et al. Real-time bus rollover prediction algorithm with road bank angle estimation
CN107187443A (zh) 车辆失稳预警系统和方法
JP5604261B2 (ja) トラックスケールにおける被計量車両の重心位置計測装置
CN113763678B (zh) 防倾覆报警方法、装置及履带式作业机械
CN115931397A (zh) 一种轨道交通车辆平稳状态的确定方法和确定装置
JP7264796B2 (ja) 転倒リスク提示装置および転倒リスク提示方法
Zhu et al. Lateral stability simulation and analysis for wheel loaders based on the steady-state margin angle
US20240141620A1 (en) Anti-overturning warning method and apparatus for work machine, work machine and electronic device
CN109572609B (zh) 一种基于加速度传感器的汽车侧翻检测方法
CN113651245A (zh) 一种起重机承载力监测系统
KR102077493B1 (ko) 굴삭기 전복 감지 시스템
CN113635907A (zh) 一种驾驶行为的检测方法、装置、电子设备及其存储介质
JP7264795B2 (ja) 稼働エリア提示装置および稼働エリア提示方法
JP7264794B2 (ja) 転倒リスク提示装置および転倒リスク提示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22844989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE