WO2023000414A1 - 一种曲率自适应集群磁流变抛光自由曲面的方法及装置 - Google Patents

一种曲率自适应集群磁流变抛光自由曲面的方法及装置 Download PDF

Info

Publication number
WO2023000414A1
WO2023000414A1 PCT/CN2021/112375 CN2021112375W WO2023000414A1 WO 2023000414 A1 WO2023000414 A1 WO 2023000414A1 CN 2021112375 W CN2021112375 W CN 2021112375W WO 2023000414 A1 WO2023000414 A1 WO 2023000414A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
assembly
yaw
plate
workpiece
Prior art date
Application number
PCT/CN2021/112375
Other languages
English (en)
French (fr)
Inventor
潘继生
阎秋生
柏显亭
郑琼彬
蔡曼丹
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2023000414A1 publication Critical patent/WO2023000414A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/10Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work
    • B24B31/112Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work using magnetically consolidated grinding powder, moved relatively to the workpiece under the influence of pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/005Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes using a magnetic polishing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/12Accessories; Protective equipment or safety devices; Installations for exhaustion of dust or for sound absorption specially adapted for machines covered by group B24B31/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Definitions

  • the invention relates to the technical field of ultra-precision machining, and more specifically, to a method and device for curvature-adaptive cluster magnetorheological polishing of free-form surfaces.
  • Free-form optical elements are a type of non-rotational anisotropic surface elements with complex surfaces.
  • Most of the curved surface optical elements such as curved radar antennas, microscopes, telescopes, cameras, camera lenses, and curved screen panels of mobile phones, smart watches, and handheld computers use optical glass.
  • Precision processing of hard and brittle materials such as glass-ceramic and sapphire requires extremely strict surface requirements. In addition to meeting high surface accuracy and low surface roughness, it is also necessary to ensure that the surface has no scratches, cracks, character distortion, and foreign impurities. defect.
  • Magneto-rheological polishing combines electromagnetics, fluid dynamics and other disciplines. It is an advanced optical surface processing technology. It uses the rheological effect of magnetorheological fluid in a magnetic field to form a flexible ribbon "micro-grinding head". The surface is processed flexibly, the processed surface will not produce sub-surface damage, and it has the advantages of stable removal function and controllable processing process. Magneto-rheological polishing is very suitable for polishing various free-form surface workpieces, but magnetorheological polishing uses a "micro-grinding head" to scan the surface of the workpiece, which makes the processing time longer and the processing efficiency lower.
  • US20040142635A1 discloses a carrier assembly, including a polishing machine for the carrier assembly, and a method for polishing micro-device workpieces. However, it can only polish flat surfaces by magnetorheological methods, and cannot achieve curved surface polishing.
  • US Patent US20030087585A1 discloses a magnetorheological polishing device and method, which can realize curved surface polishing by magnetorheological method, but it uses a single point for polishing, and the polishing efficiency is extremely low.
  • Chinese patent CN101579833B discloses a high-efficiency controllable multi-grinding magnetorheological polishing device.
  • the electromagnet unit of the device adopts a circular array structure to form a multi-grinding polishing area.
  • the workpiece is mounted on the polishing spindle, and the polishing spindle and the polishing disc are connected Rotate for polishing, and use multi-point instead of single-point to polish all workpieces at the same time, which greatly improves the processing efficiency of workpieces.
  • this device cannot be applied to curved surfaces with irregular curvature changes, and the generated electromagnetic field cannot achieve constant force processing for free-form surface processing, resulting in a large difference in the material removal rate of the curvature-changed part of the workpiece.
  • the purpose of the present invention is to overcome the deficiencies of the prior art and provide a method for curvature-adaptive cluster magnetorheological polishing of free-form surfaces. It can fully realize the requirements of processing free-form surfaces during polishing, guarantee constant force processing on the basis of improving processing efficiency, and reduce processing inhomogeneity. Precision polishing is also suitable for high-efficiency ultra-precision polishing of flat materials such as semiconductor wafers and ceramic substrates.
  • a method for curvature adaptive cluster magnetorheological polishing of free-form surfaces comprising the following steps:
  • S2 Configure the matching magnetorheological polishing fluid according to the characteristics of different workpieces to be processed and pour the magnetorheological polishing fluid into the rotating platform assembly;
  • S3 Use the yaw plate assembly to force each polishing head to rotate synchronously with the yaw plate; or drive each polishing head to achieve synchronous rotation through a micro-motor, and use the magnetic field generated by the polishing head to act on the magnetorheological polishing liquid to form magnetorheological flexibility polishing head;
  • the linear guide rail assembly in the y direction drives the rotating platform assembly to perform horizontal low-speed reciprocating movement in the y direction, so that the workpiece to be processed can be evenly polished.
  • Each polishing head of the present invention can carry out synchronous rotation, and each can move up and down, can realize multi-point polishing on the one hand, improve polishing efficiency; Adaptive movement guarantees contact processing with curved surface, which can reduce the unevenness of processing and solve the problem of ultra-smooth polishing of curved surface.
  • the positions of the rotating platform assembly and the yaw plate assembly are adjusted by adjusting the z-direction linear guide assembly and the y-direction linear guide assembly, so that the polishing head is located above the workpiece to be processed.
  • the polishing head is moved up and down by air pressure, hydraulic pressure, spring or the weight of the polishing head.
  • the magnetic field intensity formed by a single polishing head in step S3 is at least 500Gs.
  • the method for obtaining the magnetorheological polishing fluid in step S2 is as follows: add 2% to 20% by mass of free abrasives, 2% to 40% by mass of magnetic particles, 1% to 40% by mass of deionized water 15% of stabilizers such as glycerin or oleic acid, and 1% to 10% of antirust agent by mass percentage are fully stirred and then vibrated by ultrasonic waves for 5 to 30 minutes to form a magnetorheological polishing liquid.
  • the free abrasives and magnetic particles can be replaced by magnetic composite particles with carbonyl iron powder, ferric oxide, iron oxide and other particles as the inner core, and diamond, SiC and other abrasives combined as the outer core through a coupling agent.
  • the present invention also provides a yaw plate assembly, including a yaw plate frame, a yaw plate shell, a motor base, a yaw plate drive motor, a yaw plate, an eccentric main shaft, several polishing heads, several first retaining springs, several eccentric Split shafts, several cylinders, and several polishing heads, the drive motor of the yaw plate is fixed on the motor base, the motor base is connected with the shell of the yaw plate, and the shell of the yaw plate is fixed on the frame of the yaw plate,
  • the driving motor of the eccentric disc is connected to one end of the eccentric main shaft, the other end of the eccentric main shaft is assembled in the yaw disc, the yaw disc is assembled in the shell of the yaw disc, one end of several eccentric sub-shafts is assembled in the yaw disc, and the other end of several eccentric sub-shafts is assembled in the yaw disc.
  • One end and several first retaining springs are coaxially assembled in the eccentric disc frame, and a cylinder is built in the eccentric sub-axis, and the piston rod of the cylinder is connected with the polishing head, which is a device capable of generating a magnetic field.
  • the driving motor of the yaw plate of the present invention drives the eccentric main shaft and then drives the yaw plate to deflect, and several eccentric sub-axes drive the polishing head to follow the yaw plate to rotate synchronously; under the obstruction of the yaw plate frame, the eccentric sub-axis drives the polishing head Carry out self-rotation; the polishing head can move up and down under the drive of the cylinder, so that the polishing part is always in contact with the surface of the workpiece to be processed during the polishing process, so as to achieve constant force processing on the free-form surface, while the multi-point polishing in the prior art It is to uniformly adjust the height of each polishing point, either raised as a whole or lowered as a whole.
  • the polishing head is a device capable of generating a magnetic field, which is used to form a magnetic field during the polishing process, and then act on the magnetorheological polishing fluid to turn the magnetorheological polishing fluid into a solid flexible grinding head to polish the workpiece to be processed.
  • the polishing head is a cylindrical body provided with a hollow cavity, and a magnetic pole is installed in the hollow cavity.
  • the bottom of the columnar body is an arc-shaped curved surface.
  • the magnetic pole is made of permanent magnet material
  • the polishing head is made of diamagnetic material.
  • the diamagnetic material is one of stainless steel, magnesium-aluminum alloy, copper alloy, and ceramics.
  • the columnar body includes a connecting part and a polishing part, the magnetic pole is installed in the hollow cavity provided by the polishing part, the upper end of the connecting part is connected with the piston rod provided in the cylinder, and the lower end of the connecting part is connected with the polishing part.
  • it also includes an end cover of the yaw plate shell and an end cover of the yaw plate, one end of the end cover of the yaw plate shell is connected to the motor base, and the other end is connected to the shell of the yaw plate; the yaw plate One end of the end cover is connected with the eccentric main shaft, and the other end is connected with the yaw plate.
  • an eccentric main shaft coupling is also included, one end of the eccentric main shaft coupling is connected to the output shaft of the yaw plate drive motor, and the other end is connected to the eccentric main shaft.
  • it also includes cross roller bearings and eccentric main shaft bearings, the cross roller bearings and the eccentric main shaft bearings are arranged coaxially with the eccentric main shaft, and the cross roller bearings are sleeved outside the eccentric main shaft And assembled in the shell of the yaw disc, the bearing of the eccentric main shaft is sleeved on the outside of the eccentric main shaft and assembled in the yaw disc.
  • the cross-sectional area of the connecting portion is smaller than or equal to the cross-sectional area of the polishing portion.
  • the present invention also provides a device for curvature adaptive cluster magnetorheological polishing of free-form surfaces, including a workbench, a y-direction linear guide assembly, a z-direction linear guide assembly, a rotating platform assembly, and the above-mentioned yaw plate assembly.
  • the y-direction linear guide rail assembly is placed on the workbench, the rotating platform assembly is placed on the y-direction linear guide rail assembly, the rotating platform assembly is filled with magnetorheological polishing fluid, and the workpiece to be processed is placed on the magnetic In the rheological polishing fluid, the yaw plate assembly is installed on the z-direction linear guide rail assembly, and the yaw plate assembly is located above the rotating platform assembly, and the yaw plate assembly is equipped with a A magnetic field device, and the magnetic field generated by the yaw plate assembly can act on the magnetorheological polishing fluid.
  • the rotating platform assembly of the present invention is used to hold the magnetorheological polishing liquid, and the workpiece to be processed is placed in the magnetorheological polishing liquid; the rotating platform assembly is also used to drive the workpiece to be processed to rotate at a low speed during the polishing process; the yaw plate assembly It is used for rotary polishing; by using multiple points instead of single points to polish the workpiece to be processed, the processing efficiency is greatly improved.
  • the z-direction linear guide rail assembly is used to realize the up and down movement of the yaw plate assembly, which is convenient for positioning before polishing.
  • the y-direction linear guide rail assembly can drive the rotary platform assembly to move horizontally, which can increase the polishing area between the workpiece and the workpiece to be processed during the polishing process, and improve the polishing efficiency.
  • the rotary platform assembly includes a rotary table, a rotary table, a storage tray, and a drive motor for the rotary table, the magnetorheological polishing liquid is contained in the storage tray, and the storage tray is placed on the rotary table , the rotating table driving motor is fixed on the rotating table, and the rotating table is placed on the rotating table.
  • the z-direction linear guide assembly includes a z-direction bottom plate, a z-direction screw, a z-direction screw nut, a z-direction guide rail, a z-direction slider, a z-direction support plate, and a z-direction drive motor, wherein the z-direction wire One end of the rod is connected to the output shaft of the driving motor in the z direction, the other end of the screw rod in the z direction is supported on the bottom plate in the z direction, the bottom of the bottom plate in the z direction is connected to the workbench, and the guide rail in the z direction is installed on the bottom plate in the z direction.
  • the screw nut and the z-direction screw rod form a screw transmission pair
  • the z-direction support plate is connected to the z-direction screw nut
  • the z-direction slider is connected to the z-direction support plate
  • the z-direction slider and the z-direction guide rail form a sliding pair
  • the swing frame is connected with the support plate in the z direction.
  • the eccentric disc assembly drives the eccentric sub-axis and then drives the polishing head to realize synchronous movement.
  • the eccentric sub-axis realizes the synchronous rotation of the intensive polishing head by the yaw disc frame, or drives each polishing head to rotate synchronously by setting several micro-motors, so as to achieve Multi-point cluster collaborative polishing during the polishing process greatly improves the polishing rate;
  • the constant pressure makes the polishing head move up and down adaptively according to the surface curvature of the workpiece, so as to achieve uniform and constant force polishing on the free-form surface of the workpiece.
  • the rotating platform assembly realizes the low-speed rotation of the workpiece to be processed, and the y-direction linear guide rail assembly realizes the low-speed movement of the workpiece to be processed. Together with the high-speed rotation of the yaw plate assembly, the polishing efficiency and polishing effect can be greatly improved.
  • Fig. 1 is a structural schematic diagram of a first embodiment of a yaw plate assembly of the present invention
  • Fig. 2 is a cross-sectional view of a device for curvature-adaptive cluster magnetorheological polishing of a free-form surface according to the present invention
  • Fig. 3 is a three-dimensional view of the device for curvature adaptive cluster magnetorheological polishing free-form surface of the present invention
  • Figure 4 is a partial enlarged view at A of the main view
  • Figure 5 is a partial enlarged view at B of the main view
  • Fig. 6 is a bottom view of the yaw plate assembly without the yaw plate frame
  • Fig. 7 is a sectional view of the yaw plate assembly in Embodiment 1;
  • Fig. 8 is the sectional view of embodiment 1 polishing head
  • Fig. 9 is a sectional view of the yaw plate assembly in Embodiment 2.
  • Fig. 10 is the sectional view of the polishing head of embodiment 2;
  • Fig. 11 is a schematic diagram 1 of a device for curvature-adaptive cluster magnetorheological polishing of a free-form surface according to the present invention
  • Fig. 12 is a schematic diagram 2 of the principle of the device for curvature-adaptive cluster magnetorheological polishing free-form surface of the present invention.
  • Fig. 13 is a flowchart of a method for curvature-adaptive cluster magnetorheological polishing of a free-form surface.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the present invention is a first embodiment of a yaw plate assembly, including a yaw plate frame 16, a yaw plate shell 31, a motor seat 27, a yaw plate drive motor 23, a yaw plate 34, an eccentric Main shaft 25, some polishing heads, some first snap rings 391, some eccentric sub-shafts 351, some cylinders 381, some polishing heads, the yaw disc drive motor 23 is fixed on the motor base 27, the motor base 27 and the yaw disc shell 31 connection, the yaw plate housing 31 is fixed on the yaw plate frame 16, the yaw plate drive motor 23 is connected to one end of the eccentric main shaft 25, the other end of the eccentric main shaft 25 is assembled in the yaw plate 34, and the yaw plate 34 is assembled on the yaw plate In the disc housing 31, one end of several eccentric sub-shafts 351 is assembled in the yaw disc 34, and the other ends of several eccentric sub-shafts 351 and a pluralityaw plate
  • the polishing head is a cylindrical body with a hollow cavity, and a magnetic pole 441 is installed in the hollow cavity.
  • the bottom of the columnar body is an arc-shaped curved surface.
  • the magnetic pole is made of permanent magnet material
  • the polishing head is made of diamagnetic material.
  • Antimagnetic materials are stainless steel, magnesium aluminum alloy, ceramics, etc.
  • the minimum magnetic field strength formed by a single polishing head is 500Gs.
  • the bottom of the columnar body on the end surface of the polishing head is preferably a hemispherical or semi-elliptical structure, which can ensure tangency with the surface curvature of the workpiece 46 to be processed and ensure uniform magnetic field strength.
  • the columnar body includes a connecting part 431 and a polishing part 451, the magnetic pole 441 is installed in the hollow cavity provided by the polishing part 451, and the upper end of the connecting part 431 is connected with the piston rod provided by the cylinder 381. The lower end of the portion 431 is connected to the polishing portion 451 .
  • the yaw disc 34 is used to bear the rotational moment of the eccentric main shaft 25 , and rotates driven by the eccentric main shaft 25 , and then drives the eccentric sub-shaft 351 arranged on the yaw disc 34 to rotate synchronously.
  • the motor base 27 can be connected with the yaw plate housing 31 and the yaw plate housing end cover 18 through the fifth fixing screw 21 .
  • the yaw plate housing 31 can be fixed on the yaw plate frame 16 by the eighth fixing screw 42 .
  • the present invention also includes a yaw plate shell end cover 18 and a yaw plate end cover 33, one end of the yaw plate shell end cover 18 is connected with the motor base 27, and the other end is connected with the yaw plate shell 31; One end of the wobble plate end cover 33 is connected with the eccentric main shaft 25 , and the other end is connected with the yaw plate 34 .
  • the yaw plate driving motor 23 can be fixed on the motor base 27 by the sixth fixing screw 22 .
  • the end cover 18 of the yaw plate housing can be fixed on the yaw plate shell 31 by the fourth fixing screw 19 .
  • an eccentric main shaft coupling 24 is also included.
  • One end of the eccentric main shaft coupling 24 is connected to the output shaft of the yaw plate drive motor 23 , and the other end is connected to the eccentric main shaft 25 .
  • the eccentric main shaft coupling 24 is used to strengthen the connection, so that the eccentric main shaft 25 can maintain good contact with the yaw disc drive motor 23 during the rotation.
  • the present invention also includes a cross roller bearing 28 and an eccentric main shaft bearing 29. Both the cross roller bearing 28 and the eccentric main shaft bearing 29 are arranged coaxially with the eccentric main shaft 25, and the cross roller bearing 28 is sleeved on the eccentric main shaft. 25 and assembled in the yaw disc housing 31 , the eccentric main shaft bearing 29 is sleeved outside the eccentric main shaft 25 and assembled in the yaw disc 34 .
  • the cross-sectional area of the connecting portion 431 is smaller than the cross-sectional area of the polishing portion 451 .
  • the cross-sectional area of the polishing part 451 is set to be relatively large, which can reduce the gap between adjacent polishing parts 451, so as to increase the contact area with the workpiece 46 to be processed, and further improve the polishing efficiency.
  • the cross-sectional area of the connecting portion 431 is smaller than that of the polishing portion 451 , which can save material.
  • the polishing head is the main part of polishing, and the polishing part 451 and the connecting part 431 can be detachably connected to facilitate the removal and replacement of the magnetic pole 441 .
  • the polishing part 451 is provided with a hollow cavity, which is convenient for putting the magnetic pole 441 into it, and then the polishing part 451 is connected with the connecting part 431; The contact of the workpiece 46 to be processed will easily cause the wear of the magnetic pole 441 on the one hand, and on the other hand, because the material of the magnetic pole 441 is relatively hard, it will affect the polishing effect.
  • the polishing part 451 can use a material with a slightly lower hardness to meet the requirements of flexible polishing .
  • the present invention also includes a first sliding bearing 361, a first sliding bearing bushing 371, a second sliding bearing 401, and a second sliding bearing bushing 411, wherein, as shown in Figure 1, the eccentric shaft 351 It is coaxially assembled with the first sliding bearing 361 and the first sliding bearing bushing 371 in the yaw plate 34, as shown in FIG. It is coaxially assembled with the first clip spring 391 in the yaw frame 16 .
  • the eccentricity a of the eccentric main shaft 25 and the eccentricity b of the eccentric sub-axis 351 are equal in value, and the eccentricity b of the eccentric sub-axis 351 is in the same eccentric direction. And the eccentric direction is opposite to the eccentric main shaft eccentric distance a of the eccentric main shaft 25 .
  • each of the above-mentioned polishing heads can move in the vertical direction with the curvature of the workpiece 46 to be processed, so as to realize curvature self-adaptation, and the workpiece to be processed with any curvature can be Adaptive can be achieved.
  • each of the above-mentioned polishing heads forces each cylinder 381 to operate when moving vertically, and the air pipes of each cylinder 381 converge between the yaw plate end cover 33 and the yaw plate shell 31.
  • the array holes on the above-mentioned yaw plate frame 16, the array holes on the yaw plate 34 and the array holes on the yaw plate end cover 18 are arranged in the same order, all of which are two circles. Arranged in an equidistant array, with eight holes in the inner ring and twelve holes in the outer ring.
  • the arrangement of the polishing heads can be either a circular arrangement, a rectangular array arrangement, or other arrangement forms.
  • the cylinder 381 in this embodiment can also be omitted, and the self-weight of the polishing head can be used to realize that the polishing part always adheres to the surface of the workpiece to be processed during the polishing process to realize uniform force processing.
  • FIG. 10 and Figure 11 is a second embodiment of a yaw plate assembly of the present invention, this embodiment is similar to Embodiment 1, the difference is that the cross-sectional area of the connecting portion 431 is equal to that of the polishing portion 451 cross-sectional area.
  • the cross-sectional area of the connecting portion 431 is equal to the cross-sectional area of the polishing portion 451 , which can make the polishing portion 431 more stable when rotating, and the polishing effect is better.
  • FIG. 3 it is a device for curvature adaptive cluster magnetorheological polishing of free-form surfaces, including a worktable 1, a y-direction linear guide assembly 1002, a z-direction linear guide assembly 1003, a rotating platform assembly 1004, and the above-mentioned yaw
  • the disc assembly 1001, the y-direction linear guide assembly 1002 are placed on the workbench 1, the rotating platform assembly is placed on the y-direction linear guide assembly 1002, the rotating platform assembly 1004 contains magnetorheological polishing fluid 72, and the workpiece 46 to be processed is placed on the magnetic In the rheological polishing liquid 72, the yaw plate assembly 1001 is installed on the z-direction linear guide rail assembly 1003, and the yaw plate assembly 1001 is located above the rotating platform assembly 1004, and the yaw plate assembly 1001 is provided with a device capable of generating a magnetic field, And the magnetic field generated by the yaw plate assembly 1001 can act on the magnetorheological polishing fluid 72
  • the yaw plate frame 16 does not have the function of active driving, but here the yaw plate frame 16 is fixedly connected with the z-direction linear guide rail assembly 1003, and drives the eccentric sub-axis 351 on the yaw plate assembly 1001.
  • the blocking of the eccentric sub-shaft 351 makes the eccentric sub-shaft 351 forced to realize autorotation, which is one of the inventive points of the present invention.
  • the plurality of polishing heads do not interfere with each other to ensure smooth polishing.
  • the micro motor can also be used to replace the yaw frame 16 to realize the self-rotation of the polishing head.
  • the number of micromotors is consistent with the number of polishing heads, and each micromotor is connected to each polishing head to drive the polishing head to rotate.
  • the rotary platform assembly 1004 includes a rotary table 48, a rotary table frame 49, a storage tray 47, and a rotary table drive motor 51.
  • the magnetorheological polishing fluid 72 is contained in the storage tray 47, and the storage tray 47 is placed on the On the turntable 48 , the turntable drive motor 51 is fixed on the turntable 48 , and the turntable 48 is placed on the turntable 49 .
  • the rotary table driving motor 51 is fixed on the rotary table 48 through the ninth fixing screw 50 .
  • the rotating table 48 can drive the storage tray 47 to rotate at a low speed.
  • the rotating table 49 is fixed on the support plate 54 in the y direction through the thirteenth fixing screw 62.
  • the rotating table assembly can move horizontally with the movement of the linear guide rail group in the y direction.
  • the storage tray 47 is used to place the workpiece 46 and the magnetorheological fluid to be processed, and the rotary table drive motor 51 drives the rotary table 48 and then drives the storage tray 47 to rotate to improve polishing efficiency and polishing effect.
  • the yaw plate frame 16 is fixed on the support plate 12 in the z direction through the third fixing screw 17 , and the yaw plate assembly 1001 can move vertically with the movement of the linear guide rail group in the z direction.
  • the z-direction linear guide assembly 1003 includes a z-direction bottom plate 3, a z-direction screw 6, a z-direction screw nut 9, a z-direction guide rail 63, a z-direction slider 10, and a z-direction support plate 12 , z direction drive motor 14, wherein one end of z direction screw rod 6 is connected with the output shaft of z direction drive motor 14, the other end of z direction screw rod 6 is supported on the z direction base plate 3, and the bottom of z direction base plate 3 is connected with the working
  • the platform 1 is connected
  • the z-direction guide rail 63 is installed on the z-direction bottom plate 3
  • the z-direction screw nut 9 and the z-direction screw rod 6 form a screw transmission pair
  • the z-direction support plate 12 is connected with the z-direction screw nut 9, and the z-direction
  • the slider 10 is connected to the support plate 12 in the z direction, and the slider 10 in
  • the z-direction linear guide assembly 1003 also includes a z-direction screw bearing 5, a z-direction bearing seat 4, a z-direction slider cover plate 11, and a z-direction screw nut bearing 8 , z-direction lead screw nut seat 7, z-direction coupling 13, wherein the z-direction bottom plate 3 is fixed on the table 1 by the first fixing screw 2, and the two same z-direction guide rails 63 are fixed by the fifteenth fixing screw 71
  • Two fixing screws 61 are fixed on each z-direction slider 10, the z-direction bearing housing 4 is fixed on the z-direction bottom plate 3 by the fourteenth fixing screw 67, and the z-
  • the y-direction linear guide rail assembly 1002 includes a y-direction bottom plate 70, a y-direction guide rail 57, a y-direction slider 56, a y-direction slider cover plate 55, a y-direction screw 66, a y-direction screw Nut 59, y-direction screw nut bearing 60, y-direction screw nut seat 58, y-direction screw bearing 65, y-direction bearing seat 64, y-direction support plate 54, y-direction coupling 68, y-direction drive motor 69 , wherein the y-direction bottom plate 70 is placed on the table 1, two identical y-direction guide rails 57 are fixed on the y-direction bottom plate 70 by the fifteenth fixing screw 71, and four identical y-direction sliders 56 are assembled on the two y-direction rails 57.
  • the y-direction slider cover plate 55 is fixed on each y-direction slider 56 through the twelfth fixing screw 61, and the y-direction bearing seat 64 is fixed on the y-direction bottom plate 70 through the fourteenth fixing screw 67,
  • the y-direction screw 66 and the y-direction screw bearing 65 are coaxially assembled in the y-direction bearing housing 64, the y-direction screw 66 and the y-direction drive motor 69 are connected through the y-direction coupling 68, and the y-direction drive motor 69 passes through
  • the second fixing screw 15 is fixed on the y direction base plate 71, the y direction screw nut seat 71 is fixed on the y direction base plate 70 by the eleventh fixing screw 53, the y direction screw nut 59 is connected with the y direction screw nut bearing 60 and
  • the y-direction screw 66 is coaxially assembled in the y-direction screw nut seat 58 , and the y-dire
  • the bushing 312 is coaxially assembled in the swing plate 21, while the lower end of the rotating shaft 31 is coaxially assembled with the second sliding bearing 313, the second sliding bearing bushing 314 and the retaining spring 316 in the swinging plate 21 frame, and the lower end of the rotating shaft 31 is also Connect with polishing assembly 32.
  • the rotation direction of the polishing head can be the same as the rotation direction of the rotary table 48, as shown in Figure 12, or it can be opposite to the rotation direction of the rotary table, as shown in Figure 12 As shown in 11, the polishing function can be realized.
  • Fig. 13 it is a first embodiment of a method of curvature adaptive cluster magnetorheological polishing free-form surface of the present invention, which includes the following steps:
  • a magnetic pole 323 with a suitable diameter and magnetic field strength is selected to be installed in the polishing part 451;
  • the method for obtaining the magnetorheological polishing liquid 72 is as follows: adding 2% by mass of abrasive and 2% by mass of magnetic particles, 1% by mass of glycerin and 1% by mass of antirust agent in deionized water, After fully stirring, the magnetorheological polishing solution 72 is formed by ultrasonic vibration for 5 minutes;
  • abrasives and magnetic particles can be replaced by magnetic composite particles with carbonyl iron powder, ferric oxide, iron oxide and other particles as the core, and diamond, SiC and other abrasives combined as the outer core through a coupling agent.
  • One of the schemes is to start the yaw plate drive motor 23, force the yaw plate 34 to swing by the rotation of the eccentric main shaft 25, the swing of the yaw plate 34 forces the eccentric sub-axis 351 to realize synchronous rotation, and the rotation of the eccentric sub-axis 351 makes the polishing
  • the head rotates at high speed;
  • the magnetic field strength formed by a single polishing head is 2500Gs; of course, the magnetic field strength formed by a single polishing head can also be other values;
  • the linear guide rail group in the y direction drives the rotary platform assembly 1004 to perform horizontal low-speed reciprocating movement in the y direction.
  • each polishing head will rotate with the curvature of the workpiece 46 while rotating at a high speed. Move in the vertical direction, so that the workpiece 46 to be processed is evenly polished.
  • This embodiment is similar to Embodiment 4, except that the method for obtaining the magnetorheological polishing liquid 72 is as follows: Add 10% by mass of abrasives, 20% by mass of magnetic particles, 5% by mass of glycerin stabilizer, and 5% by mass of antirust agent in deionized water, stir thoroughly and vibrate ultrasonically for 20 minutes to form a magnetic Rheological Polishing Fluid 72.
  • This embodiment is similar to Embodiment 4, except that the method for obtaining the magnetorheological polishing liquid 72 is as follows: Add 20% by mass of abrasives and 40% by mass of magnetic particles, 15% by mass of oleic acid, and 10% by mass of antirust agent in deionized water, stir thoroughly and vibrate ultrasonically for 30 minutes to form a magnetic flow Change polishing fluid 72.
  • the present invention cleverly adopts the yaw disc assembly 1001 to realize the synchronous rotation of each polishing head, and each polishing head can realize constant force processing, which solves the difficulty of controlling the free-form surface polishing processing trajectory, uneven processing force, and uneven removal The problem.
  • the invention can be applied to the free-form surfaces of hard and brittle materials such as optical glass, glass-ceramic, sapphire, and the precision polishing of wafers such as single-crystal SiC and single-crystal Si.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种曲率自适应集群磁流变抛光自由曲面的方法及装置。其中,抛光方法包括以下步骤:将待加工工件置于旋转平台组件内,使各个抛光头位于待加工工件上方;将磁流变抛光液倒入旋转平台组件中;使各个抛光头实现同步转动;通过旋转平台组件使待加工工件进行旋转,开始抛光;在抛光过程中,使抛光头上下移动进行恒压抛光;y方向直线导轨组件带动旋转平台组件进行y方向的水平低速往复移动,使待加工工件得到均匀抛光。本发明可完好地实现抛光自由曲面的要求,在提高加工效率的基础上保证恒力加工,减轻加工的不均匀性,非常适合对自由曲面的光学元件、半导体、陶瓷等材料进行高效率超精密抛光。

Description

一种曲率自适应集群磁流变抛光自由曲面的方法及装置 技术领域
本发明涉及超精密加工技术领域,更具体地,涉及一种曲率自适应集群磁流变抛光自由曲面的方法及装置。
背景技术
进入21世纪,微电子技术和信息技术的快速发展,各种光电材料的需求越来越多,对其表面的加工质量的要求也越来越高。自由曲面光学元件是一类表面复杂的非旋转异性曲面元件,曲面雷达天线、显微镜、望远镜、照相机、摄像机镜头,以及手机、智能手表、掌上电脑的曲面屏板等曲面光学元件大多采用光学玻璃、微晶玻璃、蓝宝石等硬脆材料进行精密加工成型,表面要求极为苛刻,除满足高面形精度、低表面粗糙度外,同时要保证表面无划痕裂纹,无品格畸变,无外来杂质污染等缺陷。
自由曲面的加工离不开超精密加工技术,然而由于受曲面形状和材料等因素的影响,曲面加工技术仍是目前加工制造业所面临的难题。如何实现超光滑、高效率的曲面光学元件加工已成为国内外学者的研究热点和产业界竞争的焦点。
磁流变抛光结合了电磁学、流体动力学等学科,是一种先进的光学表面加工技术,它利用磁流变液在磁场中的流变效应形成柔性缎带“微磨头”,对工件表面进行柔性加工,加工后的表面不会产生亚表面损伤,具有去除函数稳定、加工工艺过程可控等优点。磁流变抛光非常适合对各种自由曲面类型工件的进行抛光,但是磁流变抛光由“微磨头”对工件表面进行扫描式的加工,使得加工时间较长、加工效率偏低。
美国专利US20040142635A1公开了一种载体组件,包括载体组件的抛光机,以及抛光微器件工件的方法,但其只能利用磁流变方法对平面进行抛光,无法实现曲面抛光。
美国专利US20030087585A1公开了一种磁流变抛光装置及方法,可利用磁流变方法实现曲面抛光,但其是利用单点进行抛光,抛光效率极低。
中国专利CN101579833B公开了一种高效率可控多磨头磁流变抛光装置,该装置电磁铁单元采用环形阵列结构从而形成多磨头抛光区,将工件安装于抛光主轴上,通过抛光主轴和抛光盘的旋转进行抛光,以多点代替单点对所有工件同时 进行抛光,大大提高了工件的加工效率。但此装置无法适用于曲率变化不规则的曲面,产生的电磁场对于自由曲面加工不能达到恒力加工,使得工件曲率改部分的材料去除率相差大。
发明内容
本发明的目的在于克服现有技术的不足,提供一种曲率自适应集群磁流变抛光自由曲面的方法。可在抛光时完好地实现加工自由曲面的要求,在提高加工效率的基础上保证恒力加工,减轻加工的不均匀性,非常适合对自由曲面的光学元件、半导体、陶瓷等材料进行高效率超精密抛光,亦适用于半导体晶片、陶瓷基片等平面材料进行高效率超精密抛光。
为解决上述技术问题,本发明采用的技术方案是:
一种曲率自适应集群磁流变抛光自由曲面的方法,包括以下步骤:
S1:将待加工工件置于旋转平台组件内,使各个抛光头位于待加工工件上方;
S2:根据不同的待加工工件特性配置与之匹配的磁流变抛光液并将磁流变抛光液倒入旋转平台组件中;
S3:通过偏摆盘组件迫使各个抛光头与偏摆盘实现同步转动;或通过微电机驱动各个抛光头实现同步转动,并利用抛光头产生的磁场作用于磁流变抛光液形成磁流变柔性抛光头;
S4:通过旋转平台组件使待加工工件进行旋转,开始对待加工工件抛光;
S5:在抛光过程中,使抛光头根据待加工工件表面的曲率变化上下移动进行恒压抛光;
S6:y方向直线导轨组件带动旋转平台组件进行y方向的水平低速往复移动,使待加工工件得到均匀抛光。
本发明的各个抛光头可进行同步转动,且各自可进行上下移动,一方面可实现多点抛光,提高抛光效率;另一方面实现恒压抛光,通过在抛光过程中使各抛光头轴向自适应运动保证与曲面表面接触加工,可减轻加工的不均匀性,解决曲面超光滑抛光的问题。
进一步地,所述步骤S1中通过调整z方向直线导轨组件与y方向直线导轨组件调整旋转平台组件与偏摆盘组件的位置,使抛光头位于待加工工件上方。
进一步地,所述步骤S5中利用气压、液压、弹簧或抛光头的自重使抛光头进行上下移动。
进一步地,步骤S3中单个抛光头形成的磁场强度最小为500Gs。
进一步地,步骤S2中的磁流变抛光液获取方法如下:在去离子水中添加质量百分比为2%~20%的游离磨料、质量百分比为2%~40%的磁性颗粒、质量百分比1%~15%的甘油或油酸等稳定剂、质量百分比1%~10%的防锈剂,充分搅拌后通过超声波震动5~30分钟,形成磁流变抛光液。
进一步地,所述游离磨料与磁性颗粒可以通过以羰基铁粉、四氧化三铁、氧化铁等颗粒为内核,通过偶联剂把金刚石、SiC等磨料结合为外核的磁性复合颗粒进行替代。
本发明还提供一种偏摆盘组件,包括偏摆盘架、偏摆盘外壳、电机座、偏摆盘驱动电机、偏摆盘、偏心主轴、若干抛光头、若干第一卡簧、若干偏心分轴、若干气缸、若干抛光头,所述偏摆盘驱动电机固定在所述电机座上,电机座与所述偏摆盘外壳连接,偏摆盘外壳固定于所述偏摆盘架上,偏摆盘驱动电机与偏心主轴一端连接,偏心主轴另一端装配于偏摆盘内,偏摆盘装配于偏摆盘外壳内,若干偏心分轴一端装配于偏摆盘内,若干偏心分轴另一端和若干第一卡簧同轴装配于偏摆盘架内,偏心分轴内置有气缸,所述气缸所设活塞杆与抛光头连接,抛光头为能产生磁场的装置。
本发明的偏摆盘驱动电机带动偏心主轴进而带动偏摆盘进行偏转,若干偏心分轴带动抛光头跟随着偏摆盘进行同步旋转;在偏摆盘架的阻挡下,偏心分轴带动抛光头进行自转;抛光头在气缸的带动下可以进行上下移动,使抛光部在抛光的过程中始终与待加工工件表面贴合,实现对自由曲面达到恒力加工,而现有技术中的多点抛光是统一调配各抛光点的高度,要么整体抬高,要么整体降低,在对不同曲率的曲面抛光时可能会存在接触不到的情况,无法实现抛光力度的均匀,也存在不同的表面抛光程度不同的现象,故无法实现良好的抛光。而且通过以多点代替单点对待加工工件进行抛光,大大提高了加工效率。抛光头为能产生磁场的装置,用于在抛光过程中形成磁场,然后作用于磁流变抛光液,使磁流变抛光液变成固体的柔性磨头,对待加工工件进行抛光。
优选地,所述抛光头为设有中空腔体的柱状体,中空腔体内装设有磁极。
优选地,柱状体的底部为圆弧状曲面。
优选地,所述磁极为永磁铁材料,抛光头为抗磁材料。
优选地,所述抗磁材料为不锈钢、镁铝合金、铜合金、陶瓷中的一种。优选 地,柱状体包括连接部及抛光部,磁极装设在抛光部所设的中空腔体内,连接部的上端与气缸所设的活塞杆连接,连接部的下端与抛光部连接。
优选地,还包括偏摆盘外壳端盖、偏摆盘端盖,所述偏摆盘外壳端盖一端与所述电机座连接,另一端与所述偏摆盘外壳连接;所述偏摆盘端盖一端与所述偏心主轴连接,另一端与所述偏摆盘连接。
优选地,还包括偏心主轴联轴器,所述偏心主轴联轴器一端与所述偏摆盘驱动电机的输出轴连接,另一端与所述偏心主轴连接。
优选地,还包括交叉滚子轴承、偏心主轴轴承,所述交叉滚子轴承、所述偏心主轴轴承均与所述偏心主轴同轴设置,所述交叉滚子轴承套设于所述偏心主轴外且装配于所述偏摆盘外壳内,所述偏心主轴轴承套设于所述偏心主轴外且装配于所述偏摆盘内。
优选地,所述连接部的横截面面积小于或等于所述抛光部的横截面面积。
本发明还提供一种曲率自适应集群磁流变抛光自由曲面的装置,包括工作台、y方向直线导轨组件、z方向直线导轨组件、旋转平台组件、如上所述的偏摆盘组件,所述y方向直线导轨组件置于所述工作台上,所述旋转平台组件置于所述y方向直线导轨组件上,所述旋转平台组件盛有磁流变抛光液,待加工工件置于所述磁流变抛光液内,所述偏摆盘组件安装在所述z方向直线导轨组件上,且所述偏摆盘组件位于所述旋转平台组件的上方,所述偏摆盘组件内设有能产生磁场的装置,且所述偏摆盘组件产生的磁场能作用于所述磁流变抛光液。
本发明的旋转平台组件用于盛放磁流变抛光液,待加工工件置于磁流变抛光液中;旋转平台组件还用于带动待加工工件在抛光过程中进行低速旋转;偏摆盘组件用于进行旋转抛光;通过以多点代替单点对待加工工件进行抛光,大大提高了加工效率。z方向直线导轨组件用于实现偏摆盘组件的上下移动,便于在抛光前进行定位。y方向直线导轨组件可以带动旋转平台组件水平移动,可以增大在抛光过程中与待加工工件的抛光面积,提升抛光效率。
优选地,所述旋转平台组件包括旋转台、旋转台架、置物盘、旋转台驱动电机,所述置物盘内盛有所述磁流变抛光液,所述置物盘置于所述旋转台上,所述旋转台驱动电机固定在所述旋转台上,所述旋转台置于所述旋转台架上。
优选地,所述z方向直线导轨组件包括有z方向底板、z方向丝杆、z方向丝杠螺母、z方向导轨、z方向滑块、z方向支承板、z方向驱动电机,其中z方 向丝杆的一端与z方向驱动电机的输出轴连接,z方向丝杆的另一端支承在z方向底板上,z方向底板的底部与工作台连接,z方向导轨装设在z方向底板上,z方向丝杠螺母与z方向丝杆组成螺旋传动副,z方向支承板与z方向丝杠螺母连接,z方向滑块与z方向支承板连接,且z方向滑块与z方向导轨组成滑动副,偏摆盘架与z方向支承板连接。
与现有技术相比,本发明的有益效果是:
(1)偏摆盘组件带动偏心分轴进而带动抛光头实现同步运动,偏摆盘架使偏心分轴实现密集抛光头同步转动,或通过设置若干个微电机带动各个抛光头同步转动,实现在抛光过程中的多点集群式协同抛光,大幅度提升抛光速率;
(2)在抛光过程中,恒压作用使抛光头根据工件表面曲率自适应上下移动,实现对工件自由曲面的均匀、恒力抛光。
(3)旋转平台组件实现待加工工件的低速转动,y方向直线导轨组件实现待加工工件的低速移动,共同配合偏摆盘组件的高速转动,可大大提升抛光效率及抛光效果。
附图说明
图1为本发明一种偏摆盘组件第一实施例的结构示意图;
图2为本发明曲率自适应集群磁流变抛光自由曲面的装置的剖视图;
图3为本发明曲率自适应集群磁流变抛光自由曲面的装置的三维视图;
图4为主视图的A处局部放大图;
图5为主视图的B处局部放大图;
图6为偏摆盘组件除去偏摆盘架的仰视图;
图7为实施例1偏摆盘组件剖视图;
图8为实施例1抛光头的剖视图;
图9为实施例2偏摆盘组件剖视图;
图10为实施例2抛光头的剖视图;
图11为本发明曲率自适应集群磁流变抛光自由曲面的装置的原理示意图1;
图12为本发明曲率自适应集群磁流变抛光自由曲面的装置的原理示意图2;
图13为一种曲率自适应集群磁流变抛光自由曲面的方法的流程图。
图示标记说明如下:
1-工作台;2-第一固定螺钉;3-z方向底板;4-z方向轴承座;5-z方向丝杆 轴承;6-z方向丝杠;7-z方向丝杆螺母座;8-z方向丝杆螺母轴承;9-z方向丝杆螺母;10-z方向滑块;11-z方向滑块盖板;12-z方向支承板;13-z方向联轴器;14-z方向驱动电机;15-第二固定螺钉;16-偏摆盘架;17-第三固定螺钉;18-偏摆盘外壳端盖;19-第四固定螺钉;20-气管预留孔;21-第五固定螺钉;22-第六固定螺钉;23-偏摆盘驱动电机;24-偏心主轴联轴器;25-偏心主轴;27-电机座;28-交叉滚子轴承;29-偏心主轴轴承;31-偏摆盘外壳;32-第七固定螺钉;33-偏摆盘端盖;34-偏摆盘;351-偏心分轴;361-第一滑动轴承;371-第一滑动轴承衬套;381-气缸;391-第一卡簧;401-第二滑动轴承;411-第二滑动轴承衬套;42-第八固定螺钉;431-连接部;441-磁极;451-抛光部;46-待加工工件;47-置物盘;48-旋转台;49-旋转台架;50-第九固定螺钉;51-旋转台驱动电机;52-第十固定螺钉;53-第十一固定螺钉;54-y方向支承板;55-y方向滑块盖板;56-y方向滑块;57-y方向导轨;58-y方向丝杠螺母座;59-y方向丝杠螺母;60-y方向丝杠螺母轴承;61-第十二固定螺钉;62-第十三固定螺钉;63-z方向导轨;64-y方向轴承座;65-y方向丝杆轴承;66-y方向丝杆;67-第十四固定螺钉;68-y方向联轴器;69-y方向驱动电机;70-y方向底板;71-第十五固定螺钉;72-磁流变抛光液;1001-偏摆盘组件;1002-y方向直线导轨组件;1003-z方向直线导轨组件;1004-旋转平台组件;a-偏心主轴偏心距;b-偏心分轴偏心距;。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中 间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例1
如图1所示为本发明为一种偏摆盘组件第一实施例,包括偏摆盘架16、偏摆盘外壳31、电机座27、偏摆盘驱动电机23、偏摆盘34、偏心主轴25、若干抛光头、若干第一卡簧391,若干偏心分轴351、若干气缸381、若干抛光头,偏摆盘驱动电机23固定在电机座27上,电机座27与偏摆盘外壳31连接,偏摆盘外壳31固定于偏摆盘架16上,偏摆盘驱动电机23与偏心主轴25一端连接,偏心主轴25另一端装配于偏摆盘34内,偏摆盘34装配于偏摆盘外壳31内,若干偏心分轴351一端装配于偏摆盘34内,若干偏心分轴351另一端和若干第一卡簧391同轴装配于偏摆盘架16内,偏心分轴351内置有气缸381,气缸381所设活塞杆与抛光头连接,抛光头为能产生磁场的装置。
作为本发明的一个实施方式,抛光头为设有中空腔体的柱状体,中空腔体内装设有磁极441。
作为本发明的一个实施方式,柱状体的底部为圆弧状曲面。
优选地,磁极为永磁铁材料,抛光头为抗磁材料。抗磁材料为不锈钢、镁铝合金、陶瓷等。
单个抛光头形成的磁场强度最小为500Gs。
抛光头端面柱状体的底部优选为半球状或者半椭圆状结构,可保证与待加工工件46表面曲率相切且可确保磁场强度均匀一致。
作为本发明的一个实施方式,柱状体包括连接部431及抛光部451,磁极441装设在抛光部451所设的中空腔体内,连接部431的上端与气缸381所设的活塞杆连接,连接部431的下端与抛光部451连接。
偏摆盘34用于承受偏心主轴25的转动力矩,在偏心主轴25的带动下进行旋转,进而带动设置在偏摆盘34上的偏心分轴351进行同步旋转。电机座27可通过第五固定螺钉21与偏摆盘外壳31和偏摆盘外壳端盖18相连接。偏摆盘外壳31可通过第八固定螺钉42固定于偏摆盘架16上。
作为本发明的一个实施方式,还包括偏摆盘外壳端盖18、偏摆盘端盖33,偏摆盘外壳端盖18一端与电机座27连接,另一端与偏摆盘外壳31连接;偏摆盘端盖33一端与偏心主轴25连接,另一端与偏摆盘34连接。偏摆盘驱动电机23可通过第六固定螺钉22固定在电机座27上。
偏摆盘外壳端盖18可通过第四固定螺钉19固定在偏摆盘外壳31上。
作为本发明的一个实施方式,还包括偏心主轴联轴器24,偏心主轴联轴器24一端与偏摆盘驱动电机23的输出轴连接,另一端与偏心主轴25连接。
偏心主轴联轴器24用于起加强连接作用,使偏心主轴25在旋转过程中可以与偏摆盘驱动电机23保持良好的接触。
作为本发明的一个实施方式,还包括交叉滚子轴承28、偏心主轴轴承29,交叉滚子轴承28、偏心主轴轴承29均与偏心主轴25同轴设置,交叉滚子轴承28套设于偏心主轴25外且装配于偏摆盘外壳31内,偏心主轴轴承29套设于偏心主轴25外且装配于偏摆盘34内。
作为本发明的一个实施方式,连接部431的横截面面积小于抛光部451的横截面面积。
抛光部451的横截面面积设置较大,可以减小相邻的抛光部451之间的间隙,以增大与待加工工件46的接触面积,进一步提升抛光效率。连接部431的横截面面积小于抛光部451的横截面面积,可以节省材料。
抛光头作为抛光的主要部件,抛光部451与连接部431之间可以通过可拆卸方式进行连接,便于磁极441的拆卸更换。抛光部451中设有中空的腔体,便于将磁极441放入其中,然后再将抛光部451与连接部431进行连接;抛光部451可以对磁极441起良好的保护作用,避免磁极441直接与待加工工件46接触,一方面容易造成磁极441的磨损,另一方面,由于磁极441材料较硬,对抛光效果有影响,抛光部451可以采用硬度稍低些的材料,以满足柔性抛光的要求。
作为本发明的一个实施方式,还包括一第一滑动轴承361、第一滑动轴承衬套371、第二滑动轴承401、第二滑动轴承衬套411,其中,如图1所示偏心分 轴351与第一滑动轴承361和第一滑动轴承衬套371同轴心装配于偏摆盘34内,如图1所示同时偏心分轴351下端与第二滑动轴承401、第二滑动轴承衬套411和第一卡簧391同轴心装配于偏摆盘架16内。
本实施例中,如图1所示,上述偏心主轴25的偏心主轴偏心距a与偏心分轴351的偏心分轴偏心距b数值相等,偏心分轴351的偏心分轴偏心距b偏心方向一致且与偏心主轴25的偏心主轴偏心距a偏心方向相反。
本实施例中,如图1所示,上述偏心主轴25的旋转迫使偏摆盘34在偏心主轴偏心距a下发生摆动,偏摆盘34的摆动迫使各偏心分轴351实现同步转动,各偏心分轴351的转动使得抛光头在偏心分轴偏心距b下转动,从而实现同步旋转。
本实施例中,如图11、图12、图7所示,上述各抛光头能随待加工工件46的曲率变化在垂直方向进行移动,从而实现曲率自适应,并且任意曲率的待加工工件均可实现自适应。
本实施例中,如图7、图9所示,上述各抛光头在进行垂直移动时迫使各气缸381运作,各气缸381的气管在偏摆盘端盖33和偏摆盘外壳31之间汇成四根相同的气管并从偏摆盘外壳端盖18上的气管预留孔20接出,接出后的气管又汇成一根总气管并进行外部供气,从而实现各抛光头压力均匀。
本实施例中,如图7所示,上述偏摆盘架16上的阵列孔、偏摆盘34上的阵列孔和偏摆盘端盖18上的阵列孔排布规律一致,均为两圈等距阵列排布,内圈八个孔,外圈十二个孔。在本领域技术人员的认知范围内,抛光头的排布既可以是圆环形排布,也可以是矩形阵列排布,还可以是其他的排布形式。
在本领域技术人员的认知范围内,本实施例中的气缸381也可以省略,用抛光头的自重实现在抛光过程中抛光部始终与待加工工件的表面贴合,实现匀力加工。
实施例2
如图10和图11所示为本发明一种偏摆盘组件的第二实施例,本实施例与实施例1相似,所不同之处在于,连接部431的横截面面积等于抛光部451的横截面面积。
连接部431的横截面面积与抛光部451的横截面面积相等,可以使抛光部431旋转时更稳定,抛光效果更好。
实施例3
如图3所示为一种曲率自适应集群磁流变抛光自由曲面的装置,包括工作台1、y方向直线导轨组件1002、z方向直线导轨组件1003、旋转平台组件1004、如上述的偏摆盘组件1001,y方向直线导轨组件1002置于工作台1上,旋转平台组件置于y方向直线导轨组件1002上,旋转平台组件1004盛有磁流变抛光液72,待加工工件46置于磁流变抛光液72内,偏摆盘组件1001安装在z方向直线导轨组件1003上,且偏摆盘组件1001位于旋转平台组件1004的上方,偏摆盘组件1001内设有能产生磁场的装置,且偏摆盘组件1001产生的磁场能作用于磁流变抛光液72。
偏摆盘架16不像电机,并不具有主动驱动的功能,但此处偏摆盘架16利用其与z方向直线导轨组件1003固定连接,通过其在偏摆盘组件1001带动偏心分轴351同步转动的过程中,对偏心分轴351的阻挡使偏心分轴351被迫实现自转,这是本发明的发明点之一,利用逆向思维,实现在只有一个主动驱动机构的情况下,先是利用偏摆盘34驱动电机23带动偏摆盘组件1001使偏心分轴351实现一级旋转,然后通过固定不动的偏摆盘架16对偏心分轴351形成阻挡,由于偏摆盘34始终处于转动状态,因此偏心分轴351会在偏摆盘架16的阻挡下进行自转,在此过程中,相当于偏摆盘架16对偏心分轴351起了驱动作用,使偏心分轴351可带动抛光头进行旋转。通过对偏心主轴25与偏摆盘34偏心设置,及偏心分轴351也与抛光头偏心设置,使抛光过程中,多个抛光头之间互不干涉,确保抛光顺利进行。当然了,也可以利用微电机代替偏摆盘架16实现使抛光头自转。具体地,微电机设置的数目与抛光头的数目一致,通过每一个微电机与每一个抛光头连接,以带动抛光头转动。
作为本发明的一个实施方式,旋转平台组件1004包括旋转台48、旋转台架49、置物盘47、旋转台驱动电机51,置物盘47内盛有磁流变抛光液72,置物盘47置于旋转台48上,旋转台驱动电机51固定在旋转台48上,旋转台48置于旋转台架49上。
本实施例中,如图2、图3所示,旋转台驱动电机51通过第九固定螺钉50固定在旋转台48上。旋转台48可带动置物盘47进行低速旋转,旋转台架49通过第十三固定螺钉62固定于y方向支承板54上,旋转台组件可随y方向直线导轨组的运动进行水平移动。置物盘47用于放置待加工工件46及磁流变液体,旋 转台驱动电机51带动旋转台48继而带动置物盘47进行旋转,以提升抛光效率及抛光效果。
本实施例中,如图10所示,偏摆盘架16通过第三固定螺钉17固定在z方向支承板12上,偏摆盘组件1001可随z方向直线导轨组的运动进行垂直移动。
作为本发明的一个实施方式,z方向直线导轨组件1003包括有z方向底板3、z方向丝杆6、z方向丝杠螺母9、z方向导轨63、z方向滑块10、z方向支承板12、z方向驱动电机14,其中z方向丝杆6的一端与z方向驱动电机14的输出轴连接,z方向丝杆6的另一端支承在z方向底板3上,z方向底板3的底部与工作台1连接,z方向导轨63装设在z方向底板3上,z方向丝杠螺母9与z方向丝杆6组成螺旋传动副,z方向支承板12与z方向丝杠螺母9连接,z方向滑块10与z方向支承板12连接,且z方向滑块10与z方向导轨63组成滑动副,偏摆盘架16与z方向支承板12连接。
本实施例中,如图2、图3所示,z方向直线导轨组件1003还包括z方向丝杆轴承5、z方向轴承座4、z方向滑块盖板11、z方向丝杠螺母轴承8、z方向丝杠螺母座7、z方向联轴器13,其中z方向底板3通过第一固定螺钉2固定在桌台1上,2条相同的z方向导轨63通过第十五固定螺钉71固定在z方向底板3上,z方向滑块10有若干个,优选为4个,4个相同的z方向滑块10装配在2条z方向导轨63上,z方向滑块盖板11通过第十二固定螺钉61固定在每个z方向滑块10上,z方向轴承座4通过第十四固定螺钉67固定在z方向底板3上,z方向丝杆6与z方向丝杆轴承5同轴心装配于z方向轴承座4内,z方向丝杆6与z方向驱动电机14通过z方向联轴器13连接,z方向驱动电机14通过第二固定螺钉15固定在z方向底板3上,旋转台48通过第十固定螺钉52固定在y方向支承板54上,z方向丝杆螺母座7通过第十一固定螺钉53固定在z方向底板3上,z方向丝杆螺母9与z方向丝杆螺母轴承8和z方向丝杆6同轴心装配于z方向丝杆螺母座7内,z方向支承板12通过第十三固定螺钉62固定于z方向滑块10上。
作为本发明的一个实施方式,y方向直线导轨组件1002包括有y方向底板70、y方向导轨57、y方向滑块56、y方向滑块盖板55、y方向丝杆66、y方向丝杠螺母59、y方向丝杠螺母轴承60、y方向丝杠螺母座58、y方向丝杆轴承65、y方向轴承座64、y方向支承板54、y方向联轴器68、y方向驱动电机69, 其中y方向底板70置于桌台1上,2条相同的y方向导轨57通过第十五固定螺钉71固定在y方向底板70上,4个相同的y方向滑块56装配在2条y方向导轨57上,y方向滑块盖板55通过第十二固定螺钉61固定在每个y方向滑块56上,y方向轴承座64通过第十四固定螺钉67固定在y方向底板70上,y方向丝杆66与y方向丝杆轴承65同轴心装配于y方向轴承座64内,y方向丝杆66与y方向驱动电机69通过y方向联轴器68连接,y方向驱动电机69通过第二固定螺钉15固定在y方向底板71上,y方向丝杆螺母座71通过第十一固定螺钉53固定在y方向底板70上,y方向丝杆螺母59与y方向丝杆螺母轴承60和y方向丝杆66同轴心装配于y方向丝杆螺母座58内,y方向支承板54通过第十三固定螺钉62固定于y方向滑块56上。
具体地,还包括第一滑动轴承311、第一滑动轴承衬套312、第二滑动轴承313、第二滑动轴承衬套314、卡簧315,转轴31与第一滑动轴承311和第一滑动轴承衬套312同轴心装配于摆盘21内,同时转轴31下端与第二滑动轴承313、第二滑动轴承衬套314和卡簧316同轴心装配于摆盘21架内,转轴31下端还与抛光组件32连接。
在本领域技术人员的认知范围内,在抛光过程中,抛光头的转动方向既可以与旋转台48的转动方向相同,如图12所示,也可以与旋转台的转动方向相反,如图11所示,均可以实现抛光功能。
实施例4
如图13所示为本发明一种曲率自适应集群磁流变抛光自由曲面的方法的第一实施例,包括以下步骤:
S1:将待加工工件46置于旋转平台组件1004内,使各个抛光头位于待加工工件46上方;
将待加工工件46置于旋转平台组件1004内,通过调整z方向直线导轨组件1003与y方向直线导轨组件1002调整旋转平台组件1004与偏摆盘组件1001的位置,使偏摆盘组件1001位于待加工工件46上方;
S2:根据不同的待加工工件46特性配置与之匹配的磁流变抛光液72并将磁流变抛光液72倒入旋转平台组件1004中;
根据待加工工件46的特点,选择合适直径和磁场强度的磁极323对应安装于抛光部451内;
其中,磁流变抛光液72获取方法如下:在去离子水中添加质量百分比为2%的磨料以及质量百分比为2%的磁性颗粒,质量百分比1%的甘油以及质量百分比1%的防锈剂,充分搅拌后通过超声波震动5分钟,形成磁流变抛光液72;。
其中磨料与磁性颗粒可以通过以羰基铁粉、四氧化三铁、氧化铁等颗粒为内核,通过偶联剂把金刚石、SiC等磨料结合为外核的磁性复合颗粒进行替代。
S3:通过偏摆盘组件1001迫使各个抛光头与偏摆盘34实现同步转动;或通过微电机驱动各个抛光头实现同步转动,并利用抛光头产生的磁场作用于磁流变抛光液72;
其中一种方案是启动偏摆盘驱动电机23,通过偏心主轴25的旋转迫使偏摆盘34发生摆动,偏摆盘34的摆动迫使偏心分轴351实现同步转动,偏心分轴351的转动使得抛光头高速转动;单个抛光头形成的磁场强度为2500Gs;当然了,单个抛光头形成的磁场强度还可以为其他的数值;
S4:旋转平台组件1004使待加工工件46进行旋转,开始对待加工工件46抛光;
S5:在抛光过程中,使抛光头根据待加工工件46表面的曲率变化上下移动进行恒压抛光;
y方向直线导轨组带动旋转平台组件1004进行y方向的水平低速往复移动,在待加工工件46的低速转动和水平往复运动下,各抛光头在高速旋转的同时将随待加工工件46的曲率变化在垂直方向运动,使待加工工件46得到均匀抛光。
实施例5
以下为本发明一种曲率自适应集群磁流变抛光自由曲面的方法的第二实施例,本实施例与实施例4相似,所不同之处在于,磁流变抛光液72获取方法如下:在去离子水中添加质量百分比为10%的磨料、质量百分比为20%的磁性颗粒、质量百分比5%的甘油稳定剂、质量百分比5%的防锈剂,充分搅拌后通过超声波震动20分钟,形成磁流变抛光液72。
实施例6
以下为本发明一种曲率自适应集群磁流变抛光自由曲面的方法的第三实施例,本实施例与实施例4相似,所不同之处在于,磁流变抛光液72获取方法如下:在去离子水中添加质量百分比为20%的磨料以及质量百分比为40%的磁性颗粒,质量百分比15%的油酸以及质量百分比10%的防锈剂,充分搅拌后通过 超声波震动30分钟,形成磁流变抛光液72。
本发明巧妙地采用偏摆盘组件1001实现各个抛光头的同步旋转,每个抛光头均能实现恒力加工,很好地解决自由曲面抛光加工轨迹不易控制、加工受力不均、去除不匀的问题。本发明可应用于光学玻璃、微晶玻璃、蓝宝石等硬脆材料自由曲面,以及单晶SiC、单晶Si等晶片的精抛。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种曲率自适应集群磁流变抛光自由曲面的方法,其特征在于,包括以下步骤:
    S1:将待加工工件置于旋转平台组件内,使各个抛光头位于待加工工件上方;
    S2:根据不同的待加工工件特性配置与之匹配的磁流变抛光液并将磁流变抛光液倒入旋转平台组件中;
    S3:通过偏摆盘组件迫使各个抛光头与偏摆盘实现同步转动;或通过微电机驱动各个抛光头实现同步转动,并利用抛光头产生的磁场作用于磁流变抛光液形成磁流变柔性抛光头;
    S4:通过旋转平台组件使待加工工件进行旋转,开始对待加工工件抛光;
    S5:在抛光过程中,使抛光头根据待加工工件表面的曲率变化上下移动进行恒压曲率自适应抛光;
    S6:y方向直线导轨组件带动旋转平台组件进行y方向的水平低速往复移动,使待加工工件得到均匀抛光。
  2. 根据权利要求1所述的曲率自适应集群磁流变抛光自由曲面的方法,其特征在于,所述步骤S1中通过调整z方向直线导轨组件与y方向直线导轨组件调整旋转平台组件与偏摆盘组件的位置,使抛光头位于待加工工件上方。
  3. 根据权利要求2所述的曲率自适应集群磁流变抛光自由曲面的方法,其特征在于,所述步骤S5中利用气压、液压、弹簧或抛光头的自重使抛光头进行上下移动。
  4. 根据权利要求1至3任一项所述的曲率自适应集群磁流变抛光自由曲面的方法,其特征在于,步骤S2中磁流变抛光液的获取方法如下:在去离子水中添加质量百分比为2%~20%的游离磨料、质量百分比为2%~40%的磁性颗粒、质量百分比1%~15%的甘油或油酸稳定剂、质量百分比1%~10%的防锈剂,充分搅拌后通过超声波震动5~30分钟,形成磁流变抛光液。
  5. 一种应用于曲率自适应集群磁流变抛光自由曲面的偏摆盘组件,其特征在于,包括偏摆盘架、偏摆盘外壳、电机座、偏摆盘驱动电机、偏摆盘、偏心主轴、若干抛光头、若干第一卡簧、若干偏心分轴、若干气缸、若干抛光头,所述偏摆盘驱动电机固定在所述电机座上,电机座与所述偏摆盘外壳连接,偏摆盘外壳固定于所述偏摆盘架上,所述偏摆盘驱动电机与所述偏心主轴一端连接,偏心 主轴另一端装配于偏摆盘内,偏摆盘装配于偏摆盘外壳内,若干偏心分轴一端装配于偏摆盘内,若干偏心分轴另一端和若干第一卡簧同轴装配于偏摆盘架内,偏心分轴内置有气缸,所述气缸所设活塞杆与抛光头连接,抛光头为能产生磁场的装置。
  6. 根据权利要求5所述的偏摆盘组件,其特征在于,所述抛光头为设有中空腔体的柱状体,中空腔体内装设有磁极,柱状体的底部为圆弧状曲面;所述磁极为永磁铁材料,抛光头为抗磁材料。
  7. 根据权利要求6所述的偏摆盘组件,其特征在于,所述柱状体包括连接部及抛光部,磁极装设在抛光部所设的中空腔体内,连接部的上端与气缸所设的活塞杆连接,连接部的下端与抛光部连接。
  8. 一种曲率自适应集群磁流变抛光自由曲面的装置,其特征在于,包括工作台、y方向直线导轨组件、z方向直线导轨组件、旋转平台组件、如权利要求5至7任一项所述的偏摆盘组件,所述y方向直线导轨组件置于所述工作台上,所述旋转平台组件置于所述y方向直线导轨组件上,所述旋转平台组件盛有磁流变抛光液,待加工工件置于所述磁流变抛光液内,所述偏摆盘组件安装在所述z方向直线导轨组件上,且所述偏摆盘组件位于所述旋转平台组件的上方,所述偏摆盘组件内设有能产生磁场的装置,且所述偏摆盘组件产生的磁场能作用于所述磁流变抛光液。
  9. 根据权利要求8所述的曲率自适应集群磁流变抛光自由曲面的装置,其特征在于,所述旋转平台组件包括旋转台、旋转台架、置物盘、旋转台驱动电机,所述置物盘内盛有所述磁流变抛光液,所述置物盘置于所述旋转台上,所述旋转台驱动电机固定在所述旋转台上,所述旋转台置于所述旋转台架上。
  10. 根据权利要求8或9所述的曲率自适应集群磁流变抛光自由曲面的装置,其特征在于,所述z方向直线导轨组件包括有z方向底板、z方向丝杆、z方向丝杠螺母、z方向导轨、z方向滑块、z方向支承板、z方向驱动电机,其中z方向丝杆的一端与z方向驱动电机的输出轴连接,z方向丝杆的另一端支承在z方向底板上,z方向底板的底部与工作台连接,z方向导轨装设在z方向底板上,z方向丝杠螺母与z方向丝杆组成螺旋传动副,z方向支承板与z方向丝杠螺母连接,z方向滑块与z方向支承板连接,且z方向滑块与z方向导轨组成滑动副,偏摆盘架与z方向支承板连接。
PCT/CN2021/112375 2021-07-23 2021-08-13 一种曲率自适应集群磁流变抛光自由曲面的方法及装置 WO2023000414A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110838320.4A CN113579987B (zh) 2021-07-23 2021-07-23 一种曲率自适应集群磁流变抛光自由曲面的方法及装置
CN202110838320.4 2021-07-23

Publications (1)

Publication Number Publication Date
WO2023000414A1 true WO2023000414A1 (zh) 2023-01-26

Family

ID=78249310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112375 WO2023000414A1 (zh) 2021-07-23 2021-08-13 一种曲率自适应集群磁流变抛光自由曲面的方法及装置

Country Status (2)

Country Link
CN (1) CN113579987B (zh)
WO (1) WO2023000414A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117086767A (zh) * 2023-10-16 2023-11-21 蓬莱三和铸造有限公司 一种半挂车配件生产用表面抛光装置
CN118364731A (zh) * 2024-06-20 2024-07-19 中国人民解放军国防科技大学 基于遗传算法的螺旋磁流变抛光特定中频段误差调控方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116619221B (zh) * 2023-05-09 2024-08-27 浙江大学 一种间隙自适应非接触抛光装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224227A (ja) * 2005-02-16 2006-08-31 Olympus Corp 磁気研磨方法
CN101224556A (zh) * 2008-02-04 2008-07-23 东华大学 光学零件磁流变精密抛光系统和方法
KR20100084778A (ko) * 2009-01-19 2010-07-28 연세대학교 산학협력단 자기유변유체를 이용하는 곡면 연마공구 및 곡면 연마방법
CN103042438A (zh) * 2012-12-31 2013-04-17 天津大学 一种恒压式超声波辅助磁流变抛光方法及装置
CN203019159U (zh) * 2013-01-05 2013-06-26 长沙纳美特超精密制造技术有限公司 一种磁流变抛光头
CN105328516A (zh) * 2015-11-18 2016-02-17 广东工业大学 磁流变柔性抛光垫的动态磁场自锐抛光装置及其抛光方法
CN108311958A (zh) * 2018-01-30 2018-07-24 上海理工大学 集群轮式磁性复合流体抛光装置
CN111283482A (zh) * 2020-04-07 2020-06-16 台州学院 多头自适应磁流变抛光装置
CN212095823U (zh) * 2020-02-28 2020-12-08 湖南宇环精密制造有限公司 浮动打磨组件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579833B (zh) * 2009-06-05 2011-08-31 东华大学 高效率可控多磨头磁流变抛光装置
CN106965041A (zh) * 2017-03-20 2017-07-21 广东工业大学 一种基于磁流变效应的线性抛光加工方法及其装置
CN107877269B (zh) * 2017-10-26 2023-10-03 广东工业大学 一种集群磁流变高效抛光加工高精度球的装置及抛光方法
CN110561202B (zh) * 2019-10-14 2024-08-09 吉林大学 多维超声辅助磁流变精密研抛机床及加工方法
CN111069984B (zh) * 2019-12-31 2024-04-09 广东工业大学 一种动态磁场磁流变抛光装置及抛光方法
CN111941156A (zh) * 2020-09-04 2020-11-17 深圳市金洲精工科技股份有限公司 一种微型钻头抛光方法及抛光装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224227A (ja) * 2005-02-16 2006-08-31 Olympus Corp 磁気研磨方法
CN101224556A (zh) * 2008-02-04 2008-07-23 东华大学 光学零件磁流变精密抛光系统和方法
KR20100084778A (ko) * 2009-01-19 2010-07-28 연세대학교 산학협력단 자기유변유체를 이용하는 곡면 연마공구 및 곡면 연마방법
CN103042438A (zh) * 2012-12-31 2013-04-17 天津大学 一种恒压式超声波辅助磁流变抛光方法及装置
CN203019159U (zh) * 2013-01-05 2013-06-26 长沙纳美特超精密制造技术有限公司 一种磁流变抛光头
CN105328516A (zh) * 2015-11-18 2016-02-17 广东工业大学 磁流变柔性抛光垫的动态磁场自锐抛光装置及其抛光方法
CN108311958A (zh) * 2018-01-30 2018-07-24 上海理工大学 集群轮式磁性复合流体抛光装置
CN212095823U (zh) * 2020-02-28 2020-12-08 湖南宇环精密制造有限公司 浮动打磨组件
CN111283482A (zh) * 2020-04-07 2020-06-16 台州学院 多头自适应磁流变抛光装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117086767A (zh) * 2023-10-16 2023-11-21 蓬莱三和铸造有限公司 一种半挂车配件生产用表面抛光装置
CN117086767B (zh) * 2023-10-16 2023-12-12 蓬莱三和铸造有限公司 一种半挂车配件生产用表面抛光装置
CN118364731A (zh) * 2024-06-20 2024-07-19 中国人民解放军国防科技大学 基于遗传算法的螺旋磁流变抛光特定中频段误差调控方法

Also Published As

Publication number Publication date
CN113579987A (zh) 2021-11-02
CN113579987B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2023000414A1 (zh) 一种曲率自适应集群磁流变抛光自由曲面的方法及装置
US10118269B2 (en) Self-sharpening polishing device with magnetorheological flexible polishing pad formed by dynamic magnetic field and polishing method thereof
WO2017211082A1 (zh) 一种集群动态磁场控制抛光垫刚度的双面抛光装置及方法
CN104308671B (zh) 一种磁流变抛光装置与方法
CN106826411B (zh) 一种凸轮驱动磁体式磁流变流体动压抛光装置及抛光方法
CN200981191Y (zh) 光学零件精磨抛光机
CN205237716U (zh) 磁流变柔性抛光垫的动态磁场自锐抛光装置
WO2022261998A1 (zh) 一种超光滑平坦化抛光方法及装置
CN107617933B (zh) 一种动态磁场磁流变抛光装置
KR940007405B1 (ko) 미소연마방법 및 미소연마공구
US20220161383A1 (en) Apparatus for batch polishing of workpieces
CN111215970B (zh) 一种微结构模具超声空化辅助超声磁力抛光方法
CN108544305A (zh) 一种集群磁流变辅助v型槽高效高精度抛光陶瓷球的装置
Wang et al. Feasibility study on surface finishing of miniature V-grooves with magnetic compound fluid slurry
CN107470987B (zh) 一种基于磁流变胶的超光滑平面抛光装置及抛光方法
CN109594119A (zh) 一种电致化学抛光装置及其工作方法
JP5061296B2 (ja) 平面両面研磨方法及び平面両面研磨装置
CN107971832B (zh) 一种用于磁流变抛光的机械旋转式脉冲磁场发生器
WO2021035972A1 (zh) 一种电磁耦合抛光设备及其电磁耦合控制磨粒状态的抛光方法
CN112108944A (zh) 一种半球谐振子流道约束-剪切流变抛光方法及装置
JPH04336954A (ja) 微小研磨方法及び微小研磨工具
CN114833683B (zh) 一种激光陀螺光学元件精加工用超光滑抛光装置及方法
CN110549214B (zh) 一种精密研磨抛光装置
CN208262426U (zh) 一种集群磁流变辅助v型槽高效高精度抛光陶瓷球的装置
CN205817564U (zh) 一种集群动态磁场控制抛光垫刚度的双面抛光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950656

Country of ref document: EP

Kind code of ref document: A1