WO2023000199A1 - 内置有云台的拍摄装置 - Google Patents

内置有云台的拍摄装置 Download PDF

Info

Publication number
WO2023000199A1
WO2023000199A1 PCT/CN2021/107566 CN2021107566W WO2023000199A1 WO 2023000199 A1 WO2023000199 A1 WO 2023000199A1 CN 2021107566 W CN2021107566 W CN 2021107566W WO 2023000199 A1 WO2023000199 A1 WO 2023000199A1
Authority
WO
WIPO (PCT)
Prior art keywords
photographing device
limiting
inner ring
outer ring
lens assembly
Prior art date
Application number
PCT/CN2021/107566
Other languages
English (en)
French (fr)
Inventor
赵坤雷
薛光怀
王平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/107566 priority Critical patent/WO2023000199A1/zh
Publication of WO2023000199A1 publication Critical patent/WO2023000199A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing

Definitions

  • the present application relates to the technical field of photographing devices, in particular to a photographing device with a built-in pan/tilt.
  • Some shooting devices (such as cameras, video cameras, infrared cameras, etc.) are carried on carrying equipment (such as unmanned aerial vehicles, vehicles, remote-controlled ground robots, etc.) for shooting work, and when shooting, it is often necessary to adjust the shooting device relative to The pose of the host device.
  • carrying equipment such as unmanned aerial vehicles, vehicles, remote-controlled ground robots, etc.
  • the shooting device is usually carried on the carrying device through an external pan-tilt, which includes at least one bracket and a motor that drives the bracket to rotate, and the shooting device is installed on a certain bracket, and the The rotation of the driving bracket is used to control the attitude change of the shooting device.
  • the external pan/tilt generally has a large volume because it includes at least one bracket and a corresponding motor, which is not conducive to the overall miniaturization of the photographing device and the carrying device.
  • the embodiment of the present application proposes a shooting device with a built-in pan/tilt.
  • the above-mentioned shooting device with a built-in pan/tilt includes: a pan/tilt, including a pan/tilt base and a joint bearing; a lens assembly, which is rotatably connected to the pan/tilt base through a joint bearing; The base rotates.
  • the pan-tilt is built into the photographing device, and the built-in pan-tilt includes a pan-tilt base and a joint bearing, the lens assembly is rotatably connected to the pan-tilt base through the joint bearing, and the drive assembly is used to drive the lens
  • the component rotates relative to the pan-tilt base, thereby changing the attitude of the lens component. Due to the relatively small volume of the joint bearing, even if the pan/tilt is built into the shooting device, the overall size of the shooting device will not be too large, which is conducive to the miniaturization of the shooting device and/or the overall equipment including the shooting device.
  • the joint bearing is used as the connecting part to realize the rotational connection between the lens assembly and the pan-tilt base. Due to the strong bearing capacity, impact resistance, corrosion resistance, and wear resistance of the joint bearing itself, the joint bearing between the lens assembly and the pan-tilt base The rotary connection is more reliable.
  • FIG. 1 is a schematic diagram of an exploded structure of a shooting device with a built-in pan/tilt according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of an exploded structure from another angle of the photographing device of Fig. 1;
  • Fig. 3 is a schematic structural view of the photographing device of Fig. 1;
  • Fig. 4 is a schematic cross-sectional view of the A-A direction of the photographing device of Fig. 3;
  • FIG. 5 is a schematic diagram of an exploded structure of a joint bearing of a shooting device with a built-in pan/tilt according to an embodiment of the present application
  • Fig. 6 is a schematic structural view of the outer ring of the spherical plain bearing in Fig. 5;
  • Fig. 7 is a structural schematic diagram of the inner ring of the joint bearing of Fig. 5;
  • Fig. 8 is a schematic diagram of the positional relationship between the inner ring and the outer ring of the joint bearing in Fig. 5 during assembly (or disassembly);
  • Fig. 9 is a B-B sectional schematic diagram of the inner ring and the outer ring of the joint bearing of Fig. 8;
  • Fig. 10 is a structural schematic diagram of the joint bearing in Fig. 5 when the inner ring and the outer ring are assembled and overlapped;
  • Fig. 11 is a schematic cross-sectional view of the inner ring and the outer ring of the joint bearing of Fig. 10;
  • Fig. 12 is a force analysis diagram of the limiting protrusion on the outer ring of the joint bearing of Fig. 11;
  • FIG. 13 is a schematic diagram of an exploded structure of a joint bearing of a shooting device with a built-in pan/tilt according to another embodiment of the present application;
  • Fig. 14 is a schematic diagram of the positional relationship between the inner ring and the outer ring of the joint bearing of Fig. 13 during assembly (or disassembly);
  • Fig. 15 is a structural schematic view of the joint bearing in Fig. 14 when the inner ring and the outer ring are assembled to overlap each other;
  • Fig. 16 is a structural schematic diagram of the joint bearing of Fig. 15 after the inner ring and the outer ring are assembled;
  • Fig. 17 is a structural schematic diagram of the joint bearing in Fig. 16 when the inner ring and the outer ring are completely overlapped and the limiting protrusion and the limiting groove are partially exposed;
  • Fig. 18 is a structural schematic view of the inner ring of the joint bearing of Fig. 17 after rotating around the Y-axis of the outer ring;
  • Fig. 19 is a structural diagram of the joint bearing in Fig. 18 after the inner ring rotates around the X-axis of the outer ring;
  • Fig. 20 is a structural schematic view of the inner ring of the joint bearing in Fig. 19 after it rotates around its own axis.
  • spatially relative terms such as “above”, “below”, “top”, “bottom”, etc., may be used herein to describe only one device or feature as shown in the figures in relation to other devices or features.
  • the spatial relationship of features should be understood to also encompass different orientations in use or operation than those shown in the figures.
  • An embodiment of the present application provides a shooting device with a built-in pan/tilt
  • the shooting device may be various types of shooting devices, such as a camera, a video camera, an infrared camera, a surveying and mapping camera, and the like.
  • the application scenarios of the above-mentioned shooting device can also be various.
  • the shooting device can be mounted on a movable platform such as an unmanned aerial vehicle, a vehicle, or a remote-controlled ground robot; or, the shooting device can also be mounted on a shooting handle, a hand-held ring, On handheld devices such as shooting poles; even, the shooting device can be independent of other devices, and the user can directly hold the camera for shooting.
  • FIG. 1 shows a schematic diagram of an exploded structure of a shooting device with a built-in pan/tilt according to an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of an exploded structure of the photographing device in FIG. 1 from another angle.
  • FIG. 3 shows a schematic structural view of the assembled components of the photographing device in FIG. 1 .
  • FIG. 4 is a schematic cross-sectional view along the line A-A of the photographing device in FIG. 3 .
  • a shooting device with a built-in pan/tilt includes a pan/tilt, a lens assembly 30 and a driving assembly.
  • the pan-tilt is built into the shooting device, and the built-in pan-tilt includes a pan-tilt base 10 and a joint bearing 20, and the lens assembly 30 is rotatably connected with the pan-tilt base 10 through the joint bearing 20, and the driving assembly is used to drive the lens assembly 30 relative to each other.
  • the pan-tilt base 10 rotates, thereby changing the attitude of the lens assembly 30 .
  • the joint bearing 20 is used as the connecting part to realize the rotational connection between the lens assembly 30 and the pan-tilt base 10. Because the joint bearing 20 itself has strong bearing capacity, impact resistance, corrosion resistance, wear resistance and other characteristics, the lens assembly 30 and The rotation connection of the platform base 10 is more reliable.
  • the posture of the lens assembly 30 can be regarded as the whole or part of the lens assembly 30 (such as the lens part including the lens, the lens barrel and other structures) relative to a certain reference object (such as the pan-tilt base 10, the mounted shooting The bearing equipment of the device, the user performing the shooting operation, a certain reference point on the ground, etc.)
  • the attitude information used to characterize the attitude of the lens assembly 30 includes but not limited to attitude angle, rotational speed, rotational acceleration and the like.
  • the pan/tilt base 10 is provided with an accommodating portion 11, and the accommodating portion 11 has a bottom and an opening opposite to the bottom, that is, the accommodating portion 11 can form A chamber has a bottom and an opening.
  • the lens assembly 30 is at least partially accommodated in the accommodating portion 11 through the opening, which can make the lens assembly 30 and the pan-tilt base 10 more compact, which is beneficial to reduce the overall size, and the accommodating portion 11 can also accommodate the lens assembly 30 in The inner part plays a protective role to a certain extent.
  • the lens assembly 30 can also be completely exposed relative to the pan-tilt base 10, for example, the other end of the lens assembly 30 opposite to the light incident end is connected to the pan-tilt base through the joint bearing 20. Block 10 is connected.
  • an image sensor is provided at one end of the lens assembly 30 accommodated in the accommodating portion 11 , and the image sensor is used to convert the optical image formed by the incident light from the lens into an electrical signal corresponding to the optical image.
  • the lens assembly 30 as a whole moves relative to the pan-tilt base 10 through the joint bearing 20 .
  • the accommodating portion 11 also has a circumferential side, and the joint bearing 20 is located between the portion of the lens assembly 30 accommodated in the accommodating portion 11 and the circumferential side of the accommodating portion 11 .
  • the arrangement position of the joint bearing 20 is not limited thereto, and in other embodiments not shown in the figure, the joint bearing 20 can also be arranged at other positions corresponding to the lens assembly 30 and the pan-tilt base 10 Location.
  • the lens assembly 30 can also partially move relative to the pan/tilt base 10 through the joint bearing 20, for example, the lens part of the lens assembly 30 including the lens, the lens barrel and the like passes through the joint bearing 20 relative to the pan/tilt base. The base 10 moves.
  • the shooting device may vibrate.
  • the vibration of the camera will be caused by factors such as the change of the flight action of the unmanned aerial vehicle and the influence of the surrounding airflow; when the camera is mounted on a handheld device or directly held by the user, due to Vibration that may occur in the user's operation will cause the vibration of the shooting device. Therefore, in order to ensure the photographing effect of the photographing device, the photographing device provided in the embodiment of the present application should also implement a stabilization function.
  • the photographing device further includes a motion sensor and a controller.
  • the motion sensor is used to measure the motion change information of the lens assembly 30 .
  • a controller is communicatively coupled to the motion sensor and drive assembly. The controller is used to control the driving assembly to drive the lens assembly 30 to move in the opposite direction of the movement according to the motion change information, so as to perform motion compensation and achieve stabilization.
  • the type of the motion sensor and the type of the motion change information measured by the motion sensor are not limited, as long as the lens assembly 30 can be stabilized.
  • the motion sensor includes an inertial measurement unit
  • the motion change information includes attitude change information of the lens assembly 30 .
  • the attitude information of the lens assembly 30 is determined by the relationship between the lens assembly 30's own coordinate system and the ground coordinate system. It can also be understood that the attitude of the lens assembly 30 is the orientation and attitude of the lens assembly 30 relative to the ground.
  • the attitude change information includes at least one of the following: the direction of attitude angle change, the value of attitude angle change, the rotation speed when the attitude is changed, and the rotation acceleration when the attitude is changed.
  • the attitude angle includes at least one of the following: pitch angle, roll angle and yaw angle.
  • the posture information of the lens assembly 30 can also be determined in other ways, for example, by the relationship between the lens assembly 30's own coordinate system and the pan-tilt base 10's own coordinate system; or, by the lens assembly
  • the relationship between the self-coordinate system of 30 and the self-coordinate system of the carrying device carrying the camera device is determined; or, it is determined by the relationship between the self-coordinate system of the lens assembly 30 and the coordinate system established by the operating user, and so on.
  • the motion sensor includes a position measurement unit
  • the motion change information includes position change information of a preset part of the lens assembly 30 .
  • the position change information of the preset position of the lens assembly 30 can also indirectly reflect the rotation direction, angle, etc. of the lens assembly 30 .
  • the "preset location" may be any location where the location can be measured by the location measurement unit.
  • a preset position is set on the part of the lens assembly 30 accommodated in the accommodating portion 11
  • a position measuring unit is set in the accommodating portion 11
  • the position of the preset position of the lens assembly 30 is measured in real time by the position measuring unit, Therefore, the movement mode of the lens assembly 30 is judged.
  • the position measurement unit includes at least one of the following: a Hall-type position sensor, a magneto-electric position sensor, and a photoelectric position sensor.
  • the driving assembly includes a magnetic part and a magnetic fitting, one of the magnetic part and the magnetic fitting is arranged on the lens assembly 30 , and the other is connected to the lens assembly 30 interval setting.
  • the magnetic part cooperates with the magnetic matching part to drive the lens assembly 30 to rotate under the action of the magnetic force.
  • one of the magnetic component and the magnetic matching component is disposed inside the lens assembly 30 , and the other is disposed on the pan-tilt base 10 .
  • the inner side of the lens assembly 30 refers to the side of the lens assembly 30 away from the light incident end of the lens. side.
  • the magnetic parts and the magnetic matching parts can be accommodated in the accommodating portion 11 of the pan-tilt base 10 , making full use of the internal space of the pan-tilt base 10 .
  • the specific arrangement positions of the magnetic parts and the magnetic matching parts are not limited thereto.
  • one of the magnetic parts and the magnetic matching parts can also be arranged outside the lens assembly 30 on the pan/tilt.
  • the other part of the base 10 is arranged on the outside of the platform base 10 .
  • the magnetic parts or magnetic matching parts arranged on the lens assembly 30 are arranged obliquely compared with the optical axis of the lens assembly 30, so that when the lens assembly When the magnetic part or the magnetic matching part on 30 is subjected to magnetic force, it is easier to drive the entire lens assembly 30 to rotate to change its attitude, especially to drive the lens assembly 30 to rotate around its optical axis.
  • the magnetic parts (or magnetic matching parts) arranged on the lens assembly 30 are arranged in multiples along the circumferential direction. Multiple, so as to facilitate the use of magnetic force to control the rotation of the lens assembly 30 in various directions.
  • the number and arrangement of the magnetic parts and magnetic matching parts are not limited thereto, and in other embodiments, they can be reasonably designed according to actual needs.
  • the types of the magnetic component and the magnetic matching component are not limited, and may be any structure capable of interacting to drive the lens assembly 30 to rotate.
  • the magnetic part can include a coil 41, and the magnetic matching part can include a magnet 42.
  • the coil 41 can generate a magnetic field after being energized, and the magnetic field can be changed by changing the current passed through the coil 41, thereby changing the electromagnetic force received by the magnet 42 in the magnetic field. , and then control the lens assembly 30 to rotate.
  • the magnetic part can include a magnet
  • the magnetic matching part can include a metal part.
  • the magnet is movably arranged on the pan-tilt base 10. When the position of the magnet changes, the magnetic field it produces will also change. The magnetic force in the magnetic field will also change, so as to drive the lens assembly 30 .
  • FIG. 5 shows a schematic diagram of an exploded structure of a joint bearing 20 of a shooting device with a built-in pan/tilt according to an embodiment of the present application, wherein the limiting structure includes a limiting protrusion 231 and a limiting groove 232 .
  • FIG. 6 shows a schematic structural view of the outer ring 22 of the joint bearing 20 in FIG. 5 .
  • FIG. 7 shows a schematic structural view of the inner ring 21 of the joint bearing 20 in FIG. 5 .
  • FIG. 8 is a schematic diagram of the positional relationship between the inner ring 21 and the outer ring 22 of the joint bearing 20 in FIG. 5 during assembly (or disassembly).
  • FIG. 6 shows a schematic structural view of the outer ring 22 of the joint bearing 20 in FIG. 5 .
  • FIG. 7 shows a schematic structural view of the inner ring 21 of the joint bearing 20 in FIG. 5 .
  • FIG. 8 is a schematic diagram of the positional relationship between the inner ring 21 and the outer
  • FIG. 9 shows a schematic cross-sectional view along the direction B-B of the inner ring 21 and the outer ring 22 of the joint bearing 20 in FIG. 8 .
  • FIG. 10 shows a schematic structural view of the joint bearing 20 in FIG. 5 when the inner ring 21 and the outer ring 22 are assembled and overlapped.
  • FIG. 11 shows a schematic cross-sectional view of the inner ring 21 and the outer ring 22 of the joint bearing 20 of FIG. 10 .
  • FIG. 12 is a force analysis diagram of the limiting protrusion 231 on the outer ring 22 of the joint bearing of FIG. 11 .
  • FIG. 13 shows a schematic diagram of an exploded structure of a joint bearing 20 of a shooting device with a built-in pan/tilt according to another embodiment of the present application, wherein the limiting structure includes two limiting protrusions 231 and two limiting grooves 232 .
  • FIG. 14 shows a schematic diagram of the positional relationship between the inner ring 21 and the outer ring 22 of the joint bearing 20 in FIG. 13 during assembly (or disassembly).
  • FIG. 15 shows a schematic structural view of the joint bearing 20 in FIG. 14 when the inner ring 21 and the outer ring 22 are assembled to overlap each other.
  • FIG. 16 shows a schematic view of the structure of the joint bearing 20 in FIG. 15 after the inner ring 21 and the outer ring 22 are assembled.
  • FIG. 14 shows a schematic diagram of the positional relationship between the inner ring 21 and the outer ring 22 of the joint bearing 20 in FIG. 13 during assembly (or disassembly).
  • FIG. 15 shows a schematic structural view of the joint
  • FIG. 17 shows a schematic structural view of the joint bearing 20 in FIG. 16 when the inner ring 21 and the outer ring 22 are completely overlapped and the limiting protrusion 231 and the limiting groove 232 are partially exposed.
  • FIG. 18 shows a schematic structural view of the joint bearing 20 in FIG. 17 after the inner ring 21 rotates around the Y-axis of the outer ring 22 .
  • FIG. 19 shows a schematic structural view of the joint bearing 20 in FIG. 18 after the inner ring 21 rotates around the X-axis of the outer ring 22 .
  • FIG. 20 shows a schematic structural view of the inner ring 21 of the joint bearing 20 in FIG. 19 after it rotates around its own axis.
  • the joint bearing 20 includes an inner ring 21 , an outer ring 22 and a limiting structure.
  • the inner ring 21 is set on the lens assembly 30
  • the outer ring 22 is set on the pan-tilt base 10 .
  • the outer ring 22 is sleeved on the outer side of the inner ring 21 . Relative rotation can occur between the inner ring 21 and the outer ring 22 , so as to realize the rotational connection between the lens assembly 30 and the pan-tilt base 10 .
  • the inner concave surface 221 of the outer ring 22 is in sliding fit with the outer convex surface 211 of the inner ring 21 .
  • the limit structure cooperates with the inner ring 21 and the outer ring 22 to limit the rotation range of the inner ring 21 relative to the outer ring 22, thereby limiting the rotation range of the lens assembly 30 relative to the pan-tilt base 10, and then the rotation of the lens assembly 30
  • the attitude change range is limited.
  • the manner in which the limiting structure cooperates with the inner ring 21 and the outer ring 22 is specifically that the limiting structure is mechanically coupled with one of the inner ring 21 and the outer ring 22 and cooperates with the other.
  • “mechanical coupling” can be understood as a mechanical connection. The movement of one of the two connected parts will drive the movement of the other. The two parts can always remain relatively fixed, or relative movement can occur.
  • the position-limiting structure is mechanically connected to the inner ring 21 or the outer ring 22, the two may be directly connected, or indirectly connected through other structures.
  • the structure of the joint bearing 20 is not limited thereto. In other embodiments not shown in the figure, the joint bearing 20 may not include a limiting structure. At this time, the inner ring 21 can rotate freely relative to the outer ring 22 .
  • the inner concave surface 221 of the outer ring 22 and the outer convex surface 211 of the inner ring 21 are always attached to each other.
  • the outer convex surface 211 of the inner part of the inner ring 21 corresponding to the inner side of the outer ring 22 is all in contact with the inner concave surface 221 of the outer ring 22, thereby ensuring the stability of rotation .
  • the inner concave surface 221 of the outer ring 22 is spherical or ellipsoidal.
  • the outer convex surface 211 of the inner ring 21 may also be spherical or ellipsoidal.
  • the inner concave surface 221 of the outer ring 22 or the outer convex surface 211 of the inner ring 21 can also be other shapes that can realize the sliding fit between the outer ring 22 and the inner ring 21 .
  • the center of the inner concave surface 221 of the outer ring 22 is the origin, and the two radial directions perpendicular to each other of the outer ring 22 are respectively the X-axis direction and the Y-axis direction, and the axial direction of the outer ring 22 is the Z-axis direction to establish a rectangular coordinate system (as shown in FIGS. 6 and 16 ).
  • the limiting structure allows the inner ring 21 to rotate around any one of the X axis, Y axis and Z axis of the outer ring 22 .
  • the inner ring 21 can rotate around one of the X-axis, Y-axis, and Z-axis, and of course can also rotate around two or three of the X-axis, Y-axis, and Z-axis at the same time.
  • the final rotation angle of the inner ring 21 relative to the outer ring 2 is the coupling of rotation angles around two axes or three axes.
  • any rotation of the inner ring 21 relative to the outer ring 22 can be decomposed into rotation around at least one of the X-axis, Y-axis, and Z-axis
  • the inner ring 21 of the above embodiment can also be rotated relative to the outer ring 22.
  • the ring 22 rotates around any axis different from the X axis, Y axis, and Z axis, so it is more flexible to use, and the specific rotation range is limited by the limit structure.
  • the inner ring 21 of the joint bearing 20 relative to the outer ring 22 directly affects the attitude change of the lens assembly 30, the inner ring 21 can rotate around any of the X axis, Y axis, and Z axis of the outer ring 22. Rotation can also improve the flexibility of the attitude change of the lens assembly 30, so that the attitude of the lens assembly 30 in all directions can be changed, and the specific range of change is limited by the limiting structure.
  • the corresponding relationship between the rotation of the inner ring 21 around the X-axis, Y-axis, and Z-axis of the outer ring 22 and the resulting change in the attitude angle of the lens assembly 30 is not limited.
  • the positional relationship of the platform base 10 is reasonably designed.
  • the rotation of the inner ring 21 around the X axis can be corresponding to the change of the pitch angle of the lens assembly 30; the rotation of the inner ring 21 around the Y axis can be corresponding to the change of the roll angle of the lens assembly 30; Rotation about the Z axis corresponds to a change in the yaw angle of the lens assembly 30 .
  • the limiting structure can limit the rotation range of the inner ring 21 around the Z axis, that is, the inner ring 21 can rotate around the Z axis within a certain angle range.
  • the axis of the inner ring 21 coincides with the axis of the outer ring 22, and the inner ring 21 is relative to the outer ring. 22 in the initial state. From this initial state, the inner ring 21 can rotate around the Z axis within a certain range of rotation angles.
  • the axes of the inner ring 21 and the outer ring 22 are always coincident (that is, the axes of the inner ring 21 and the Z-axis of the outer ring 22 are always coincident).
  • the limiting structure can limit the rotation range of the inner ring 21 around the X axis, and/or limit the rotation range of the inner ring 21 around the Y axis. That is to say, the rotation of the inner ring 21 around the X axis is performed within a certain angle range, and/or the rotation of the inner ring 21 around the Y axis is performed within a certain angle range.
  • the limiting structure can limit the rotation range of the inner ring 21 around the X-axis, Y-axis and Z-axis.
  • the limit structure can also limit the range of rotation of the inner ring 21 around one or two of the X-axis, Y-axis, and Z-axis, and for the rotation around the remaining axes No limitation is imposed.
  • the limiting structure includes a limiting protrusion 231 and a limiting groove 232, and one of the limiting protrusion 231 and the limiting groove 232 is arranged on the inner ring 21, the other is set on the outer ring 22.
  • the limiting protrusion 231 extends into the limiting groove 232 .
  • the limit groove 232 has a resisting portion 233 , and the limit protrusion 231 cooperates with the resisting portion 233 to limit the rotation range of the inner ring 21 relative to the outer ring 22 .
  • the positional relationship between the limiting protrusion 231 and the resisting portion 233 also changes, for example, the limiting protrusion 231 and the resisting portion 233 gradually approach or move away from each other.
  • the limiting protrusion 231 and the resisting portion 233 are gradually approached to abut against each other, the two cannot move relative to each other, so that the inner ring 21 can no longer rotate relative to the outer ring 22 . Therefore, rationally designing the positions of the limiting protrusion 231 and the resisting portion 233 can limit the rotation of the inner ring 21 relative to the outer ring 22 around at least one axis within a certain range.
  • the above-mentioned limiting protrusion 231 and limiting groove 232 can be built between the inner ring 21 and the outer ring 22 , which has a simple structure and takes up less space, which is beneficial to the miniaturization of the joint bearing 20 .
  • the spherical joint bearing 20 with the above-mentioned limiting structure can realize rotation limiting without the need of an external mechanism of the spherical bearing 20 to achieve limiting, which is also beneficial to the simplification and miniaturization of the overall structure of the photographing device.
  • the specific structure of the resisting portion 233 is not limited, and may be any structure that can cooperate with the limiting protrusion 231 to limit the rotation of the inner ring 21 within a certain range.
  • the resisting portion 233 includes at least part of the groove wall of the limiting groove 232 . That is to say, the limiting convex part 231 is matched with at least part of the groove wall of the limiting groove 232 , and stops moving when the limiting convex part 231 moves to abut against a certain part of the groove wall of the limiting groove 232 . Wherein, which part of the groove wall of the limiting groove 232 is used as the resisting portion 233 can be rationally designed according to the range of the rotation angle of the inner ring 21 . For example, the resisting portion 233 includes two opposite groove walls of the limiting groove 232.
  • the limiting protrusion 231 moves toward one of the two groove walls, and moves away from one of the two groove walls. Another move.
  • the rotation angle range of the inner ring 21 along the rotation direction is limited by the cooperation between the two groove walls and the limiting protrusion 231; or, the resisting portion 233 includes the entire groove wall of the limiting groove 232, at this time the limiting protrusion 231 It can cooperate with any part of the groove wall of the limit groove 232, so as to limit the rotation angle range of the inner ring 21 in multiple directions.
  • the resisting portion 233 includes a resisting protrusion disposed in the limiting groove 232 and protruding from the bottom of the limiting groove 232 , and the resisting protrusion can be connected to the groove wall of the limiting groove 232 Fittingly, it can also be spaced from the groove wall of the limiting groove 232 .
  • the rotation range of the inner ring 21 can also be limited by the cooperation of the limiting protrusion 231 and the resisting protrusion.
  • At least one of the limiting protrusion 231 and the resisting portion 233 is made of a noise-reducing material, so as to reduce the noise when the limiting protrusion 231 touches the resisting portion 233 .
  • the noise reduction material includes at least one of the following: plastic, sound insulation cotton, silica gel and rubber.
  • the inner ring 21, the limiting protrusion 231 and the outer ring 22 are made of metal materials, and the inner ring 21 Or the outer ring 22 is provided with a groove, and the groove wall of the groove is wrapped with a plastic noise reduction ring, and the space surrounded by the noise reduction ring forms a limit groove 232, and the limit protrusion 231 directly contacts the noise reduction ring. bump.
  • the grooves on the inner ring 21 or outer ring 22 can be regarded as limiting grooves 232, and the noise reduction ring wrapped on the groove wall can be regarded as The resisting portion 233 .
  • the inner ring 21 or the outer ring 22 provided with the limiting groove 232 can also be made of plastic or other materials that can reduce noise and ensure strength.
  • the resisting portion 233 extends for a circle along the circumferential direction of the limiting groove 232 , and the limiting protrusion 231 is located in the space surrounded by the resisting portion 233 .
  • the limiting convex portion 231 can cooperate with any part of the ring-shaped resisting portion 233 , so as to limit the rotation angle range of the inner ring 21 rotating in multiple directions.
  • the shape of the space enclosed by the resisting portion 233 is not limited, and can be reasonably designed according to the rotation restriction requirement of the inner ring 21 .
  • the shape of the space surrounded by the resisting portion 233 is a rectangle, a circle, an ellipse, a polygon or an irregular shape. It should be noted that, in some embodiments, if the resisting portion 233 includes a ring of groove walls of the limiting groove 232, the shape of the limiting groove 232 can also be reasonably designed according to the rotation restriction requirements of the inner ring 21, for example, the limit The groove 232 is rectangular, circular, elliptical, polygonal or irregular in shape.
  • the resisting portion 233 includes two first resisting portions 2331 arranged at intervals along the axial direction of the inner ring 21 .
  • the limiting protrusion 231 is located between the two first resisting portions 2331 and is spaced apart from each first resisting portion 2331 . Therefore, the inner ring 21 can rotate toward the directions of the two first resisting portions 2331 respectively from the initial state.
  • the distance between the limiting protrusion 231 and the two first resisting portions 2331 is equal, so that the inner ring 21 can rotate toward the above two directions from the initial state.
  • the positional relationship between the limiting protrusion 231 and the two first resisting portions 2331 is not limited thereto, and in other embodiments, it can be designed according to actual needs.
  • the distance between the limiting protrusion 231 and one first resisting portion 2331 is greater than the distance between the other first resisting portion 2331, or the distance between the limiting protrusion 231 and the other first resisting portion 2331
  • One of the first resisting portions 2331 is attached to each other.
  • the resisting portion 233 includes two second resisting portions 2332 arranged at intervals along the circumferential direction of the inner ring 21 .
  • the limiting protrusion 231 is located between the two second resisting portions 2332 and is spaced apart from each second resisting portion 2332 .
  • the distance between the limiting protrusion 231 and the two second resisting portions 2332 is equal.
  • the dimensional relationship between the limiting slot 232 and the limiting protrusion 231 is not limited, and can be designed according to actual limiting requirements.
  • the maximum dimension of the limiting groove 232 is greater than the maximum dimension of the free end of the limiting protrusion 231 .
  • the “maximum size of the limiting groove 232 ” may include but not limited to the maximum width of the limiting groove 232 or the maximum depth of the limiting groove 232 .
  • the maximum size of the free end of the limiting protrusion 231 may include but not limited to the maximum radial dimension of the free end of the limiting protrusion 231 or the maximum height of the free end of the limiting protrusion 231, "the limiting protrusion 231 The free end” refers to the end of the limiting protrusion 231 extending into the limiting slot 232 .
  • the maximum size of the limiting slot 232 is greater than twice the maximum size of the free end of the limiting protrusion 231 .
  • the opening area of the limiting slot 232 is greater than the end surface area of the free end of the limiting protrusion 231 .
  • the opening area of the limiting groove 232 is greater than twice the surface area of the free end of the limiting protrusion 231 .
  • the dimensional relationship between the space surrounded by the resisting portion 233 and the limiting convex portion 231 is not limited, and can be designed according to actual limiting needs.
  • the maximum size of the space enclosed by the resisting portion 233 is greater than the maximum size of the free end of the limiting protrusion 231.
  • the "maximum size of the space surrounded by the resisting portion 233" may include, but not limited to, the maximum radial dimension or the maximum depth of the space surrounded by the resisting portion 233 .
  • the maximum size of the free end of the limiting protrusion 231 may include but not limited to the maximum radial dimension of the free end of the limiting protrusion 231 or the maximum height of the free end of the limiting protrusion 231, "the limiting protrusion 231 The free end” refers to the end of the limiting protrusion 231 extending into the limiting slot 232 .
  • the maximum size of the space enclosed by the resisting portion 233 is greater than twice the maximum size of the free end of the limiting protrusion 231 .
  • the opening area of the space surrounded by the resisting portion 233 is greater than the end surface area of the free end of the limiting protrusion 231 .
  • the opening area of the space enclosed by the resisting portion 233 is greater than twice the end surface area of the free end of the limiting protrusion 231 .
  • the multiple limiting structures are arranged at intervals along the circumferential direction of the inner ring 21, so as to realize the alignment of the inner ring 21 around the X-axis.
  • Y-axis and Z-axis rotation limit the range of rotation.
  • there are two limiting structures and the two limiting structures are sufficient to limit the rotation of the inner ring 21 around the X-axis, Y-axis and Z-axis.
  • the number of limiting structures may also be more than three. At this time, considering the influence on the moment of inertia, the limiting structures can be set to an even number that is symmetrically arranged.
  • the extension lines of the centerlines of the two limiting structures intersect at one point.
  • the limiting protrusion 231 corresponds to the center of the limiting groove 232
  • the centerline of the limiting structure is the center of the limiting protrusion 231 Wire.
  • the extension lines of the centerlines of the two limiting structures are perpendicular to each other.
  • the structures of the plurality of position-limiting structures are the same, that is, the size, relative positional relationship, shape, etc. of each component are the same.
  • the relative positional relationship between the two limiting structures and the structure of each limiting structure (including but not limited to the size and positional relationship between the limiting protrusion 231 and the stopper 233 or the stopper groove 232, the stopper 233 The enclosed space or the shape of the limiting groove 232 , etc.) jointly determine the specific rotation angle range of the inner ring 21 relative to the outer ring 22 . Therefore, the relative positional relationship and structure of the limiting structure can be reasonably designed based on the requirement for limiting the rotation of the inner ring 21 .
  • the resisting portion 233 includes two second resisting portions 2332 arranged at intervals along the circumferential direction of the inner ring 21 .
  • the distance between the two second resisting portions 2332 of each limiting structure is equal, and when the inner ring 21 rotates along the circumferential direction of the outer ring 22, the distance between each limiting structure
  • the limiting protrusions 231 can be matched with the corresponding second resisting parts 2332 synchronously, that is, the plurality of limiting protrusions 231 of the plurality of limiting structures touch the second resisting parts 2332 on their respective left sides at the same time as they rotate. , or touch the second resisting portions 2332 on their respective right sides at the same time.
  • the limiting protrusion 231 cooperates with the corresponding second resisting portion 2332 asynchronously.
  • the inner ring 21 stops rotating immediately, and the rest of the position-limiting protrusions 231 will not contact the second resisting portion 2332 on the left side. A touch occurs.
  • the resisting portion 233 includes a peripheral groove wall of the limiting groove 232, and the two groove walls of the limiting groove 232 arranged at intervals along the axial direction of the inner ring 21 are the first groove walls (that is, the first resisting portion 2331 ), the two groove walls of the limiting groove 232 arranged at intervals along the circumferential direction of the inner ring 21 are the second groove walls (that is, the second resisting portion 2332 ).
  • the inner ring 21 is in the initial state where it completely overlaps with the outer ring 22.
  • the limiting protrusion 231 is located at the center of the corresponding limiting groove 232, and the x-axis, y-axis, and z-axis of the inner ring 21 itself coincide with the X-axis, Y-axis and Z-axis of the outer ring 22 respectively.
  • the side limiting protrusions 231 are against the corresponding limiting grooves 232 of the first groove wall.
  • the photographing device further includes a first positioning structure, and the first positioning structure is used to determine the distance between the inner ring 21 and the lens assembly 30
  • the relative installation position facilitates the assembly of the inner ring 21 and the lens assembly 30 .
  • the first positioning structure is used for circumferential positioning when the inner ring 21 is assembled with the lens assembly 30 .
  • the first positioning structure can also be used for axial positioning when the inner ring 21 and the lens assembly 30 are assembled.
  • the first positioning structure may include a first positioning slot 51 and a first positioning protrusion that can be inserted into the first positioning slot 51 , and one of the first positioning slot 51 and the first positioning protrusion is provided on the inner ring 21 , and the other is set on the lens assembly 30 .
  • the first positioning structure can not only play the role of positioning, but also play the role of driving connection, so that the inner ring 21 and the lens assembly 30 can rotate synchronously.
  • the first positioning protrusion and the first positioning groove 51 can be tightly inserted, so as to ensure the connection reliability between the two.
  • the matching gap between the first positioning protrusion and the first positioning groove 51 needs to be small, so that it will not affect the rotation angle range of the inner ring 21 .
  • the photographing device further includes a second positioning structure, and the second positioning structure is used to determine the distance between the outer ring 22 and the pan/tilt base 10 .
  • the relative installation position between them facilitates the assembly of the outer ring 22 and the pan-tilt base 10 .
  • the second positioning structure is used for circumferential positioning when the outer ring 22 is assembled with the pan-tilt base 10 .
  • the second positioning structure can also be used for axial positioning when the outer ring 22 is assembled with the pan-tilt base 10 .
  • the second positioning structure may include a second positioning groove 61 and a second positioning protrusion that can be inserted into the second positioning groove 61, and one of the second positioning groove 61 and the second positioning protrusion is provided on the outer ring 22, The other is arranged on the platform base 10.
  • the second positioning structure can not only play a positioning role, but also can play a connecting role, so that the outer ring 22 and the pan-tilt base 10 can be relatively fixed or movable within a small range.
  • the second positioning protrusion and the second positioning groove 61 can be tightly inserted, so as to ensure the connection reliability between the two.
  • the matching gap between the second positioning protrusion and the second positioning groove 61 needs to be small, so that it will not affect the rotation angle range of the inner ring 21 .
  • the limiting protrusion 231 includes a limiting pin, and the limiting pin is detachably connected to the outer ring 22 or the inner ring 21,
  • the use is more flexible, and it can facilitate the assembly or disassembly of the joint bearing 20 .
  • the limiting pin can also be integrally connected with the outer ring 22 or the inner ring 21 .
  • the centerlines of the two limit pins coincide with the X-axis and Y-axis of the outer ring 22 .
  • the outer ring 22 or the inner ring 21 is provided with a through hole 24, and the limit pin is inserted into the through hole 24 and interferes with the through hole 24, so as to ensure the gap between the limit pin and the outer ring 22 or the inner ring 21.
  • the connection reliability is high. During the rotation process of the inner ring 21 relative to the outer ring 22, even if the limit pin collides with the limit groove 232 or the resisting portion 233, it will not fall off.
  • the impact force F can be decomposed into a component force F1 along the cone surface of the limit pin and a force along the cone perpendicular to the cone surface of the limit pin.
  • the component force F1 should be less than or equal to the static friction force between the taper surface of the limit pin and the through hole 24 .
  • the coefficient of static friction be ⁇
  • the static friction is the product of the coefficient of static friction and the pressure on the limit pin, and the pressure on the limit pin is equal to F2. Therefore, F1 ⁇ *F2; therefore, ⁇ F1/F2, that is, ⁇ tan2 ⁇ .
  • the inner concave surface 221 of the outer ring 22 is provided with a guide groove 222 near its edge, and the groove width of the guide groove 222 is greater than or equal to that of the inner ring 21 along its axial direction.
  • the groove width of the guide groove 222 refers to the width of the guide groove 222 along the axis perpendicular to the outer ring 22 .
  • the radial dimension of the inner concave surface 221 of the outer ring 22 corresponding to the guide groove 222 is greater than or equal to the diameter of the outer convex surface 211 of the inner ring 21 , so that the inner ring 21 can be assembled into the outer ring 22 through the guide groove 222 .
  • the inner ring 21 is assembled into the outer ring 22 through the guide groove 222 at a certain angle (for example, perpendicular to the outer ring 22 ).
  • the groove width of the guide groove 222 is greater than or equal to the size of the inner ring 21 along its axial direction, so that the entire inner ring 21 can enter the outer ring 22 through the guide groove 222 .
  • the radial dimension of the portion of the inner concave surface 221 edge of the outer ring 22 corresponding to the guide groove 222 is greater than or equal to the diameter of the outer convex surface 211 of the inner ring 21, so that the inner ring 21 can smoothly enter the outer ring 22 inside, which makes assembly or disassembly easier.
  • the opening direction of the guide groove 222 is parallel to the axial direction of the outer ring 22 .
  • the axial dimension of the guide groove 222 along the outer ring 22 is half of the axial dimension of the outer ring 22 .
  • the limiting pin is connected to the outer ring 22, the limiting groove 232 is arranged on the inner ring 21, and the position of the limiting pin and the guide groove 222 are aligned. correspond.
  • the limit pin may not be removed from the outer ring 22, and the inner ring 21 is pushed into the outer ring 22 from the guide groove 222 in a state perpendicular to the outer ring 22, During this process, the limiting pin is inserted into the limiting groove 232 . Thereafter, the inner ring 21 is rotated to a state where it completely overlaps with the outer ring 22, thereby completing the assembly.
  • the disassembly process of the inner ring 21 is opposite to the assembly process, and will not be repeated here.
  • the inner and outer rings can be assembled or separated without dismantling the limiting pin by using the guide groove 222, and the operation is simpler and more convenient.

Abstract

一种内置有云台的拍摄装置,包括:云台,包括云台基座(10)和关节轴承(20);镜头组件(30),通过所述关节轴承(20)与所述云台基座(10)可转动连接;以及驱动组件,用于驱动所述镜头组件(30)相对于所述云台基座(10)发生转动。由于关节轴承的体积相对较小,即使云台内置于拍摄装置,也不会使拍摄装置的整体尺寸过大,从而有利于拍摄装置和/或包含拍摄装置的整体设备的小型化。此外,采用关节轴承作为实现镜头组件与云台基座转动连接的连接部件,由于关节轴承自身的承载能力强、抗冲击、抗腐蚀、耐磨损等特性,使镜头组件与云台基座的转动连接更加可靠。

Description

内置有云台的拍摄装置 技术领域
本申请涉及拍摄装置技术领域,具体涉及一种内置有云台的拍摄装置。
背景技术
一些拍摄装置(例如照相机、摄影机、红外相机等)是搭载在承载设备(例如无人飞行器、车辆、遥控地面机器人等)上进行拍摄工作的,而在拍摄进行时,往往需要调整拍摄装置相对于承载设备的姿态。
在现有技术中,拍摄装置通常通过外置的云台搭载在承载设备上,该云台包括至少一个支架及驱动该支架转动的电机,而拍摄装置则被安装至某一个支架上,通过电机驱动支架的转动以控制拍摄装置的姿态变化。然而,在上述拍摄装置通过外置云台搭载在承载设备的方式中,外置云台由于包括至少一个支架和相应的电机,体积一般较大,不利于拍摄装置与承载设备整体的小型化。
发明内容
本申请实施例提出一种内置有云台的拍摄装置。上述内置有云台的拍摄装置包括:云台,包括云台基座和关节轴承;镜头组件,通过关节轴承与云台基座可转动连接;以及驱动组件,用于驱动镜头组件相对于云台基座发生转动。
在本申请实施例的拍摄装置中,云台内置于拍摄装置,内置的云台包括云台基座和关节轴承,镜头组件通过关节轴承与云台基座可转动连接,驱动组件用于驱动镜头组件相对于云台基座发生转动,从而改变镜头组件的姿态。由于关节轴承的体积相对较小,即使云台内置于拍摄装置,也不会使拍摄装置的整体尺寸过大,从而有利于拍摄装 置和/或包含拍摄装置的整体设备的小型化。此外,采用关节轴承作为实现镜头组件与云台基座转动连接的连接部件,由于关节轴承自身的承载能力强、抗冲击、抗腐蚀、耐磨损等特性,使镜头组件与云台基座的转动连接更加可靠。
附图说明
图1是根据本申请一个实施例的内置有云台的拍摄装置的分解结构示意图;
图2是图1的拍摄装置的另一角度的分解结构示意图;
图3是图1的拍摄装置的结构示意图;
图4是图3的拍摄装置的A-A向剖视示意图;
图5是根据本申请一个实施例的内置有云台的拍摄装置的关节轴承的分解结构示意图;
图6是图5的关节轴承的外圈的结构示意图;
图7是图5的关节轴承的内圈的结构示意图;
图8是图5的关节轴承的内圈与外圈在进行装配(或拆卸)时的位置关系示意图;
图9是图8的关节轴承的内圈和外圈的B-B向剖视示意图;
图10是图5的关节轴承的内圈与外圈装配后且相互重叠时的结构示意图;
图11是图10的关节轴承的内圈和外圈的剖视示意图;
图12是图11的关节轴承的外圈上的限位凸部的受力分析图;
图13是根据本申请另一个实施例的内置有云台的拍摄装置的关节轴承的分解结构示意图;
图14是图13的关节轴承的内圈与外圈在进行装配(或拆卸)时的位置关系示意图;
图15是图14的关节轴承的内圈与外圈装配至相互重叠时的结构示意图;
图16是图15的关节轴承的内圈与外圈装配完成后的结构示意图;
图17是图16的关节轴承的内圈与外圈完全重叠时且将限位凸部和限位槽部分外露的结构示意图;
图18是图17的关节轴承的内圈绕外圈的Y轴转动后的结构示意图;
图19是图18的关节轴承的内圈绕外圈的X轴转动后的结构示意图;
图20是图19的关节轴承的内圈绕自身的轴线转动后的结构示意图。
附图标记说明:
10、云台基座;11、容置部;20、关节轴承;21、内圈;211、外凸面;22、外圈;221、内凹面;222、导向槽;231、限位凸部;232、限位槽;233、抵挡部;2331、第一抵挡部;2332、第二抵挡部;24、通孔;30、镜头组件;41、线圈;42、磁铁;51、第一定位槽;61、第二定位槽。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一个实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,除非另外定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。若全文中涉及“第一”、“第二”等描述,则该“第一”、“第二”等描述仅用于区别类似的对象,而不能理解为指示或暗示其相对重要性、先后次序或者隐含指明所指示的技术特征的数量,应该理解为“第一”、“第二”等描述的数据在适当情况下可以互换。若全文中出现“和/或”,其含义为包括三个并列方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。此外,为了便于描述,在 这里可以使用空间相对术语,如“上方”、“下方”、“顶部”、“底部”等,仅用来描述如图中所示的一个器件或特征与其他器件或特征的空间位置关系,应当理解为也包含除了图中所示的方位之外的在使用或操作中的不同方位。
本申请实施例提供了一种内置有云台的拍摄装置,该拍摄装置可以为多种类型的拍摄装置,例如照相机、摄影机、红外相机、测绘相机等。此外,上述拍摄装置的应用场景也可以为多种,例如,拍摄装置可以搭载在无人飞行器、车辆、遥控地面机器人等可移动平台上;或者,拍摄装置也可以搭载在拍摄手柄、手持环、拍摄杆等手持设备上;甚至于,拍摄装置还可以独立于其他设备,用户直接手持进行拍摄。
图1示出了本申请一个实施例的内置有云台的拍摄装置的分解结构示意图。图2示出了图1的拍摄装置的另一角度的分解结构示意图。图3示出了图1的拍摄装置的各个部件装配完成后的结构示意图。图4是图3的拍摄装置的A-A向剖视示意图。
如图1至图4所示,在本申请的一些实施例中,内置有云台的拍摄装置包括云台、镜头组件30以及驱动组件。其中,云台内置于拍摄装置,内置的云台包括云台基座10和关节轴承20,镜头组件30通过关节轴承20与云台基座10可转动连接,驱动组件用于驱动镜头组件30相对于云台基座10发生转动,从而改变镜头组件30的姿态。由于关节轴承20的体积相对较小,即使云台内置于拍摄装置,也不会使拍摄装置的整体尺寸过大,从而有利于拍摄装置和/或包含拍摄装置的整体设备的小型化。此外,采用关节轴承20作为实现镜头组件30与云台基座10转动连接的连接部件,由于关节轴承20自身的承载能力强、抗冲击、抗腐蚀、耐磨损等特性,使镜头组件30与云台基座10的转动连接更加可靠。
需要说明的是,镜头组件30的姿态可看作是镜头组件30的整体或部分(例如包括透镜、镜筒等结构的镜头部分)相对于某一参照物(例如云台基座10、搭载拍摄装置的承载设备、执行拍摄操作的用户、地面上某一参考点等)的方位姿态。用于表征镜头组件30的姿 态的姿态信息包括但不限于姿态角、转动速度、转动加速度等。
如图3和图4所示,在本申请的一些实施例中,云台基座10设有容置部11,容置部11具有底部以及与底部相对的开口,即容置部11能够形成一腔室,该腔室具有底部和开口。镜头组件30通过开口至少部分收容在容置部11内,这样可以使镜头组件30与云台基座10更加紧凑,有利于减小整体尺寸,并且容置部11也能够对镜头组件30收容在其内部的部分起到一定程度的保护作用。当然,在图中未示出的其他实施方式中,镜头组件30也可以相对于云台基座10完全外露,例如将镜头组件30与光线入射端相对的另一端通过关节轴承20与云台基座10连接。
进一步地,镜头组件30收容在容置部11内的一端设有图像传感器,图像传感器用于将由镜头入射的光线形成的光像转换为与该光像相对应的电信号。镜头组件30整体通过关节轴承20相对于云台基座10运动。优选地,如图4所示,容置部11还具有周向侧部,关节轴承20位于镜头组件30收容在容置部11内的部分与容置部11的周向侧部之间。
当然,可以理解地,关节轴承20的设置位置不限于此,在图中未示出的其他实施方式中,关节轴承20也可以设置在对应于镜头组件30、云台基座10的其他部位的位置。此外,在其他实施方式中,镜头组件30也可以部分通过关节轴承20相对于云台基座10运动,例如镜头组件30的包括透镜、镜筒等结构的镜头部分通过关节轴承20相对于云台基座10运动。
无论拍摄装置搭载在可移动平台上、手持设备上或是由用户直接手持进行拍摄,拍摄装置均可能会发生振动的现象。例如,拍摄装置搭载在无人飞行器上时,由于无人飞行器的飞行动作变化、周围气流的影响等因素,会引起拍摄装置的振动;拍摄装置搭载在手持设备上或直接由用户手持时,由于用户操作可能发生的抖动,会引起拍摄装置的振动。因此,为了保证拍摄装置的拍摄效果,本申请实施例提供的拍摄装置还应实现增稳的功能。
在本申请的一些实施例中,拍摄装置还包括运动传感器和控制器。 运动传感器用于测量镜头组件30的运动变化信息。控制器与运动传感器和驱动组件通讯连接。控制器用于根据运动变化信息控制驱动组件驱动镜头组件30沿其发生运动的相反方向运动,以进行运动补偿,从而实现增稳。其中,运动传感器的类型以及通过运动传感器测量得到的运动变化信息的类型并不作限定,只要能够实现对镜头组件30进行增稳即可。
具体地,在本申请的一些实施例中,运动传感器包括惯性测量单元,运动变化信息包括镜头组件30的姿态变化信息。优选地,镜头组件30的姿态信息由镜头组件30自身坐标系与地面坐标系之间的关系确定,也可以理解为镜头组件30的姿态是镜头组件30相对于地面的方位姿态。而姿态变化信息则包括以下至少一项:姿态角变化方向、姿态角变化数值、姿态变化时的转动速度以及姿态变化时的转动加速度。其中,姿态角包括以下至少一项:俯仰角、横滚角以及偏航角。
当然,在其他实施方式中,镜头组件30的姿态信息也可以由其他方式确定,例如,由镜头组件30自身坐标系与云台基座10自身坐标系之间的关系确定;或者,由镜头组件30自身坐标系与搭载拍摄装置的承载设备的自身坐标系之间的关系确定;或者,由镜头组件30自身坐标系与以操作用户建立的坐标系之间的关系确定,等等。
另外,在本申请的另一些实施例中,运动传感器包括位置测量单元,运动变化信息包括镜头组件30的一预设部位的位置变化信息。通过镜头组件30的预设部位的位置变化信息,也能够间接反映出镜头组件30发生转动的方向、角度等情况。其中,“预设部位”可以为任何能够实现通过位置测量单元测量位置的部位。优选地,在镜头组件30收容在容置部11内的部分上设置预设部位,在容置部11内设置位置测量单元,通过位置测量单元实时测量镜头组件30的预设部位的所在位置,从而判断镜头组件30的运动方式。进一步地,位置测量单元包括以下至少一项:霍尔式位置传感器、磁电式位置传感器以及光电式位置传感器。
如图1至图4所示,在本申请的一些实施例中,驱动组件包括磁性件和磁性配合件,磁性件和磁性配合件中的一个设置在镜头组件 30上,另一个与镜头组件30间隔设置。磁性件与磁性配合件相配合,在磁力的作用下驱动镜头组件30转动。具体地,在一些实施例中,磁性件和磁性配合件中的一个设置在镜头组件30的内侧,另一个设置在云台基座10上。其中,“镜头组件30的内侧”指的是镜头组件30远离其镜头的光线入射端的一侧,在图中示出的具体实施例中,也可以理解为镜头组件30收容在容置部11内的一侧。磁性件和磁性配合件可被收容至云台基座10的容置部11内,充分利用了云台基座10的内部空间。当然,磁性件和磁性配合件的具体设置位置并不限于此,在图中未示出的其他实施方式中,也可以将磁性件和磁性配合件中的一个设置在镜头组件30外露于云台基座10的部分,另一个设置在云台基座10的外侧。
进一步地,如图1至图4所示,在本申请的一些实施例中,设置在镜头组件30上的磁性件或磁性配合件相较于镜头组件30的光轴倾斜设置,这样当镜头组件30上的磁性件或磁性配合件受到磁力作用时,能够更加容易地驱动整个镜头组件30转动以改变姿态,特别是便于驱动镜头组件30绕其光轴进行转动。优选地,设置在镜头组件30上的磁性件(或磁性配合件)为沿周向设置的多个,相应地,设置在云台基座10上的磁性配合件(或磁性件)也可以为多个,从而便于利用磁力对镜头组件30沿各个方向的转动的控制。当然,磁性件和磁性配合件的数量和排布方式不限于此,在其他实施方式中,可以根据实际需求对其进行合理设计。
需要说明的是,磁性件和磁性配合件的类型并不作限定,可以为任何能够相作用以驱动镜头组件30转动的结构。例如,磁性件可以包括线圈41,磁性配合件可以包括磁铁42,线圈41通电后能够产生磁场,通过改变线圈41通入的电流来改变磁场,从而改变位于磁场中的磁铁42所受到的电磁力,进而控制镜头组件30进行转动。又例如,磁性件可以包括磁铁,磁性配合件可以包括金属件,磁铁可活动地设置在云台基座10上,当磁铁的位置发生变化后,其产生的磁场也会发生变化,金属件在磁场中受到的磁力也会发生变化,从而实现对镜头组件30的驱动。
图5示出了本申请一个实施例的内置有云台的拍摄装置的关节轴承20的分解结构示意图,其中,限位结构包括一个限位凸部231和一个限位槽232。图6示出了图5的关节轴承20的外圈22的结构示意图。图7示出了图5的关节轴承20的内圈21的结构示意图。图8是图5的关节轴承20的内圈21与外圈22在进行装配(或拆卸)时的位置关系示意图。图9示出了图8的关节轴承20的内圈21和外圈22的B-B向剖视示意图。图10示出了图5的关节轴承20的内圈21与外圈22装配后且相互重叠时的结构示意图。图11示出了图10的关节轴承20的内圈21和外圈22的剖视示意图。图12是图11的关节轴承的外圈22上的限位凸部231的受力分析图。
图13示出了本申请另一个实施例的内置有云台的拍摄装置的关节轴承20的分解结构示意图,其中,限位结构包括两个限位凸部231和两个限位槽232。图14示出了图13的关节轴承20的内圈21与外圈22在进行装配(或拆卸)时的位置关系示意图。图15示出了图14的关节轴承20的内圈21与外圈22装配至相互重叠时的结构示意图。图16示出了图15的关节轴承20的内圈21与外圈22装配完成后的结构示意图。图17示出了图16的关节轴承20的内圈21与外圈22完全重叠时且将限位凸部231和限位槽232部分外露的结构示意图。图18示出了图17的关节轴承20的内圈21绕外圈22的Y轴转动后的结构示意图。图19示出了图18的关节轴承20的内圈21绕外圈22的X轴转动后的结构示意图。图20示出了图19的关节轴承20的内圈21绕自身的轴线转动后的结构示意图。
如图4至图10以及图13至图20所示,在本申请的一些实施例中,关节轴承20包括内圈21、外圈22以及限位结构。其中,内圈21套设在镜头组件30上,外圈22设置在云台基座10上。外圈22套设在内圈21的外侧。内圈21与外圈22之间能够发生相对转动,从而实现镜头组件30与云台基座10的转动连接。当内圈21与外圈22相对转动时,外圈22的内凹面221与内圈21的外凸面211滑动配合。限位结构与内圈21和外圈22相配合,以限制内圈21相对于外圈22的转动范围,从而限制镜头组件30相对于云台基座10的转 动范围,进而对镜头组件30的姿态变化范围进行限制。
需要说明的是,在一些实施例中,限位结构与内圈21和外圈22相配合的方式具体为限位结构与内圈21以及外圈22其中一个机械耦合,与另外一个配合。其中,“机械耦合”可以理解为机械连接,被连接的两个部件中的一个的运动会带动另一个运动,该两个部件之间可以始终保持相对固定,也可以发生相对运动。此外,限位结构与内圈21或外圈22机械连接时,可以为两者直接连接,也可以通过其他结构间接连接。
可以理解地,关节轴承20的结构不限于此,在图中未示出的其他实施方式中,关节轴承20可以不包括限位结构,此时,内圈21可以相对于外圈22任意转动。
进一步地,在内圈21相对于外圈22进行转动的过程中,外圈22的内凹面221与内圈21的外凸面211始终相互贴合。在内圈21相对于外圈22进行转动的过程中,内圈21对应于外圈22的内侧的部分的外凸面211全部与外圈22的内凹面221相贴合,从而保证转动的稳定性。优选地,外圈22的内凹面221为球面或椭球面。相应地,内圈21的外凸面211也可以为球面或椭球面。当然,在其他实施方式中,外圈22的内凹面221或内圈21的外凸面211也可以为其他能够实现外圈22和内圈21滑动配合的形状。
如图5、图6、图10以及图13至图20所示,在本申请的一些实施例中,以外圈22的内凹面221的圆心为原点,以外圈22相互垂直的两个径向方向分别为X轴方向和Y轴方向,以外圈22的轴向方向为Z轴方向建立直角坐标系(如图6和图16所示)。其中,限位结构允许内圈21绕外圈22的X轴、Y轴、Z轴中的任一轴进行转动。具体地,内圈21可以绕X轴、Y轴、Z轴中的一个轴进行转动,当然也可以绕X轴、Y轴、Z轴中的两个轴或三个轴同时进行转动,此时内圈21相对于外圈2的最终转动角度为绕两个轴或三个轴的转动角度的耦合。换言之,由于内圈21相对于外圈22发生的任何转动都能够被分解为绕X轴、Y轴、Z轴中的至少一个轴的转动,因此上述实施例的内圈21也可相对于外圈22绕不同于X轴、Y轴、Z轴的其他任 何轴发生转动,使用更加灵活,具体转动范围由限位结构进行限制。
需要注意的是,由于关节轴承20的内圈21相对于外圈22的转动直接影响镜头组件30的姿态变化,内圈21绕外圈22的X轴、Y轴、Z轴中的任一轴进行转动也能够提高镜头组件30的姿态变化的灵活性,使镜头组件30的沿各个方向的姿态均能够发生变化,而具体变化的范围则由限位结构进行限制。此外,内圈21绕外圈22的X轴、Y轴、Z轴的转动与由此引起的镜头组件30的姿态角的变化的对应关系并不做限定,可以根据关节轴承20、镜头组件30、云台基座10的位置关系进行合理设计。例如,可以将内圈21绕X轴的转动与镜头组件30的俯仰角的变化相对应、将内圈21绕Y轴的转动与镜头组件30的横滚角的变化相对应、将内圈21绕Z轴的转动与镜头组件30的偏航角的变化相对应。
在本申请的一些实施例中,限位结构能够限制内圈21绕Z轴转动的转动范围,也就是说,内圈21绕Z轴的转动在一定角度范围内进行。如图10以及图15至图17所示,在一些实施例中,当内圈21与外圈22完全重叠时,内圈21的轴线与外圈22的轴线重合,内圈21相对于外圈22处于初始状态。由该初始状态起,内圈21可绕Z轴在一定转动角度范围内进行转动。在此过程中,内圈21的轴线与外圈22的轴线始终重合(即内圈21的轴线与外圈22的Z轴始终重合)。
进一步地,在本申请的一些实施例中,限位结构能够限制内圈21绕X轴转动的转动范围,和/或,限制内圈21绕Y轴转动的转动范围。也就是说,内圈21绕X轴的转动在一定角度范围内进行,和/或,内圈21绕Y轴的转动在一定角度范围内进行。优选地,限位结构能够限制内圈21绕X轴、Y轴以及Z轴转动的转动范围。当然,在图中未示出的其他实施方式中,限位结构也可以限制内圈21绕X轴、Y轴、Z轴中的一个或两个转动的转动范围,而对于绕剩余轴的转动并不进行限制。
如图5至图20所示,在本申请的一些实施例中,限位结构包括限位凸部231和限位槽232,限位凸部231和限位槽232中的一个设 置在内圈21上,另一个设置在外圈22上。限位凸部231伸入至限位槽232内。限位槽232具有抵挡部233,通过限位凸部231与抵挡部233相配合以限制内圈21相对于外圈22的转动范围。随着内圈21相对于外圈22的转动,限位凸部231与抵挡部233的位置关系也发生变化,例如限位凸部231与抵挡部233逐渐靠近或逐渐远离。其中,当限位凸部231与抵挡部233逐渐靠近至相互抵顶时,两者无法在进行相对移动,从而使内圈21相对于外圈22无法再进行转动。因此,将限位凸部231和抵挡部233的位置进行合理设计,可以实现将内圈21相对于外圈22绕至少一个轴的转动限制在一定范围内。
上述限位凸部231和限位槽232能够内置于内圈21与外圈22之间,结构简单,占用空间较小,有利于关节轴承20的小型化。具有上述限位结构的关节轴承20自身能够实现转动限位,无需借助关节轴承20的外部机构实现限位,同样利于拍摄装置整体的结构简化和小型化。
需要说明的是,抵挡部233的具体结构并不做限定,可以为任何能够与限位凸部231相配合以将内圈21的转动限制在一定范围内的结构。
如图5和图7所示,在本申请的一些实施例中,抵挡部233包括限位槽232的至少部分槽壁。也就是说,将限位凸部231与限位槽232的至少部分槽壁相配合,当限位凸部231移动至抵顶住限位槽232的某一部分槽壁时停止移动。其中,具体将限位槽232的哪部分槽壁作为抵挡部233可以根据对内圈21转动角度的范围进行合理设计。例如,抵挡部233包括限位槽232相对设置的两个槽壁,当内圈21转动时,限位凸部231朝向上述两个槽壁中的一个移动,并且背离上述两个槽壁中的另一个移动。通过上述两个槽壁与限位凸部231的配合以实现限制内圈21沿该转动方向的转动角度范围;或者,抵挡部233包括限位槽232的整个槽壁,此时限位凸部231能够与限位槽232的槽壁的任意部位进行配合,从而限制内圈21沿多个方向转动的转动角度范围。
当然,抵挡部233的具体结构不限于此。在本申请的另一些实施 例中,抵挡部233包括设置在限位槽232内并凸出于限位槽232的槽底的抵挡凸件,该抵挡凸件可以与限位槽232的槽壁相贴合,也可以与限位槽232的槽壁之间相间隔。通过限位凸部231与抵挡凸件的配合同样能够实现对于内圈21转动范围的限制。
优选地,限位凸部231和抵挡部233中的至少一个由降噪材料制成,以降低限位凸部231与抵挡部233触碰时的噪音。其中,降噪材料包括以下至少一项:塑料、隔音棉、硅胶以及橡胶。例如,在图中示出的具体实施例中,为了保证强度、加工难易度以及配合或连接可靠性,内圈21、限位凸部231和外圈22采用金属材料制成,内圈21或外圈22上开设有凹槽,凹槽的一周槽壁包裹有塑料材质的降噪圈,降噪圈围成的空间形成限位槽232,限位凸部231直接与降噪圈进行触碰。需要注意的是,若从另一角度考虑,内圈21或外圈22上开设有凹槽可看作是限位槽232,而包裹在凹槽的槽壁上的降噪圈可看作是抵挡部233。当然,在其他实施方式中,也可以将设有限位槽232的内圈21或外圈22整体采用塑料等既能实现降噪且强度能够保证的材料。
特别地,在本申请的一些实施例中,抵挡部233沿限位槽232的周向方向延伸一周,限位凸部231位于抵挡部233围成的空间内。此时限位凸部231能够与呈环形的抵挡部233的任意部位进行配合,从而限制内圈21沿多个方向转动的转动角度范围。其中,抵挡部233围成的空间的形状并不做限定,可以根据内圈21的转动限制要求进行合理设计。例如,抵挡部233围成的空间的形状呈矩形、圆形、椭圆形、多边形或不规则形状。需要注意的是,在一些实施例中,如果抵挡部233包括限位槽232的一圈槽壁,限位槽232的形状也可根据内圈21的转动限制要求进行合理设计,例如,限位槽232呈矩形、圆形、椭圆形、多边形或不规则形状。
如图5和图7所示,在本申请的一些实施例中,抵挡部233包括沿内圈21的轴向方向间隔设置的两个第一抵挡部2331。当内圈21与外圈22重叠时,限位凸部231位于两个第一抵挡部2331之间并与每个第一抵挡部2331均相间隔。因此,内圈21由初始状态起能够分 别朝向两个第一抵挡部2331的方向进行转动。优选地,当内圈21与外圈22重叠时,限位凸部231与两个第一抵挡部2331之间的距离相等,这样可以使内圈21由初始状态起朝向上述两个方向转动的角度限制相同。当然,当内圈21与外圈22重叠时,限位凸部231与两个第一抵挡部2331的位置关系不限于此,在其他实施例中,可以根据实际需要进行设计。例如,当内圈21与外圈22重叠时,限位凸部231与一个第一抵挡部2331之间的距离大于与另一个第一抵挡部2331之间的距离,或者限位凸部231与其中一个第一抵挡部2331相贴合。
此外,在本申请的一些实施例中,抵挡部233包括沿内圈21的周向方向间隔设置的两个第二抵挡部2332。同样地,当内圈21与外圈22重叠时,限位凸部231位于两个第二抵挡部2332之间并与每个第二抵挡部2332均相间隔。优选地,当内圈21与外圈22重叠时,限位凸部231与两个第二抵挡部2332之间的距离相等。上述设置所起到的作用与前述限位凸部231与第一抵挡部2331设置所起到的作用相同,在此不再赘述。
需要说明的是,限位槽232与限位凸部231之间的尺寸关系不做限定,可以根据实际限位需要进行设计。在一些实施例中,限位槽232的最大尺寸大于限位凸部231的自由端的最大尺寸。其中,“限位槽232的最大尺寸”可以包括但不限于限位槽232的最大槽宽或限位槽232的最大槽深。相应地,“限位凸部231的自由端的最大尺寸”可以包括但不限于限位凸部231的自由端的最大径向尺寸或限位凸部231的自由端的最大高度,“限位凸部231的自由端”指的是限位凸部231伸入限位槽232的一端。优选地,限位槽232的最大尺寸大于限位凸部231的自由端的最大尺寸的两倍。另外,在一些实施例中,限位槽232的开口面积大于限位凸部231的自由端的端面面积。优选地,限位槽232的开口面积大于限位凸部231的自由端的端面面积的两倍。
另外,抵挡部233围成的空间与限位凸部231之间的尺寸关系不做限定,可以根据实际限位需要进行设计。在一些实施例中,抵挡部 233围成的空间的最大尺寸大于限位凸部231的自由端的最大尺寸。其中,“抵挡部233围成的空间的最大尺寸”可以包括但不限于抵挡部233围成的空间的最大径向尺寸或最大深度。相应地,“限位凸部231的自由端的最大尺寸”可以包括但不限于限位凸部231的自由端的最大径向尺寸或限位凸部231的自由端的最大高度,“限位凸部231的自由端”指的是限位凸部231伸入限位槽232的一端。优选地,抵挡部233围成的空间的最大尺寸大于限位凸部231的自由端的最大尺寸的两倍。另外,在一些实施例中,抵挡部233围成的空间的开口面积大于限位凸部231的自由端的端面面积。优选地,抵挡部233围成的空间的开口面积大于限位凸部231的自由端的端面面积的两倍。
如图13至图20所示,在本申请的一些实施例中,限位结构为多个,多个限位结构沿内圈21的周向方向间隔设置,从而实现对内圈21绕X轴、Y轴以及Z轴转动的转动范围的限制。优选地,限位结构为两个,两个限位结构足以实现对内圈21绕X轴、Y轴以及Z轴三轴的转动限位。当然,在其他实施方式中,限位结构的数量也可以为三个以上。此时,考虑到对于转动惯量的影响,可以将限位结构设置为对称设置的偶数个。
进一步地,在一些实施例中,两个限位结构的中心线延长线相交于一点。在图中示出的具体实施例中,当内圈21处于初始状态时,限位凸部231对应于限位槽232的正中心,限位结构的中心线即为限位凸部231的中心线。优选地,两个限位结构的中心线延长线相互垂直。多个限位结构的结构相同,即各部件尺寸、相对位置关系、形状等均相同。需要说明的是,两个限位结构的相对位置关系和每个限位结构的结构(包括但不限于限位凸部231与抵挡部233或限位槽232的尺寸、位置关系,抵挡部233围成的空间或限位槽232的形状等)共同确定内圈21相对于外圈22的具体转动角度范围。因此,可以基于对内圈21转动限位的需求对限位结构的相对位置关系和结构进行合理设计。
特别地,在一些实施例中,抵挡部233包括沿内圈21的周向方向间隔设置的两个第二抵挡部2332。在多个限位结构中,每个限位 结构的两个第二抵挡部2332之间的距离均相等,并且当内圈21沿外圈22的周向方向转动时,每个限位结构的限位凸部231能够同步地与相应的第二抵挡部2332相配合,即多个限位结构的多个限位凸部231随着转动同时触碰到其各自左侧的第二抵挡部2332,或者同时触碰到其各自右侧的第二抵挡部2332。当然,在其他实施方式中,也可以将其设计为限位凸部231与相应的第二抵挡部2332不同步地配合。例如,当某一个限位凸部231触碰到其左侧的第二抵挡部2332时,内圈21随即停止转动,其余的限位凸部231不会与其各自左侧的第二抵挡部2332发生触碰。
下面将以图17至图20示出的具体实施例的关节轴承20的动作过程为例进行说明。需要说明的是,其中,抵挡部233包括限位槽232的一周槽壁,限位槽232沿内圈21的轴向方向间隔设置的两个槽壁为第一槽壁(即第一抵挡部2331),限位槽232沿内圈21的周向方向间隔设置的两个槽壁为第二槽壁(即第二抵挡部2332)。
如图17所示,内圈21处于与外圈22完全重合的初始状态,此时限位凸部231位于相应的限位槽232的正中心,内圈21自身的x轴、y轴、z轴分别与外圈22的X轴、Y轴、Z轴重合。此后,先将内圈21绕外圈22的Y轴朝向图中所示的左侧转动8度后处于图18所示状态,此时侧方的限位凸部231抵顶住相应限位槽232的第一槽壁。再将内圈21绕外圈22的X轴(或内圈21自身的x轴)朝向图中所示的下侧转动8度后处于图19所示状态,此时顶部的限位凸部231抵顶住相应限位槽232的第一槽壁。接下来,将内圈21绕外圈22的Z轴(或内圈21自身的z轴)逆时针转动8度后处于图20状态,此时顶部和侧方的限位凸部231均抵顶住相应限位槽232的第二槽壁。
如图5至图7以及图13至图20所示,在本申请的一些实施例中,拍摄装置还包括第一定位结构,第一定位结构用于确定内圈21与镜头组件30之间的相对安装位置,便于内圈21与镜头组件30的装配。优选地,第一定位结构用于在内圈21与镜头组件30装配时进行周向定位。第一定位结构为一个或多个,当第一定位结构为多个时,多个 第一定位结构沿内圈21的周向方向间隔设置。当然,在一些其他的实施例中,第一定位结构也可以用于在内圈21与镜头组件30装配时进行轴向定位。
具体地,第一定位结构可以包括第一定位槽51和可插入至第一定位槽51的第一定位凸部,第一定位槽51和第一定位凸部中的一个设置在内圈21上,另一个设置在镜头组件30上。此时第一定位结构不仅能够起到定位作用,还能够起到驱动连接作用,使内圈21与镜头组件30之间能够同步进行转动。其中,第一定位凸部与第一定位槽51之间可以紧密插接,从而保证两者之间的连接可靠性。第一定位凸部与第一定位槽51之间也可以间隙配合,在保证驱动连接效果的同时,更加便于装配。此时,第一定位凸部与第一定位槽51之间的配合间隙需要较小,从而使其不会影响对于内圈21转动角度范围。
如图5至图7以及图13至图20所示,在本申请的一些实施例中,拍摄装置还包括第二定位结构,第二定位结构用于确定外圈22与云台基座10之间的相对安装位置,便于外圈22与云台基座10的装配。优选地,第二定位结构用于在外圈22与云台基座10装配时进行周向定位。第二定位结构为一个或多个,当第二定位结构为多个时,多个第二定位结构沿外圈22的周向方向间隔设置。当然,在一些其他的实施例中,第二定位结构也可以用于在外圈22与云台基座10装配时进行轴向定位。
具体地,第二定位结构可以包括第二定位槽61和可插入至第二定位槽61的第二定位凸部,第二定位槽61和第二定位凸部中的一个设置在外圈22上,另一个设置在云台基座10上。此时第二定位结构不仅能够起到定位作用,还能够起到连接作用,使外圈22与云台基座10之间能够相对固定或者在小范围可活动。其中,第二定位凸部与第二定位槽61之间可以紧密插接,从而保证两者之间的连接可靠性。第二定位凸部与第二定位槽61之间也可以间隙配合,在保证连接效果的同时,更加便于装配。此时,第二定位凸部与第二定位槽61之间的配合间隙需要较小,从而使其不会影响对于内圈21转动角度范围。
如图5、图6、图8至图20所示,在本申请的一些实施例中,限位凸部231包括限位销,限位销可拆卸地连接在外圈22或内圈21上,使用更为灵活,并且能够便于关节轴承20的装配或拆卸。当然,在其他实施例中,限位销也可以与外圈22或内圈21一体连接。在图中示出的具体实施例中,两个限位销的中心线与外圈22的X轴和Y轴重合。进一步地,外圈22或内圈21上设有通孔24,限位销插入至通孔24内并与通孔24过盈配合,从而保证限位销与外圈22或内圈21之间的连接可靠性,在内圈21相对于外圈22转动过程中,即使限位销与限位槽232或抵挡部233发生碰撞也不会脱落。
需要说明的是,在图中示出的具体实施例中,限位销和通孔24的径向尺寸沿朝向外圈22与内圈21的配合面的方向逐渐减小,限位销由外侧插入至通孔24内。下面将结合附图12对限位销进行受力分析:
设限位销与限位槽232或抵挡部233发生碰撞时所受到的撞击力为F,该撞击力F可分解为沿限位销锥面的分力F1和沿垂直于限位销锥面的分力F2,其中,F1/F2=tanα;设限位销的锥面的角度为β,根据三角内角和定理可知,α=2β;故,F1/F2=tan2β。
为了限位销不会发生脱落,分力F1应小于等于限位销的锥面与通孔24之间的静摩擦力。设静摩擦力系数为μ,静摩擦力为静摩擦力系数与限位销受到的压力的乘积,而限位销受到的压力与F2相等。因此,F1≤μ*F2;故,μ≥F1/F2,即μ≥tan2β。
由上述内容可知,只要静摩擦力系数μ满足上述条件即可保证限位销不会脱落。
如图5至图11所示,在本申请的一些实施例中,外圈22的内凹面221靠近其边缘的部位设有导向槽222,导向槽222槽宽大于等于内圈21沿其轴向方向的尺寸。其中,导向槽222槽宽指的是导向槽222沿垂直于外圈22的轴线的宽度。外圈22的该内凹面221边缘对应于导向槽222的径向尺寸大于等于内圈21的外凸面211的直径,以使内圈21能够由导向槽222被装配至外圈22内。内圈21以一定角度(例如垂直于外圈22)通过导向槽222装配至外圈22内。在此 过程中,导向槽222槽宽大于等于内圈21沿其轴向方向的尺寸,这样可以使整个内圈21均可由导向槽222进入至外圈22内。同时,如图9所示,外圈22的内凹面221边缘对应于导向槽222的部分的径向尺寸大于等于内圈21的外凸面211的直径,从而使内圈21能够顺利进入外圈22内,进而使装配或拆卸更加方便。
进一步地,导向槽222的开设方向平行于外圈22的轴向方向。优选地,导向槽222沿外圈22的轴向的尺寸为外圈22的轴向尺寸的二分之一。此外,在一些实施例中,导向槽222为两个,两个导向槽222相对于外圈22的轴线对称设置,进一步提高装配或拆卸便捷性。
在图5至图11示出的具体实施例中,限位结构为一个,限位销连接在外圈22上,限位槽232设置在内圈21上,限位销与导向槽222的位置相对应。如9所示,当对内圈21进行装配时,限位销可以不由外圈22上取下,将内圈21呈垂直于外圈22的状态由导向槽222推入至外圈22内,在此过程中限位销插入至限位槽232内。此后,再将内圈21转动至与外圈22完全重合的状态,从而完成装配。对内圈21进行拆卸的过程与装配过程相反,在此不再赘述。针对限位结构为一个的情况,利用导向槽222能够实现在不拆解限位销的情况下内、外圈装配或分离,操作更加简单方便。
需要注意的是,在图13至图20示出的具体实施例中,限位结构为两个,外圈22上同样设置有导向槽(图中未示出),但是在进行装配或拆卸时,需要将至少一个限位销取下后才可实现。
对于本申请的实施例,还需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,本申请的保护范围应以权利要求的保护范围为准。

Claims (51)

  1. 一种内置有云台的拍摄装置,其特征在于,包括:
    云台,包括云台基座(10)和关节轴承(20);
    镜头组件(30),通过所述关节轴承(20)与所述云台基座(10)可转动连接;以及
    驱动组件,用于驱动所述镜头组件(30)相对于所述云台基座(10)发生转动。
  2. 根据权利要求1所述的拍摄装置,其特征在于,所述云台基座(10)设有容置部(11),所述容置部(11)具有底部以及与所述底部相对的开口,所述镜头组件(30)通过所述开口至少部分收容在所述容置部(11)内。
  3. 根据权利要求2所述的拍摄装置,其特征在于,所述镜头组件(30)收容在所述容置部(11)内的一端设有图像传感器,所述镜头组件(30)整体通过所述关节轴承(20)相对于所述云台基座(10)运动。
  4. 根据权利要求1所述的拍摄装置,其特征在于,还包括:
    运动传感器,用于测量所述镜头组件(30)的运动变化信息;
    控制器,与所述运动传感器和所述驱动组件通讯连接,所述控制器用于根据所述运动变化信息控制所述驱动组件驱动所述镜头组件(30)沿其发生运动的相反方向运动以进行增稳。
  5. 根据权利要求4所述的拍摄装置,其特征在于,所述运动传感器包括惯性测量单元,所述运动变化信息包括所述镜头组件(30)的姿态变化信息。
  6. 根据权利要求5所述的拍摄装置,其特征在于,所述姿态变化 信息包括以下至少一项:姿态角变化方向、姿态角变化数值、姿态变化时的转动速度以及姿态变化时的转动加速度。
  7. 根据权利要求6所述的拍摄装置,其特征在于,所述姿态角包括以下至少一项:俯仰角、横滚角以及偏航角。
  8. 根据权利要求4所述的拍摄装置,其特征在于,所述运动传感器包括位置测量单元,所述运动变化信息包括所述镜头组件(30)的一预设部位的位置变化信息。
  9. 根据权利要求8所述的拍摄装置,其特征在于,所述位置测量单元包括以下至少一项:霍尔式位置传感器、磁电式位置传感器以及光电式位置传感器。
  10. 根据权利要求1至9中任一项所述的拍摄装置,其特征在于,所述驱动组件包括磁性件和磁性配合件,所述磁性件和所述磁性配合件中的一个设置在所述镜头组件(30)上,另一个与所述镜头组件(30)间隔设置,所述磁性件与所述磁性配合件相配合以驱动所述镜头组件(30)转动。
  11. 根据权利要求10所述的拍摄装置,其特征在于,设置在所述镜头组件(30)上的所述磁性件或所述磁性配合件相较于所述镜头组件(30)的光轴倾斜设置。
  12. 根据权利要求10所述的拍摄装置,其特征在于,所述磁性件和所述磁性配合件中的一个设置在所述镜头组件(30)的内侧,另一个设置在所述云台基座(10)上。
  13. 根据权利要求10所述的拍摄装置,其特征在于,所述磁性件包括线圈(41),所述磁性配合件包括磁铁(42)。
  14. 根据权利要求1所述的拍摄装置,其特征在于,所述关节轴承(20)包括:
    内圈(21),套设在所述镜头组件(30)上;
    外圈(22),设置在所述云台基座(10)上,所述外圈(22)套设在所述内圈(21)的外侧,在所述内圈(21)与所述外圈(22)相对转动时所述外圈(22)的内凹面(221)与所述内圈(21)的外凸面(211)滑动配合;
    限位结构,与所述内圈(21)以及所述外圈(22)其中一个机械耦合,与另外一个配合,以限制所述内圈(21)相对于所述外圈(22)的转动范围。
  15. 根据权利要求14所述的拍摄装置,其特征在于,所述内凹面(221)为球面或椭球面。
  16. 根据权利要求14所述的拍摄装置,其特征在于,以所述外圈(22)的内凹面(221)的圆心为原点,以所述外圈(22)相互垂直的两个径向方向分别为X轴方向和Y轴方向,以所述外圈(22)的轴向方向为Z轴方向建立直角坐标系,其中,所述限位结构允许所述内圈(21)绕所述X轴、所述Y轴、所述Z轴中的任一轴进行转动。
  17. 根据权利要求14所述的拍摄装置,其特征在于,以所述外圈(22)的内凹面(221)的圆心为原点,以所述外圈(22)相互垂直的两个径向方向分别为X轴方向和Y轴方向,以所述外圈(22)的轴向方向为Z轴方向建立直角坐标系,其中,所述限位结构能够限制所述内圈(21)绕所述Z轴转动的转动范围。
  18. 根据权利要求17所述的拍摄装置,其特征在于,所述限位结构能够限制所述内圈(21)绕所述X轴转动的转动范围,和/或,限制所述内圈(21)绕所述Y轴转动的转动范围。
  19. 根据权利要求14至18中任一项所述的拍摄装置,其特征在于,所述限位结构包括限位凸部(231)和限位槽(232),所述限位凸部(231)和所述限位槽(232)中的一个设置在所述内圈(21)上,另一个设置在所述外圈(22)上,所述限位凸部(231)伸入至所述限位槽(232)内,所述限位槽(232)具有抵挡部(233),通过所述限位凸部(231)与所述抵挡部(233)相配合以限制所述内圈(21)相对于所述外圈(22)的转动范围。
  20. 根据权利要求19所述的拍摄装置,其特征在于,所述限位槽(232)的最大尺寸大于所述限位凸部(231)的自由端的最大尺寸。
  21. 根据权利要求20所述的拍摄装置,其特征在于,所述限位槽(232)的最大尺寸大于所述限位凸部(231)的自由端的最大尺寸的两倍。
  22. 根据权利要求19所述的拍摄装置,其特征在于,所述限位槽(232)的开口面积大于所述限位凸部(231)的自由端的端面面积。
  23. 根据权利要求22所述的拍摄装置,其特征在于,所述限位槽(232)的开口面积大于所述限位凸部(231)的自由端的端面面积的两倍。
  24. 根据权利要求19所述的拍摄装置,其特征在于,所述抵挡部(233)包括所述限位槽(232)的至少部分槽壁。
  25. 根据权利要求19所述的拍摄装置,其特征在于,所述抵挡部(233)包括设置在所述限位槽(232)内并凸出于所述限位槽(232)的槽底的抵挡凸件。
  26. 根据权利要求19所述的拍摄装置,其特征在于,所述限位凸部(231)和所述抵挡部(233)中的至少一个由降噪材料制成,以降低所述限位凸部(231)与所述抵挡部(233)触碰时的噪音。
  27. 根据权利要求26所述的拍摄装置,其特征在于,所述降噪材料包括以下至少一项:塑料、隔音棉、硅胶以及橡胶。
  28. 根据权利要求19所述的拍摄装置,其特征在于,所述抵挡部(233)沿所述限位槽(232)的周向方向延伸一周,所述限位凸部(231)位于所述抵挡部(233)围成的空间内。
  29. 根据权利要求28所述的拍摄装置,其特征在于,所述抵挡部(233)围成的空间的形状呈矩形、圆形、椭圆形、多边形或不规则形状。
  30. 根据权利要求19所述的拍摄装置,其特征在于,所述抵挡部(233)包括沿所述内圈(21)的轴向方向间隔设置的两个第一抵挡部(2331),当所述内圈(21)与所述外圈(22)重叠时,所述限位凸部(231)位于两个所述第一抵挡部(2331)之间并与每个所述第一抵挡部(2331)均相间隔。
  31. 根据权利要求30所述的拍摄装置,其特征在于,当所述内圈(21)与所述外圈(22)重叠时,所述限位凸部(231)与两个所述第一抵挡部(2331)之间的距离相等。
  32. 根据权利要求19所述的拍摄装置,其特征在于,所述限位结构为多个,多个所述限位结构沿所述内圈(21)的周向方向间隔设置。
  33. 根据权利要求32所述的拍摄装置,其特征在于,所述限位结构为两个。
  34. 根据权利要求33所述的拍摄装置,其特征在于,两个所述限位结构的中心线延长线相交于一点。
  35. 根据权利要求34所述的拍摄装置,其特征在于,两个所述限位结构的中心线延长线相互垂直。
  36. 根据权利要求32所述的拍摄装置,其特征在于,多个所述限位结构的结构相同。
  37. 根据权利要求32所述的拍摄装置,其特征在于,所述抵挡部(233)包括沿所述内圈(21)的周向方向间隔设置的两个第二抵挡部(2332),在多个所述限位结构中,每个所述限位结构的两个所述第二抵挡部(2332)之间的距离均相等,并且当所述内圈(21)沿所述外圈(22)的周向方向转动时,每个所述限位结构的所述限位凸部(231)能够同步地与相应的所述第二抵挡部(2332)相配合。
  38. 根据权利要求19所述的拍摄装置,其特征在于,所述限位凸部(231)包括限位销,所述限位销可拆卸地连接在所述外圈(22)或所述内圈(21)上。
  39. 根据权利要求19所述的拍摄装置,其特征在于,所述限位凸部(231)包括限位销,所述外圈(22)或所述内圈(21)上设有通孔(24),所述限位销插入至所述通孔(24)内并与所述通孔(24)过盈配合。
  40. 根据权利要求39所述的拍摄装置,其特征在于,所述限位销和所述通孔(24)的径向尺寸沿朝向所述外圈(22)与所述内圈(21)的配合面的方向逐渐减小。
  41. 根据权利要求14所述的拍摄装置,其特征在于,所述拍摄装置还包括第一定位结构,所述第一定位结构用于确定所述内圈(21)与所述镜头组件(30)之间的相对安装位置。
  42. 根据权利要求41所述的拍摄装置,其特征在于,所述第一定位结构用于在所述内圈(21)与所述镜头组件(30)装配时进行周向定位。
  43. 根据权利要求42所述的拍摄装置,其特征在于,所述第一定位结构包括第一定位槽(51)和可插入至所述第一定位槽(51)的第一定位凸部,所述第一定位槽(51)和所述第一定位凸部中的一个设置在所述内圈(21)上,另一个设置在所述镜头组件(30)上。
  44. 根据权利要求41至43中任一项所述的拍摄装置,其特征在于,所述第一定位结构为多个,多个所述第一定位结构沿所述内圈(21)的周向方向间隔设置。
  45. 根据权利要求14所述的拍摄装置,其特征在于,所述拍摄装置还包括第二定位结构,所述第二定位结构用于确定所述外圈(22)与所述云台基座(10)之间的相对安装位置。
  46. 根据权利要求45所述的拍摄装置,其特征在于,所述第二定位结构用于在所述外圈(22)与所述云台基座(10)装配时进行周向定位。
  47. 根据权利要求46所述的拍摄装置,其特征在于,所述第二定位结构包括第二定位槽(61)和可插入至所述第二定位槽(61)的第二定位凸部,所述第二定位槽(61)和所述第二定位凸部中的一个设置在所述外圈(22)上,另一个设置在所述云台基座(10)上。
  48. 根据权利要求45至47中任一项所述的拍摄装置,其特征在于,所述第二定位结构为多个,多个所述第二定位结构沿所述外圈(22)的周向方向间隔设置。
  49. 根据权利要求14所述的拍摄装置,其特征在于,所述外圈(22)的内凹面(221)靠近其边缘的部位设有导向槽(222),所述导向槽(222)槽宽大于等于所述内圈(21)沿其轴向方向的尺寸,所述外圈(22)的该内凹面(221)边缘对应于导向槽(222)的径向尺寸大于等于所述内圈(21)的外凸面(211)的直径,以使所述内圈(21)能够由所述导向槽(222)被装配至所述外圈(22)内。
  50. 根据权利要求49所述的拍摄装置,其特征在于,所述导向槽(222)的开设方向平行于所述外圈(22)的轴向方向。
  51. 根据权利要求49或50所述的拍摄装置,其特征在于,所述导向槽(222)为两个,两个所述导向槽(222)相对于所述外圈(22)的轴线对称设置。
PCT/CN2021/107566 2021-07-21 2021-07-21 内置有云台的拍摄装置 WO2023000199A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/107566 WO2023000199A1 (zh) 2021-07-21 2021-07-21 内置有云台的拍摄装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/107566 WO2023000199A1 (zh) 2021-07-21 2021-07-21 内置有云台的拍摄装置

Publications (1)

Publication Number Publication Date
WO2023000199A1 true WO2023000199A1 (zh) 2023-01-26

Family

ID=84979694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107566 WO2023000199A1 (zh) 2021-07-21 2021-07-21 内置有云台的拍摄装置

Country Status (1)

Country Link
WO (1) WO2023000199A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5678099A (en) * 1996-04-18 1997-10-14 Nippon Robotmation Co., Ltd. Small size camera assembly
US20070236577A1 (en) * 2006-03-30 2007-10-11 Chau-Yaun Ke Systems and methods for providing image stabilization
KR20080014454A (ko) * 2006-08-11 2008-02-14 삼성테크윈 주식회사 촬상 장치용 센터링 모듈
US20090303594A1 (en) * 2008-06-09 2009-12-10 Samsung Electro-Mechanics Co., Ltd. Image stabilizing apparatus for camera module
CN105892218A (zh) * 2016-06-08 2016-08-24 极翼机器人(上海)有限公司 一种全景云台及其控制系统
CN107770418A (zh) * 2016-08-22 2018-03-06 三星电机株式会社 相机模块
CN112887554A (zh) * 2021-01-22 2021-06-01 维沃移动通信有限公司 摄像模组和电子设备
CN213342367U (zh) * 2020-08-28 2021-06-01 深圳市大疆创新科技有限公司 拍摄模组、拍摄装置和电子设备
CN112954144A (zh) * 2019-11-26 2021-06-11 华为技术有限公司 马达、摄像装置及终端设备
CN213522049U (zh) * 2020-10-27 2021-06-22 江西晶浩光学有限公司 摄像头模组以及电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5678099A (en) * 1996-04-18 1997-10-14 Nippon Robotmation Co., Ltd. Small size camera assembly
US20070236577A1 (en) * 2006-03-30 2007-10-11 Chau-Yaun Ke Systems and methods for providing image stabilization
KR20080014454A (ko) * 2006-08-11 2008-02-14 삼성테크윈 주식회사 촬상 장치용 센터링 모듈
US20090303594A1 (en) * 2008-06-09 2009-12-10 Samsung Electro-Mechanics Co., Ltd. Image stabilizing apparatus for camera module
CN105892218A (zh) * 2016-06-08 2016-08-24 极翼机器人(上海)有限公司 一种全景云台及其控制系统
CN107770418A (zh) * 2016-08-22 2018-03-06 三星电机株式会社 相机模块
CN112954144A (zh) * 2019-11-26 2021-06-11 华为技术有限公司 马达、摄像装置及终端设备
CN213342367U (zh) * 2020-08-28 2021-06-01 深圳市大疆创新科技有限公司 拍摄模组、拍摄装置和电子设备
CN213522049U (zh) * 2020-10-27 2021-06-22 江西晶浩光学有限公司 摄像头模组以及电子设备
CN112887554A (zh) * 2021-01-22 2021-06-01 维沃移动通信有限公司 摄像模组和电子设备

Similar Documents

Publication Publication Date Title
US10315781B2 (en) Gimbal, imaging device and unmanned aerial vehicle using the gimbal
EP3450814B1 (en) A quick gimbal connector and an aerial vehicle
JP7046653B2 (ja) 振れ補正機能付き光学ユニット
US8887587B2 (en) Measurement device
US20220221102A1 (en) Gimbal control method and gimbal
CN109426298B (zh) 控制杆组件及遥控器
WO2020073540A1 (zh) 一种固连外部磁体和磁传感器阵列的磁源检测装置
JP2013198118A (ja) 追尾装置
WO2023000199A1 (zh) 内置有云台的拍摄装置
WO2019242225A1 (zh) 无人飞行器及其机臂组件和转轴机构
CN105799945A (zh) 云台及飞行器
JP6942547B2 (ja) 振れ補正機能付き光学ユニットの揺動体姿勢調整方法および振れ補正機能付き光学ユニット
US20100037720A1 (en) Robotic manipulator
US5909941A (en) Passive multiple remote center compliance device
US20190146163A1 (en) Optical alignment of fiber-optic rotary joint assembly
CN113238429B (zh) 具有校正功能的光学单元
CN215181357U (zh) 内置有云台的拍摄装置
Caon et al. Characterization of a new positioning sensor for space capture
JP2021071579A (ja) 振れ補正機能付き光学ユニット
KR20200143252A (ko) 흔들림 보정 기능을 구비한 광학 유닛
CN113574435A (zh) 用于光学成像系统的可倾斜折叠反射镜
JP2011154596A (ja) 多方向入力装置
WO2020024123A1 (zh) 云台及云台系统
KR20160092913A (ko) 렌즈 경통 및 카메라
JP7032068B2 (ja) 振れ補正機能付き光学ユニットの回転体基準角度位置調整方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE