WO2023169286A1 - 服务器机柜以及数据中心 - Google Patents

服务器机柜以及数据中心 Download PDF

Info

Publication number
WO2023169286A1
WO2023169286A1 PCT/CN2023/079155 CN2023079155W WO2023169286A1 WO 2023169286 A1 WO2023169286 A1 WO 2023169286A1 CN 2023079155 W CN2023079155 W CN 2023079155W WO 2023169286 A1 WO2023169286 A1 WO 2023169286A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
equipment unit
liquid
heat exchanger
water inlet
Prior art date
Application number
PCT/CN2023/079155
Other languages
English (en)
French (fr)
Inventor
王世锋
林彬
桂成龙
王玉龙
王剑
Original Assignee
北京有竹居网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京有竹居网络技术有限公司 filed Critical 北京有竹居网络技术有限公司
Publication of WO2023169286A1 publication Critical patent/WO2023169286A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0213Venting apertures; Constructional details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • H05K5/069Other details of the casing, e.g. wall structure, passage for a connector, a cable, a shaft
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20754Air circulating in closed loop within cabinets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present disclosure relates to the technical field of data centers, and specifically to a server cabinet and a data center.
  • cooling method of immersion liquid cooling that is, the server cabinet is completely immersed in the coolant.
  • the cooling method of immersion liquid cooling is more expensive, requires high waterproof and sealing performance of the server cabinet, and is inconvenient for operation and maintenance personnel. Daily operation and maintenance of data center.
  • the purpose of this disclosure is to provide a server cabinet and a data center to solve the technical problems existing in related technologies.
  • a server cabinet including:
  • a liquid-to-air heat exchanger is installed in the closed cabinet and is connected in series or in parallel with the IT equipment unit on the cooling liquid pipeline.
  • the liquid-to-air heat exchanger is installed in the windward direction of the IT equipment unit. side or leeward side of the IT equipment unit,
  • a fan is installed in the sealed cabinet.
  • the fan is used to generate an airflow in the sealed cabinet that blows toward the IT equipment unit, and to cause the airflow flowing through the IT equipment unit to pass through the liquid-to-air exchanger. After the heater is cooled, it is blown to the IT equipment unit.
  • the server cabinet further includes a housing, and the IT equipment unit and the fan are installed in the housing,
  • the casing is provided with an air inlet and an air outlet.
  • the IT equipment unit is located between the air inlet and the air outlet.
  • the air duct flows through, and the air inlet and the air outlet are both connected to the air duct;
  • the liquid-to-air heat exchanger is located in the housing and is located close to the air inlet; or, the liquid-to-air heat exchanger is located in the housing and is located close to the air outlet; or, The liquid-to-air heat exchanger is located outside the housing and is located close to the air inlet; or the liquid-to-air heat exchanger is located outside the housing and is located close to the air outlet.
  • the server cabinet further includes an air duct, the air duct is disposed between the inner wall of the sealed cabinet and the outer wall of the housing, and the air duct is formed inside the air duct.
  • the IT equipment unit includes a central processing unit, a hard drive, a network interface controller, a dual in-line storage module and a power supply;
  • the hard drive and the network interface controller are both located close to the windward side, the power supply is located close to the leeward side, and the central processor and the dual in-line storage module are located between the hard drive and the leeward side. between the network interface controller and the power supply.
  • liquid-to-air heat exchanger is disposed adjacent to the power supply, and the fan is located between the hard drive and the network interface controller and the central processor and the dual in-line storage. between modules.
  • the central processor is provided with a cold plate, there are multiple central processors and multiple cold plates, and multiple cold plates are arranged in one-to-one correspondence with multiple central processors.
  • the cold plates are connected in series or in parallel to form a cold plate group, and the cold plate group and the liquid-to-air heat exchanger are connected in series or in parallel.
  • the server cabinet further includes a temperature sensor, which is disposed on the windward side of the IT equipment unit and used to detect the temperature of the airflow cooled by the liquid-to-air heat exchanger.
  • the temperature sensor It is electrically connected to the fan so that the rotation speed of the fan can be adjusted according to the temperature value detected by the temperature sensor.
  • the water inlet of the cooling liquid pipeline is used to connect with the water outlet of the cooling tower, and the water outlet of the cooling liquid pipeline is used to connect with the water inlet of the cooling tower.
  • the server cabinet further includes a water inlet connection structure and a water outlet connection structure.
  • the water inlet connection structure has a connected first water inlet interface and a first water outlet interface.
  • the water outlet connection structure has a connected third water outlet interface.
  • Two water inlet interfaces and a second water outlet interface the first water inlet interface is used to connect with the water outlet of the cooling tower, the first water outlet interface is connected with the water inlet of the coolant pipeline, and the third water inlet interface is used to connect to the water outlet of the cooling tower.
  • the second water inlet interface is connected to the water outlet of the cooling liquid pipeline, and the second water outlet interface is used to connect to the water inlet of the cooling tower;
  • a first through hole and a second through hole are formed on the sealed cabinet, and the water inlet connection structure is passed through the first through hole, And the first water inlet interface is located outside the airtight cabinet, the water outlet connection structure is passed through the second through hole, and the second water outlet interface is located outside the airtight cabinet, and the water inlet connection structure
  • a first sealing member is provided between the water outlet connection structure and the first through hole, and a second sealing member is provided between the water outlet connection structure and the second through hole.
  • multiple IT equipment units and cooling liquid pipelines there are multiple IT equipment units and cooling liquid pipelines, and multiple cooling liquid pipelines are provided in one-to-one correspondence with multiple IT equipment units;
  • the water inlet connection structure is a water distributor, there are multiple first water outlet interfaces, and the plurality of first water outlet interfaces are connected to the water inlets of the plurality of coolant pipelines in one-to-one correspondence;
  • the water outlet connection structure is a water collector, and there are multiple second water inlet interfaces.
  • the plurality of second water inlet interfaces are connected to the water outlets of the plurality of coolant pipelines in one-to-one correspondence.
  • the liquid-to-air heat exchanger is a surface cooler.
  • a data center includes the server cabinet as described above.
  • the data center further includes a cooling tower, the water inlet of the coolant pipeline of the server cabinet is connected to the water outlet of the cooling tower, and the outlet of the coolant pipeline of the server cabinet is connected to the water outlet of the cooling tower.
  • the water inlet is connected to the water inlet of the cooling tower.
  • the liquid-to-air heat exchanger and the IT equipment unit are connected in series or in parallel on the coolant pipeline.
  • the coolant can exchange heat with the IT equipment unit while the coolant flows in the coolant pipeline. , take the heat generated by the IT equipment unit out of the closed cabinet.
  • the fan blows airflow to the IT equipment unit, and the airflow heat exchanges with the IT equipment unit to take away the heat generated by the IT equipment, which can affect the IT equipment unit. to achieve further cooling and heat dissipation.
  • the liquid-to-air heat exchanger can also The high-temperature airflow undergoes heat exchange, thereby cooling the high-temperature airflow and turning it into a low-temperature airflow, which is then blown to the IT equipment unit again, thereby achieving cyclic purging of the IT equipment and improving the heat dissipation effect of the IT equipment unit.
  • the present disclosure can cool the IT equipment units in the server cabinet through liquid cooling combined with air cooling.
  • liquid cooling since the liquid-to-air heat exchanger and the IT equipment unit are connected in series or in parallel with each other,
  • the coolant can exchange heat with the IT equipment unit, absorb the heat of the IT equipment unit, and achieve liquid cooling of the IT equipment unit;
  • air cooling Specifically, the fan blows airflow to the IT equipment unit, and the airflow exchanges heat with the IT equipment unit and takes away the heat generated by the IT equipment unit, which can further cool down the IT equipment unit and absorb the heat of the IT equipment unit.
  • the cooling liquid in the liquid-to-air heat exchanger exchanges heat with the higher-temperature airflow, thereby cooling the higher-temperature airflow.
  • the cooled, lower-temperature airflow is blown back to the IT equipment unit. That is to say, under the action of the fan, a circulating airflow is generated in the closed cabinet that flows through the IT equipment unit and the liquid-to-air heat exchanger to realize the control of the IT equipment unit. of Continuous wind chill.
  • the airtight cabinet also has a certain sound insulation capability, which can effectively reduce To solve the problems of excessive temperature and excessive noise in the computer room, improve the working environment experience and operation efficiency of operation and maintenance personnel.
  • the present disclosure does not require the server cabinet to be immersed in the coolant, resulting in lower cooling costs and easier daily operation and maintenance by operation and maintenance personnel.
  • Figure 1 is a schematic top view of a server cabinet provided by an exemplary embodiment of the present disclosure, in which the top of the housing is not shown, and the direction pointed by the arrow is the flow direction of the airflow;
  • Figure 2 is a schematic top view of a server cabinet provided by an exemplary embodiment of the present disclosure, in which the top of the housing and the air duct are not shown, and the liquid-to-air heat exchanger is disposed inside the housing;
  • Figure 3 is a schematic top view of a server cabinet provided by another exemplary embodiment of the present disclosure, in which the top of the housing and the air duct are not shown, and the liquid-to-air heat exchanger is disposed outside the housing;
  • Figure 4 is a schematic assembly diagram of a liquid-to-air heat exchanger and a cold plate of a server cabinet provided by an exemplary embodiment of the present disclosure
  • Figure 5 is a schematic layout diagram of the IT equipment unit, casing, fan and liquid-to-air heat exchanger of the server cabinet provided by an exemplary embodiment of the present disclosure, in which the direction pointed by the arrow is the flow direction of the airflow;
  • Figure 6 is a schematic diagram of the connection between the cooling tower of the data center and the water inlet connection structure and the water outlet connection structure of the server cabinet provided by an exemplary embodiment of the present disclosure
  • Figure 7 is a schematic diagram of the connection between the liquid-to-air heat exchanger and cold plate of the server cabinet and the cooling tower of the data center provided by the first exemplary embodiment of the present disclosure
  • Figure 8 is a schematic diagram of the connection between the liquid-to-air heat exchanger and cold plate of the server cabinet and the cooling tower of the data center provided by the second exemplary embodiment of the present disclosure
  • Figure 9 is a schematic diagram of the connection between the liquid-to-air heat exchanger and cold plate of the server cabinet and the cooling tower of the data center provided by the third exemplary embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of the connection between the liquid-to-air heat exchanger of the server cabinet, the cold plate and the cooling tower of the data center provided by the fourth exemplary embodiment of the present disclosure
  • Figure 11 is a perspective view of a server cabinet provided by an exemplary embodiment of the present disclosure.
  • inside and outside refers to the inside and outside of the outline of the corresponding structure
  • far and near refers to the distance and proximity to the corresponding structure.
  • first, second, etc. are only used to differentiate descriptions and cannot be understood as indicating or implying relative importance.
  • a server cabinet including: a sealed cabinet 10 , an IT equipment unit 20 , a liquid-to-air heat exchanger 30 and a fan 40 .
  • the liquid-to-air heat exchanger 30 and the fan 40 are both installed in the closed cabinet 10, and the liquid-to-air heat exchanger 30 and the IT equipment unit 20 are connected in series or in parallel with each other on the coolant pipeline 2 of the server cabinet.
  • the liquid-to-air heat exchanger 30 is disposed on the windward side of the IT equipment unit 20 or the leeward side of the IT equipment unit 20 .
  • the fan 40 is used to generate airflow in the closed cabinet 10 that blows toward the IT equipment unit 20 and to flow through the IT equipment unit 20 .
  • the airflow of the equipment unit 20 is cooled by the liquid-to-air heat exchanger 30 and then blown to the IT equipment unit 20 .
  • the present disclosure can cool the IT equipment unit 20 in the server cabinet through liquid cooling combined with air cooling.
  • liquid cooling since the liquid-to-air heat exchanger 30 and the IT equipment unit 20 are connected in series or They are connected in parallel to each other on the coolant pipeline 2.
  • the coolant can exchange heat with the IT equipment unit 20, absorb the heat of the IT equipment unit 20, and realize the control of the IT equipment.
  • the cooling liquid in the liquid-to-air heat exchanger 30 is in contact with the higher-temperature airflow.
  • the air flow exchanges heat, thereby cooling the air flow with a higher temperature, and the cooled air flow with a lower temperature is blown back to the IT equipment unit 20. That is to say, under the action of the fan 40, the air flow generated in the closed cabinet 10 is The circulating air flow flowing through the IT equipment unit and the liquid-to-air heat exchanger 30 realizes continuous air cooling of the IT equipment unit 20.
  • the cooling airflow cooling the IT equipment unit 20 always circulates in the airtight cabinet 10 and will not flow out of the airtight cabinet 10, and the airtight cabinet 10 can also provide certain sound insulation capabilities. ,thereby It can effectively reduce the problems of excessive temperature and excessive noise in the computer room, and improve the working environment experience and operation and maintenance efficiency of operation and maintenance personnel.
  • the present disclosure does not require the server cabinet to be immersed in the coolant, resulting in lower cooling costs and easier daily operation and maintenance by operation and maintenance personnel.
  • windward side of the IT equipment unit 20 mentioned above refers to the side of the IT equipment unit 20 facing the airflow flowing through it
  • the leeward side of the IT equipment unit 20 refers to the side of the IT equipment unit 20 facing the airflow flowing through it.
  • the airflow of the equipment unit 20 exits from the side of the IT equipment unit.
  • the liquid-to-air heat exchanger 30 may be connected to the IT equipment unit 20 in series or in parallel on the coolant pipeline 2 .
  • the liquid-to-air heat exchanger 30 may be located upstream of the IT equipment unit 20 along the flow direction of the cooling liquid, or the IT equipment The unit 20 is located upstream of the liquid-to-air heat exchanger 30, which is not limited in this disclosure.
  • the coolant pipeline 2 can be divided into two channels, one channel flows to the liquid-to-air heat exchanger 30, and the other channel flows to the IT equipment unit. 20.
  • the present disclosure does not limit the cooling liquid supply equipment that provides low-temperature cooling liquid to the cooling liquid pipeline 2.
  • the cooling liquid supply equipment may be a cooling tower 100, an air conditioning unit, etc.
  • the number of the above-mentioned liquid-to-air heat exchanger 30 and fan 40 may be one or multiple, which is not limited in this disclosure.
  • the server cabinet may also include a shell 50 inside the closed cabinet 10 , and the IT equipment unit 20 and the fan 40 are installed in the casing 50.
  • the casing 50 is provided with an air inlet 51 and an air outlet 52.
  • the IT equipment unit 20 is located between the air inlet 51 and the air outlet 52.
  • the outer wall of the casing 50 is in contact with the airtight cabinet 10
  • the airflow in the sealed cabinet 10 flows into the casing 50 from the air inlet 51 of the casing 50.
  • the airflow of the housing 50 flows from the air inlet 51 toward the air outlet 52 , and the airflow flowing out from the air outlet 52 returns to a position close to the air inlet 51 through the air duct 53 . That is to say, the casing 50 can separate the space in the sealed cabinet 10 , and the airflow inside the casing 50 cools the IT equipment unit 20 while flowing from the air inlet 51 to the air outlet 52 without interfering with it.
  • the airflow outside the casing 50 is mixed, and the airflow outside the casing 50 flows in the air duct 53 and will not mix with the airflow inside the casing 50 , which is more conducive to cooling the IT equipment unit 20 and ensures that it is blown to the IT equipment unit 20 .
  • the temperature of the air flow in the equipment unit will not be too high, and it can also help guide the flow direction of the air flow in the closed cabinet 10 so that the air flow circulates in the closed cabinet 10 .
  • the interior of the sealed cabinet 10 is a sealed space, when the fan 40 blows airflow to the IT equipment unit 20, the windward side of the IT equipment unit 20 has a negative pressure and the leeward side has a positive pressure. Therefore, from the casing 50 air outlet 52 flow Under the action of the pressure difference, the outgoing air flow will flow back to the air inlet 51 of the housing 50 along the air duct 53 between the outer wall of the housing 50 and the inner wall of the sealed cabinet 10 , thereby forming an air flow in the sealed cabinet 10 No power equipment may be provided for the internal cycle, thereby further reducing energy consumption in the cooling process of the IT equipment unit 20 .
  • the specific placement position of the liquid-to-air heat exchanger 30 can be implemented in various ways.
  • the liquid-to-air heat exchanger 30 can be placed inside the shell 50 , or the liquid-to-air heat exchanger can be placed inside the shell 50 .
  • 30 is provided outside the housing 50 .
  • the liquid-to-air heat exchanger 30 may be located in the shell 50 and close to the air inlet 51 It is arranged that the air flow entering the interior of the casing 50 from the air inlet 51 first flows through the liquid-to-air heat exchanger 30 for cooling, and then flows to the IT equipment unit 20 .
  • the liquid-to-air heat exchanger 30 can be located in the housing 50 and close to the air outlet 52, so that the flow through The heat-exchanged airflow of the IT equipment unit 20 first flows through the liquid-to-air heat exchanger 30 for cooling, then flows out of the housing 50 from the air outlet 52 , and finally returns to the air inlet 51 .
  • the liquid-to-air heat exchanger 30 may be located outside the shell 50. and is disposed close to the air inlet 51; in another embodiment provided by the present disclosure, the liquid-to-air heat exchanger 30 may be located outside the housing 50 and disposed close to the air outlet 52.
  • FIG. 1 there may be a gap between the outer wall of the housing 50 and the inner wall of the sealed cabinet 10 , and the gap is the air duct 53 .
  • the air duct 53 flows back to the air inlet 51, thereby realizing the cyclic purging of the IT equipment unit 20.
  • the server cabinet may further include an air duct.
  • the air duct is disposed between the inner wall of the sealed cabinet 10 and the outer wall of the housing 50 .
  • the air duct 53 is formed inside the air duct.
  • both ends of the above-mentioned air duct can be connected to the air inlet 51 and the air outlet 52 respectively, or can lead to the air inlet 51 and the air outlet 52. As long as they can be connected to the air inlet 51 and the air outlet 52, they can be connected to the air inlet 51 and the air outlet 52.
  • the airflow flowing out of the air inlet 52 only serves to guide the air flow toward the air inlet 51 , and this disclosure does not limit this.
  • the IT equipment unit 20 includes a central processor 201, a hard drive 202, a network interface controller 203, a dual in-line storage module 206 and a power supply 205
  • the hard disk drive 202 and the network interface controller 203 are both located close to the windward side, and the power supply 205 is located close to the leeward side.
  • the central processor 201 and the dual in-line storage module 206 are located between the hard drive 202, the network interface controller 203 and the power supply 205. between. due to hard
  • the disk drive 202 and the network interface controller 203 are less able to withstand temperature, and the temperature of the wind on the windward side is lower.
  • the hard disk drive 202 and the network interface controller 203 are placed close to the windward side of the IT equipment unit 20 to ensure that For cooling the hard disk drive 202 and the network interface controller 203, the power supply 205 has a strong ability to withstand medium or high temperatures, so the power supply 205 is placed close to the leeward side of the IT equipment unit 20.
  • the liquid-to-air heat exchanger 30 can be disposed adjacent to the power supply 205.
  • the liquid-to-air heat exchanger 30 can be disposed adjacent to the power supply 205 in the length direction of the IT equipment unit 20, or liquid-to-air heat exchanger 30 can be disposed adjacent to the power supply 205 in the length direction of the IT equipment unit 20.
  • the empty heat exchanger 30 may be disposed adjacent to the power supply 205 in the width direction of the IT equipment unit 20 .
  • the fan 40 is located between the hard drive 202 and the network interface controller 203, the central processor 201 and the dual-column between the plug-in storage modules 206.
  • the fan 40 may also be disposed on the windward side of the IT equipment unit 20 , or the fan 40 may be disposed on the leeward side of the IT equipment unit 20 .
  • the specific location of the fan 40 is specified in this disclosure. There is no limitation, as long as the air flow blown to the IT equipment unit 20 can be generated, and the air flow flowing through the IT equipment unit 20 can be cooled by the liquid-to-air heat exchanger 30 and then blown to the IT equipment unit 20 .
  • the central processor 201 is provided with a cold plate 60.
  • a cold plate 60 As shown in Figures 1 to 5, there are multiple central processors 201 and cold plates 60, and the multiple cold plates 60 are integrated with the multiple central processors 201.
  • One corresponding setting As shown in FIGS. 7 to 10 , a plurality of cold plates 60 are connected in series or in parallel to form a cold plate group, and the cold plate group and the liquid-to-air heat exchanger 30 are connected in series or in parallel.
  • the central processor 201 can be liquid-cooled through the cold plate 60 . In this way, the temperature of the central processor 201 can be effectively reduced and the airflow from the windward side of the IT equipment unit 20 can be avoided. In the process of flowing to the leeward side of the IT equipment unit 20, the heat of the central processor 201 is taken out, causing the temperature near the central processor 201 to be too high, thereby reversely heating the hard disk drive 202, the network interface controller 203, and the dual in-line controller.
  • the conditions of the plug-in storage module 206 and the power supply 205 may affect the air flow to dissipate the heat of the hard disk drive 202, the network interface controller 203, the dual in-line storage module 206 and the power supply 205, thereby ensuring the cooling effect and cooling efficiency.
  • the server cabinet may also include a temperature sensor 70.
  • the temperature sensor 70 is disposed on the windward side of the IT equipment unit 20 and used for check The temperature of the air flow cooled by the liquid-to-air heat exchanger 30 is measured.
  • the temperature sensor 70 is electrically connected to the fan 40 so that the rotation speed of the fan 40 can be adjusted according to the temperature value detected by the temperature sensor 70 .
  • a temperature sensor 70 is provided on the windward side of the IT equipment unit 20 so that the temperature sensor 70 can detect the temperature of the airflow that is about to flow through the IT equipment unit 20 .
  • the rotation speed of the fan 40 can be adaptively increased. This allows the airflow generated by the fan 40 to flow through the IT equipment unit 20 faster, thereby improving the cooling and heat exchange effect on the IT equipment unit 20; when the temperature of the airflow flowing through the windward side measured by the temperature sensor 70 is lower, This means that the temperature of the cooling air that is about to blow to the IT equipment unit 20 is relatively low. At this time, the rotation speed of the fan 40 can be adaptively adjusted to achieve the cooling effect of the IT equipment unit 20 and avoid unnecessary heat dissipation. waste of cooling capacity and save energy consumption in the cooling process of the IT equipment unit 20.
  • the temperature sensor 70 may be disposed at the air inlet 51 of the casing 50 .
  • the water inlet of the coolant pipeline 2 is used to connect to the water outlet of the cooling tower 100 located outside the closed cabinet 10 , and the water outlet of the coolant pipeline 2 is used to connect to the water outlet of the cooling tower 100 .
  • the water inlet of the cooling tower 100 is connected.
  • the cooling liquid pipeline 2 is connected to the cooling tower 100, and uses the cooling tower 100 to provide the technical solution of cooling capacity for the liquid-to-air heat exchanger 30 and the IT equipment unit 20, and to provide multiple equipment (such as compression) in the air-conditioning cooling unit.
  • the present disclosure can cool IT equipment units.
  • the server cabinet also includes a water inlet connection structure 80 and a water outlet connection structure 90.
  • the water inlet connection structure 80 has a connected first water inlet interface 810 and a first water outlet interface 820.
  • the water outlet connection structure 90 has a connected second water inlet interface 910 and a second water outlet interface 920.
  • the first water inlet interface 810 is used to connect to the water outlet of the cooling tower 100, and the first water outlet interface 820 is connected to the water inlet of the coolant pipeline 2.
  • the second water inlet interface 910 is connected to the water outlet of the cooling liquid pipeline 2
  • the second water outlet interface 920 is used to connect to the water inlet of the cooling tower 100 .
  • the cooling liquid flows out from the water outlet of the cooling tower 100 and flows into the water inlet connection structure 80 through the first water inlet interface 810 .
  • the cooling liquid flows into the water inlet connection structure 80 It enters the coolant pipeline 2 through the first water outlet interface 820.
  • the liquid entering the coolant pipeline 2 becomes high-temperature coolant.
  • the second water inlet interface 910 flows into the water outlet connection structure 90 , and flows back into the cooling tower 100 from the second water outlet interface 920 of the water outlet connection structure 90 through the water inlet of the cooling tower 100 , and returns to the high-temperature cooling liquid in the cooling tower 100
  • the low-temperature coolant flows from the water outlet of the cooling tower 100 into the water inlet connection structure 80 again, and circulates in this way, so that the coolant continuously flows into the coolant pipeline 2 to achieve cooling.
  • Uninterrupted operation of IT equipment unit 20 Cool down and dissipate heat.
  • a first through hole 11 and a second through hole 12 can be formed on the sealed cabinet 10 , the water inlet connection structure 80 is passed through the first through hole 11 , and the first water inlet interface 810 Located outside the airtight cabinet 10 , the water outlet connection structure 90 is passed through the second through hole 12 , and the second water outlet interface 920 is located outside the airtight cabinet 10 .
  • a first water outlet connection structure 80 is provided between the water inlet connection structure 80 and the first through hole 11 . Seal, a second seal is provided between the water outlet connection structure 90 and the second through hole 12 .
  • the first through hole 11 is used for the water inlet connection structure 80 to pass through
  • the second through hole is used for the water outlet connection structure 90 to pass through
  • a first sealing member is provided between the water inlet connection structure 80 and the first through hole 11
  • a second sealing member is provided between the water outlet connection structure 90 and the second through hole 12.
  • the water inlet connection structure 80 is a water distributor 81, there are a plurality of first water outlet interfaces 820, and the plurality of first water outlet interfaces 820 are connected to the water inlets of the plurality of coolant pipelines 2 in a one-to-one correspondence;
  • the water outlet connection structure 90 The water collector 91 has a plurality of second water inlet interfaces 910 , and the plurality of second water inlet interfaces 910 are connected to the water outlets of the plurality of coolant pipelines 2 in one-to-one correspondence.
  • the cooling liquid in the water inlet connection structure 80 can flow into multiple cooling liquids through the plurality of first water outlet interfaces 820.
  • the coolant flowing into each coolant pipeline 2 can exchange heat with the corresponding IT equipment unit 20 and become high-temperature coolant.
  • the high-temperature coolant flows out from the water outlet of the coolant pipeline 2 and flows back to the water outlet connection structure 90 through a plurality of second water inlet interfaces 910.
  • the high-temperature coolant located in the water outlet connection structure 90 then enters the cooling system through the second water outlet interfaces 920.
  • the high-temperature coolant that returns to the cooling tower 100 becomes a low-temperature coolant and flows back into the water inlet connection structure 80 from the water outlet of the cooling tower 100. In this way, it circulates to the cooling tower 100. Coolant continuously flows into the coolant pipeline 2 to achieve uninterrupted cooling and heat dissipation of multiple IT equipment units 20 .
  • the liquid-to-air heat exchanger 30 may be a surface cooler.
  • the liquid-to-air heat exchanger 30 can also be a plate-fin heat exchanger or any other liquid-to-air heat exchanger 30 that meets the requirements.
  • this disclosure is for the above-mentioned liquid-to-air heat exchanger.
  • the type or specific structure of the air heat exchanger 30 is not limited.
  • a data center including the server cabinet as described above.
  • the data center has all the beneficial effects of the above-mentioned server cabinets, which will not be described in detail here.
  • the data center also includes a cooling tower 100 and a coolant pipeline 2 of the server cabinet.
  • the water inlet is connected to the water outlet of the cooling tower 100, and the water outlet of the coolant pipeline 2 of the server cabinet is connected to the water inlet of the cooling tower 100.
  • the present disclosure discharges the heat of the IT equipment unit 20 to the atmosphere through the cooling tower 100 , that is to say, the cooling capacity for liquid cooling and air cooling of the IT equipment unit 20 comes from the cooling tower 100 .
  • This can avoid providing low-temperature cooling liquid to the IT equipment unit 20 and the liquid-to-air heat exchanger 30 through the air-conditioning cooling unit, so that the energy consumption required for cooling the IT equipment unit 20 of the present disclosure is lower, which is beneficial to reducing the total energy consumption of the data center. consumption, thereby reducing the PUE of the data center, thereby reducing carbon emissions, and supporting the goal of "carbon peaking and carbon neutrality".
  • the data center cooling system provided by the present disclosure can be used for cooling without an air-conditioning cooling unit, that is, the use of Freon as a refrigerant can be avoided. On the one hand, it can avoid the occurrence of Freon leakage and pollute the environment. On the other hand, Fluoride emissions can also be avoided. Since fluorine-containing gas is also a greenhouse gas, avoid the emission of fluorine-containing gas from increasing the greenhouse effect.
  • the data center provided by the present disclosure has a simpler architecture, it has higher reliability and lower cost.
  • rapid deployment of data centers can be achieved.
  • the cooling temperature of the cooling tower 100 is related to the wet-bulb temperature of the environment where the cooling tower 100 is located, rather than the dry-bulb temperature (ie, ambient temperature) of the environment where the cooling tower 100 is located, the wet-bulb temperature in most areas of the world can be The requirement for the temperature of the coolant flowing out of the coolant outlet of the cooling tower 100 is met. Therefore, the data center cooling system provided by the present disclosure is not easily restricted by the regional ambient temperature and can be applied to most areas around the world.
  • the cooling tower 100 may be an open cooling tower, a closed cooling tower, a natural draft cooling tower, a mechanical draft cooling tower, a mixed draft cooling tower, a wet cooling tower, a dry cooling tower, a wet or dry cooling tower, etc. , this disclosure does not limit the specific type, quantity, size, shape, etc. of the cooling tower 100.
  • any combination of various embodiments of the present disclosure can also be carried out, and as long as they do not violate the idea of the present disclosure, they should also be regarded as the contents disclosed in the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本公开涉及一种服务器机柜以及数据中心,该服务器机柜包括密闭柜体(10)、IT设备单元(20)、液-空换热器(30)及风扇(40),IT设备单元(20)、液-空换热器(30)及风扇(40)均设置在密闭柜体(10)内,且液-空换热器(30)与IT设备单元(20)相互串联或相互并联在冷却液管路(2)上,液-空换热器(30)设置在IT设备单元(20)的迎风侧或背风侧,风扇(40)用于使密闭柜体(10)内产生吹向IT设备单元(20)的气流,并使流经IT设备单元(20)的气流经由液-空换热器(30)冷却后再吹向IT设备单元(20)。这样,在通过液-空换热器(30)以及风扇(40)对密闭柜体(10)内的IT设备单元(20)进行冷却降温的过程中,气流始终在密闭柜体(10)内部循环流动,不会扩散到密闭柜体(10)的外部,从而有效减小机房内温度过高、噪声过大的问题,以提升运维人员的工作环境。

Description

服务器机柜以及数据中心
相关申请的交叉引用
本公开要求于2022年3月11日提交的申请号为202210239586.1、名称为“服务器机柜以及数据中心”的中国专利申请的优先权,此申请的内容通过引用并入本文。
技术领域
本公开涉及数据中心技术领域,具体地,涉及一种服务器机柜以及数据中心。
背景技术
随着互联网、云计算等的广泛应用,数据中心呈现爆发式的增长,目前,为了实现对数据中心的冷却散热,机房内通常会设置用于向机房内部吹送冷风的空调机组,服务器机柜上开设有进风口和出风口,且服务器机柜内设置有风扇,风扇用于使风从进风口流入服务器机柜内部,并使流入服务器机柜内部的风在冷却服务器机柜内的设备后从出风口流出。在使用上述方案对数据中心进行散热的过程中,机房内会产生较大环境噪声、气流等干扰,并且在夏天比较热的时候,机房内的温度可能达到35~40度,这会对运维人员工作环境造成影响。
此外,还存在浸没液冷的冷却方式,即,将服务器机柜完全浸没在冷却液中,但浸没液冷的冷却方式成本较高,对服务器机柜的防水密封性能要求高,也不便于运维人员对数据中心的日常运维。
发明内容
本公开的目的是提供一种服务器机柜以及数据中心,以解决相关技术中存在的技术问题。
为了实现上述目的,根据本公开的第一个方面,提供一种服务器机柜,包括:
密闭柜体;
IT设备单元,设置在所述密闭柜体内;
液-空换热器,设置在所述密闭柜体内,并与所述IT设备单元相互串联或相互并联在冷却液管路上,所述液-空换热器设置在所述IT设备单元的迎风侧或所述IT设备单元的背风侧,
风扇,设置在所述密闭柜体内,所述风扇用于使所述密闭柜体内产生吹向所述IT设备单元的气流,并使流经所述IT设备单元的气流经由所述液-空换热器冷却后再吹向所述IT设备单元。
可选地,所述服务器机柜还包括壳体,所述IT设备单元和所述风扇均安装在所述壳体内, 所述壳体上开设有进风口和出风口,所述IT设备单元位于所述进风口与所述出风口之间,所述壳体的外壁与所述密闭柜体的内壁之间具有供气流流过的风道,所述进风口和所述出风口均与所述风道连通;
其中,所述液-空换热器位于所述壳体内并靠近所述进风口设置;或者,所述液-空换热器位于所述壳体内并靠近所述出风口设置;或者,所述液-空换热器位于所述壳体外并靠近所述进风口设置;或者,所述液-空换热器位于所述壳体外并靠近所述出风口设置。
可选地,所述壳体的外壁与所述密闭柜体的内壁之间具有间隙,该间隙为所述风道;或者,
所述服务器机柜还包括风管,所述风管设置在所述密闭柜体的内壁与所述壳体的外壁之间,所述风道形成在所述风管的内部。
可选地,所述IT设备单元包括中央处理器、硬盘驱动器、网络接口控制器、双列直插式存储模块以及电源;
所述硬盘驱动器和所述网络接口控制器均靠近所述迎风侧设置,所述电源靠近所述背风侧设置,所述中央处理器和所述双列直插式存储模块位于所述硬盘驱动器和所述网络接口控制器与所述电源之间。
可选地,所述液-空换热器与所述电源相邻设置,所述风扇位于所述硬盘驱动器和所述网络接口控制器与所述中央处理器和所述双列直插式存储模块之间。
可选地,所述中央处理器上设置有冷板,所述中央处理器和所述冷板均为多个,多个所述冷板与多个所述中央处理器一一对应设置,多个所述冷板之间相互串联或相互并联以构成冷板组,所述冷板组与所述液-空换热器相互串联或相互并联。
可选地,所述服务器机柜还包括温度传感器,所述温度传感器设置在所述IT设备单元的迎风侧并用于检测经由所述液-空换热器冷却后的气流的温度,所述温度传感器与所述风扇电性连接,以使所述风扇的转速能够根据所述温度传感器检测到的温度值进行调节。
可选地,所述冷却液管路的进水口用于与冷却塔的出水口连接,所述冷却液管路的出水口用于与所述冷却塔的进水口连接。
可选地,所述服务器机柜还包括进水连接结构和出水连接结构,所述进水连接结构具有相连接的第一进水接口和第一出水接口,所述出水连接结构具有相连接的第二进水接口和第二出水接口,所述第一进水接口用于与所述冷却塔的出水口连接,所述第一出水接口与所述冷却液管路的进水口连接,所述第二进水接口与所述冷却液管路的出水口连接,所述第二出水接口用于与所述冷却塔的进水口连接;
所述密闭柜体上形成有第一通孔和第二通孔,所述进水连接结构穿设于所述第一通孔, 且所述第一进水接口位于所述密闭柜体外,所述出水连接结构穿设于所述第二通孔,且所述第二出水接口位于所述密闭柜体外,所述进水连接结构与所述第一通孔之间设置有第一密封件,所述出水连接结构与所述第二通孔之间设置有第二密封件。
可选地,所述IT设备单元和所述冷却液管路均为多个,且多个所述冷却液管路与多个所述IT设备单元一一对应设置;
所述进水连接结构为分水器,所述第一出水接口为多个,多个所述第一出水接口与多个所述冷却液管路的进水口一一对应连接;
所述出水连接结构为集水器,所述第二进水接口为多个,多个所述第二进水接口与多个所述冷却液管路的出水口一一对应连接。
可选地,所述液-空换热器为表冷器。
根据本公开的第二个方面,一种数据中心,包括如上所述的服务器机柜。
可选地,所述数据中心还包括冷却塔,所述服务器机柜的所述冷却液管路的进水口与所述冷却塔的出水口连接,所述服务器机柜的所述冷却液管路的出水口与所述冷却塔的进水口连接。
通过上述技术方案,液-空换热器与IT设备单元相互串联或相互并联在冷却液管路上,这样,一方面冷却液在冷却液管道内流动的过程中,可以与IT设备单元进行热交换,将IT设备单元产生的热量带出密闭柜体,另一方面,风扇向IT设备单元吹送气流,气流与IT设备单元发生热交换从而将IT设备产生的热量带走,可以对IT设备单元起到进一步的降温散热作用,并且,在该风扇吹出的气流与IT设备单元发生热交换变成高温气流后,高温气流在流经液-空换热器时,液-空换热器还可以与高温气流发生热交换,从而对高温气流进行冷却以变成低温气流后再次吹向IT设备单元,实现对IT设备的循环吹扫,以提升对IT设备单元的散热效果。
通过上述技术方案,本公开能够通过液冷结合风冷的方式对服务器机柜中的IT设备单元进行冷却,对于液冷而言,由于液-空换热器与IT设备单元相互串联或相互并联在冷却液管路上,在冷却液管道中的冷却液流过IT设备单元时,冷却液能够与IT设备单元进行热量交换,吸收IT设备单元的热量,实现对IT设备单元的液冷;对于风冷而言,风扇向IT设备单元吹送气流,气流与IT设备单元发生热量交换并将IT设备单元产生的热量带走,可以对IT设备单元起到进一步的降温散热作用,吸收了IT设备单元的热量后的温度较高的气流在流经液-空换热器时,液-空换热器内的冷却液与该温度较高的气流进行热量交换,从而对该温度较高的气流进行冷却,冷却后的温度较低的气流重新吹向IT设备单元,也就是说,在风扇的作用下,密闭柜体内产生流过IT设备单元和液-空换热器的循环气流,实现对IT设备单元的 持续风冷。
并且,由于密闭柜体的密闭作用,冷却IT设备单元的冷却气流始终在密闭柜体内循环流动,不会流出密闭柜体,并且密闭柜体也能够起到一定的隔音能力,从而能够有效减小机房内温度过高、噪声过大的问题,提升运维人员的工作环境体验和运维效率。
此外,与通过浸没液冷的方式来冷却服务器机柜的技术方案相比,本公开无需将服务器机柜浸没在冷却液中,冷却成本更低,也更便于运维人员的日常运维。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开一种示例性实施方式提供的服务器机柜的俯视示意图,其中,未示出壳体的顶部,箭头指向的方向为气流的流动方向;
图2是本公开一种示例性实施方式提供的服务器机柜的俯视示意图,其中,未示出壳体的顶部和风道,且液-空换热器设置在壳体内部;
图3是本公开另一种示例性实施方式提供的服务器机柜的俯视示意图,其中,未示出壳体的顶部和风道,且液-空换热器设置在壳体外部;
图4是本公开一种示例性实施方式提供的服务器机柜的液-空换热器与冷板的装配示意图;
图5是本公开一种示例性实施方式提供的服务器机柜的IT设备单元、壳体、风扇以及液-空换热器的布置示意图,其中,箭头指向的方向为气流的流动方向;
图6是本公开一种示例性实施方式提供的数据中心的冷却塔与服务器机柜的进水连接结构、出水连接结构之间的连接示意图;
图7是本公开第一种示例性实施方式提供的服务器机柜的液-空换热器、冷板与数据中心的冷却塔的连接示意图;
图8是本公开第二种示例性实施方式提供的服务器机柜的液-空换热器、冷板与数据中心的冷却塔的连接示意图;
图9是本公开第三种示例性实施方式提供的服务器机柜的液-空换热器、冷板与数据中心的冷却塔的连接示意图;
图10是本公开第四种示例性实施方式提供的服务器机柜的液-空换热10器、冷板与数据中心的冷却塔的连接示意图;
图11是本公开一种示例性实施方式提供的服务器机柜的立体示意图。
附图标记说明
2-冷却液管路;10-密闭柜体;11-第一通孔;12-第二通孔;20-IT设备单元;201-中央处
理器;202-硬盘驱动器;203-网络接口控制器;205-电源;206-双列直插式存储模块;30-液-空换热器;40-风扇;50-壳体;51-进风口;52-出风口;53-风道;60-冷板;70-温度传感器;80-进水连接结构;81-分水器;810-第一进水接口;820-第一出水接口;90-出水连接结构;91-集水器;910-第二进水接口;920-第二出水接口;100-冷却塔。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,在未作相反说明的情况下,“内、外”是指相应结构的轮廓的内、外,“远、近”是指距离相应结构的远、近。此外,术语“第一”、“第二”、等仅用于区分描述,而不能理解为指示或暗示相对重要性。
参考图1至图11所示,根据本公开的第一个方面,提供一种服务器机柜,包括:密闭柜体10、IT设备单元20、液-空换热器30以及风扇40,IT设备单元20、液-空换热器30以及风扇40均设置在密闭柜体10内,且液-空换热器30与IT设备单元20相互串联或相互并联在服务器机柜的冷却液管路2上,液-空换热器30设置在IT设备单元20的迎风侧或IT设备单元20的背风侧,风扇40用于使密闭柜体10内产生吹向IT设备单元20的气流,并使流经IT设备单元20的气流经由液-空换热器30冷却后再吹向IT设备单元20。
通过上述技术方案,本公开能够通过液冷结合风冷的方式对服务器机柜中的IT设备单元20进行冷却,对于液冷而言,由于液-空换热器30与IT设备单元20相互串联或相互并联在冷却液管路2上,在冷却液管道中的冷却液流过IT设备单元20时,冷却液能够与IT设备单元20进行热量交换,吸收IT设备单元20的热量,实现对IT设备单元20的液冷;对于风冷而言,风扇40向IT设备单元20吹送气流,气流与IT设备单元20发生热量交换并将IT设备单元20产生的热量带走,可以对IT设备单元20起到进一步的降温散热作用,吸收了IT设备单元20的热量后的温度较高的气流在流经液-空换热器30时,液-空换热器30内的冷却液与该温度较高的气流进行热量交换,从而对该温度较高的气流进行冷却,冷却后的温度较低的气流重新吹向IT设备单元20,也就是说,在风扇40的作用下,密闭柜体10内产生流过IT设备单元和液-空换热器30的循环气流,实现对IT设备单元20的持续风冷。
并且,由于密闭柜体10的密闭作用,冷却IT设备单元20的冷却气流始终在密闭柜体10内循环流动,不会流出密闭柜体10,并且密闭柜体10也能够起到一定的隔音能力,从而 能够有效减小机房内温度过高、噪声过大的问题,提升运维人员的工作环境体验和运维效率。
此外,与通过浸没液冷的方式来冷却服务器机柜的技术方案相比,本公开无需将服务器机柜浸没在冷却液中,冷却成本更低,也更便于运维人员的日常运维。
需要说明的是,上文中所提到的IT设备单元20的迎风侧指的是,IT设备单元20面向流经其的气流的一侧,IT设备单元20的背风侧指的是,流经IT设备单元20的气流从IT设备单元流出的一侧。
另外,如图7至图10所示,液-空换热器30可以与IT设备单元20相互串联或相互并联在冷却液管路2上。对于液-空换热器30可以与IT设备单元20相互串联在冷却管路上来说,沿冷却液的流动方向,液-空换热器30可以位于IT设备单元20的上游,或者,IT设备单元20位于液-空换热器30的上游,本公开对此不作限定。对于液-空换热器30可以与IT设备单元20相互并联在冷却管路上来说,冷却液管路2可以分流为两路,一路流向液-空换热器30,另一路流向IT设备单元20。此外,本公开对向冷却液管路2提供低温冷却液的冷却液提供设备不作限定,该冷却液提供设备可以为冷却塔100、空调机组等。
可选地,上述液-空换热器30和风扇40的数量可以为一个也可以为多个,本公开对此不作限定。
可选地,在本公开提供的一种实施方式中,如图1、图2、图3以及图5所示,服务器机柜还可以包括在密闭柜体10内的壳体50,IT设备单元20和风扇40均安装在壳体50内,壳体50上开设有进风口51和出风口52,IT设备单元20位于进风口51与出风口52之间,壳体50的外壁与密闭柜体10的内壁之间具有供气流流过的风道53,进风口51和出风口52均与风道53连通。可以理解的是,上文提到的IT设备单元20的迎风侧为靠近进风口51的一侧,IT设备单元的背风侧为靠近出风口52的一侧。
由于IT设备单元20设置在壳体50的进风口51和出风口52之间,这样,当风扇40转动时,密闭柜体10内的气流从壳体50的进风口51流入壳体50内,壳体50的气流从进风口51朝向出风口52流动,从出风口52流出的气流经由风道53重新回到靠近进风口51的位置。也就是说,壳体50可以将密闭柜体10内的空间进行分隔,壳体50内部的气流在从进风口51朝向出风口52流动的过程中,对IT设备单元20进行冷却且不会与壳体50外部的气流发生混合,壳体50外部的气流则在风道53内流动,不会与壳体50内部的气流发生混合,从而更加利于对IT设备单元20的冷却,保证吹向IT设备单元的气流的温度不会过高,并且还能够利于对密闭柜体10内的气流的流动方向进行导向,使气流在密闭柜体10内的循环流动。
需要说明的是,由于密闭柜体10的内部为密闭空间,当风扇40向IT设备单元20吹送气流时,IT设备单元20的迎风侧为负压,背风侧为正压,因此,从壳体50的出风口52流 出的气流在压力差的作用下会沿着壳体50的外壁与密闭柜体10的内壁之间的风道53重新回流至壳体50的进风口51处,从而形成气流在密闭柜体10内的循环,可以不提供任何动力设备,从而能进一步降低对IT设备单元20冷却降温过程中的能耗。
在本公开中,液-空换热器30的具体设置位置可以有多种实施方式,例如,可以将液-空换热器30设置在壳体50内部,也可以将液-空换热器30设置在壳体50的外部。对于将液-空换热器30设置在壳体50的内部的情况而言,在本公开提供的一种实施方式中,液-空换热器30可以位于壳体50内并靠近进风口51设置,这样,从进风口51进入到壳体50内部的气流先流经液-空换热器30冷却,再流向IT设备单元20。在本公开提供另一种实施方式中,如图1、图2、图3以及图5所示,液-空换热器30可以位于壳体50内并靠近出风口52设置,这样,流经IT设备单元20换热后的气流先流经液-空换热器30冷却,再从出风口52流出壳体50,并最终回到进风口51处。
对于将液-空换热器30设置在壳体50外部的情况而言,如图3所示,在本公开提供的一种实施方式中,液-空换热器30可以位于壳体50外并靠近进风口51设置;在本公开提供的另一种实施方式中,液-空换热器30可以位于壳体50外并靠近出风口52设置。
可选地,在本公开提供的一种实施方式中,如图1所示,壳体50的外壁与密闭柜体10的内壁之间可以具有间隙,该间隙为风道53。这样,当风扇40吹出的气流从壳体50的进风口51吹向IT设备单元20后,可以从壳体50的出风口52流出,并经过壳体50的外壁与密闭柜体10之间的间隙(即风道53)重新流回至进风口51处,从而实现对IT设备单元20的循环吹扫。
在本公开提供的另一种实施方式中,服务器机柜还可以包括风管,风管设置在密闭柜体10的内壁与壳体50的外壁之间,风道53形成在风管的内部。当风扇40吹出的气流从壳体50的进风口51吹向IT设备单元20后,从壳体50的出风口52流出后,可以直接进入到风管内,并经过风管的引导回流至壳体50的进风口51处,从而规范气流的流动路径,避免气流在流动过程中发生乱流,影响对IT设备单元20的降温散热效果。
当然,上述风管的两端可以是与进风口51、出风口52分别连接的,也可以通向进风口51和出风口52,只要能够与进风口51和出风口52连通,能够对从出风口52流出的气流起到朝向进风口51导流的作用即可,本公开对此不作限制。
可选地,如图1、图2、图3以及图5所示,IT设备单元20包括中央处理器201、硬盘驱动器202、网络接口控制器203、双列直插式存储模块206以及电源205;硬盘驱动器202和网络接口控制器203均靠近迎风侧设置,电源205靠近背风侧设置,中央处理器201和双列直插式存储模块206位于硬盘驱动器202和网络接口控制器203与电源205之间。由于硬 盘驱动器202与网络接口控制器203对温度的承受能力较弱,而迎风侧处的风的温度较低,因此硬盘驱动器202与网络接口控制器203靠近IT设备单元20的迎风侧设置,以确保对硬盘驱动器202与网络接口控制器203的冷却,而电源205能够承受中温或高温的能力较强,因此电源205靠近IT设备单元20的背风侧设置。
通过上述布置方式,在气流从IT设备单元20的迎风侧进入到IT设备单元20后,会依次吹过硬盘驱动器202、网络接口控制器203、双列直插式存储模块206、中央处理器201以及电源205,再从IT设备单元20的背风侧流出,从而使得IT设备单元20的硬盘驱动器202、网络接口控制器203、双列直插式存储模块206、中央处理器201以及电源205的冷却需求均能得到满足。
可选地,液-空换热器30可以与电源205相邻设置,具体的,液-空换热器30可以在IT设备单元20的长度方向上与电源205相邻设置,或者,液-空换热器30可以在IT设备单元20的宽度方向上与电源205相邻设置。
可选地,如图1、图2、图3以及图5所示,在本公开提供的一种实施方式中,风扇40位于硬盘驱动器202和网络接口控制器203与中央处理器201和双列直插式存储模块206之间。
在本公开提供的其他实施方式中,风扇40也可以设置在IT设备单元20的迎风侧处,或者风扇40可以设置在IT设备单元20的背风侧处,本公开对风扇40所设置的具体位置不作限制,只要能产生吹向IT设备单元20的气流,并使流经IT设备单元20的气流经由液-空换热器30冷却后再吹向IT设备单元20即可。
可选地,中央处理器201上设置有冷板60,如图1至图5所示,中央处理器201和冷板60均为多个,多个冷板60与多个中央处理器201一一对应设置。如图7至图10所示,多个冷板60之间相互串联或相互并联以构成冷板组,冷板组与液-空换热器30相互串联或相互并联。
在对IT设备单元20进行降温散热的过程中,可以通过冷板60对中央处理器201进行液冷,这样,可以有效降低中央处理器201的温度,避免在气流从IT设备单元20的迎风侧流向IT设备单元20的背风侧的过程中,将中央处理器201的热量带出而导致中央处理器201附近的温度过高,从而反向加热硬盘驱动器202、网络接口控制器203、双列直插式存储模块206以及电源205的情况,或者影响气流对硬盘驱动器202、网络接口控制器203、双列直插式存储模块206以及电源205的散热,进而确保冷却效果和冷却效率。
可选地,为了调节对IT设备单元20的冷却降温效果,在本公开中,如图5所示,服务器机柜还可以包括温度传感器70,温度传感器70设置在IT设备单元20的迎风侧并用于检 测经由液-空换热器30冷却后的气流的温度,温度传感器70与风扇40电性连接,以使风扇40的转速能够根据温度传感器70检测到的温度值进行调节。在IT设备单元20的迎风侧设置温度传感器70,这样,该温度传感器70可以对即将流过IT设备单元20内的气流的温度进行检测。当该温度传感器70测得的流经迎风侧的气流的温度较高时,说明即将吹向IT设备单元20的冷却风的温度较高,此时,可以适应性地调大风扇40的转速,以使风扇40产生的气流能够更快地流过IT设备单元20,提高对IT设备单元20的冷却换热效果;当该温度传感器70测得的流经迎风侧的气流的温度较低时,则说明即将吹向IT设备单元20的冷却风的温度较低,此时,可以适应性地调小风扇40的转速,在能达到对IT设备单元20的降温散热的效果的同时,避免不必要的冷量浪费,节约对IT设备单元20冷却降温过程中的能耗。
如图5所示,对于服务器机柜包括壳体50、且壳体50上开设有进风口51和出风口52的实施方式中,温度传感器70可以设置在壳体50的进风口51处。
可选地,如图6至图10所示,冷却液管路2的进水口用于与位于密闭柜体10外部的冷却塔100的出水口连接,冷却液管路2的出水口用于与冷却塔100的进水口连接。冷却液管路2与冷却塔100连接,并通过冷却塔100来为液-空换热器30、IT设备单元20来提供冷量的技术方案与通过空调冷却机组中的多个设备(例如压缩机、膨胀阀、蒸发器、冷凝器)来提供冷量的实施方式相比,使冷却塔100与冷却液管路2连接的实施方式无需运用到空调冷却机组,可以使得本公开冷却IT设备单元20所需的能耗更低,更有利于降低数据中心的总能耗,从而降低数据中心的PUE(PowerUsageEffectiveness,电源使用效率,PUE=数据中心总设备能耗/IT设备能耗),进而降低碳排放量,助力“碳达峰、碳中和”的目标。
可选地,如图6所示,服务器机柜还包括进水连接结构80和出水连接结构90,进水连接结构80具有相连接的第一进水接口810和第一出水接口820,出水连接结构90具有相连接的第二进水接口910和第二出水接口920,第一进水接口810用于与冷却塔100的出水口连接,第一出水接口820与冷却液管路2的进水口连接,第二进水接口910与冷却液管路2的出水口连接,第二出水接口920用于与冷却塔100的进水口连接。在对IT设备单元20进行降温过程中,冷却液从冷却塔100的出水口流出,并经第一进水接口810流入到进水连接结构80内,流入到进水连接结构80内的冷却液经由第一出水接口820进入到冷却液管路2中,进入到冷却液管路2内的液体在与液-空换热器30、IT设备单元20发生换热后,变成高温冷却液经第二进水接口910流入到出水连接结构90内,并从出水连接结构90的第二出水接口920经冷却塔100的进水口回流至冷却塔100内,回流至冷却塔100内的高温冷却液在与外界大气发生换热后,变成低温冷却液重新从冷却塔100的出水口流入到进水连接结构80内,如此循环,以向冷却液管路2内源源不断流入冷却液,实现对IT设备单元20的不间断 降温散热。
另外,如图11所示,在密闭柜体10上可以形成有第一通孔11和第二通孔12,进水连接结构80穿设于第一通孔11,且第一进水接口810位于密闭柜体10外,出水连接结构90穿设于第二通孔12,且第二出水接口920位于密闭柜体10外,进水连接结构80与第一通孔11之间设置有第一密封件,出水连接结构90与第二通孔12之间设置有第二密封件。第一通孔11用于供进水连接结构80穿过,第二通过用于供出水连接结构90穿过,且在进水连接结构80与第一通孔11之间设置有第一密封件,出水连接结构90与第二通孔12之间设置有第二密封件,这样,可以保证密闭柜体10在第一通孔11和第二通孔12处的密封性,避免密闭柜体10内的热量或噪声从第一通孔11和进水连接结构80之间的间隙或第二通孔12和出水连接结构90之间的间隙处泄漏,进一步提升密闭柜体10的密封性,避免对运维人员的工作造成影响。
可选地,如图6所示,在密闭柜体10内,IT设备单元20和冷却液管路2均可以为多个,且多个冷却液管路2与多个IT设备单元20一一对应设置;进水连接结构80为分水器81,第一出水接口820为多个,多个第一出水接口820与多个冷却液管路2的进水口一一对应连接;出水连接结构90为集水器91,第二进水接口910为多个,多个第二进水接口910与多个冷却液管路2的出水口一一对应连接。这样,当从冷却塔100的出水口流出的冷却液流入到进水连接结构80,此时,进水连接结构80内的冷却液可以通过多个第一出水接口820分别流入到多个冷却液管路2内,流入到每个冷却液管路2内的冷却液可以与对应的IT设备单元20进行换热并变成高温冷却液,当对IT设备单元20冷却降温完成后,高温冷却液从冷却液管路2的出水口流出,并分别经过多个第二进水接口910流回至出水连接结构90,位于出水连接结构90内的高温冷却液再经第二出水接口920进入到冷却塔100中,回流至冷却塔100内的高温冷却液在与外界大气发生换热后,变成低温冷却液重新从冷却塔100的出水口流入到进水连接结构80内,如此循环,以向冷却液管路2内源源不断流入冷却液,实现对多个IT设备单元20的不间断降温散热。
可选地,在本公开提供的一种实施方式中,如图4所示,液-空换热器30可以为表冷器。
当然,在本公开提供的其他实施方式中,液-空换热器30还可以为板翅式换热器或其他任意满足要求的液-空换热器30,总之,本公开对上述液-空换热器30的类型或具体结构不作限制。
根据本公开的第二个方面,提供一种数据中心,包括如上所述的服务器机柜。该数据中心具有上述服务器机柜的所有有益效果,本公开在此不作赘述。
可选地,如图6至图10所示,数据中心还包括冷却塔100,服务器机柜的冷却液管路2 的进水口与冷却塔100的出水口连接,服务器机柜的冷却液管路2的出水口与冷却塔100的进水口连接。
本公开通过冷却塔100将IT设备单元20的热量排放至大气中,也就是说,对IT设备单元20进行液冷和风冷的冷量均来自于冷却塔100。这样可以避免通过空调冷却机组向IT设备单元20和液-空换热器30来提供低温冷却液,使得本公开冷却IT设备单元20所需的能耗更低,有利于降低数据中心的总能耗,从而降低数据中心的PUE,进而降低碳排放量,助力“碳达峰、碳中和”的目标。
并且,由于本公开提供的数据中心冷却系统中可以不通过空调冷却机组来进行冷却,即,可以避免使用到氟利昂作为制冷剂,一方面,能够避免氟利昂泄露污染环境的情况发生,另一方面,也可以避免氟化物的排放。由于含氟气体也是一种温室气体,避免含氟气体的排放增大温室效应。
此外,相比于通过液冷结合空调补冷的方式对数据中心进行冷却的技术方案,由于本公开提供的数据中心的架构更为简单,因此,可靠性更高,成本更低,在部署数据中心时,能够实现数据中心的快速部署。并且,由于冷却塔100的冷却温度与冷却塔100所处环境的湿球温度相关,而不是与其所处环境的干球温度(即环境温度)相关,而全球大部分地区的湿球温度均能够满足对冷却塔100的冷却液出口流出的冷却液温度的需求,因此,本公开提供的数据中心冷却系统不容易受到地区环境温度的制约,可以应用至全球大部分地区。
可选地,上述冷却塔100可以为开式冷却塔、闭式冷却塔、自然通风冷却塔、机械通风冷却塔、混合通风冷却塔、湿式冷却塔、干式冷却塔、干湿式冷却塔等,本公开对冷却塔100的具体类型、数量、尺寸、形状等均不作限定。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (13)

  1. 一种服务器机柜,包括:
    密闭柜体(10);
    IT设备单元(20),设置在所述密闭柜体(10)内;
    液-空换热器(30),设置在所述密闭柜体(10)内,并与所述IT设备单元(20)相互串联或相互并联在冷却液管路(2)上,所述液-空换热器(30)设置在所述IT设备单元(20)的迎风侧或所述IT设备单元(20)的背风侧,
    风扇(40),设置在所述密闭柜体(10)内,所述风扇(40)用于使所述密闭柜体(10)内产生吹向所述IT设备单元(20)的气流,并使流经所述IT设备单元(20)的气流经由所述液-空换热器(30)冷却后再吹向所述IT设备单元(20)。
  2. 根据权利要求1所述的服务器机柜,其中,所述服务器机柜还包括壳体(50),所述IT设备单元(20)和所述风扇(40)均安装在所述壳体(50)内,所述壳体(50)上开设有进风口(51)和出风口(52),所述IT设备单元(20)位于所述进风口(51)与所述出风口(52)之间,所述壳体(50)的外壁与所述密闭柜体(10)的内壁之间具有供气流流过的风道(53),所述进风口(51)和所述出风口(52)均与所述风道(53)连通;
    其中,所述液-空换热器(30)位于所述壳体(50)内并靠近所述进风口(51)设置;或者,所述液-空换热器(30)位于所述壳体(50)内并靠近所述出风口(52)设置;或者,所述液-空换热器(30)位于所述壳体(50)外并靠近所述进风口(51)设置;或者,所述液-空换热器(30)位于所述壳体(50)外并靠近所述出风口(52)设置。
  3. 根据权利要求2所述的服务器机柜,其中,所述壳体(50)的外壁与所述密闭柜体(10)的内壁之间具有间隙,该间隙为所述风道(53);或者,
    所述服务器机柜还包括风管,所述风管设置在所述密闭柜体(10)的内壁与所述壳体(50)的外壁之间,所述风道(53)形成在所述风管的内部。
  4. 根据权利要求1-3中任一项所述的服务器机柜,其中,所述IT设备单元(20)包括中央处理器(201)、硬盘驱动器(202)、网络接口控制器(203)、双列直插式存储模块(206)以及电源(205);
    所述硬盘驱动器(202)和所述网络接口控制器(203)均靠近所述迎风侧设置,所述电源(205)靠近所述背风侧设置,所述中央处理器(201)和所述双列直插式存储模块(206)位于所述硬盘驱动器(202)和所述网络接口控制器(203)与所述电源(205)之间。
  5. 根据权利要求4所述的服务器机柜,其中,所述液-空换热器(30)与所述电源(205)相邻设置,所述风扇(40)位于所述硬盘驱动器(202)和所述网络接口控制器(203)与所述中央处理器(201)和所述双列直插式存储模块(206)之间。
  6. 根据权利要求4所述的服务器机柜,其中,所述中央处理器(201)上设置有冷板(60),所述中央处理器(201)和所述冷板(60)均为多个,多个所述冷板(60)与多个所述中央处理器(201)一一对应设置,多个所述冷板(60)之间相互串联或相互并联以构成冷板组,所述冷板组与所述液-空换热器(30)相互串联或相互并联。
  7. 根据权利要求1-6中任一项所述的服务器机柜,其中,所述服务器机柜还包括温度传感器(70),所述温度传感器(70)设置在所述IT设备单元(20)的迎风侧并用于检测经由所述液-空换热器(30)冷却后的气流的温度,所述温度传感器(70)与所述风扇(40)电性连接,以使所述风扇(40)的转速能够根据所述温度传感器(70)检测到的温度值进行调节。
  8. 根据权利要求1-6中任一项所述的服务器机柜,其中,所述冷却液管路(2)的进水口用于与冷却塔(100)的出水口连接,所述冷却液管路(2)的出水口用于与所述冷却塔(100)的进水口连接。
  9. 根据权利要求8所述的服务器机柜,其中,所述服务器机柜还包括进水连接结构(80)和出水连接结构(90),所述进水连接结构(80)具有相连接的第一进水接口(810)和第一出水接口(820),所述出水连接结构(90)具有相连接的第二进水接口(910)和第二出水接口(920),所述第一进水接口(810)用于与所述冷却塔(100)的出水口连接,所述第一出水接口(820)与所述冷却液管路(2)的进水口连接,所述第二进水接口(910)与所述冷却液管路(2)的出水口连接,所述第二出水接口(920)用于与所述冷却塔(100)的进水口连接;
    所述密闭柜体(10)上形成有第一通孔(11)和第二通孔(12),所述进水连接结构(80)穿设于所述第一通孔(11),且所述第一进水接口(810)位于所述密闭柜体(10)外,所述出水连接结构(90)穿设于所述第二通孔(12),且所述第二出水接口(920)位于所述密闭柜体(10)外,所述进水连接结构(80)与所述第一通孔(11)之间设置有第一密封件,所述出水连接结构(90)与所述第二通孔(12)之间设置有第二密封件。
  10. 根据权利要求9所述的服务器机柜,其中,所述IT设备单元(20)和所述冷却液管路(2)均为多个,且多个所述冷却液管路(2)与多个所述IT设备单元(20)一一对应设置;
    所述进水连接结构(80)为分水器(81),所述第一出水接口(820)为多个,多个所述第一出水接口(820)与多个所述冷却液管路(2)的进水口一一对应连接;
    所述出水连接结构(90)为集水器(91),所述第二进水接口(910)为多个,多个所述第二进水接口(910)与多个所述冷却液管路(2)的出水口一一对应连接。
  11. 根据权利要求1-6中任一项所述的服务器机柜,其中,所述液-空换热器(30)为表冷器。
  12. 一种数据中心,其中,包括权利要求1-11中任一项所述的服务器机柜。
  13. 根据权利要求12所述的数据中心,其中,所述数据中心还包括冷却塔(100),所述服务器机柜的所述冷却液管路(2)的进水口与所述冷却塔(100)的出水口连接,所述服务器机柜的所述冷却液管路(2)的出水口与所述冷却塔(100)的进水口连接。
PCT/CN2023/079155 2022-03-11 2023-03-01 服务器机柜以及数据中心 WO2023169286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210239586.1 2022-03-11
CN202210239586.1A CN114828549A (zh) 2022-03-11 2022-03-11 服务器机柜以及数据中心

Publications (1)

Publication Number Publication Date
WO2023169286A1 true WO2023169286A1 (zh) 2023-09-14

Family

ID=82528248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079155 WO2023169286A1 (zh) 2022-03-11 2023-03-01 服务器机柜以及数据中心

Country Status (2)

Country Link
CN (1) CN114828549A (zh)
WO (1) WO2023169286A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828549A (zh) * 2022-03-11 2022-07-29 北京有竹居网络技术有限公司 服务器机柜以及数据中心

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120127655A1 (en) * 2010-11-23 2012-05-24 Inventec Corporation Server cabinet
CN106163242A (zh) * 2016-08-31 2016-11-23 杭州华为数字技术有限公司 一种机柜换热系统及服务器
CN110351986A (zh) * 2019-07-10 2019-10-18 中国科学院长春光学精密机械与物理研究所 具有复合冷源的分区内冷型机柜散热系统
US20210195803A1 (en) * 2018-06-11 2021-06-24 Vertiv Integrated Systems Gmbh Equipment cabinet and method for operating a cooling device
WO2021190403A1 (zh) * 2020-03-23 2021-09-30 阿里巴巴集团控股有限公司 冷却机柜、液冷服务器设备及系统
CN114828549A (zh) * 2022-03-11 2022-07-29 北京有竹居网络技术有限公司 服务器机柜以及数据中心

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120127655A1 (en) * 2010-11-23 2012-05-24 Inventec Corporation Server cabinet
CN106163242A (zh) * 2016-08-31 2016-11-23 杭州华为数字技术有限公司 一种机柜换热系统及服务器
US20210195803A1 (en) * 2018-06-11 2021-06-24 Vertiv Integrated Systems Gmbh Equipment cabinet and method for operating a cooling device
CN110351986A (zh) * 2019-07-10 2019-10-18 中国科学院长春光学精密机械与物理研究所 具有复合冷源的分区内冷型机柜散热系统
WO2021190403A1 (zh) * 2020-03-23 2021-09-30 阿里巴巴集团控股有限公司 冷却机柜、液冷服务器设备及系统
CN114828549A (zh) * 2022-03-11 2022-07-29 北京有竹居网络技术有限公司 服务器机柜以及数据中心

Also Published As

Publication number Publication date
CN114828549A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023124976A1 (zh) 数据中心冷却系统及数据中心
CN205864945U (zh) 一种数据中心冷却系统
WO2023169286A1 (zh) 服务器机柜以及数据中心
CN111683503B (zh) 一种移动分层式具有实时高温监测功能的计算机柜
CN110996618A (zh) 一种数据中心、机房的水冷型相变冷却方法及装置
CN216626506U (zh) 数据中心冷却系统及数据中心
CN207897287U (zh) 逆变器及其散热装置
CN212393134U (zh) 支持中温供水的高效、节能、低pue的冷却系统
WO2023185225A1 (zh) 散热系统及电子设备
WO2023125009A1 (zh) 数据中心
WO2023085846A1 (ko) 냉동컴프레셔용 공냉식 가스냉각기
CN213367622U (zh) 变频器和制冷系统
CN115550750A (zh) 一种通信基站一体式高维散热系统
CN214960683U (zh) 一种基于物联网的信息采集设备
CN116096028A (zh) 双排机柜式数据中心及制冷系统
CN209818224U (zh) 一种机舱通风降温装置
CN112838718A (zh) 一种发电机空冷系统散热风道结构
CN216697166U (zh) 一种利于显卡散热的机箱
CN206452654U (zh) 一种电子机柜
CN220822393U (zh) 电柜及储能系统
CN216213679U (zh) 液冷储能系统
CN217546576U (zh) 一种门内装风机的夹层冷却机柜
CN215068105U (zh) 一种计算机机箱冷却装置
US20230397377A1 (en) Classified heat dissipation system and data center
CN220493443U (zh) 车载式液冷数据中心

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765864

Country of ref document: EP

Kind code of ref document: A1