WO2022270013A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2022270013A1
WO2022270013A1 PCT/JP2022/008089 JP2022008089W WO2022270013A1 WO 2022270013 A1 WO2022270013 A1 WO 2022270013A1 JP 2022008089 W JP2022008089 W JP 2022008089W WO 2022270013 A1 WO2022270013 A1 WO 2022270013A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion device
power conversion
power converter
semiconductor module
coolant
Prior art date
Application number
PCT/JP2022/008089
Other languages
French (fr)
Japanese (ja)
Inventor
敬介 堀内
欣也 中津
奈柄 久野
高志 平尾
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022270013A1 publication Critical patent/WO2022270013A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power converter.
  • JP-A-2003-100002 discloses an approach to improve the heat transfer coefficient of water channels.
  • Patent Document 1 discloses a technique for improving the heat transfer coefficient under the same pressure loss condition by providing fine depressions (scalene triangular grooves) on the wall surface in the flow path. This is possible to improve the heat transfer characteristics by suppressing the development of the temperature boundary layer formed on the surface due to the agitation and mixing with the high-temperature fluid by providing fine depressions in the direction perpendicular to the main stream direction of the flow. It uses the principle of
  • Patent Document 1 is based on the premise that only the inner wall of the flow path is processed unevenly, and lacks productivity for mass-produced products such as automobiles.
  • only the inner wall is processed by cutting or mechanical/chemical polishing, for example, it is not possible to process unevenness that is greater than the wall pressure of the flow path wall, and the cooling performance improvement is limited due to the processing limit. There is a problem.
  • a power conversion device is a power conversion device comprising a semiconductor module having a semiconductor element and a heat radiating member in contact with at least one surface of the semiconductor module, wherein the heat radiating member has a coolant channel formed therein.
  • the coolant channel has a concave portion recessed toward the inside of the coolant channel on at least one of a pair of main surfaces of the heat radiating member, and the semiconductor module and the It is formed on the surface of the contact side.
  • FIG. 2 is an exploded perspective view of the power converter of FIG. 1;
  • FIG. 2 is an exploded perspective view of a power module subassembly with water channels;
  • 1A and 1B are a perspective view and a cross-sectional view of a power module subassembly with water channels according to a first embodiment of the present invention;
  • FIG. FIG. 2 is a circuit block configuration diagram of the power conversion device 100.
  • FIG. FIG. 2 is a principle diagram of cooling performance improvement showing the effect of the present invention. The graph which showed the relationship between the heat transfer coefficient which shows the effect of this invention, and a pressure loss.
  • FIG. 4 is a dimple structural diagram of a power module subassembly with water channels according to a second embodiment of the present invention; The figure explaining the shape of the header part which concerns on the 3rd Embodiment of this invention. The figure explaining the structure of the flat tube based on the 4th Embodiment of this invention.
  • FIG. 1 is a perspective view of a power converter 100 employing the present invention.
  • FIG. 2 is an exploded perspective view of the power converter 100 of FIG.
  • the power conversion device 100 has components housed inside it by the device housing 50 and the housing lower lid 15 .
  • a cooling water inlet hole 11 and a cooling water outlet hole 12 are formed in the device housing 50 so as to protrude outward.
  • a cooling water channel 20 formed by die casting (one of the metal mold casting methods) or the like is formed on the inner lower side of the device housing 50, and functions as a water channel by being closed by the housing lower lid 15. do.
  • a control circuit board 132 is arranged on the lower side of the housing 50, and a driver circuit board 131 housed in the housing space 25 is provided in a direction perpendicular to the control circuit board 132. and the control circuit board 132 are connected by a board connector 133 .
  • the driver circuit board 131 and the control circuit board 132 are bolted to the rigid body (not shown) of the vehicle body and the device housing 50, the connector connection of the two boards 131 and 132 increases vibration resistance. Therefore, flexible electrical wiring is desirable.
  • the cooling water path 20 is formed so as to avoid the driver circuit board 131 and the control circuit board 132 and cover the capacitor module storage space 111 formed in the device housing 50 .
  • the capacitor module 110 is housed so as to be in thermal contact with this capacitor housing space 111 .
  • a TIM Thermal Interface Material
  • the pressure receiving portion 55 is provided at a position adjacent to the capacitor module storage space 110 of the device housing 50 , and the power module subassembly 123 with water channel (hereinafter abbreviated as “subassembly 123 ”) is pressed by the pressing member 40 . It is pressed against the portion 55 . 2, the pressing member 40 is divided into three phases corresponding to the three-phase power modules 122 (see FIG. 3) provided in the subassembly 123, respectively.
  • the pressure receiving portion 55 may be integrated with the device housing 50, or may be a separate member having a vibration-isolating structure such as anti-vibration rubber.
  • the pressing member 40 may have a structure capable of pressing the three phases integrally, or may be provided separately for each phase as shown in the figure. Further, the pressing member 40 may be fixed to the device housing 50 with bolts, or may have a hook-like structure and be fitted and fixed to the housing 50 like a snap fit.
  • the coolant flowing through the cooling water passage 20 enters the housing 50 through the cooling water inlet hole 11, radiates heat from each functional part of the power converter 100, and is discharged from the cooling water outlet hole 12 together with the heat.
  • the discharged coolant is directed to a radiator (not shown) in the engine room, and the heat is released to the outside air by the radiator, thereby returning to a low temperature.
  • the coolant that has returned to a low temperature is circulated by the pump and used to cool the power conversion device 100 again.
  • the circulation of the refrigerant in the power conversion device 100 will be explained.
  • Refrigerant entering the housing 50 from the cooling water inlet hole 11 branches into a direction toward the subassembly 123 through the power module side water channel inlet 21, the first condenser side water channel 23, and the second condenser side water channel 24. be done.
  • the power module-side water channel outlet 22 is a channel through which the coolant that has passed through the power module subassembly 123 with water channel returns to the cooling water channel 20 .
  • the condenser side water channel 23 does not need to be a parallel water channel, and may be a series water channel such that the water channels 21 and 22 flowing to the power module side are connected to the capacitor side water channel 23 .
  • a control signal connector holding a signal line for the later-described control module 130 to transmit and receive signals to and from an external device such as a host system is provided in the device housing 50 at the cooling water inlet hole 11 is provided on a side different from the side on which is provided.
  • FIG. 3 is an exploded perspective view of the subassembly 123
  • FIG. 4 is a perspective view and cross-sectional view of the power module subassembly with water channels according to the first embodiment of the present invention.
  • the coolant supplied from the power module side water channel inlet 21 branches at the header 80 in the power module subassembly 123 with water channel.
  • the branched refrigerant passes through two flat tubes 60 sandwiching the three-phase power module 122 on both sides, joins again at the other header 80 on the opposite side, and returns to the cooling water channel 20 from the power module side water channel outlet 22. .
  • the two flat tubes 60 that serve as heat dissipation members for the power module 122 sandwich the power module 122 via TIM 70, which is an insulating heat dissipation member such as heat dissipating grease.
  • the two flat tubes 60 are wholly sandwiched between the pressing member 40 and the pressure receiving portion 55 described above. In this way, by adopting a structure that does not create a gap between the flat tube 60 and the housing 50, the contact thermal resistance for the entire power module 122 provided in plurality along the direction of the coolant flow path is reduced. and strengthen mechanical vibration resistance and temperature cycle resistance.
  • a striped pattern 61 can be formed by forming a concave shape 65 that is depressed toward the inside of the coolant channel, that is, a convex shape 66 on the inner wall of the water channel.
  • the concave shape 65 and the convex shape 66 are structured to have grooves in the direction perpendicular to the coolant channel along the width direction of the main surface of the flat tube 60 . Further, concave shapes 65 are formed corresponding to the positions of the upper and lower arms of the power module 122, respectively.
  • the flat tube 60 when the flat tube 60 is processed by pressing, if only one side of the flat tube 60 is press-processed, the flat tube 60 may be warped and bent toward the processed side. You can keep it flat by pressing both sides. Further, by molding the flat tube 60 by extrusion or drawing, and pressing the outer surface of the flat tube 60 to form the concave shape 65 and the convex shape 66 in the flat tube 60, a larger concave-convex structure can be realized. In addition, by forming uneven structures alternately along the coolant channel, the turbulence effect described later with reference to FIG. 6 can be increased, and the cooling performance can be further enhanced. Also, by improving the cooling performance only with the flat tube 60, it is possible to contribute to miniaturization and cost reduction.
  • the uneven structure may be formed only on one side of the flat tube 60 that is in contact with the power module 122 .
  • the pressing member 40 is arranged corresponding to the portion where the concave shape 65 is formed, so that the cooling effect can be further improved.
  • FIG. 5 is a circuit block configuration diagram of the power converter 100. As shown in FIG.
  • the power conversion device 100 is a device that is connected to the battery 200 and the motor generator 300 , converts the direct current supplied from the battery 200 into three-phase alternating current, and supplies the three-phase alternating current to the motor generator 300 .
  • the power conversion device 100 includes a capacitor module 110 for stabilizing and smoothing the DC current supplied from the battery 200, and an inverter device 120 for generating a three-phase AC current from the DC current.
  • the inverter device 120 includes an upper and lower arm series circuit 122 forming three phases of U-phase, V-phase and W-phase, and a control module 130 for controlling it.
  • the DC connector 140 and the capacitor module 110 are electrically connected, and the capacitor module 110 and the DC terminals of the upper and lower arm series circuits 122 are electrically connected by bolts or by welding.
  • AC terminals of the power module are connected to the AC connector 160 via the current sensor 150 .
  • each of the upper and lower arm series circuits 122 is an IGBT (Insulated Two current switch circuits consisting of a parallel connection circuit of a Gate Bipolar Transistor 125 and a diode 126 are arranged in series.
  • the upper and lower ends of upper and lower arm series circuit 122 are connected to the positive and negative electrodes of battery 200 via DC connectors 140, respectively.
  • the current switch circuit composed of the IGBT 125a and the diode 126a arranged on the upper side (positive side) operates as an upper arm, and is composed of the IGBT 125b and the diode 126b arranged on the lower side (negative side).
  • a current switch circuit operates as a lower arm.
  • the inverter device 120 outputs three-phase AC currents U, V, W from the midpoint position of each of the upper and lower arm series circuits 122, that is, from the connection portion of the upper and lower current switch circuits. are supplied to motor generator 300 via AC connector 160 .
  • circuit has been described using a single inverter device 120 as an example, it is also possible to increase the amount of power to be converted by using a plurality of inverter devices 120 and to accommodate a plurality of motor generators 300. can.
  • Driver circuit 131 is connected to control circuit 132 via board connector 133 (see FIG. 1).
  • the control module 130 includes a driver circuit 131 that drives and controls the three sets of upper and lower arm series circuits 122 and a control circuit 132 that supplies control signals to the driver circuit 131 .
  • the signal output from the driver circuit 131 is supplied to each IGBT 125 of the upper arm and the lower arm of the power module, and controls the switching operation according to the information of the current sensor 150 and the like to control each upper and lower arm series circuit. It controls the amplitude, phase, etc. of the AC currents U, V, W output from 122 . In this manner, the control module 130 feedback-controls the upper and lower arm series circuit 122 .
  • the control circuit 132 has a microcomputer for arithmetic processing of the switching timing of each IGBT 125 in the three sets of upper and lower arm series circuits 122 .
  • Input information to the microcomputer includes the target torque value required for motor generator 300, the current value supplied from upper and lower arm series circuit 122 to motor generator 300, the magnetic pole position of the rotor of motor generator 300, and the like. is entered.
  • the target torque value is based on a command signal output from a higher-level control device (not shown).
  • the current value is based on the detection signal of current sensor 150 that detects the current value of the alternating current output from each upper and lower arm series circuit 122 .
  • the magnetic pole position is based on a detection signal of a rotating magnetic pole sensor (not shown) provided in motor generator 300 .
  • the control module 130 also has a function of detecting abnormalities such as overcurrent, overvoltage, and overtemperature, and protects the upper and lower arm series circuits 122 .
  • the emitter electrode of the IGBT 125 of each arm is connected to a driver circuit 131.
  • the driver circuit 131 detects overcurrent in the emitter electrode of each IGBT 125, and stops the switching operation of the IGBT 125 in which overcurrent is detected. and protect against overcurrent.
  • the control circuit 132 also receives signals from a temperature sensor (not shown) provided in the upper and lower arm series circuit 122, a detection circuit for detecting a DC voltage applied across the upper and lower arm series circuit 122, and the like. abnormalities such as overtemperature and overvoltage are detected based on the signals from the When an abnormality such as overtemperature or overvoltage is detected, the power conversion device 100 stops switching operations of all IGBTs 125 to protect the entire power module 122 from abnormalities such as overtemperature and overvoltage.
  • the current switch circuit composed of the IGBT 125 and the diode 126 may be configured using a MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor).
  • the three sets of upper and lower arm series circuits 122 may include two upper and lower arm series circuits and output two-phase AC currents.
  • the power conversion device 100 may be a device that converts a three-phase (two-phase) alternating current into a direct current and is configured in almost the same circuit configuration.
  • the power module 122 uses a 2-in-1 type configured corresponding to the upper and lower arm series circuits 122 of each phase, but the positional relationship between the flat pipe conduit 10 and the power module 122 shown in this embodiment is based on the 1-in-1 type semiconductor A module (a configuration in which each arm divided into an upper arm and a lower arm is one unit) or a 6-in-1 type semiconductor module (a configuration in which upper and lower arms for three phases are integrated) may be used.
  • FIG. 6 is a principle diagram of cooling performance improvement showing the effect of the embodiment of the present invention.
  • FIG. 6(a) shows the laminar flow boundary layer 20b, the velocity distribution 20e, and the temperature distribution 20f when the inner wall of the flat tube 60 (cooling channel 20) does not have a convex shape 66 and has a smooth channel shape.
  • the coolant has a low temperature inside the laminar boundary layer 20b and a warm temperature outside the laminar boundary layer 20b.
  • the temperature of the coolant in the vicinity of the water channel wall surface increases as it advances in the traveling direction 20a. Therefore, the heat transfer coefficient as a refrigerant is low.
  • a flat tube 60 (cooling water channel 20) is provided with a convex shape 66 toward the flow channel side, and not only the flow channel wall on the side contacting the power module 122 but also the surface on the opposite side A convex shape 66 is formed.
  • the convex shape 66 is formed by machining the concave shape 65 from the outside of the flat tube 60 .
  • the TIM 70 is filled in the gaps generated in the concave shape 65 so that the heat of the power module 122 is efficiently transported to the refrigerant over the entire area of the flat tube 60 .
  • a vertical vortex 20d is generated immediately after the convex shape 66, and the flow separates and reattaches, thereby thinning the boundary layer 20c as shown in the figure. Become.
  • the convex shape 66 (concave shape 65) is locally formed only around the heating element 122, and the flow channel cross-sectional area from the vertex of the convex shape 66 to the flow channel wall of the opposing flat tube 60 is made small. there is By doing so, the flow velocity of the coolant is increased by turbulent flow, and the heat transfer coefficient is improved.
  • the structure in which both wall surfaces of the flat tube 60 are alternately provided with uneven structures in a zigzag pattern doubles the heat transfer area between the refrigerant and the flow path wall surface,
  • the turbulence effect of the vortex 20d is increased, and the separation and reattachment of the flow are possible even with a convex structure formed at a narrow pitch, so that the cooling performance can be enhanced to the utmost limit.
  • FIG. 7 is a graph showing the relationship between heat transfer coefficient and pressure loss, which shows the effect of the present invention.
  • the height of the convex shape 66 is defined as h, and it is verified whether there is an optimum shape in relation to the flow path height H described above. Also, in each of h/H>0.3 (analysis result 67 of uneven shape) and 0.05 ⁇ h/H ⁇ 0.3 (analysis result 68 of uneven shape), how is the Pareto solution of the trade-off It was predicted by thermal fluid analysis. However, the definition of a smooth surface was h/H ⁇ 0.05 (smooth surface analysis result 69). In FIG. 7, the uneven shape analysis result 67 is represented by ⁇ , the uneven shape analysis result 68 is represented by ⁇ , and the smooth surface analysis result 69 is represented by ⁇ . As a result of the verification, it was confirmed that if 0.05 ⁇ h/H ⁇ 0.3 (68), the required specifications that are expected to increase the heat transfer coefficient to the required value while maintaining low pressure loss can be achieved. .
  • FIG. 8 is a dimple structural diagram of a power module subassembly with water channels according to a second embodiment of the present invention.
  • the dimple structure 62 is provided in the direction perpendicular to the coolant flow path over the entire main surface of the flat tube 60 .
  • the structure of the striped pattern 61 shown in FIG. This has the advantage that there is no need for positioning even if the pitch between adjacent channels of the flat tube cross section is uneven in the stage of manufacturing the flat tube 60 by extrusion or drawing.
  • the dimple structure 62 of the present embodiment when manufacturing variations in the flow path structure in the flat tube 60 are small, the convex fins 66 make it easy to target cooling, and even a small press pressure can be achieved in the manufacturing stage.
  • the amount of deformation due to press working is smaller in the dimple structure 62 than in the first embodiment, it is possible to suppress dimensional changes such as warpage, undulation, and width. As a result, the flatness of the flat tube 60 is reduced, so that the contact area between the power module 122 and the flat tube 60 can be increased, and the contact thermal resistance can be reduced.
  • FIG. 9 is a diagram explaining the shape of the header portion according to the third embodiment of the present invention.
  • the flow path to be shared with the coolant is uniquely determined by the in-header baffle plate 90 provided in the header 80 in accordance with the chip layout.
  • the cooling performance verification test can be performed on the power module assembly 123 with housing water passages alone.
  • defect factor analysis can be performed for each individual component.
  • FIG. 10 is a diagram illustrating the structure of a flat tube according to a fourth embodiment of the present invention.
  • the lower flat tube 60 which is disadvantageous due to inertial force, has a dimple structure 63 with only one side in contact with the power module 122. By doing so, the difference between the flow rate 64a of the upper flat tube and the flow rate 64b of the lower flat tube can be reduced.
  • the power conversion device 100 includes a semiconductor module 122 having semiconductor elements 125 and 126 and a heat dissipation member 60 in contact with at least one surface of the semiconductor module 122 .
  • the heat radiating member 60 has a flat shape in which a coolant channel is formed. It is formed on one surface, which is the surface that contacts the semiconductor module 122 . By doing so, it is possible to provide a power conversion device that simultaneously achieves miniaturization, cost reduction, and improvement in cooling performance.
  • the concave portions 65 are formed on both surfaces of the pair of main surfaces of the heat radiating member 60, and are alternately recessed from the respective surfaces along the coolant flow path. By doing so, it is possible to increase the turbulence effect in the coolant flow path and further improve the cooling performance.
  • the concave portion 65 is filled with the heat dissipating grease 70 between the semiconductor module 122 and the external surface of the heat dissipating member 60 . By doing so, the heat of the power module 122 is efficiently transported to the refrigerant over the entire area of the flat tube 60 .
  • the recessed portion 65 has a groove perpendicular to the coolant channel along the lateral direction of the main surface of the heat radiating member 60 . By doing so, it is possible to reliably dissipate heat in the width direction of the coolant channel.
  • the concave portion 65 has a dimple structure 62 in the direction perpendicular to the coolant channel on the main surface of the heat radiating member 60 .
  • the power conversion device 100 includes the pressing member 40 pressing the heat dissipation member 60 toward the main surface of the semiconductor module 122 . By doing so, the contact thermal resistance is reduced for the entire power modules 122 provided along the direction of the refrigerant flow path, and the mechanical vibration resistance and temperature cycle resistance are enhanced.
  • the pressing member 40 is arranged corresponding to the location where the concave portion 65 is formed. By doing so, the heat dissipation effect can be reliably improved.
  • a plurality of semiconductor modules 122 are provided along the coolant flow path direction, and the concave portions 65 are formed corresponding to the arrangement of the plurality of semiconductor modules 122, respectively. By doing so, the heat dissipation effect can be reliably improved.
  • the recesses 65 are formed corresponding to the upper and lower arms of the semiconductor module 122, respectively. By doing so, the heat dissipation effect can be reliably improved.
  • a concave portion 65 is formed by press working in the heat radiating member 60 that has been molded and molded into a flat shape. By doing so, the cooling water passage of the present invention can be realized.
  • the present invention is not limited to the above embodiments, and various modifications and other configurations can be combined without departing from the scope of the invention. Moreover, the present invention is not limited to those having all the configurations described in the above embodiments, and includes those having some of the configurations omitted.
  • Cooling water inlet hole 12 Cooling water outlet hole 15: Housing lower lid 20: Cooling water channel 20a: Refrigerant traveling direction 20b: Laminar boundary layer 20c: Turbulent boundary layer 20d: Longitudinal vortex 20e: Velocity distribution 20f: Temperature Distribution 21: power module side channel inlet 22: power module side channel outlet 23: first capacitor side channel 24: second capacitor side channel 25: driver circuit board storage space 30: control signal connector 40: pressing member 50: device housing Body 55: Pressure receiving portion 60: Flat tube (heat radiation member) 61: striped pattern 62: double-sided dimple structure 63: single-sided dimple structure 64a: upper flat tube flow rate 64b: lower flat tube flow rate 65: concave shape 66: convex shape 67: uneven shape analysis result (h/H>0.3) 68: Uneven shape analysis result (0.05 ⁇ h/H ⁇ 0.3) 69: Analysis result of smooth surface (h / H ⁇ 0.05) 70: TIM (Thermal Interface Material) 80: Header

Abstract

This power conversion device comprises: a semiconductor module that has a semiconductor element; and a heat dissipation member that contacts at least one surface of the semiconductor module. The heat dissipation member has a flat shape in the interior of which a refrigerant flow path is formed. Recessed sections that are recessed in toward the the refrigerant flow path are formed on at least one surface from among a pair of principal surfaces of the heat dissipation member, said surface being on the side that contacts the semiconductor module.

Description

電力変換装置power converter
 本発明は、電力変換装置に関する。 The present invention relates to a power converter.
 電気自動車あるいはハイブリッド自動車においては、搭載される部品の小型化や低コスト化が重要視されている。これについて、バッテリの直流電流をモータの交流電流に変換する電力変換装置も例外ではなく、小型化や低コスト化が求められている。電力変換装置の場合は、小型化を追求することで、発熱密度が大きくなるため、装置の冷却性能を向上させる必要がある。 In electric vehicles and hybrid vehicles, the miniaturization and cost reduction of the mounted parts are emphasized. In this respect, a power converter that converts a DC current of a battery into an AC current of a motor is no exception, and there is a demand for miniaturization and cost reduction. In the case of a power conversion device, the pursuit of miniaturization increases the heat generation density, so it is necessary to improve the cooling performance of the device.
 電力変換装置を構成する電子部品の中でも最も発熱量が大きいものはパワーモジュールであり、その熱を効率的に冷媒に放熱するには、電力変換装置内の水路の熱伝達率を低圧力損失条件下で向上させる必要がある。このような水路熱伝達率向上の取組みについて、本願発明の背景技術として、例えば下記の特許文献1がある。 Among the electronic components that make up the power converter, the power module generates the largest amount of heat. Need to improve below. As a background art of the present invention, for example, JP-A-2003-100002 discloses an approach to improve the heat transfer coefficient of water channels.
 特許文献1は、流路内の壁面に微細窪み(不等辺三角形溝)を設けることで、同等の圧力損失条件下で熱伝達率を向上させる技術が開示されている。これは流れの主流方向に対して直交する方向に微細窪みを設けたことで高温流体と撹拌混合され、表面に形成される温度境界層の発達を抑制し、伝熱特性を向上させることが可能となる原理を用いている。 Patent Document 1 discloses a technique for improving the heat transfer coefficient under the same pressure loss condition by providing fine depressions (scalene triangular grooves) on the wall surface in the flow path. This is possible to improve the heat transfer characteristics by suppressing the development of the temperature boundary layer formed on the surface due to the agitation and mixing with the high-temperature fluid by providing fine depressions in the direction perpendicular to the main stream direction of the flow. It uses the principle of
特開2009-135524号公報JP 2009-135524 A
 しかしながら、特許文献1の構造は、流路内壁のみを凸凹に加工することを前提としており、自動車のような大量生産する製品向けには生産性に欠けている。また、例えば切削加工あるいは機械研磨/化学研磨による内壁のみの加工を想定すると、流路壁の肉圧よりも大きく凸凹形状を加工することが出来ず、加工限界により冷却性能向上の限界が出てしまう課題がある。 However, the structure of Patent Document 1 is based on the premise that only the inner wall of the flow path is processed unevenly, and lacks productivity for mass-produced products such as automobiles. In addition, assuming that only the inner wall is processed by cutting or mechanical/chemical polishing, for example, it is not possible to process unevenness that is greater than the wall pressure of the flow path wall, and the cooling performance improvement is limited due to the processing limit. There is a problem.
 また、ニーズに応えるための装置の小型高密度実装を追求すると、半導体素子(IGBTやダイオード)の局所発熱(ホットスポット)を集中的に冷却する必要が出てくるが、局所発熱に合わせて、流路壁内面凸構造の主流流れ方向ピッチを小さくする必要がある。このピッチを小さくしすぎると、上流凸部で剥離した流れが直後の凸部に再付着することが出来なくなり、冷却性能を極限まで向上させることが困難となる課題がある。 In addition, in pursuit of miniaturization and high-density mounting of devices to meet the needs, it becomes necessary to intensively cool the local heat generation (hot spots) of semiconductor elements (IGBTs and diodes). It is necessary to reduce the pitch in the mainstream flow direction of the convex structure on the inner surface of the channel wall. If this pitch is made too small, the flow separated at the upstream convex portion cannot reattach to the immediately following convex portion, making it difficult to improve the cooling performance to the limit.
 以上を踏まえて、本発明では、小型化とコスト低減と冷却性能の向上とを並立させた電力変換装置を提供することが目的である。 Based on the above, it is an object of the present invention to provide a power conversion device that simultaneously achieves miniaturization, cost reduction, and improvement in cooling performance.
 電力変換装置は、半導体素子を有する半導体モジュールと、前記半導体モジュールの少なくとも一つの面に接触する放熱部材と、を備えた電力変換装置であって、前記放熱部材は、内部に冷媒流路が形成された扁平形状であり、前記冷媒流路には、前記冷媒流路内に向かって窪んでいる凹部が、前記放熱部材の一対の主面のうち少なくとも一方の面であって、前記半導体モジュールと接触する側の面に形成されている。 A power conversion device is a power conversion device comprising a semiconductor module having a semiconductor element and a heat radiating member in contact with at least one surface of the semiconductor module, wherein the heat radiating member has a coolant channel formed therein. The coolant channel has a concave portion recessed toward the inside of the coolant channel on at least one of a pair of main surfaces of the heat radiating member, and the semiconductor module and the It is formed on the surface of the contact side.
 本発明によれば、小型化とコスト低減と冷却性能の向上とを並立させた電力変換装置を提供できる。 According to the present invention, it is possible to provide a power converter that achieves both miniaturization, cost reduction, and improvement in cooling performance.
本発明を採用した電力変換装置100の斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The perspective view of the power converter device 100 which employ|adopted this invention. 図1の電力変換装置の分解斜視図。FIG. 2 is an exploded perspective view of the power converter of FIG. 1; 水路付きパワーモジュールサブアセンブリの分解斜視図。FIG. 2 is an exploded perspective view of a power module subassembly with water channels; 本発明の第1の実施形態に係る、水路付きパワーモジュールサブアセンブリの斜視図と断面図。1A and 1B are a perspective view and a cross-sectional view of a power module subassembly with water channels according to a first embodiment of the present invention; FIG. 電力変換装置100の回路ブロック構成図。FIG. 2 is a circuit block configuration diagram of the power conversion device 100. FIG. 本発明の効果を示す冷却性能向上の原理図。FIG. 2 is a principle diagram of cooling performance improvement showing the effect of the present invention. 本発明の効果を示す熱伝達率と圧力損失の関係を示したグラフ。The graph which showed the relationship between the heat transfer coefficient which shows the effect of this invention, and a pressure loss. 本発明の第2の実施形態に係る、水路付きパワーモジュールサブアセンブリのディンプル構造図。FIG. 4 is a dimple structural diagram of a power module subassembly with water channels according to a second embodiment of the present invention; 本発明の第3の実施形態に係る、ヘッダ部の形状について説明する図。The figure explaining the shape of the header part which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る、扁平管の構造を説明する図。The figure explaining the structure of the flat tube based on the 4th Embodiment of this invention.
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and are appropriately omitted and simplified for clarity of explanation. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. in order to facilitate the understanding of the invention. As such, the present invention is not necessarily limited to the locations, sizes, shapes, extents, etc., disclosed in the drawings.
(第1の実施形態および本発明を備える装置の全体構成)
 図1は本発明を採用した電力変換装置100の斜視図である。図2は図1の電力変換装置100の分解斜視図である。
(Overall configuration of the device provided with the first embodiment and the present invention)
FIG. 1 is a perspective view of a power converter 100 employing the present invention. FIG. 2 is an exploded perspective view of the power converter 100 of FIG.
 電力変換装置100は、装置筐体50と筐体下フタ15とによってその内部に部品が収納されている。装置筐体50には、冷却水入口孔11と冷却水出口孔12が外部方向に突出するように形成されている。また、装置筐体50の内部下部側には、ダイキャスト(金型鋳造法の一つ)などで形成された冷却水路20が形成され、筐体下フタ15で塞がれることで水路として機能する。筐体50の下部側には、制御回路基板132が配置されており、制御回路基板132に対して垂直な方向には収納空間25に収納されるドライバ回路基板131が設けられ、ドライバ回路基板131と制御回路基板132とは、基板コネクタ133で接続されている。 The power conversion device 100 has components housed inside it by the device housing 50 and the housing lower lid 15 . A cooling water inlet hole 11 and a cooling water outlet hole 12 are formed in the device housing 50 so as to protrude outward. In addition, a cooling water channel 20 formed by die casting (one of the metal mold casting methods) or the like is formed on the inner lower side of the device housing 50, and functions as a water channel by being closed by the housing lower lid 15. do. A control circuit board 132 is arranged on the lower side of the housing 50, and a driver circuit board 131 housed in the housing space 25 is provided in a direction perpendicular to the control circuit board 132. and the control circuit board 132 are connected by a board connector 133 .
 なお、ドライバ回路基板131と制御回路基板132とは、車体のリジッド(図示せず)と装置筐体50とにボルト固定されるため、2つの基板131,132のコネクタ接続は、耐振性を上げるためにフレキシブルな電気配線によるものが望ましい。 Since the driver circuit board 131 and the control circuit board 132 are bolted to the rigid body (not shown) of the vehicle body and the device housing 50, the connector connection of the two boards 131 and 132 increases vibration resistance. Therefore, flexible electrical wiring is desirable.
 冷却水路20は、ドライバ回路基板131や制御回路基板132を避け、装置筐体50に形成されているコンデンサモジュール収納空間111を覆うように形成されている。コンデンサモジュール110は、このコンデンサの収納空間111に熱的に接触するように収納されている。なお、接触熱抵抗を低減する目的でTIM(Thermal Interface Material)をコンデンサモジュール110とコンデンサモジュール収納空間111の間に介在することで、伝熱性能の向上を望むことができる。 The cooling water path 20 is formed so as to avoid the driver circuit board 131 and the control circuit board 132 and cover the capacitor module storage space 111 formed in the device housing 50 . The capacitor module 110 is housed so as to be in thermal contact with this capacitor housing space 111 . By interposing a TIM (Thermal Interface Material) between the capacitor module 110 and the capacitor module housing space 111 for the purpose of reducing the contact thermal resistance, it is possible to improve the heat transfer performance.
 押圧受け部55は、装置筐体50のコンデンサモジュール収納空間110に隣接する位置に設けられ、水路付きパワーモジュールサブアセンブリ123(以下、「サブアセンブリ123」と省略する)は押圧部材40によって押圧受け部55に押圧されている。なお、図2では、押圧部材40はサブアセンブリ123に設けられている3相のパワーモジュール122(図3参照)にそれぞれ対応して、3相分に分かれて形成されている。 The pressure receiving portion 55 is provided at a position adjacent to the capacitor module storage space 110 of the device housing 50 , and the power module subassembly 123 with water channel (hereinafter abbreviated as “subassembly 123 ”) is pressed by the pressing member 40 . It is pressed against the portion 55 . 2, the pressing member 40 is divided into three phases corresponding to the three-phase power modules 122 (see FIG. 3) provided in the subassembly 123, respectively.
 なお、押圧受け部55は装置筐体50と一体であっても良いし、別体にして耐振ゴムのように免振構造にしてもよい。また、押圧部材40は3相一体で押圧できる構造にしてもよいし、図示しているように1相毎に別々にしてもよい。また、押圧部材40は、装置筐体50にボルト固定するか、フック状の構造にして筐体50にスナップフィットのように嵌めこみ固定をしてもよい。 Note that the pressure receiving portion 55 may be integrated with the device housing 50, or may be a separate member having a vibration-isolating structure such as anti-vibration rubber. Further, the pressing member 40 may have a structure capable of pressing the three phases integrally, or may be provided separately for each phase as shown in the figure. Further, the pressing member 40 may be fixed to the device housing 50 with bolts, or may have a hook-like structure and be fitted and fixed to the housing 50 like a snap fit.
 冷却水路20を流れる冷媒は、冷却水入口孔11から筐体50内に入り、電力変換装置100の各機能部の放熱をして、その熱と共に冷却水出口孔12から排出されている。排出された冷媒は、エンジンルーム内のラジエータ(図示せず)に向かい、ラジエータによって外気に放熱されることで、再び低温に戻る。低温に戻った冷媒は、ポンプによって循環されて再度電力変換装置100の冷却に使用される。 The coolant flowing through the cooling water passage 20 enters the housing 50 through the cooling water inlet hole 11, radiates heat from each functional part of the power converter 100, and is discharged from the cooling water outlet hole 12 together with the heat. The discharged coolant is directed to a radiator (not shown) in the engine room, and the heat is released to the outside air by the radiator, thereby returning to a low temperature. The coolant that has returned to a low temperature is circulated by the pump and used to cool the power conversion device 100 again.
 電力変換装置100内の冷媒の流通について説明する。冷却水入口孔11から筐体50内に入った冷媒は、パワーモジュール側水路インレット21を通りサブアセンブリ123へ向かう方向と、第1コンデンサ側水路23と、第2コンデンサ側水路24と、に分岐される。パワーモジュール側水路アウトレット22は、水路付きパワーモジュールサブアセンブリ123内を通った冷媒が冷却水路20に戻る流路である。 The circulation of the refrigerant in the power conversion device 100 will be explained. Refrigerant entering the housing 50 from the cooling water inlet hole 11 branches into a direction toward the subassembly 123 through the power module side water channel inlet 21, the first condenser side water channel 23, and the second condenser side water channel 24. be done. The power module-side water channel outlet 22 is a channel through which the coolant that has passed through the power module subassembly 123 with water channel returns to the cooling water channel 20 .
 冷却水路20全体に関して、電力変換装置100の中で一番放熱しなければならない部材はサブアセンブリ123内のパワーモジュールであるため、コンデンサモジュール110をメインに冷却する第1コンデンサ側水路23や第2コンデンサ側水路24に流れる冷媒の量が、サブアセンブリ123に流れる冷媒の量よりも多くならないようにする必要がある。そのため、第1コンデンサ側水路23と第2コンデンサ側水路24との水路幅は、パワーモジュール側水路であるパワーモジュール側水路インレット21の幅に比べて小さく形成されている。 Regarding the cooling water passage 20 as a whole, since the power module in the subassembly 123 is the member that must dissipate the most heat in the power converter 100, the first condenser side water passage 23 and the second It is necessary that the amount of refrigerant flowing through the condenser-side water passage 24 does not exceed the amount of refrigerant flowing through the subassembly 123 . Therefore, the channel widths of the first condenser-side channel 23 and the second capacitor-side channel 24 are formed smaller than the width of the power module-side channel inlet 21, which is the power module-side channel.
 なお、電力変換装置100に冷媒を共有する循環ポンプの吐出圧力が電力変換装置100内の圧力損失に対して余裕がある場合は、圧力損失分散のためにパワーモジュール側に流れる水路21,22とコンデンサ側水路23を並列に接続する水路にする必要はなく、パワーモジュール側に流れる水路21,22からコンデンサ側水路23に接続されるような直列の水路にしてもよい。 If the discharge pressure of the circulation pump that shares the refrigerant with the power conversion device 100 has a margin for the pressure loss in the power conversion device 100, the water channels 21 and 22 flowing to the power module side for pressure loss distribution The condenser side water channel 23 does not need to be a parallel water channel, and may be a series water channel such that the water channels 21 and 22 flowing to the power module side are connected to the capacitor side water channel 23 .
 また、図示されていないが、後述の制御モジュール130が上位システムなどの外部装置と信号の送受信を行うための信号線を保持した制御信号用コネクタは、装置筐体50において、冷却水入口孔11が設けられた側面とは別の側面に設けている。 Also, although not shown, a control signal connector holding a signal line for the later-described control module 130 to transmit and receive signals to and from an external device such as a host system is provided in the device housing 50 at the cooling water inlet hole 11 is provided on a side different from the side on which is provided.
 図3はサブアセンブリ123の分解斜視図、図4は本発明の第1の実施形態に係る、水路付きパワーモジュールサブアセンブリの斜視図と断面図である。 FIG. 3 is an exploded perspective view of the subassembly 123, and FIG. 4 is a perspective view and cross-sectional view of the power module subassembly with water channels according to the first embodiment of the present invention.
 パワーモジュール側水路インレット21から供給された冷媒は、水路付きパワーモジュールサブアセンブリ123内のヘッダ80で分岐する。分岐した冷媒は、3相のパワーモジュール122を両面で挟む2本の扁平管60を通り、反対側のもう一方のヘッダ80で再び合流して、パワーモジュール側水路アウトレット22から冷却水路20に戻る。 The coolant supplied from the power module side water channel inlet 21 branches at the header 80 in the power module subassembly 123 with water channel. The branched refrigerant passes through two flat tubes 60 sandwiching the three-phase power module 122 on both sides, joins again at the other header 80 on the opposite side, and returns to the cooling water channel 20 from the power module side water channel outlet 22. .
 ここで、パワーモジュール122の放熱部材としての役割を持つ2本の扁平管60は、例えば、放熱性グリスなどの絶縁放熱部材であるTIM70を介してパワーモジュール122を挟んでいる。また、2本の扁平管60はその全体が前述した押圧部材40と押圧受け部55とで挟まれている。このように、扁平管60と筐体50との間に隙間を作らないような構造にすることで、冷媒流路方向に沿って複数設けられたパワーモジュール122全体に対して接触熱抵抗を小さくし、かつ機械的な耐振性および耐温度サイクル性を強めている。 Here, the two flat tubes 60 that serve as heat dissipation members for the power module 122 sandwich the power module 122 via TIM 70, which is an insulating heat dissipation member such as heat dissipating grease. The two flat tubes 60 are wholly sandwiched between the pressing member 40 and the pressure receiving portion 55 described above. In this way, by adopting a structure that does not create a gap between the flat tube 60 and the housing 50, the contact thermal resistance for the entire power module 122 provided in plurality along the direction of the coolant flow path is reduced. and strengthen mechanical vibration resistance and temperature cycle resistance.
 なお、パワーモジュールの122を両面側から扁平管60で挟む構造を説明したが、一方だけ扁平管60を設けてパワーモジュール122に接触するようにして、それを押圧部材40と押圧受け部55とで挟む構造にしてもよい。 Although the structure in which the power module 122 is sandwiched between the flat tubes 60 from both sides has been described, only one side of the flat tube 60 is provided so as to be in contact with the power module 122, and is connected to the pressing member 40 and the pressure receiving portion 55. It is also possible to have a structure sandwiched between
 扁平管60において、冷媒流路内に向かって窪んでいる凹形状65、すなわち水路内壁に凸形状66が形成されることで、縞模様61を作ることが出来る。凹形状65および凸形状66は、扁平管60の主面の短手方向に沿って、冷媒流路に対して垂直方向に溝を有する構造になっている。また、パワーモジュール122の上下アーム位置にそれぞれ対応して凹形状65が形成されている。 In the flat tube 60, a striped pattern 61 can be formed by forming a concave shape 65 that is depressed toward the inside of the coolant channel, that is, a convex shape 66 on the inner wall of the water channel. The concave shape 65 and the convex shape 66 are structured to have grooves in the direction perpendicular to the coolant channel along the width direction of the main surface of the flat tube 60 . Further, concave shapes 65 are formed corresponding to the positions of the upper and lower arms of the power module 122, respectively.
 また、この縞模様61の形成について、扁平管60はプレスによって加工される際に、扁平管60の片面だけをプレス加工すると加工側に反って曲がってしまう可能性があるが、扁平管60の両面をプレスすることで、平面を維持できる。また、押出あるいは引き抜きによって扁平管60を成形し、その外表面からプレス加工して扁平管60に凹形状65および凸形状66を形成することで、より大きな凹凸構造を実現できる。また、冷媒流路に沿って交互に凹凸構造が形成されることにより、後述の図6で説明する乱流効果を増加させ、冷却性能をさらに高めることができる。また、扁平管60のみで冷却性能を向上させることで、小型化、低コスト化にも貢献できる。 Regarding the formation of the striped pattern 61, when the flat tube 60 is processed by pressing, if only one side of the flat tube 60 is press-processed, the flat tube 60 may be warped and bent toward the processed side. You can keep it flat by pressing both sides. Further, by molding the flat tube 60 by extrusion or drawing, and pressing the outer surface of the flat tube 60 to form the concave shape 65 and the convex shape 66 in the flat tube 60, a larger concave-convex structure can be realized. In addition, by forming uneven structures alternately along the coolant channel, the turbulence effect described later with reference to FIG. 6 can be increased, and the cooling performance can be further enhanced. Also, by improving the cooling performance only with the flat tube 60, it is possible to contribute to miniaturization and cost reduction.
 なお、扁平管60の両面に凹凸構造を設けている冷媒流路について説明したが、パワーモジュール122と接する側の扁平管60の片面だけに凹凸構造を形成してもよい。また、押圧部材40は、凹形状65が形成されている箇所に対応して配置されていることで、より冷却効果を向上させることができる。 It should be noted that although the refrigerant flow path in which both surfaces of the flat tube 60 are provided with an uneven structure has been described, the uneven structure may be formed only on one side of the flat tube 60 that is in contact with the power module 122 . Further, the pressing member 40 is arranged corresponding to the portion where the concave shape 65 is formed, so that the cooling effect can be further improved.
 図5は、電力変換装置100の回路ブロック構成図である。 FIG. 5 is a circuit block configuration diagram of the power converter 100. As shown in FIG.
 電力変換装置100は、バッテリ200とモータジェネレータ300とに接続されて、バッテリ200から供給される直流電流を3相の交流電流に変換し、モータジェネレータ300へ供給する装置である。 The power conversion device 100 is a device that is connected to the battery 200 and the motor generator 300 , converts the direct current supplied from the battery 200 into three-phase alternating current, and supplies the three-phase alternating current to the motor generator 300 .
 電力変換装置100は、バッテリ200から供給される直流電流を安定化・平滑化させるためのコンデンサモジュール110と、直流電流から3相の交流電流を生成するためのインバータ装置120を含んで構成されている。また、インバータ装置120は、U相V相W相の3相を構成する上下アーム直列回路122と、それを制御する制御モジュール130と、を含んで構成されている。 The power conversion device 100 includes a capacitor module 110 for stabilizing and smoothing the DC current supplied from the battery 200, and an inverter device 120 for generating a three-phase AC current from the DC current. there is The inverter device 120 includes an upper and lower arm series circuit 122 forming three phases of U-phase, V-phase and W-phase, and a control module 130 for controlling it.
 直流コネクタ140とコンデンサモジュール110は電気的に接続され、またコンデンサモジュール110と上下アーム直列回路122の直流端子はボルトで電気的に接続されるか、あるいは溶接等で接続されている。パワーモジュールの交流端子は、電流センサ150を介して交流コネクタ160に接続されている。 The DC connector 140 and the capacitor module 110 are electrically connected, and the capacitor module 110 and the DC terminals of the upper and lower arm series circuits 122 are electrically connected by bolts or by welding. AC terminals of the power module are connected to the AC connector 160 via the current sensor 150 .
 インバータ装置120において、上下アーム直列回路122のそれぞれは、IGBT(Insulated
Gate Bipolar Transistor)125とダイオード126との並列接続回路からなる2つの電流スイッチ回路が直列に配置される。上下アーム直列回路122の上下端は、それぞれ、バッテリ200の正極および負極に直流コネクタ140を介して接続される。上下アーム直列回路122において、上側(正極側)に配置されたIGBT125aとダイオード126aとからなる電流スイッチ回路は上アームとして動作し、下側(負極側)に配置されたIGBT125bとダイオード126bとからなる電流スイッチ回路は下アームとして動作する。
In the inverter device 120, each of the upper and lower arm series circuits 122 is an IGBT (Insulated
Two current switch circuits consisting of a parallel connection circuit of a Gate Bipolar Transistor 125 and a diode 126 are arranged in series. The upper and lower ends of upper and lower arm series circuit 122 are connected to the positive and negative electrodes of battery 200 via DC connectors 140, respectively. In the upper and lower arm series circuit 122, the current switch circuit composed of the IGBT 125a and the diode 126a arranged on the upper side (positive side) operates as an upper arm, and is composed of the IGBT 125b and the diode 126b arranged on the lower side (negative side). A current switch circuit operates as a lower arm.
 インバータ装置120は、それぞれの上下アーム直列回路122の中点位置、すなわち、上下の電流スイッチ回路の接続部分からは、3相の交流電流U,V,Wが出力され、その出力された3相の交流電流U,V,Wは、交流コネクタ160を介して、モータジェネレータ300へ供給される。 The inverter device 120 outputs three-phase AC currents U, V, W from the midpoint position of each of the upper and lower arm series circuits 122, that is, from the connection portion of the upper and lower current switch circuits. are supplied to motor generator 300 via AC connector 160 .
 なお、インバータ装置120が1つである場合を例に挙げて回路を説明しているが、インバータ装置120を複数にすることで変換する電力量の増大や複数のモータジェネレータ300に対応させることもできる。 Although the circuit has been described using a single inverter device 120 as an example, it is also possible to increase the amount of power to be converted by using a plurality of inverter devices 120 and to accommodate a plurality of motor generators 300. can.
 パワーモジュールのゲートやエミッタセンスやサーミスタなどの信号線はドライバ回路131に接続されている。ドライバ回路131は基板コネクタ133(図1参照)を介して制御回路132に接続されている。 Signal lines for gates, emitter senses, thermistors, etc. of the power module are connected to the driver circuit 131 . Driver circuit 131 is connected to control circuit 132 via board connector 133 (see FIG. 1).
 制御モジュール130は、3組の上下アーム直列回路122を駆動制御するドライバ回路131と、ドライバ回路131へ制御信号を供給する制御回路132と、を含んで構成される。ここで、ドライバ回路131から出力される信号は、パワーモジュールの上アームおよび下アームの各IGBT125に供給され、電流センサ150の情報などに応じてそのスイッチング動作を制御して、各上下アーム直列回路122から出力される交流電流U,V,Wの振幅や位相などを制御する。このようにして、制御モジュール130は、上下アーム直列回路122をフィードバック制御している。 The control module 130 includes a driver circuit 131 that drives and controls the three sets of upper and lower arm series circuits 122 and a control circuit 132 that supplies control signals to the driver circuit 131 . Here, the signal output from the driver circuit 131 is supplied to each IGBT 125 of the upper arm and the lower arm of the power module, and controls the switching operation according to the information of the current sensor 150 and the like to control each upper and lower arm series circuit. It controls the amplitude, phase, etc. of the AC currents U, V, W output from 122 . In this manner, the control module 130 feedback-controls the upper and lower arm series circuit 122 .
 制御回路132は、3組の上下アーム直列回路122における各IGBT125のスイッチングタイミングを演算処理するためのマイクロコンピュータを備えている。そのマイクロコンピュータには、入力情報として、モータジェネレータ300に対して要求される目標トルク値、上下アーム直列回路122からモータジェネレータ300へ供給する電流値、およびモータジェネレータ300の回転子の磁極位置、などが入力される。 The control circuit 132 has a microcomputer for arithmetic processing of the switching timing of each IGBT 125 in the three sets of upper and lower arm series circuits 122 . Input information to the microcomputer includes the target torque value required for motor generator 300, the current value supplied from upper and lower arm series circuit 122 to motor generator 300, the magnetic pole position of the rotor of motor generator 300, and the like. is entered.
 これらの入力情報のうち、目標トルク値は、図示しない上位の制御装置から出力された指令信号に基づく。また、電流値は、各上下アーム直列回路122から出力される交流電流の電流値を検出する電流センサ150の検出信号に基づく。また、磁極位置は、モータジェネレータ300に設けられた図示しない回転磁極センサの検出信号に基づく。 Among these pieces of input information, the target torque value is based on a command signal output from a higher-level control device (not shown). Also, the current value is based on the detection signal of current sensor 150 that detects the current value of the alternating current output from each upper and lower arm series circuit 122 . The magnetic pole position is based on a detection signal of a rotating magnetic pole sensor (not shown) provided in motor generator 300 .
 また、制御モジュール130は、過電流、過電圧、過温度などの異常検知を行う機能を有し、上下アーム直列回路122を保護している。各アームのIGBT125のエミッタ電極は、ドライバ回路131に接続され、ドライバ回路131は、それぞれのIGBT125ごとにエミッタ電極における過電流検知を行い、過電流が検知されたIGBT125については、そのスイッチング動作を停止させ、過電流から保護する。 The control module 130 also has a function of detecting abnormalities such as overcurrent, overvoltage, and overtemperature, and protects the upper and lower arm series circuits 122 . The emitter electrode of the IGBT 125 of each arm is connected to a driver circuit 131. The driver circuit 131 detects overcurrent in the emitter electrode of each IGBT 125, and stops the switching operation of the IGBT 125 in which overcurrent is detected. and protect against overcurrent.
 また、制御回路132には、上下アーム直列回路122に設けられた図示しない温度センサや、上下アーム直列回路122の両端に印加される直流電圧を検出する検出回路などからの信号が入力され、それらの信号に基づき、過温度、過電圧などの異常を検知する。そして、過温度、過電圧などの異常を検知した場合には、電力変換装置100は全てのIGBT125スイッチング動作を停止させ、パワーモジュール122全体を過温度、過電圧などの異常から保護する。 The control circuit 132 also receives signals from a temperature sensor (not shown) provided in the upper and lower arm series circuit 122, a detection circuit for detecting a DC voltage applied across the upper and lower arm series circuit 122, and the like. abnormalities such as overtemperature and overvoltage are detected based on the signals from the When an abnormality such as overtemperature or overvoltage is detected, the power conversion device 100 stops switching operations of all IGBTs 125 to protect the entire power module 122 from abnormalities such as overtemperature and overvoltage.
 なお、以上に示した電力変換装置100において、IGBT125およびダイオード126からなる電流スイッチ回路は、MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor)を用いて構成してもよい。また、3組の上下アーム直列回路122は、2つの上下アーム直列回路を含んで構成され、2相の交流電流を出力するものとしてもよい。さらに、電力変換装置100は、この回路構成とほとんど同様に構成される3相(2相)の交流電流を直流電流に変換する装置であってもよい。 In the power converter 100 shown above, the current switch circuit composed of the IGBT 125 and the diode 126 may be configured using a MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor). Also, the three sets of upper and lower arm series circuits 122 may include two upper and lower arm series circuits and output two-phase AC currents. Furthermore, the power conversion device 100 may be a device that converts a three-phase (two-phase) alternating current into a direct current and is configured in almost the same circuit configuration.
 また、パワーモジュール122は各相の上下アーム直列回路122に対応して構成する2in1タイプを用いているが、本実施例で示す扁平管水路10とパワーモジュール122の位置関係は、1in1タイプの半導体モジュール(上アームと下アームに分けた各アームを1つの単位とした構成)や、6in1タイプの半導体モジュール(3相分の上下アームを一まとめにした構成)であってもよい。 Also, the power module 122 uses a 2-in-1 type configured corresponding to the upper and lower arm series circuits 122 of each phase, but the positional relationship between the flat pipe conduit 10 and the power module 122 shown in this embodiment is based on the 1-in-1 type semiconductor A module (a configuration in which each arm divided into an upper arm and a lower arm is one unit) or a 6-in-1 type semiconductor module (a configuration in which upper and lower arms for three phases are integrated) may be used.
 図6は、本発明の実施形態の効果を示す冷却性能向上の原理図である。 FIG. 6 is a principle diagram of cooling performance improvement showing the effect of the embodiment of the present invention.
 図6(a)は、扁平管60(冷却水路20)の内壁に凸形状66を設けず平滑面の水路形状である場合の層流境界層20b、速度分布20e、温度分布20fを示している。また、層流境界層20bの内側は低い温度、層流境界層20bの外側が暖かい温度の冷媒である。図6(a)の場合、水路壁面近傍の冷媒は、進行方向20aに従って進行するにつれて温度が高くなっていくが、層流境界層20bに示すように、低い温度の冷媒が壁面に供給されておらず、冷媒としての熱伝達率が低くなっている。 FIG. 6(a) shows the laminar flow boundary layer 20b, the velocity distribution 20e, and the temperature distribution 20f when the inner wall of the flat tube 60 (cooling channel 20) does not have a convex shape 66 and has a smooth channel shape. . In addition, the coolant has a low temperature inside the laminar boundary layer 20b and a warm temperature outside the laminar boundary layer 20b. In the case of FIG. 6A, the temperature of the coolant in the vicinity of the water channel wall surface increases as it advances in the traveling direction 20a. Therefore, the heat transfer coefficient as a refrigerant is low.
 図6(b)は、扁平管60(冷却水路20)に流路側に向かって凸形状66が設けられており、パワーモジュール122と接する側の流路壁だけでなく、その反対側の面も凸形状66が形成されている。凸形状66は、扁平管60の外部から凹形状65の加工によって形成される。また、パワーモジュール122の熱が扁平管60に対して効率よく全領域で冷媒に輸送されるように、TIM70を凹形状65に生じた空隙に充填している。 In FIG. 6B, a flat tube 60 (cooling water channel 20) is provided with a convex shape 66 toward the flow channel side, and not only the flow channel wall on the side contacting the power module 122 but also the surface on the opposite side A convex shape 66 is formed. The convex shape 66 is formed by machining the concave shape 65 from the outside of the flat tube 60 . In addition, the TIM 70 is filled in the gaps generated in the concave shape 65 so that the heat of the power module 122 is efficiently transported to the refrigerant over the entire area of the flat tube 60 .
 図6(b)に示すように、凸形状66を形成することで、凸形状66の直後に縦渦20dが発生し、流れが剥離および再付着することで境界層20cが図のように薄くなる。これにより、低い温度の冷媒を扁平管60の壁面近傍まで輸送することが可能となる。また、発熱体122周辺のみに凸形状66(凹形状65)を局所的に形成し、凸形状66の頂点から対向する扁平管60の流路壁までの流路断面積を小さくする構造にしている。このようにすることで、乱流による冷媒の流速を大きくし、熱伝達率を向上させている。 As shown in FIG. 6(b), by forming a convex shape 66, a vertical vortex 20d is generated immediately after the convex shape 66, and the flow separates and reattaches, thereby thinning the boundary layer 20c as shown in the figure. Become. This makes it possible to transport the low-temperature coolant to the vicinity of the wall surface of the flat tube 60 . In addition, the convex shape 66 (concave shape 65) is locally formed only around the heating element 122, and the flow channel cross-sectional area from the vertex of the convex shape 66 to the flow channel wall of the opposing flat tube 60 is made small. there is By doing so, the flow velocity of the coolant is increased by turbulent flow, and the heat transfer coefficient is improved.
 また、前述の図4や図6に示すように、扁平管60の両壁面に互い違いに千鳥で凸凹構造を設ける構造により、冷媒と流路壁面の伝熱面積を2倍に向上させ、かつ縦渦20dによる乱流効果を増加させ、更に流れの剥離と再付着が狭いピッチで形成される凸構造であっても可能となるため、冷却性能を極限にまで高めることが可能となる。 In addition, as shown in FIGS. 4 and 6, the structure in which both wall surfaces of the flat tube 60 are alternately provided with uneven structures in a zigzag pattern doubles the heat transfer area between the refrigerant and the flow path wall surface, The turbulence effect of the vortex 20d is increased, and the separation and reattachment of the flow are possible even with a convex structure formed at a narrow pitch, so that the cooling performance can be enhanced to the utmost limit.
 なお、特に流路高さHが小さくなればなるほど、パワーモジュール122の方向に冷媒を誘導できるため、剥離した渦20dの再付着を促すことができる。また、このようにすることでフィン効率が高くなり、扁平管60の反対面の凸形状66フィン代わりになるため、伝熱面積を大きくすることが出来、熱伝達率が向上する。 Note that the smaller the flow path height H is, the more the refrigerant can be guided toward the power module 122, so that the reattachment of the separated vortex 20d can be promoted. Further, by doing so, the efficiency of the fins is increased, and since the convex shape 66 fins on the opposite surface of the flat tube 60 can be substituted for the fins, the heat transfer area can be increased, and the heat transfer coefficient is improved.
 図7は、本発明の効果を示す熱伝達率と圧力損失の関係を示したグラフである。 FIG. 7 is a graph showing the relationship between heat transfer coefficient and pressure loss, which shows the effect of the present invention.
 図7では、凸形状66の高さをhと定義し、前述した流路高さHとの相対関係で最適形状がないかを検証した。またh/H>0.3(凸凹形状の解析結果67)と0.05<h/H<0.3(凸凹形状の解析結果68)とのそれぞれにおいて、トレードオフのパレート解がどのようになるのかを熱流体解析にて予測した。ただし、平滑面とみなす定義はh/H<0.05(平滑面の解析結果69)とした。なお、図7において、凸凹形状の解析結果67は◇の代表点、凸凹形状の解析結果68は△の代表点、平滑面の解析結果69は〇の代表点である。検証の結果、0.05<h/H<0.3(68)であれば、低圧力損失を維持しつつ熱伝達率を要求値まで上げられる見込みがある要求仕様を達成できることが確認できた。 In FIG. 7, the height of the convex shape 66 is defined as h, and it is verified whether there is an optimum shape in relation to the flow path height H described above. Also, in each of h/H>0.3 (analysis result 67 of uneven shape) and 0.05<h/H<0.3 (analysis result 68 of uneven shape), how is the Pareto solution of the trade-off It was predicted by thermal fluid analysis. However, the definition of a smooth surface was h/H<0.05 (smooth surface analysis result 69). In FIG. 7, the uneven shape analysis result 67 is represented by ◇, the uneven shape analysis result 68 is represented by Δ, and the smooth surface analysis result 69 is represented by ◯. As a result of the verification, it was confirmed that if 0.05<h/H<0.3 (68), the required specifications that are expected to increase the heat transfer coefficient to the required value while maintaining low pressure loss can be achieved. .
(第2の実施形態)
 図8は、本発明の第2実施形態に係る、水路付きパワーモジュールサブアセンブリのディンプル構造図である。
(Second embodiment)
FIG. 8 is a dimple structural diagram of a power module subassembly with water channels according to a second embodiment of the present invention.
 本実施形態では、扁平管60の主面全体において、冷媒流路に対して垂直方向にディンプル構造62を設けている。前述の図4で説明した第1の実施形態と比較してみると、図4に示した縞模様61の構造は、外面凹み形状65と内面凸形状66とをプレス加工することで形成されたものであり、押出しもしくは引き抜きで扁平管60を製作する段階において、扁平管断面の隣り合う流路間ピッチが不均一だったとしても、位置決めする必要がないという利点があった。一方で、本実施形態のディンプル構造62では、扁平管60内の流路構造の製造ばらつきが小さいとき、凸形状66であるフィンによって、冷却の狙いを定めやすく、製作段階において、少ないプレス圧力でも剣山のような型により、大きな凹凸形状を形成することが容易となる効果がある。これにより、プレス機の負担が減り、大面積を加工する際に必要なプレス機に対する設備投資や、金型保守作業頻度の手間を軽減できる効果がある。 In this embodiment, the dimple structure 62 is provided in the direction perpendicular to the coolant flow path over the entire main surface of the flat tube 60 . When compared with the first embodiment described above with reference to FIG. 4, the structure of the striped pattern 61 shown in FIG. This has the advantage that there is no need for positioning even if the pitch between adjacent channels of the flat tube cross section is uneven in the stage of manufacturing the flat tube 60 by extrusion or drawing. On the other hand, in the dimple structure 62 of the present embodiment, when manufacturing variations in the flow path structure in the flat tube 60 are small, the convex fins 66 make it easy to target cooling, and even a small press pressure can be achieved in the manufacturing stage. There is an effect of facilitating the formation of a large concave-convex shape by using a mold like a pincushion. As a result, the burden on the press machine is reduced, and there is an effect that the capital investment for the press machine required when processing a large area and the trouble of frequent mold maintenance work can be reduced.
 さらに、プレス加工による変形量は、第1の実施形態に比べると、ディンプル構造62の方が小さいため、反りやうねりや幅長さなどの寸法変化を小さく抑えることが可能となる。よって、結果的に扁平管60の平面度が小さくなることで、パワーモジュール122と扁平管60の接触面積を増やすことができるため、接触熱抵抗を小さくすることができる。 Furthermore, since the amount of deformation due to press working is smaller in the dimple structure 62 than in the first embodiment, it is possible to suppress dimensional changes such as warpage, undulation, and width. As a result, the flatness of the flat tube 60 is reduced, so that the contact area between the power module 122 and the flat tube 60 can be increased, and the contact thermal resistance can be reduced.
(第3の実施形態)
 図9は、本発明の第3実施形態に係る、ヘッダ部の形状について説明する図である。
(Third Embodiment)
FIG. 9 is a diagram explaining the shape of the header portion according to the third embodiment of the present invention.
 例えば、図9(a)のように、上下アームのIGBT25とダイオード126のそれぞれを流路方向に並べるチップレイアウトの場合、パワーモジュール122の中央部にはチップが存在しないため、扁平管60の幅方向中央部の流路は積極的に冷媒を流さないように、ヘッダ内邪魔板90によって入口を一部塞いでいる。また、図9(b)のように、IGBTとダイオードが流路幅に沿って4分割されるチップレイアウトの場合は、扁平管60の幅方向中央部にチップが存在するため、ヘッダ80からパワーモジュール122が配置されている流路の中央にも積極的に冷媒を共有できる設計にすることで対応できる。 For example, as shown in FIG. 9A, in the case of a chip layout in which the IGBTs 25 and the diodes 126 on the upper and lower arms are arranged in the direction of the flow path, there is no chip in the central portion of the power module 122, so the width of the flat tube 60 is The flow path in the center of the direction has its inlet partly closed by an in-header baffle plate 90 so that the coolant does not actively flow. In the case of a chip layout in which the IGBTs and diodes are divided into four parts along the width of the flow path as shown in FIG. This can be dealt with by designing the center of the channel in which the module 122 is arranged to positively share the coolant.
 このように、チップレイアウトに従ってヘッダ80に設けられたヘッダ内邪魔板90によって、冷媒共有をすべき流路が一意に決まるため、ヘッダ80という最小単位の部品のみを改造することで、設計を柔軟にできる効果がある。また、装置筐体50が手元になくても、筐体水路付きパワーモジュールアセンブリ123単体で冷却性能検証試験を実施することができるため、不具合や金型変更時の歩留まり悪化を最小工数に留め、かつ不具合の要因分析を部品単体で実施できる。 In this manner, the flow path to be shared with the coolant is uniquely determined by the in-header baffle plate 90 provided in the header 80 in accordance with the chip layout. There is an effect that can be In addition, even if the device housing 50 is not at hand, the cooling performance verification test can be performed on the power module assembly 123 with housing water passages alone. In addition, defect factor analysis can be performed for each individual component.
(第4の実施形態)
 図10は、本発明の第4の実施形態に係る、扁平管の構造を説明する図である。
(Fourth embodiment)
FIG. 10 is a diagram illustrating the structure of a flat tube according to a fourth embodiment of the present invention.
 一般に、水路が分岐する場合、冷媒進行方向に流れ進み続けようとすると、慣性力の影響を受けるため、奥にいくほど冷媒が流れやすく、逆に手前側が流れにくい。この原理から、ヘッダ部80の冷媒入口側に形成されている扁平管60には冷媒が流れにくい課題がある。これは、冷却水入口孔11と冷却水出口孔12の主流方向に対して、ヘッダ部80内の流れは直交するため、ヘッダ部80で冷媒が減速すると、上部扁平管の流量64aの方が下部扁平管の流量64bよりも大きくなるという原理から発生する課題である。 In general, when a water channel branches, if the coolant continues to flow in the direction of travel, it will be affected by inertial force, so the deeper the coolant, the easier it will flow, and the more difficult it will be for the front side. Due to this principle, there is a problem that the refrigerant cannot easily flow through the flat tubes 60 formed on the refrigerant inlet side of the header portion 80 . This is because the flow in the header portion 80 is orthogonal to the main stream direction of the cooling water inlet hole 11 and the cooling water outlet hole 12, so when the refrigerant decelerates in the header portion 80, the flow rate 64a of the upper flat tube increases. This problem arises from the principle that the flow rate is greater than the flow rate 64b of the lower flat tube.
 そこで、本実施形態では、慣性力で不利な下部の扁平管60は、パワーモジュール122と接する面において片面のみのディンプル構造63とした。このようにすることで、上部扁平管の流量64aと下部扁平管との流量64bの差を低減することができる。 Therefore, in the present embodiment, the lower flat tube 60, which is disadvantageous due to inertial force, has a dimple structure 63 with only one side in contact with the power module 122. By doing so, the difference between the flow rate 64a of the upper flat tube and the flow rate 64b of the lower flat tube can be reduced.
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。 According to the first embodiment of the present invention described above, the following effects are obtained.
(1)電力変換装置100は、半導体素子125,126を有する半導体モジュール122と、半導体モジュール122の少なくとも一つの面に接触する放熱部材60と、を備えている。放熱部材60は、内部に冷媒流路が形成された扁平形状であり、冷媒流路には、冷媒流路内に向かって窪んでいる凹部65が、放熱部材60の一対の主面のうち少なくとも一方の面であって、半導体モジュール122と接触する側の面に形成されている。このようにしたことで、小型化とコスト低減と冷却性能の向上とを並立させた電力変換装置を提供できる。 (1) The power conversion device 100 includes a semiconductor module 122 having semiconductor elements 125 and 126 and a heat dissipation member 60 in contact with at least one surface of the semiconductor module 122 . The heat radiating member 60 has a flat shape in which a coolant channel is formed. It is formed on one surface, which is the surface that contacts the semiconductor module 122 . By doing so, it is possible to provide a power conversion device that simultaneously achieves miniaturization, cost reduction, and improvement in cooling performance.
(2)凹部65は、放熱部材60の一対の主面の両面にそれぞれ形成され、冷媒流路に沿ってそれぞれの面から交互に窪んで形成されている。このようにしたことで、冷媒流路内の乱流効果を増加させ、冷却性能をさらに高めることができる。 (2) The concave portions 65 are formed on both surfaces of the pair of main surfaces of the heat radiating member 60, and are alternately recessed from the respective surfaces along the coolant flow path. By doing so, it is possible to increase the turbulence effect in the coolant flow path and further improve the cooling performance.
(3)凹部65は、放熱部材60の外部表面において、半導体モジュール122との間に放熱性グリス70が充填されている。このようにしたことで、パワーモジュール122の熱が扁平管60に対して効率よく全領域で冷媒に輸送される。 (3) The concave portion 65 is filled with the heat dissipating grease 70 between the semiconductor module 122 and the external surface of the heat dissipating member 60 . By doing so, the heat of the power module 122 is efficiently transported to the refrigerant over the entire area of the flat tube 60 .
(4)凹部65は、放熱部材60の主面の短手方向に沿って、冷媒流路に対して垂直方向に溝を有する。このようにしたことで、冷媒流路の幅方向に対して確実に放熱させることができる。 (4) The recessed portion 65 has a groove perpendicular to the coolant channel along the lateral direction of the main surface of the heat radiating member 60 . By doing so, it is possible to reliably dissipate heat in the width direction of the coolant channel.
(5)凹部65は、放熱部材60の主面において、冷媒流路に対して垂直方向にディンプル構造62を有する。このようにしたことで、凸形状66のフィンによって冷却の狙いを定めやすく、製作段階において、少ないプレス圧力でも剣山のような型により、大きな凹凸形状65,66を形成することが容易となる。 (5) The concave portion 65 has a dimple structure 62 in the direction perpendicular to the coolant channel on the main surface of the heat radiating member 60 . By doing so, it is easy to target the cooling by the fins of the convex shape 66, and it becomes easy to form the large uneven shapes 65 and 66 with a mold like a ridge in the manufacturing stage even with a small pressing pressure.
(6)電力変換装置100は、放熱部材60を半導体モジュール122の主面に向かって押圧している押圧部材40を備える。このようにしたことで、冷媒流路方向に沿って複数設けられたパワーモジュール122全体に対して接触熱抵抗を小さくし、かつ機械的な耐振性および耐温度サイクル性を強めている。 (6) The power conversion device 100 includes the pressing member 40 pressing the heat dissipation member 60 toward the main surface of the semiconductor module 122 . By doing so, the contact thermal resistance is reduced for the entire power modules 122 provided along the direction of the refrigerant flow path, and the mechanical vibration resistance and temperature cycle resistance are enhanced.
(7)押圧部材40は、凹部65が形成されている箇所に対応して配置されている。このようにしたことで、確実に放熱効果を向上させることができる。 (7) The pressing member 40 is arranged corresponding to the location where the concave portion 65 is formed. By doing so, the heat dissipation effect can be reliably improved.
(8)半導体モジュール122は、冷媒流路方向に沿って複数設けられ、凹部65は、複数の半導体モジュール122の配置にそれぞれ対応して形成されている。このようにしたことで、確実に放熱効果を向上させることができる。 (8) A plurality of semiconductor modules 122 are provided along the coolant flow path direction, and the concave portions 65 are formed corresponding to the arrangement of the plurality of semiconductor modules 122, respectively. By doing so, the heat dissipation effect can be reliably improved.
(9)凹部65は、半導体モジュール122の上下アームにそれぞれ対応して形成されている。このようにしたことで、確実に放熱効果を向上させることができる。 (9) The recesses 65 are formed corresponding to the upper and lower arms of the semiconductor module 122, respectively. By doing so, the heat dissipation effect can be reliably improved.
(10)半導体素子125,126を有する半導体モジュール122を、内部に流れる冷媒によって冷却する放熱部材を有する、電力変換装置100の製造方法であって、放熱部材60は、押出しまたは引抜きによって扁平形状に成形し、扁平形状に成形された放熱部材60に、プレス加工によって、凹部65を形成する。このようにしたことで、本発明の冷却水路を実現できる。 (10) A method for manufacturing a power conversion device 100 having a heat dissipation member that cools a semiconductor module 122 having semiconductor elements 125 and 126 with a coolant flowing therein, wherein the heat dissipation member 60 is extruded or drawn into a flat shape. A concave portion 65 is formed by press working in the heat radiating member 60 that has been molded and molded into a flat shape. By doing so, the cooling water passage of the present invention can be realized.
 なお、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で様々な変形や他の構成を組み合わせることができる。また本発明は、上記の実施形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。 It should be noted that the present invention is not limited to the above embodiments, and various modifications and other configurations can be combined without departing from the scope of the invention. Moreover, the present invention is not limited to those having all the configurations described in the above embodiments, and includes those having some of the configurations omitted.
11:冷却水入口孔
12:冷却水出口孔
15:筐体下フタ
20:冷却水路
 20a:冷媒進行方向
 20b:層流境界層
 20c:乱流境界層
 20d:縦渦
 20e:速度分布
 20f:温度分布
21:パワーモジュール側水路インレット
22:パワーモジュール側水路アウトレット
23:第1コンデンサ側水路
24:第2コンデンサ側水路
25:ドライバ回路基板収納空間
30:制御信号用コネクタ
40:押圧部材
50:装置筐体
55:押圧受け部
60:扁平管(放熱部材)
61:縞模様
62:両面ディンプル構造
63:片面ディンプル構造
64a:上部扁平管流量
64b:下部扁平管流量
65:凹形状
66:凸形状
67:凸凹形状の解析結果(h/H>0.3)
68:凸凹形状の解析結果(0.05<h/H<0.3)
69:平滑面の解析結果(h/H<0.05)
70:TIM(Thermal Interface Material)
80:ヘッダ
90:ヘッダ内邪魔板
100:電力変換装置
110:コンデンサモジュール
111:コンデンサモジュール収納空間
120:インバータ装置
122:パワーモジュール(上下アーム直列回路)
123:水路付きパワーモジュールサブアセンブリ
125:IGBT
126:ダイオード
130:制御モジュール
131:ドライバ回路基板
132:制御回路基板
133:基板コネクタ
11: Cooling water inlet hole 12: Cooling water outlet hole 15: Housing lower lid 20: Cooling water channel 20a: Refrigerant traveling direction 20b: Laminar boundary layer 20c: Turbulent boundary layer 20d: Longitudinal vortex 20e: Velocity distribution 20f: Temperature Distribution 21: power module side channel inlet 22: power module side channel outlet 23: first capacitor side channel 24: second capacitor side channel 25: driver circuit board storage space 30: control signal connector 40: pressing member 50: device housing Body 55: Pressure receiving portion 60: Flat tube (heat radiation member)
61: striped pattern 62: double-sided dimple structure 63: single-sided dimple structure 64a: upper flat tube flow rate 64b: lower flat tube flow rate 65: concave shape 66: convex shape 67: uneven shape analysis result (h/H>0.3)
68: Uneven shape analysis result (0.05<h/H<0.3)
69: Analysis result of smooth surface (h / H < 0.05)
70: TIM (Thermal Interface Material)
80: Header 90: Baffle plate in header 100: Power conversion device 110: Capacitor module 111: Capacitor module storage space 120: Inverter device 122: Power module (upper and lower arm series circuit)
123: power module subassembly with water channel 125: IGBT
126: Diode 130: Control Module 131: Driver Circuit Board 132: Control Circuit Board 133: Board Connector

Claims (10)

  1.  半導体素子を有する半導体モジュールと、前記半導体モジュールの少なくとも一つの面に接触する放熱部材と、を備えた電力変換装置であって、
     前記放熱部材は、内部に冷媒流路が形成された扁平形状であり、
     前記冷媒流路には、前記冷媒流路内に向かって窪んでいる凹部が、前記放熱部材の一対の主面のうち少なくとも一方の面であって、前記半導体モジュールと接触する側の面に形成されている
     電力変換装置。
    A power converter comprising a semiconductor module having a semiconductor element and a heat dissipation member in contact with at least one surface of the semiconductor module,
    The heat dissipating member has a flat shape in which a coolant channel is formed,
    In the coolant channel, a concave portion recessed toward the inside of the coolant channel is formed on at least one of the pair of main surfaces of the heat radiating member, which is the surface that contacts the semiconductor module. power conversion equipment.
  2.  請求項1に記載の電力変換装置であって、
     前記凹部は、前記放熱部材の一対の主面の両面にそれぞれ形成され、前記冷媒流路に沿ってそれぞれの面から交互に窪んで形成されている
     電力変換装置。
    The power converter according to claim 1,
    The power conversion device, wherein the recesses are formed on both surfaces of a pair of main surfaces of the heat radiating member, and are alternately recessed from the respective surfaces along the coolant flow path.
  3.  請求項1に記載の電力変換装置であって、
     前記凹部は、前記放熱部材の外部表面において、前記半導体モジュールとの間に放熱性グリスが充填されている
     電力変換装置。
    The power converter according to claim 1,
    The power conversion device, wherein the recess is filled with heat dissipating grease between the semiconductor module and the outer surface of the heat dissipating member.
  4.  請求項1に記載の電力変換装置であって、
     前記凹部は、前記放熱部材の主面の短手方向に沿って、前記冷媒流路に対して垂直方向に溝を有する
     電力変換装置。
    The power converter according to claim 1,
    The power conversion device, wherein the concave portion has a groove in a direction perpendicular to the coolant flow path along the width direction of the main surface of the heat radiating member.
  5.  請求項1に記載の電力変換装置であって、
     前記凹部は、前記放熱部材の主面において、前記冷媒流路に対して垂直方向にディンプル構造を有する
     電力変換装置。
    The power converter according to claim 1,
    The power conversion device, wherein the recess has a dimple structure in a direction perpendicular to the coolant channel on the main surface of the heat radiating member.
  6.  請求項1に記載の電力変換装置であって、
     前記放熱部材を前記半導体モジュールの前記主面に向かって押圧している押圧部材を備える
     電力変換装置。
    The power converter according to claim 1,
    A power converter comprising a pressing member pressing the heat radiation member toward the main surface of the semiconductor module.
  7.  請求項6に記載の電力変換装置であって、
     前記押圧部材は、前記凹部が形成されている箇所に対応して配置されている
     電力変換装置。
    The power converter according to claim 6,
    The power conversion device, wherein the pressing member is arranged corresponding to the location where the recess is formed.
  8.  請求項1から7のいずれか一項に記載の電力変換装置であって、
     前記半導体モジュールは、前記冷媒流路方向に沿って複数設けられ、
     前記凹部は、複数の前記半導体モジュールの配置にそれぞれ対応して形成されている
     電力変換装置。
    The power converter according to any one of claims 1 to 7,
    A plurality of the semiconductor modules are provided along the direction of the coolant flow path,
    The power conversion device, wherein the recesses are formed corresponding to the arrangement of the plurality of semiconductor modules.
  9.  請求項8に記載の電力変換装置であって、
     前記凹部は、前記半導体モジュールの上下アームにそれぞれ対応して形成されている
     電力変換装置。
    The power converter according to claim 8,
    The power conversion device, wherein the recesses are formed corresponding to the upper and lower arms of the semiconductor module, respectively.
  10.  半導体素子を有する半導体モジュールを、内部に流れる冷媒によって冷却する放熱部材を有する、電力変換装置の製造方法であって、
     前記放熱部材は、押出しまたは引抜きによって扁平形状に成形し、
     前記扁平形状に成形された前記放熱部材に、プレス加工によって、凹部を形成する
     電力変換装置用放熱部材の製造方法。
    A method for manufacturing a power conversion device having a heat dissipation member that cools a semiconductor module having a semiconductor element with a coolant flowing therein,
    The heat dissipating member is formed into a flat shape by extrusion or drawing,
    A method of manufacturing a heat radiating member for a power conversion device, wherein a concave portion is formed in the flat heat radiating member by press working.
PCT/JP2022/008089 2021-06-25 2022-02-25 Power conversion device WO2022270013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-105869 2021-06-25
JP2021105869A JP2023004273A (en) 2021-06-25 2021-06-25 Electric power conversion device

Publications (1)

Publication Number Publication Date
WO2022270013A1 true WO2022270013A1 (en) 2022-12-29

Family

ID=84544840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008089 WO2022270013A1 (en) 2021-06-25 2022-02-25 Power conversion device

Country Status (2)

Country Link
JP (1) JP2023004273A (en)
WO (1) WO2022270013A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062006A1 (en) * 2002-09-27 2004-04-01 Pfeifer David W. Laminated bus bar for use with a power conversion configuration
JP2005136278A (en) * 2003-10-31 2005-05-26 Mitsubishi Electric Corp Power semiconductor module and its manufacturing method
WO2012114475A1 (en) * 2011-02-23 2012-08-30 トヨタ自動車株式会社 Cooling device
JP2013175639A (en) * 2012-02-27 2013-09-05 Toyota Motor Corp Semiconductor lamination unit
JP2013215080A (en) * 2012-03-09 2013-10-17 Sumitomo Heavy Ind Ltd Electric power conversion apparatus and work machine
JP2013255414A (en) * 2012-05-09 2013-12-19 Yaskawa Electric Corp Inverter device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062006A1 (en) * 2002-09-27 2004-04-01 Pfeifer David W. Laminated bus bar for use with a power conversion configuration
JP2005136278A (en) * 2003-10-31 2005-05-26 Mitsubishi Electric Corp Power semiconductor module and its manufacturing method
WO2012114475A1 (en) * 2011-02-23 2012-08-30 トヨタ自動車株式会社 Cooling device
JP2013175639A (en) * 2012-02-27 2013-09-05 Toyota Motor Corp Semiconductor lamination unit
JP2013215080A (en) * 2012-03-09 2013-10-17 Sumitomo Heavy Ind Ltd Electric power conversion apparatus and work machine
JP2013255414A (en) * 2012-05-09 2013-12-19 Yaskawa Electric Corp Inverter device

Also Published As

Publication number Publication date
JP2023004273A (en) 2023-01-17

Similar Documents

Publication Publication Date Title
US7656016B2 (en) Power semiconductor device
KR101475602B1 (en) Power conversion apparatus
JP5120604B2 (en) Semiconductor module and inverter device
JP5120605B2 (en) Semiconductor module and inverter device
JP5099417B2 (en) Semiconductor module and inverter device
JP4857017B2 (en) Power converter
EP1148547B1 (en) Coolant cooled type semiconductor device
JP5241688B2 (en) Power converter
JP6296888B2 (en) Power converter
US20020011327A1 (en) Heat sink-type cooling device
WO2013140704A1 (en) Power conversion apparatus
US9279625B2 (en) Heat sink device for power modules of power converter assembly
JP2010110066A (en) Power conversion apparatus
EP3309827B1 (en) Semiconductor device
JP2004128099A (en) Water-cooled inverter
WO2022270013A1 (en) Power conversion device
JPH0919163A (en) Power converter for electric vehicle
US10548246B2 (en) Electrical power converter
JP7327211B2 (en) power converter
JP7233510B1 (en) power converter
WO2023188551A1 (en) Power semiconductor module and power conversion apparatus
JP2009038842A (en) Power converter
CN220570846U (en) Vehicle-mounted terminal and vehicle
JP6961047B1 (en) Power converter
JP5899962B2 (en) Semiconductor module and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE