WO2023000417A1 - 一种半开放式大功率设备冷却系统及冷却方法 - Google Patents

一种半开放式大功率设备冷却系统及冷却方法 Download PDF

Info

Publication number
WO2023000417A1
WO2023000417A1 PCT/CN2021/112694 CN2021112694W WO2023000417A1 WO 2023000417 A1 WO2023000417 A1 WO 2023000417A1 CN 2021112694 W CN2021112694 W CN 2021112694W WO 2023000417 A1 WO2023000417 A1 WO 2023000417A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
power equipment
open high
cooling system
cooling
Prior art date
Application number
PCT/CN2021/112694
Other languages
English (en)
French (fr)
Inventor
吴努斌
陈雄
杨健
徐荣
杨恒辉
谭林川
苏宝焕
尹露
Original Assignee
远景能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 远景能源有限公司 filed Critical 远景能源有限公司
Priority to MA63892A priority Critical patent/MA63892A1/fr
Priority to EP21950659.9A priority patent/EP4376032A1/en
Publication of WO2023000417A1 publication Critical patent/WO2023000417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/16Water cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention generally relates to the technical field of cooling systems. Specifically, the present invention relates to a semi-open high-power equipment cooling system and method.
  • the high-power equipment in the offshore wind turbine can be, for example, a fan transformer, which is arranged in the wind tower, and its heating element is mainly the transformer winding.
  • the wind turbine transformer in the prior art usually adopts a closed water-cooled dry-type transformer, in which the cooling of the transformer winding 201 is realized through a cooling backpack 203 arranged on the side of the wind turbine transformer.
  • a closed water-cooled dry-type transformer due to the use of a closed water-cooled dry-type transformer, the air inside the fan tower is isolated from the air inside the fan transformer. Therefore, it is necessary to separately arrange a tower cooler 212 on the fan tower to cool the tower environment. In this way, since the wind turbine transformer and the wind tower environment need to be equipped with independent cooling equipment, the total cost of the cooling system is high and the self-consumption of the offshore wind power generation unit is also greatly increased.
  • the cooling backpack 203 since the cooling backpack 203 usually needs to be arranged on the side of the wind turbine transformer, this makes the circumferential dimension of the wind turbine transformer larger, which is not conducive to building the wind turbine transformer into the wind turbine tower.
  • the cooling backpack since the cooling backpack is only ventilated on one side of the cooling backpack, its ventilation flow balance is poor, which will cause local temperature rise hot spots on the leeward side of the transformer winding 201 .
  • the present invention proposes a semi-open high-power equipment cooling system, including:
  • the semi-open high-power equipment structure includes:
  • a first platform configured to carry semi-open high-power equipment, and the first platform has ventilation holes;
  • the outer wall of the semi-open high-power equipment structure configured to surround the semi-open high-power equipment and to be in contact with the atmosphere;
  • the semi-open high-power equipment includes:
  • a semi-open high-power equipment enclosure encloses the one or more heating elements, and the semi-open high-power equipment enclosure includes:
  • a semi-open high-power equipment air outlet which is arranged at the bottom of the semi-open high-power equipment casing
  • the inner radiator is connected to the air outlet of the semi-open high-power equipment and an inner radiator fan is arranged under the inner radiator of the fan;
  • the pipes connect the cooling system, which connects the inner radiator.
  • the inner radiator is arranged under the semi-open high-power equipment, and the inner radiator fan is arranged under the inner radiator.
  • the pipeline-connected cooling system includes a pipeline-connected air-conditioning system or a pipeline-connected water cooling system.
  • the pipeline connection water cooling system includes:
  • An external radiator the external radiator is arranged outside the semi-open high-power equipment structure, and the external radiator is connected to the internal radiator.
  • the ventilation hole includes a plurality of grill holes arranged continuously or at intervals or a grill ring arranged around.
  • a plurality of semi-open high-power equipment air inlets are arranged continuously/at intervals at the upper part of the side wall of the semi-open high-power equipment casing.
  • a plurality of semi-open high-power equipment air outlets are arranged symmetrically or approximately center-symmetrically with the center of the bottom of the semi-open high-power equipment casing as the symmetrical center;
  • the multiple semi-open high-power equipment air outlets are respectively connected to one of the multiple internal radiators;
  • the multiple internal radiators are respectively connected to one of the multiple internal radiator fans.
  • the plurality of internal radiators are connected in parallel or connected in series through the water-cooling pipes.
  • a temperature sensor is arranged on the heating element.
  • the semi-open high-power equipment structure further includes one or more second platforms, and the one or more second platforms are arranged to cover at least the upper part of the semi-open high-power equipment.
  • the semi-open high-power equipment is stipulated that: the semi-open high-power equipment structure further includes one or more second platforms, and the one or more second platforms are arranged to cover at least the upper part of the semi-open high-power equipment.
  • the semi-open high-power equipment structure includes a wind tower and a container.
  • the semi-open high-power equipment includes a transformer and a frequency converter.
  • the present invention also proposes a method for cooling semi-open high-power equipment using the semi-open high-power equipment cooling system, including the following steps:
  • the semi-open high-power equipment is cooled by the first cooling cycle, which includes the following steps:
  • the heat is taken away by the first cold air flow passing through the outer surface of one or more heating elements and the air gap and the first hot air flow is formed;
  • the first hot air flow passes through the inner radiator and is cooled to form a second cold air flow;
  • the second cold air flow enters the semi-open high-power equipment structure, and mixes with the upper layer air in the semi-open high-power equipment structure through the ventilation holes, and forms a third airflow through convective heat exchange with the outer wall of the semi-open high-power equipment structure. cold air;
  • the third cold airflow flows back into the semi-open high-power equipment through a plurality of semi-open high-power equipment air inlets to form the first cooling cycle;
  • the semi-open high-power equipment is cooled by the second cooling cycle, wherein in the second cooling cycle, the internal radiator is cooled by exchanging heat through an external cooling system.
  • cooling the semi-open high-power equipment through the second cooling cycle includes the following steps:
  • the first hot water flow is driven by a water pump to be transported to the external radiator through the water-cooling pipeline;
  • the second cold water flow is driven by a water pump to be transported to the inner radiator through the water cooling pipeline to form the second cooling cycle.
  • the present invention also proposes a wind generator, which has the semi-open high-power equipment cooling system.
  • the invention relates to an energy storage system, which has the semi-open high-power equipment cooling system.
  • the present invention has at least the following beneficial effects: the present invention adopts a semi-open high-power equipment, which meets the cooling demand in combination with an external closed environment, so that the total cost of the cooling system is greatly reduced; Enhanced convective heat exchange of 5-10kW, thereby significantly reducing the self-consumption of the cooling system; and the present invention cancels the cooling backpack and arranges multiple internal radiators symmetrically or approximately symmetrically under the semi-open high-power equipment , which effectively alleviates the size limitation pressure of high-power equipment in an external closed environment, improves the feasibility of built-in high-power transformers and high-power inverters and other equipment, and uses double-sided ventilation to effectively improve the cooling capacity compared with single-sided ventilation.
  • the flow equalization in the component reduces the local hot spot of the heating element.
  • Fig. 1 shows a schematic diagram of a wind power generator to which the present invention is applied.
  • Fig. 2 shows a schematic structural diagram of a semi-open high-power equipment cooling system in the prior art.
  • Fig. 3 shows a schematic structural diagram of a semi-open high-power equipment cooling system in an embodiment of the present invention.
  • the quantifiers "a” and “an” do not exclude the scene of multiple elements.
  • Fig. 1 shows a schematic diagram of a wind power generator 100 to which the present invention is applied.
  • a wind power generator 100 includes a wind turbine tower 101 , a nacelle 102 rotatably connected to the wind turbine tower 101 and supporting a hub 103 .
  • Two or more blades 104 are arranged on the hub 103, wherein the blades 104 drive the rotor (not shown) arranged in the hub 108 to rotate around the axis (not shown) under the wind force, wherein the rotor of the generator is opposite to The rotation of the stator generates electricity.
  • a semi-open high-power equipment cooling system including a semi-open high-power equipment structure, a semi-open high-power equipment, an internal radiator, and a pipeline connection cooling system.
  • the semi-open high-power equipment structure may surround the semi-open high-power equipment, for example, it may be a wind turbine tower or a container.
  • There is a heating element in the semi-open high-power equipment and the semi-open high-power equipment may be, for example, a transformer or a frequency converter. Take the fan transformer in the fan tower as an example, in the fan transformer, the heating element includes the transformer winding.
  • the pipeline connection cooling system is connected with the radiator in the fan, which can be a water cooling system or an air conditioning system.
  • the semi-open cooling system 300 for high-power equipment can include a fan tower, a fan transformer, a radiator in the tower, and a radiator outside the tower, wherein the radiator in the tower is connected to the radiator outside the tower.
  • the radiator is connected with a water pump through a water-cooling pipe to form an external cooling system.
  • the wind turbine tower may include a first tower platform 313 , a second tower platform 317 , a tower outer wall 316 and a tower base 318 .
  • the first tower platform 313 is arranged under the wind turbine transformer for carrying the wind turbine transformer, and the first tower platform 313 has ventilation holes 314 - 315 .
  • the ventilation holes 314-315 may be, for example, a plurality of grill holes arranged continuously/at intervals or a grill ring arranged around.
  • the tower outer wall 316 is arranged to surround the fan transformer at least on the sides of the fan transformer and is connected to the tower base 318 .
  • One or more second tower platforms 317 may be arranged, and the one or more second tower platforms 317 are arranged to cover the wind turbine transformer at least above the wind turbine transformer and are connected to the tower outer wall 316 .
  • the wind turbine transformer includes one or more transformer windings 301 and a transformer housing 304 .
  • a plurality of temperature sensors 326 may be arranged on the transformer winding 301 , the plurality of temperature sensors 326 may be distributed throughout the transformer winding 301 , and may detect temperature changes at different positions of the transformer winding 301 .
  • the transformer housing 304 surrounds the transformer windings, and the transformer housing 304 includes a plurality of transformer air inlets 303 and transformer air outlets 305-306.
  • a plurality of transformer air inlets 303 may be arranged continuously/at intervals on the side wall of the transformer casing 304, especially on the upper part of the side wall.
  • the term “upper” means that the distance from the top surface is smaller than the distance from the bottom surface
  • the term “lower” means that the distance from the bottom surface is smaller than the distance from the top surface.
  • Transformer air outlets 305-306 are arranged at the bottom of the transformer casing, and multiple transformer air outlets 305-306 can be symmetrically arranged with the center of the bottom of the transformer casing as a symmetrical center or approximately center-symmetrically arranged, so as to realize the transformer winding 301. Ventilation on both sides. Multiple transformer air outlets 305-306 are symmetrically arranged on both sides, which can improve the flow uniformity of the cooling air of the transformer winding 301, obtain a better cooling effect and effectively avoid local hot spots of temperature rise.
  • the internal cooling of the semi-open transformer and the cooling of the tower environment can be coupled together, and the cooling of the transformer winding 301 and the air environment in the tower can be satisfied at the same time by using the radiators 307-308 in the tower. heat demand.
  • In-tower radiators 307-308 are arranged below the fan transformer, and multiple transformer air outlets 305-306 are respectively connected to one of the corresponding multiple in-tower radiators 307-308, and the multiple in-tower radiators 307-308 are respectively It is connected with one of the plurality of radiator fans 309-310 in the tower. Since the radiators 307-308 in the tower are arranged under the bottom of the fan transformer, they are more suitable to be placed in the tower with a limited radius compared with the traditional cooling backpack.
  • the air in the tower can pass through the ventilation holes 314-315 and conduct convective heat exchange with the outer wall 316 of the tower tube, which can effectively reduce the self-consumption of the radiator 312 outside the tower.
  • the radiator outside the tower 312 is arranged outside the fan tower, and the radiator outside the tower 312 is connected with the radiators inside the tower 307-308 through the water pump 311 and the water cooling pipes 319-325.
  • a plurality of radiators 307-308 in the tower are connected in parallel with each other through water-cooling pipes.
  • the external cooling system of this embodiment is constructed by connecting the external radiator 312 with multiple internal radiators 307-30 in the above manner.
  • the arrangement of the above-mentioned cooling system can constitute the first cooling cycle and the second cooling cycle of the semi-open high-power equipment cooling system.
  • the first cooling cycle includes: the power consumption of the transformer winding 301 causes its temperature to rise, the cold air passes through the outer surface of the transformer winding 301 and the air gap and takes away heat, and the hot air passes through the tower under the drive of the radiator fans 309-310 in the tower.
  • the radiators 307-308 transfer heat to the radiators 307-308 in the tower, and the cooled air enters the tower environment and mixes with the air in the upper layer of the tower above the first tower platform through the ventilation holes 314-315.
  • the air in the tower can enhance convective heat exchange with the outer wall 316 of the tower, and finally the cold air flows back into the transformer through multiple transformer air inlets 303 above the side wall of the transformer shell 304, thereby forming an entire air cooling circuit.
  • the second water cooling cycle includes: multiple radiators 307-308 in the tower are connected in parallel with the water pump 311, the radiator 312 outside the tower and other power equipment through water-cooling pipes 319-325. After the heat exchangers 307-308 in the tower cool the hot air, the outlet water temperature rises. Driven by the water pump 311, the hot water flows through the radiator 312 outside the tower, and is discharged to the atmosphere through active air cooling or passive air cooling. sink, the cooled water will continue to circulate and exchange heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

本发明涉及冷却系统技术领域,提出一种半开放式大功率设备冷却系统及方法。该系统包括半开放式大功率设备结构、半开放式大功率设备、内散热器、内散热器风扇以及管路连接冷却系统。本发明可以同时满足半开放式大功率设备和封闭环境的冷却需求,使冷却系统的总成本大量下降;本发明可以增强半开放式大功率设备结构外壁的对流换热5-10kW,从而显著降低了冷却系统的自耗电;以及本发明通过取消冷却背包并将多个内散热器布置于半开放式大功率设备下方的方式,有效缓解了大功率设备在封闭环境内布局中的尺寸限制压力;并且采用双侧通风相比于单侧通风有效减少发热元件的局部热点。

Description

一种半开放式大功率设备冷却系统及冷却方法 技术领域
本发明总的来说涉及冷却系统技术领域。具体而言,本发明涉及一种半开放式大功率设备冷却系统及方法。
背景技术
对于布置于封闭环境中的大功率设备,其配套的冷却系统是很重要的一环。以海上风力发电机组为例,海上风力发电机组中的大功率设备例如可以是风机变压器,风机变压器布置在风机塔筒中,其发热元件主要是变压器绕组。
如图2所示,现有技术中风机变压器通常采用封闭式水冷干式变压器,其中通过布置在风机变压器侧面的冷却背包203来实现变压器绕组201的冷却。但是由于采用了封闭式水冷干式变压器,风机塔筒内部空气与风机变压器内部空气相互隔离,因此需要通过在风机塔筒上单独布置塔筒冷却器212来实现塔筒环境的冷却。这样一来,由于风机变压机和风机塔筒环境均需配置独立的冷却设备,这使得冷却系统的总成本高昂并且海上风力发电机组的自耗电也大大增加。而且,由于冷却背包203通常需要布置在风机变压器的侧面,这使得风机变压器的周向尺寸较大,不利于将风机变压器内置于风机塔筒中。另外,由于冷却背包只在冷却背包的这一侧单侧地通风,因此其通风均流性较差,这会使得变压器绕组201的背风侧产生局部区域温升热点。
发明内容
为至少部分解决现有技术中的上述问题,本发明提出一种半开放式大功率设备冷却系统,包括:
半开放式大功率设备结构,所述半开放式大功率设备结构包括:
第一平台,其被配置为承载半开放式大功率设备,并且所述第一平台具有通风孔;以及
半开放式大功率设备结构外壁,其被配置为包围半开放式大功率设备并且与大气环境接触;
半开放式大功率设备,所述半开放式大功率设备包括:
一个或者多个发热元件;以及
半开放式大功率设备外壳,其包围所述一个或者多个发热元件,并且所述半开放式大功率设备外壳包括:
多个半开放式大功率设备进风口,其布置于所述半开放式大功率设备外壳的侧壁的上部处;以及
半开放式大功率设备出风口,其布置于所述半开放式大功率设备外壳的底部处;
内散热器,其连接所述半开放式大功率设备出风口并且在所述风机内散热器下方布置有内散热器风扇;
内散热器风扇,其连接所述内散热器;以及
管路连接冷却系统,其连接所述内散热器。
在本发明一个实施例中规定:所述内散热器布置于所述半开放式大功率设备下方,并且在所述内散热器下方布置所述内散热器风扇。
在本发明一个实施例中规定:所述管路连接冷却系统包括管路连接空调系统或者管路连接水冷系统。
在本发明一个实施例中规定,所述管路连接水冷系统包括:
水泵;
水冷管道;以及
外散热器,所述外散热器布置于所述半开放式大功率设备结构外,并且所述外散热器与所述内散热器连接。
在本发明一个实施例中规定:所述通风孔包括连续\间隔布置的多个格栅孔或者环绕布置的格栅环。
在本发明一个实施例中规定:多个半开放式大功率设备进风口连续\间隔布置于所述半开放式大功率设备外壳的侧壁的上部处。
在本发明一个实施例中规定:多个半开放式大功率设备出风口以所述半开放式大功率设备外壳底部的中心为对称中心呈对称布置或者近似中心对称布置;
所述多个半开放式大功率设备出风口分别与多个内散热器其中之一连接;以及
所述多个内散热器分别与多个内散热器风扇其中之一连接。
在本发明一个实施例中规定:所述多个内散热器通过所述水冷管道 相互并联或者相互串联。
在本发明一个实施例中规定:所述发热元件上布置有温度传感器。
在本发明一个实施例中规定:所述半开放式大功率设备结构还包括一个或者多个第二平台,所述一个或者多个第二平台布置为至少在半开放式大功率设备的上方遮盖所述半开放式大功率设备。
在本发明一个实施例中规定:所述半开放式大功率设备结构包括风机塔筒以及集装箱。
在本发明一个实施例中规定:所述半开放式大功率设备包括变压器以及变频器。
本发明还提出一种利用所述半开放式大功率设备冷却系统冷却半开放式大功率设备的方法,包括下列步骤:
通过第一冷却循环冷却半开放式大功率设备,其中包括下列步骤:
由第一冷气流经过一个或者多个发热元件的外表面和气隙后带走热量并且形成第一热气流;
由所述第一热气流在内散热器风扇驱动下穿过内散热器并且冷却形成第二冷气流;
由所述第二冷气流进入半开放式大功率设备结构内,并且通过通风孔与半开放式大功率设备结构内上层空气混合以及与半开放式大功率设备结构外壁通过对流换热形成第三冷气流;以及
由所述第三冷气流通过多个半开放式大功率设备进风口回流进入半开放式大功率设备中以形成所述第一冷却循环;以及
通过第二冷却循环冷却半开放式大功率设备,其中在所述第二冷却循环中通过外接冷却系统换热冷却内散热器。
在本发明一个实施例中规定,通过第二冷却循环冷却半开放式大功率设备包括下列步骤:
由内散热器吸收所述第一热气流的热量,并且形成第一热水流;
由水泵驱动所述第一热水流通过水冷管道运送至外散热器;
由外散热器将所述第一热水流的热量排放至大气热沉中,并且形成冷却后的第二冷水流;以及
由水泵驱动所述第二冷水流通过水冷管道运送至内散热器以形成所述第二冷却循环。
本发明还提出一种风力发电机,其具有所述半开放式大功率设备冷 却系统。
本发明一种储能系统,其具有所述半开放式大功率设备冷却系统。
本发明至少具有如下有益效果:本发明采用了半开放式大功率设备,其与外部封闭环境结合满足冷却需求,使冷却系统的总成本大量下降;本发明可以通过半开放式大功率设备结构外壁增强对流换热5-10kW,从而显著降低了冷却系统的自耗电;以及本发明通过取消冷却背包并将多个内散热器对称或近似对称的方式布置于半开放式大功率设备下方的方式,有效缓解了大功率设备在外部封闭环境中的尺寸限制压力,提高了内置大功率变压器以及大功率变频器等设备的可行性,并且采用双侧通风相比于单侧通风有效提升了被冷却部件内的均流性,减少发热元件的局部热点。
附图说明
为进一步阐明本发明的各实施例中具有的及其它的优点和特征,将参考附图来呈现本发明的各实施例的更具体的描述。可以理解,这些附图只描绘本发明的典型实施例,因此将不被认为是对其范围的限制。在附图中,为了清楚明了,相同或相应的部件将用相同或类似的标记表示。
图1示出了本发明所应用于的风力发电机的示意图。
图2示出了现有技术中一个半开放式大功率设备冷却系统的结构示意图。
图3示出了本发明一个实施例中半开放式大功率设备冷却系统的结构示意图。
具体实施方式
应当指出,各附图中的各组件可能为了图解说明而被夸大地示出,而不一定是比例正确的。在各附图中,给相同或功能相同的组件配备了相同的附图标记。
在本发明中,除非特别指出,“布置在…上”、“布置在…上方”以及“布置在…之上”并未排除二者之间存在中间物的情况。此外,“布置在…上或上方”仅仅表示两个部件之间的相对位置关系,而在一定情况下、如在颠倒产品方向后,也可以转换为“布置在…下或下方”,反之亦然。
在本发明中,各实施例仅仅旨在说明本发明的方案,而不应被理解为限制性的。
在本发明中,除非特别指出,量词“一个”、“一”并未排除多个元素的场景。
在此还应当指出,在本发明的实施例中,为清楚、简单起见,可能示出了仅仅一部分部件或组件,但是本领域的普通技术人员能够理解,在本发明的教导下,可根据具体场景需要添加所需的部件或组件。另外,除非另行说明,本发明的不同实施例中的特征可以相互组合。例如,可以用第二实施例中的某特征替换第一实施例中相对应或功能相同或相似的特征,所得到的实施例同样落入本申请的公开范围或记载范围。
在此还应当指出,在本发明的范围内,“相同”、“相等”、“等于”等措辞并不意味着二者数值绝对相等,而是允许一定的合理误差,也就是说,所述措辞也涵盖了“基本上相同”、“基本上相等”、“基本上等于”。以此类推,在本发明中,表方向的术语“垂直于”、“平行于”等等同样涵盖了“基本上垂直于”、“基本上平行于”的含义。
另外,本发明的各方法的步骤的编号并未限定所述方法步骤的执行顺序。除非特别指出,各方法步骤可以以不同顺序执行。
下面结合具体实施方式参考附图进一步阐述本发明。
本发明可以应用于风力发电机或者储能系统中。图1示出了本发明所应用于的风力发电机100的示意图。如图1所示,风力发电机100包括风机塔筒101、可旋转地连接到风机塔筒101并且支承轮毂103的机舱102。在轮毂103上布置有两个或更多个叶片104,其中叶片104在风力作用下带动布置在轮毂108中的转子(未示出)绕轴线(未示出)旋转,其中发电机的转子相对于定子的旋转将生成电能。
在本发明的一个实施例中提出一个半开放式大功率设备冷却系统,包括半开放式大功率设备结构、半开放式大功率设备、内散热器以及管路连接冷却系统。半开放式大功率设备结构可以包围所述半开放式大功率设备,例如可以是风机塔筒或者集装箱。半开放式大功率设备中具有发热元件,所述半开放式大功率设备例如可以是变压器或者变频器。以风机塔筒中的风机变压器为例,在风机变压器中,发热元件包括变压器绕组。管路连接冷却系统与所述风机内散热器相连接,可以是水冷系统或者空调系统。然而本领域技术人员应当理解,上述半开放式大功率设 备结构、半开放式大功率设备以及管路连接冷却系统均不限于所给出的示例,本领域技术人员可以根据实际需要做出适应性的选择。
如图3所示,在本发明的一个实施例中半开放式大功率设备冷却系统300可以包括风机塔筒、风机变压器、塔内散热器以及塔外散热器,其中塔内散热器与塔外散热器通过水冷管道和水泵连接形成外接冷却系统。
风机塔筒可以包括第一塔筒平台313、第二塔筒平台317、塔筒外壁316以及塔基318。
第一塔筒平台313布置于风机变压器下方以用于承载风机变压器,并且第一塔筒平台313具有通风孔314-315。通风孔314-315例如可以是连续\间隔布置的多个格栅孔或者环绕布置的格栅环。
塔筒外壁316被布置为至少在风机变压器侧面包围风机变压器,并且连接至塔基318。
第二塔筒平台317可以布置有一个或者多个,所述一个或者多个第二塔筒平台317被布置为至少在风机变压器的上方遮盖风机变压器,并且与塔筒外壁316连接。
风机变压器包括一个或者多个变压器绕组301以及变压器外壳304。
变压器绕组301上可以布置多个温度传感器326,所述多个温度传感器326可以分布在变压器绕组301的各处,并且可以检测变压器绕组301的不同位置处的温度变化。
变压器外壳304包围变压器绕组,并且变压器外壳304包括多个变压器进风口303以及变压器出风口305-306。
多个变压器进风口303可以连续\间隔布置于所述变压器外壳304的侧壁处、尤其是侧壁的上部。在此,术语“上部”是指与顶面相距的距离小于与底面相距的距离,术语“下部”是指与底面相距的距离小于与顶面相距的距离。
变压器出风口305-306布置于所述变压器外壳底部,多个变压器出风口305-306可以所述变压器外壳底部的中心为对称中心呈对称布置或者近似中心对称布置,从而实现所述变压器绕组301的双侧通风。多个变压器出风口305-306采用双侧对称布置的方式,可以提升变压器绕组301的冷却空气的均流性,获得更好的冷却效果并且有效避免局部的温升热点。
通过变压器进风口303以及变压器出风口305-306,可以将半开放式变压器内部冷却和塔筒环境冷却耦合在一起,利用塔内散热器307-308同时满足变压器绕组301以及塔内空气环境的换热需求。
塔内散热器307-308布置于风机变压器的下方,多个变压器出风口305-306分别与对应的多个塔内散热器307-308其中之一连接,多个塔内散热器307-308分别与多个塔内散热器风扇309-310其中之一连接。塔内散热器307-308由于布置于风机变压器的底部下方,相比于传统冷却背包,更适合放置在有限半径的塔筒中。
在塔内散热器风扇309-310的驱动下,塔内空气可以穿过通风孔314-315,并与塔筒外壁316进行对流换热,可以有效降低塔外散热器312的自耗电。
塔外散热器312布置于风机塔筒外,并且塔外散热器312通过水泵311以及水冷管道319-325与塔内散热器307-308相连接。其中多个塔内散热器307-308通过水冷管道相互并联。其中,塔外散热器312与多个塔内散热器307-30通过上述方式连接构造了本实施例的外接冷却系统。
上述冷却系统的布置方式可以构成半开放式大功率设备冷却系统的第一冷却循环和第二冷却循环。
第一冷却循环包括:变压器绕组301的功耗导致其温度升高,冷风经过变压器绕组301的外表面和气隙后带走热量,热空气在塔内散热器风扇309-310驱动下穿过塔内散热器307-308,将热量传递至塔内散热器307-308,冷却后的空气进入塔筒环境,并通过通风孔314-315与第一塔筒平台上方的塔筒上层空气混合,在此过程中塔内空气可以增强与塔筒外壁316的对流换热,最终冷空气通过变压器外壳304的侧壁上方的多个变压器进风口303回流至变压器中,以此形成整个风冷回路。
水第二冷却循环包括:多个塔内散热器307-308采用并联的方式通过水冷管道319-325与水泵311、塔外散热器312以及其他功率设备进行连接。塔内换热器307-308冷却热空气后,其出水温度升高,在水泵311驱动下,热水流经塔外散散热器312,通过主动风冷或被动风冷的形式排放至大气热沉中,冷却后的水将继续循环换热。
尽管上文描述了本发明的各实施例,但是,应该理解,它们只是作为示例来呈现的,而不作为限制。对于相关领域的技术人员显而易见的是,可以对其做出各种组合、变型和改变而不背离本发明的精神和范围。 因此,此处所公开的本发明的宽度和范围不应被上述所公开的示例性实施例所限制,而应当仅根据所附权利要求书及其等同替换来定义。

Claims (16)

  1. 一种半开放式大功率设备冷却系统,其特征在于,包括:
    半开放式大功率设备结构,所述半开放式大功率设备结构包括:
    第一平台,其被配置为承载半开放式大功率设备,并且所述第一平台具有通风孔;以及
    半开放式大功率设备结构外壁,其被配置为包围半开放式大功率设备并且与大气环境接触;
    半开放式大功率设备,所述半开放式大功率设备包括:
    一个或者多个发热元件;以及
    半开放式大功率设备外壳,其包围所述一个或者多个发热元件,并且所述半开放式大功率设备外壳包括:
    多个半开放式大功率设备进风口,其布置于所述半开放式大功率设备外壳的侧壁的上部处;以及
    半开放式大功率设备出风口,其布置于所述半开放式大功率设备外壳的底部处;
    内散热器,其连接所述半开放式大功率设备出风口并且在所述风机内散热器下方布置有内散热器风扇;
    内散热器风扇,其连接所述内散热器;以及
    管路连接冷却系统,其连接所述内散热器。
  2. 根据权利要求1所述的半开放式大功率设备冷却系统,其特征在于:所述内散热器布置于所述半开放式大功率设备下方,并且在所述内散热器下方布置所述内散热器风扇。
  3. 根据权利要求2所述的半开放式大功率设备冷却系统,其特征在于:所述管路连接冷却系统包括管路连接空调系统或者管路连接水冷系统。
  4. 根据权利要求3所述的半开放式大功率设备冷却系统,其特征在,所述管路连接水冷系统包括:
    水泵;
    水冷管道;以及
    外散热器,所述外散热器布置于所述半开放式大功率设备结构外,并且所述外散热器与所述内散热器连接。
  5. 根据权利要求1所述的半开放式大功率设备冷却系统,其特征在 于:所述通风孔包括连续\间隔布置的多个格栅孔或者环绕布置的格栅环。
  6. 根据权利要求1所述的半开放式大功率设备冷却系统,其特征在于:多个半开放式大功率设备进风口连续\间隔布置于所述半开放式大功率设备外壳的侧壁的上部处。
  7. 根据权利要求4所述的半开放式大功率设备冷却系统,其特征在于:多个半开放式大功率设备出风口以所述半开放式大功率设备外壳底部的中心为对称中心呈对称布置或者近似中心对称布置;
    所述多个半开放式大功率设备出风口分别与多个内散热器其中之一连接;以及
    所述多个内散热器分别与多个内散热器风扇其中之一连接。
  8. 根据权利要求7所述的半开放式大功率设备冷却系统,其特征在于:所述多个内散热器通过所述水冷管道相互并联或者相互串联。
  9. 根据权利要求1所述的半开放式大功率设备冷却系统,其特征在于:所述发热元件上布置有温度传感器。
  10. 根据权利要求1所述的半开放式大功率设备冷却系统,其特征在于:所述半开放式大功率设备结构还包括一个或者多个第二平台,所述一个或者多个第二平台布置为至少在半开放式大功率设备的上方遮盖所述半开放式大功率设备。
  11. 根据权利要求1所述的半开放式大功率设备冷却系统,其特征在于:所述半开放式大功率设备结构包括风机塔筒以及集装箱。
  12. 根据权利要求1所述的半开放式大功率设备冷却系统,其特征在于:所述半开放式大功率设备包括变压器以及变频器。
  13. 一种利用权利要求1-12之一所述的半开放式大功率设备冷却系统冷却半开放式大功率设备的方法,其特征在于,包括下列步骤:
    通过第一冷却循环冷却半开放式大功率设备,其中包括下列步骤:
    由第一冷气流经过一个或者多个发热元件的外表面和气隙后带走热量并且形成第一热气流;
    由所述第一热气流在内散热器风扇驱动下穿过内散热器并且冷却形成第二冷气流;
    由所述第二冷气流进入半开放式大功率设备结构内,并且通过通风孔与半开放式大功率设备结构内上层空气混合以及与半开放 式大功率设备结构外壁通过对流换热形成第三冷气流;以及
    由所述第三冷气流通过多个半开放式大功率设备进风口回流进入半开放式大功率设备中以形成所述第一冷却循环;以及
    通过第二冷却循环冷却半开放式大功率设备,其中在所述第二冷却循环中通过外接冷却系统换热冷却内散热器。
  14. 根据权利要求13所述的冷却风机半开放式大功率设备的方法,其特征在于,通过第二冷却循环冷却半开放式大功率设备包括下列步骤:
    由内散热器吸收所述第一热气流的热量,并且形成第一热水流;
    由水泵驱动所述第一热水流通过水冷管道运送至外散热器;
    由外散热器将所述第一热水流的热量排放至大气热沉中,并且形成冷却后的第二冷水流;以及
    由水泵驱动所述第二冷水流通过水冷管道运送至内散热器以形成所述第二冷却循环。
  15. 一种风力发电机,其具有权利要求1-12之一所述的半开放式大功率设备冷却系统。
  16. 一种储能系统,其具有权利要求1-12之一所述的半开放式大功率设备冷却系统。
PCT/CN2021/112694 2021-07-19 2021-08-16 一种半开放式大功率设备冷却系统及冷却方法 WO2023000417A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MA63892A MA63892A1 (fr) 2021-07-19 2021-08-16 Système de refroidissement et procédé de refroidissement de dispositif à haute puissance semi-ouvert
EP21950659.9A EP4376032A1 (en) 2021-07-19 2021-08-16 Semi-open high-power device cooling system and cooling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110818155.6 2021-07-19
CN202110818155.6A CN113539629B (zh) 2021-07-19 2021-07-19 一种半开放式大功率设备冷却系统及冷却方法

Publications (1)

Publication Number Publication Date
WO2023000417A1 true WO2023000417A1 (zh) 2023-01-26

Family

ID=78100392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112694 WO2023000417A1 (zh) 2021-07-19 2021-08-16 一种半开放式大功率设备冷却系统及冷却方法

Country Status (4)

Country Link
EP (1) EP4376032A1 (zh)
CN (1) CN113539629B (zh)
MA (1) MA63892A1 (zh)
WO (1) WO2023000417A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102165539A (zh) * 2008-08-07 2011-08-24 强电流设备制造有限公司 变压器系统
CN102468038A (zh) * 2010-11-12 2012-05-23 株式会社日立产机系统 风力发电用变压器及用风力发电用变压器的风力发电设备
US20120211991A1 (en) * 2011-02-21 2012-08-23 Hitachi Industrial Equipment Systems Co., Ltd. Wind Turbine Power Generating Facilities
CN103939295A (zh) * 2014-04-17 2014-07-23 王承辉 风力发电机组变频器的节能冷却降温系统
CN204117767U (zh) * 2014-09-22 2015-01-21 宁波天安(集团)股份有限公司 一种海上风力发电用干式变压器
CN105179180A (zh) * 2015-08-20 2015-12-23 远景能源(江苏)有限公司 一种大功率海上风力发电机组塔底冷却系统及控制方法
CN205779511U (zh) * 2016-05-26 2016-12-07 远景能源(江苏)有限公司 风力发电密闭式塔底主动二次风冷系统
CN211045215U (zh) * 2019-12-30 2020-07-17 丹东欣泰电气股份有限公司 一种海上风力发电用干式变压器的新型冷却装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141470C2 (de) * 1991-12-16 1997-10-09 Bosch Siemens Hausgeraete Kühlgerät
ITMI20081122A1 (it) * 2008-06-19 2009-12-20 Rolic Invest Sarl Generatore eolico provvisto di un impianto di raffreddamento
EP2346052B1 (de) * 2010-01-16 2016-04-20 ABB Technology AG Gehäuse für eine elektrische Maschine
CN201957389U (zh) * 2011-02-18 2011-08-31 华锐风电科技(江苏)有限公司 风力发电机组的一体化冷却系统
CN102281742A (zh) * 2011-07-01 2011-12-14 新疆金风科技股份有限公司 一种密闭柜体冷却系统及风力发电机组
CN102394540B (zh) * 2011-07-22 2013-08-07 广西银河风力发电有限公司 一种单轴耦合的双风力发电机
KR20140101929A (ko) * 2013-02-13 2014-08-21 주식회사 포스벽진 통신장비함체용 하이브리드 냉각시스템 및 이를 이용한 통신장비함체의 냉각방법
CN203416157U (zh) * 2013-09-03 2014-01-29 山西科达自控股份有限公司 矿用中高压变频器循环冷却装置
CN103490595B (zh) * 2013-09-27 2017-01-04 深圳市禾望电气股份有限公司 一种变流器柜
CN106972374B (zh) * 2017-04-21 2019-01-15 远景能源(江苏)有限公司 塔底主动风-水耦合冷却系统
CN211742865U (zh) * 2020-04-14 2020-10-23 中广核(北京)新能源科技有限公司 一种用于海上风力发电的发电机组变压器冷却装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102165539A (zh) * 2008-08-07 2011-08-24 强电流设备制造有限公司 变压器系统
CN102468038A (zh) * 2010-11-12 2012-05-23 株式会社日立产机系统 风力发电用变压器及用风力发电用变压器的风力发电设备
US20120211991A1 (en) * 2011-02-21 2012-08-23 Hitachi Industrial Equipment Systems Co., Ltd. Wind Turbine Power Generating Facilities
CN103939295A (zh) * 2014-04-17 2014-07-23 王承辉 风力发电机组变频器的节能冷却降温系统
CN204117767U (zh) * 2014-09-22 2015-01-21 宁波天安(集团)股份有限公司 一种海上风力发电用干式变压器
CN105179180A (zh) * 2015-08-20 2015-12-23 远景能源(江苏)有限公司 一种大功率海上风力发电机组塔底冷却系统及控制方法
CN205779511U (zh) * 2016-05-26 2016-12-07 远景能源(江苏)有限公司 风力发电密闭式塔底主动二次风冷系统
CN211045215U (zh) * 2019-12-30 2020-07-17 丹东欣泰电气股份有限公司 一种海上风力发电用干式变压器的新型冷却装置

Also Published As

Publication number Publication date
MA63892A1 (fr) 2024-05-31
CN113539629B (zh) 2023-07-25
CN113539629A (zh) 2021-10-22
EP4376032A1 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
JP5558780B2 (ja) 電気機械の冷却のための装置
JP2010110206A6 (ja) 電気機械の冷却のための装置
JP4561408B2 (ja) 回転電機
US20100102650A1 (en) Arrangement for cooling of an electrical machine
WO2020220836A1 (zh) 冷却装置、电机及风力发电机组
CN102713486A (zh) 热沉
JP2013519345A (ja) 垂直軸盤式外部回転子電気機器用放熱構造
CN201294420Y (zh) 机座带散热筋的空-水冷低温升风力发电机
WO2023000417A1 (zh) 一种半开放式大功率设备冷却系统及冷却方法
CN106972374A (zh) 塔底主动风‑水耦合冷却系统
CN113571291A (zh) 一种用于潮湿环境的电力变压器及其使用方法
JP2015206327A (ja) 風力発電設備
WO2023169286A1 (zh) 服务器机柜以及数据中心
CN105927482A (zh) 风力发电密闭式塔底主动二次风冷系统及控制方法
CN207339564U (zh) 一种核电站主泵立式电机用圆周阵列式空水冷却器
CN102412662B (zh) 一种直驱永磁风力发电机冷却装置
US20120043837A1 (en) Stator system with a cooling arrangement
JP2006105452A (ja) コージェネレーションシステムおよびその制御方法
WO2013013491A1 (zh) 一种单轴耦合的双风力发电机
CN209781139U (zh) 一种风力发电机高温冷却设备
CN208983903U (zh) 一种复合式发电机冷却系统
CN113497522A (zh) 一种用于直驱发电机的组板式空空冷却系统
CN206135608U (zh) 电机分体式循环冷却系统
MX2010013672A (es) Tubo mejorado de intercambiador de calor e interenfriador de aire a aire.
TW201534814A (zh) 風力發電裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/001006

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024001008

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2021950659

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021950659

Country of ref document: EP

Effective date: 20240219

ENP Entry into the national phase

Ref document number: 112024001008

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240118