WO2023188551A1 - Power semiconductor module and power conversion apparatus - Google Patents

Power semiconductor module and power conversion apparatus Download PDF

Info

Publication number
WO2023188551A1
WO2023188551A1 PCT/JP2022/044811 JP2022044811W WO2023188551A1 WO 2023188551 A1 WO2023188551 A1 WO 2023188551A1 JP 2022044811 W JP2022044811 W JP 2022044811W WO 2023188551 A1 WO2023188551 A1 WO 2023188551A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
semiconductor module
base plate
power
cooling
Prior art date
Application number
PCT/JP2022/044811
Other languages
French (fr)
Japanese (ja)
Inventor
独志 西森
典生 中里
宇幸 串間
康二 佐々木
Original Assignee
株式会社日立パワーデバイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーデバイス filed Critical 株式会社日立パワーデバイス
Publication of WO2023188551A1 publication Critical patent/WO2023188551A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power semiconductor module and a power conversion device.
  • a device that uses power semiconductor elements to convert the contact line voltage from alternating current to direct current, or a device that converts direct current to alternating current (inverter). Since power semiconductor elements generate heat due to loss during conversion, it is necessary to appropriately cool the power semiconductor elements to suppress temperature rise.
  • the cooling method is selected depending on the load, such as high-speed vehicle operation or commuter vehicle operation, and for high-speed vehicles with large loads, a water cooling system that can efficiently cool the vehicle may be used.
  • a heat sink with radiation fins is attached to the power semiconductor module via, for example, thermal conductive grease, and the radiation fins are immersed in a cooling water flow path.
  • thermal conductive grease since thermal conductivity is lower than that of metal, thermally conductive grease has a large thermal resistance, which hinders the suppression of temperature rise.
  • power semiconductor modules are known that use a method (direct water cooling method) in which heat is transferred from the power semiconductor elements to cooling water without using thermal conductive grease to ensure higher cooling capacity.
  • a direct water-cooled power semiconductor module a power semiconductor element is installed on one surface of a base plate with an insulating layer interposed therebetween, and a heat radiation fin is provided on the other surface.
  • the power semiconductor module is fixed to the water channel forming body using bolts, screws, etc., and the opening of the water channel forming body is covered and closed by the heat dissipating fin forming surface of the base plate, so that the heat dissipating fin forming surface is cooled. Since it is directly cooled with water, it has the advantage that the heat generated by the power semiconductor element can be efficiently dissipated.
  • Patent Document 1 has a heat dissipation area for cooling, and in a planar layout, a first element mounting range, a second element mounting range, a first element mounting range, and a second element mounting range.
  • a semiconductor device having a mounting range protrusion located within two element mounting ranges and a mounting range protrusion located within the separation range, the protrusion being directly fixed to the surface of the base plate, and the mounting range protrusion located within the separation range.
  • a spaced apart range protrusion is disclosed, and the spaced apart range protrusion is composed of only one protrusion.
  • two adjacent power semiconductor modules may be arranged so that their long sides face each other, or they may be arranged so that their short sides face each other. There are possible cases.
  • Patent Document 1 The configuration described in Patent Document 1 is applicable when the long sides are arranged to face each other, but it is difficult to apply when the short sides are arranged to face each other. If the cooling water is arranged so that the short sides face each other and the cooling water is allowed to flow in the direction of the long sides, the flow will be obstructed by the spaced range protrusion, and the power semiconductor element will not be effectively cooled. Therefore, in the semiconductor device described in Patent Document 1, since the direction in which the cooling water flows is limited, there are few options regarding the arrangement of the plurality of power semiconductor modules that constitute the power unit, and it is thought that there is room for improvement.
  • the present disclosure increases options for the direction in which cooling water flows in a power semiconductor module that has a separated area between two mounting areas, and facilitates design changes in the mounting dimensions of a power conversion device including the power semiconductor module.
  • the purpose is to
  • One aspect of the present disclosure includes two power semiconductor chips, an insulating substrate on which these power semiconductor chips are installed, and a base plate on which the insulating substrate is installed, and the power semiconductor chips on the base plate are installed.
  • a first fin is installed on the cooling surface, which is the back side of the side surface, and corresponds to the two mounting areas where two power semiconductor chips are installed, and a first fin is installed between the two mounting areas.
  • the flow resistance of the cooling medium on the cooling surface of the base plate corresponding to the separation area is equal to two in the direction parallel to the surface where the two mounting areas face each other.
  • the two mounting areas are larger than those in the direction perpendicular to the opposing surfaces.
  • Another aspect of the present disclosure includes two power semiconductor chips, an insulating substrate on which these power semiconductor chips are installed, and a base plate on which the insulating substrate is installed, and the power semiconductor chips on the base plate are
  • a first fin is installed on the cooling surface, which is the back side of the installed side, and corresponds to the two mounting areas where the two power semiconductor chips are installed.
  • a second configuration in which a cooling medium flows through the cooling medium can be selected.
  • a power semiconductor module having a separation area between two mounting areas it is possible to select the direction in which cooling water flows. This makes it easy to change the design of the mounting dimensions of the power conversion device including the power semiconductor module.
  • FIG. 1 is a schematic configuration diagram showing a main power converter for a railway vehicle according to a first embodiment.
  • 2 is a circuit diagram showing a converter 4 that constitutes the main power converter 10 of FIG. 1.
  • FIG. 2 is a circuit diagram showing an inverter 5 that constitutes the main power converter 10 of FIG. 1.
  • FIG. FIG. 1 is a schematic configuration diagram showing a cooling device for a power semiconductor module according to a first embodiment. 1 is an external perspective view showing an example of a power unit according to a first embodiment.
  • FIG. 6 is a circuit diagram showing main parts of the power semiconductor module 100 of FIG. 5.
  • FIG. 6 is an external perspective view showing the power semiconductor module 100 of FIG. 5.
  • FIG. 8 is a side view of the power semiconductor module 100 in FIG. 7 in the BB direction.
  • FIG. 8 is a side view of the power semiconductor module 100 of FIG. 7 in the CC direction.
  • FIG. 8B is an exploded view of the power semiconductor module 100 shown in FIG. 8B.
  • 9A is a plan view showing the element mounting surface of the base plate 130 of FIG. 9A.
  • FIG. 9B is a plan view showing a radiation fin forming surface of the base plate 130 of FIG. 9B.
  • FIG. 6 is an exploded perspective view of the power unit 53 of FIG. 5.
  • FIG. 12 is a perspective view showing the flow direction of cooling water in the water channel forming body 70 of FIG. 11.
  • FIG. 6 is a diagram showing a part of the AA cross section in FIG. 5.
  • FIG. 7 is a plan view showing a radiation fin forming surface of a base plate 130 of a power semiconductor module 100 according to a second embodiment.
  • 7 is a plan view showing a radiation fin forming surface of a base plate of a power semiconductor module according to Modification 1.
  • FIG. 7 is a plan view showing a radiation fin forming surface of a base plate of a power semiconductor module according to modification example 2.
  • FIG. 7 is a plan view showing a radiation fin forming surface of a base plate of a power semiconductor module according to Modification 3;
  • FIG. 7 is a plan view showing a part of a radiation fin forming surface of a base plate of a power semiconductor module according to Modification Example 4;
  • FIG. 7 is a plan view showing a part of a radiation fin forming surface of a base plate of a power semiconductor module according to modification 5;
  • FIG. 7 is a plan view showing a part of a radiation fin forming surface of a base plate of a power semiconductor module according to Modification Example 6;
  • the present disclosure relates to a structure in which power semiconductor chips are modularized.
  • FIG. 1 is a schematic configuration diagram showing a main power converter for a railway vehicle.
  • the main power converter is a type of power converter that includes a power semiconductor module.
  • the main power converter 10 includes a converter 4 that is a rectifier circuit, an inverter 5, and a smoothing capacitor 3.
  • Converter 4 and inverter 5 are connected by DC wiring 40p, 40n.
  • a smoothing capacitor 3 is provided between the DC wirings 40p and 40n.
  • Inverter 5 is connected to AC motor 6 through three-phase AC wiring 40u, 40v, and 40w.
  • Converter 4, inverter 5, smoothing capacitor 3, etc. constitute a power semiconductor module.
  • the power semiconductor module is the main component of the main power conversion device 10.
  • AC power is supplied to the converter 4 from the overhead contact line 1 via the transformer 2.
  • AC power is converted to DC power by converter 4.
  • the DC power smoothed by the smoothing capacitor 3 is applied to the inverter 5, where it is reversely converted into three-phase AC power having a desired voltage and frequency.
  • the three-phase AC power is output to the AC motor 6 through three-phase AC wiring 40u, 40v, and 40w.
  • the AC motor 6 is driven at a desired rotational speed by output control of the inverter 5.
  • FIG. 2 is a circuit diagram showing the converter 4 that constitutes the main power converter 10 of FIG. 1.
  • converter 4 includes a leg 35 and a converter control circuit 200.
  • the leg 35 is provided for each phase, and includes a switching element 31 and a rectifying element 33 on the upper arm, and a switching element 32 and a rectifying element 34 on the lower arm, respectively.
  • Each of the switching elements 31 and 32 and the rectifying elements 33 and 34 is a power semiconductor element.
  • Converter control circuit 200 is configured to transmit drive signal 210 to switching elements 31 and 32.
  • Converter 4 is connected to transformer 2 through AC wiring 40r, 40s.
  • the converter 4 converts the AC power input through the AC wirings 40r and 40s into DC power, and outputs it to the DC wirings 40p and 40n. Inside the converter 4, legs 35 rectify the AC power.
  • the switching elements 31 and 32 receive the drive signal 210 and are driven.
  • IGBTs Insulated Gate Bipolar Transistors
  • diodes are used as the rectifier elements 33 and 34, but it is not limited to these, and other types of elements can also be applied. It is.
  • FIG. 3 is a circuit diagram showing the inverter 5 that constitutes the main power converter 10 of FIG. 1.
  • the inverter 5 includes a leg 35 and an inverter control circuit 201.
  • the leg 35 is provided for each output phase, and includes an upper arm switching element 31 and a rectifying element 33, and a lower arm switching element 32 and a rectifying element 34, respectively.
  • the inverter control circuit 201 is configured to transmit a drive signal 211 to the switching elements 31 and 32.
  • Inverter 5 is connected to DC wiring 40p, 40n.
  • the inverter 5 converts the DC power smoothed by the smoothing capacitor 3 and input via the DC wirings 40p and 40n into three-phase AC power, and outputs it to the three-phase AC wirings 40u, 40v, and 40w.
  • the switching elements 31 and 32 of the inverter 5 receive and drive the drive signal 211.
  • the converter 4 and inverter 5 of the power semiconductor module include switching elements 31 and 32 and rectifying elements 33 and 34, heat is generated during the power conversion operation, and the temperature rises. In order to suppress this temperature rise, a cooling device is attached to the power semiconductor module.
  • FIG. 4 is a schematic configuration diagram showing a cooling device for a power semiconductor module.
  • the cooling device 20 is configured to remove heat generated in a plurality of power units 53 (power conversion devices) using a cooling medium, and includes a pump 50, a low-temperature side distribution pipe 52, a high-temperature side merging pipe 55, It has a radiator 56, a fan 57, and a tank 59.
  • a pump 50 In each of the plurality of power units 53, four power semiconductor modules 100 are arranged adjacent to each other in a row.
  • the number of power units 53 is three. Therefore, it can be seen that the power unit 53 consisting of four parallel power semiconductor modules 100 is three parallel. Note that the number of power semiconductor modules 100 in parallel or the number of power units 53 in parallel may be changed depending on the rated output. Moreover, parallel/series can be set arbitrarily.
  • the circulating cooling medium removes heat from the power semiconductor module 100, allowing the power converter to operate stably.
  • Water and an aqueous ethylene glycol solution are suitable as the cooling medium, but other liquids may also be used.
  • the refrigerant is not limited to liquid, and gas may be used as the refrigerant. The following description will be made assuming that water is used as the cooling medium.
  • the low temperature cooling water 51 (liquid refrigerant) discharged from the pump 50 is distributed and sent to each power unit 53 by the low temperature side distribution pipe 52.
  • the low-temperature cooling water 51 removes heat from the power semiconductor module 100 provided in each power unit 53.
  • the high temperature cooling water 54 joins together through a high temperature side merging pipe 55 and is sent to the radiator 56 .
  • the high-temperature cooling water 54 passing through the radiator 56 is cooled by exchanging heat with the cooling air 58 introduced by the fan 57, becomes low-temperature cooling water 51, and is sent to the pump 50. Therefore, the cooling water circulates through the closed circulation path as described above.
  • the volume change of the cooling water due to the temperature change of the cooling water in such a circulation path is absorbed by the tank 59.
  • FIG. 5 is an external perspective view showing an example of the power unit.
  • the power unit 53 includes four parallel power semiconductor modules 100 and a water channel forming body 70.
  • the water channel forming body 70 is provided with a low temperature side cooling water joint 71 and a high temperature side cooling water joint 72.
  • FIG. 6 is a circuit diagram showing the main parts of the power semiconductor module 100 of FIG. 5.
  • the power semiconductor module 100 includes switching elements 31 and 32 and rectifier elements 33 and 34. These elements are mounted on an insulating substrate. These elements are connected to form legs 35 shown in FIGS. 2 and 3. Further, the switching elements 31 and 32 are connected to a gate terminal 110g. The gate terminal 110g controls turning on and off of the switching elements 31 and 32. In addition, the power semiconductor module 100 is connected to a positive DC terminal 110p, a negative DC terminal 110n, and an AC terminal 110ac. These terminals are installed on an insulating substrate.
  • FIG. 7 is an external perspective view showing the power semiconductor module 100 of FIG. 5.
  • the outer shell of the power semiconductor module 100 is composed of a base plate 130 that radiates heat generated by the power semiconductor elements to cooling water, and a casing 113 that protects the power semiconductor elements and the insulating substrate. ing.
  • a positive DC terminal 110p and a negative DC terminal 110n are arranged on one side of the power semiconductor module 100, and an AC terminal 110ac is arranged on the opposite side. These are heavy electrical terminals.
  • a gate terminal 110g and a weak electric system electrode 111 are provided near the center as weak electric system terminals.
  • the base plate 130 has a through hole 114 for fixing the power semiconductor module to the water channel forming body 70 (FIG. 5) and a screw hole 112 for fixing the gate drive board.
  • the material for the base plate 130 is preferably one having a thermal conductivity greater than 100 W/mK, such as copper, aluminum, AlSiC, MgSiC, etc.
  • a suitable material for the housing 113 is polyphenylene sulfide resin or the like.
  • FIG. 8A is a side view of the power semiconductor module 100 of FIG. 7 in the BB direction.
  • FIG. 8B is a side view of the power semiconductor module 100 of FIG. 7 in the CC direction.
  • a housing 113 is installed on the top of the base plate 130.
  • a flat plate fin 132 is installed between the areas of the two pin fins 131.
  • FIG. 9A is an exploded view of the power semiconductor module 100 shown in FIG. 8B.
  • FIG. 9B is a plan view showing the element mounting surface of the base plate 130 of FIG. 9A.
  • the insulating substrate 102 on which the power semiconductor element 101 (power semiconductor chip) is installed is bonded to a single base plate 130 via a bonding material (not shown).
  • the element mounting surface of the base plate 130 is provided with roughly two power semiconductor element mounting areas 140 (also simply referred to as "mounting areas").
  • the power semiconductor element 101 is mounted in the power semiconductor element mounting area 140.
  • a plurality of power semiconductor elements 101 may be mounted in each power semiconductor element mounting area 140.
  • Each power semiconductor element mounting area 140 has a shape having a long side in the short side direction of the base plate 130.
  • a separation area 142 in which no power semiconductor element is mounted is provided between the two power semiconductor element mounting areas 140.
  • the spacing region 142 also has a shape with a long side in the direction of the short side of the base plate 130.
  • a screw hole 116 for fixing the housing 113 is provided.
  • FIG. 10 is a plan view showing the radiation fin forming surface (back surface) of the base plate 130 of FIG. 9B.
  • a large number of cylindrical pin fins 131 are formed in a portion of the element mounting surface of the base plate 130 that corresponds to the back side of the power semiconductor element mounting area 140.
  • a plurality of flat fins 132 are formed in a portion corresponding to the back side of the separation area 142. The plurality of flat fins 132 are arranged parallel to the long side direction of the base plate 130.
  • the cylindrical pin fin 131 may be formed from the base plate 130 by forging. Further, a separately manufactured pin-shaped member may be joined to the base plate 130 by brazing or the like.
  • the flat plate fin 132 may be formed by forging. Further, a separately manufactured flat plate may be joined to the base plate 130 by, for example, brazing.
  • the flat plate fins 132 act as baffles, so the cooling water 60 flows into the area where the pin fins 131 are provided. .
  • the first configuration is a configuration in which the cooling medium is divided into both parts of the cooling surface of the base plate 130 corresponding to the two mounting areas.
  • the pin fin 131 is an example of a "first fin.”
  • the first fin is installed on the cooling surface, which is the back side of the side of the base plate 130 on which the power semiconductor chips are installed, and in a portion corresponding to the two mounting areas where the two power semiconductor chips are installed, respectively. has been done.
  • the pin fin 131 has a cross-sectional shape with fourfold symmetry.
  • the flat fin 132 is an example of a "second fin.”
  • the second fin is installed on the cooling surface of the base plate 130 at a portion corresponding to the separation area.
  • the second fin has a long axis in a direction perpendicular to the surface where the two mounting areas face each other.
  • FIG. 11 is an exploded perspective view of the power unit 53 of FIG. 5.
  • the power unit 53 is constructed by providing a power semiconductor module 100 via an O-ring 73 so as to close an opening 75 located on the upper surface of the water channel forming body 70.
  • Power semiconductor module 100 is fixed by passing bolts through bolt holes 76 .
  • an O-ring 73 is used as the sealing member, but other sealing materials may be used.
  • the O-ring 73 does not come off from the O-ring groove 74 from the top surface during assembly, which improves assembly efficiency.
  • the power unit 53 (power converter) includes a power semiconductor module 100 and a water channel forming body 70, and the power semiconductor module 100 is configured to be cooled by a cooling medium flowing through the water channel forming body 70. There is.
  • the power conversion device has a plurality of power semiconductor modules 100, and has a configuration in which the plurality of power semiconductor modules 100 are installed in one water channel forming body 70.
  • FIG. 12 is a perspective view showing the flow direction of cooling water in the water channel forming body 70 of FIG. 11.
  • the low temperature cooling water 51 flows into the water channel forming body 70 from the low temperature side cooling water joint 71.
  • the cooling water 60 flows in the direction in which the openings 75 are arranged in series.
  • the cooling water 60 then becomes the high temperature cooling water 54 and flows out from the high temperature side cooling water joint 72.
  • the outlet of the high temperature side cooling water joint 72 has a narrow flow path.
  • the inlet of the low temperature side cooling water joint 71 into which the low temperature cooling water 51 flows also has a narrow flow path.
  • the inter-adjacent module flow path 77 that connects the adjacent openings 75 inside the waterway forming body 70 is made as wide as the long sides of the openings 75 .
  • FIG. 13 is a diagram showing a part of the AA cross section in FIG. 5.
  • the flow path of the cooling water 60 is connected to the adjacent module flow path 77 through the pin fin 131 area, and the adjacent module flow path 77 is formed at a lower position than the pin fin 131 area.
  • the inter-adjacent module flow path 77 is formed at a position lower than the pin fin 131 below the O-ring 73 and the O-ring groove 74 .
  • the cooling water 60 is caused to flow in the short side direction of the base plate 130 of the power semiconductor module 100, as shown in FIG.
  • the cooling water 60 flows in from the low temperature side cooling water joint 71 side, and a total of four power semiconductor modules 100 (FIG. 11) are installed, and the cooling water 60 is formed between the power semiconductor modules 100 and the opening 75.
  • the water flows through the space where the water is cooled, and flows out from the high temperature side cooling water joint 72.
  • the flow path In the first power semiconductor module, there is a low-temperature side cooling water joint 71 at the inlet of the flow path, the flow path is narrow, and the outlet is wide. In the second and third power semiconductor modules, both entrances and exits are wide. In the fourth power semiconductor module, the inlet is wide, and the outlet has a narrow flow path due to the high temperature side cooling water joint 72.
  • the first power semiconductor module will be explained.
  • the cooling water entering from the narrow entrance hits the flat plate fins 132 on the front as shown in Figure 10, and the flow is divided into left and right sides. Since the cooling water 60 flows around the pin fins 131 in the left and right power semiconductor element mounting areas 140, heat from the power semiconductor elements 101 can be efficiently removed.
  • the separated region 142 since the flow of cooling water to the separated region 142 is suppressed by the flat plate fins 132, the separated region 142, where there is no power semiconductor element 101 (FIG. 9A) and whose temperature rise is small, is not cooled more than necessary.
  • the width of the flow path is wide and there is no obstacle to the flow, such as the pin fins 131 or flat plate fins 132, so the cooling water 60 flows through the flow path 77 between adjacent modules. During the process of flowing, the flow velocity becomes uniform.
  • the second and third power semiconductor modules will be explained.
  • the width of the flow path is widened on both the inlet side and the outlet side.
  • the flow velocity of the cooling water 60 entering from the wide flow path is uniform. Since the flat plate fins 132 act as resistance for the cooling water 60 heading toward the separation region 142 , the flow is divided into left and right sides and flows into the region of the pin fins 131 . Further, the behavior of the cooling water 60 flowing into the pin fin 131 area is the same as that of the first power semiconductor module.
  • the cooling water 60 flows concentratedly in the area of the pin fins 131, the flow rate is fast, and it is possible to efficiently cool the power semiconductor element 101 in the power semiconductor element mounting area 140.
  • the fourth power semiconductor module will be explained.
  • the channel width on the inlet side is wide and the channel width on the outlet side is narrow.
  • the flow velocity of the cooling water 60 entering from the wide flow path is uniform.
  • the behavior of the cooling water 60 that has flowed into the pin fin 131 region and the separation region 142 is similar to the first, second, and third power semiconductor modules.
  • the cooling water 60 that has flowed toward the region of the pin fin 131 heads toward a narrow outlet where the high temperature side cooling water joint 72 is located.
  • the cooling water 60 can be concentratedly flowed into the region of the pin fins 131, so that the power semiconductor elements 101 can be efficiently cooled.
  • FIG. 14 is a plan view showing the radiation fin forming surface of the base plate 130 of the power semiconductor module 100 according to the second embodiment.
  • the arrangement of pin fins 131 and flat plate fins 132 is the same as in FIG. 10.
  • the difference is that the direction in which the cooling water 60 flows is changed from the short side direction of the power semiconductor module 100 to the long side direction.
  • This is different from the direction shown in FIG. 11 in which the power semiconductor modules 100 are arranged to form a power unit, and the power semiconductor module 100 shown in FIG. They are arranged so that their short sides are adjacent.
  • the other configurations are the same as those in FIG. 11, and their explanation will be omitted.
  • the first power semiconductor module will be explained.
  • the cooling water 60 entering from the narrow entrance hits the pin fins 131 in the power semiconductor element mounting area 140 near the front as shown in FIG.
  • the cooling water 60 flows into the area of the pin fins 131 in a substantially evenly distributed manner. Since the pin fins 131 are dense and the flow of the cooling water 60 is on the short side of the power semiconductor module, a flow velocity distribution is unlikely to occur in the flow in the long side direction. When the cooling water 60 flows in this direction, the flow is hardly obstructed by the flat plate fins 132 in the separation region 142.
  • the cooling water 60 then flows almost uniformly even when it enters the region of the pin fins 131 on the outlet side. After flowing out from the area of the pin fins 131, the uniformity of the flow is maintained because the flow path is wide and there is nothing to obstruct the flow.
  • the cooling water 60 flows almost uniformly in the area of the pin fins 131, the heat generated by the power semiconductor element 101 can be efficiently cooled. Further, in the separation region 142, there is no resistance due to the flat plate fins 132, so that the power for sending the cooling water 60 is not wasted.
  • the second and third power semiconductor modules will be explained.
  • the width of the flow path is widened on both the inlet side and the outlet side.
  • the flow velocity of the cooling water 60 entering from the wide flow path is uniform. Cooling water 60 flows into the region of pin fins 131 while maintaining a uniform flow. Then, the cooling water 60 passes through the separation region 142 and the region of the pin fins 131 on the outlet side and flows out while maintaining a uniform flow.
  • the cooling water 60 flows while maintaining a uniform flow in the area of the pin fins 131, the power semiconductor element 101 in the power semiconductor element mounting area 140 can be evenly cooled.
  • the fourth power semiconductor module will be explained.
  • the channel width on the inlet side is wide and the channel width on the outlet side is narrow.
  • the flow velocity of the cooling water 60 entering from the wide flow path is uniform.
  • the behavior of the cooling water 60 that has flowed into the pin fin 131 region and the separation region 142 is similar to the first, second, and third power semiconductor modules.
  • the cooling water 60 that has flowed toward the region of the pin fin 131 heads toward a narrow outlet where the high temperature side cooling water joint 72 is located.
  • the cooling water 60 flows while maintaining a uniform flow in the area of the pin fins 131, the power semiconductor element 101 in the power semiconductor element mounting area 140 can be evenly cooled.
  • the configuration in which the cooling medium flows in a direction perpendicular to the surfaces where the two mounting areas face each other as shown in this figure is referred to as a "second configuration."
  • the cooling medium flows through a portion of the cooling surface of the base plate 130 that corresponds to one of the two mounting areas.
  • the cooling surface of the base plate 130 is configured to flow through a portion corresponding to the other of the two mounting areas.
  • the base plate 130 of the power semiconductor module 100 having the radiation fin forming surface shown in FIGS. 10 and 14 allows the cooling water 60 to flow in either the short side direction or the long side direction.
  • the power semiconductor element mounting area 140 (FIG. 9B) can be uniformly cooled.
  • FIG. 15 is a plan view showing the radiation fin forming surface of the base plate of the power semiconductor module according to Modification Example 1.
  • FIG. 10 The difference between this figure and FIG. 10 is that, instead of the flat fins 132 in FIG. 10, a plurality of fins 133 having a substantially elliptical cross-sectional shape are used per row.
  • the other configurations are the same as those in FIG. 10, so their description will be omitted.
  • the effect regarding the flow of cooling water is the same as in the case of the flat plate fins 132, but when the fins 133 and the flat plate fins 132 have the same height, there is a gap between the approximately ellipses, so that the power semiconductor module
  • cooling water flows in the direction of the short side of 100 the amount of cooling water flowing through the separation area 142 increases, and the amount of cooling water flowing through the power semiconductor element mounting area 140 relatively decreases.
  • the cooling performance of the power semiconductor element mounting area 140 is reduced compared to the first embodiment, the cooling performance of the separation area 142 is improved.
  • the cooling performance is the same, but in the separated area 142, The flow is disturbed because it has a substantially elliptical shape and the width of the flow path changes in the direction of travel. Therefore, in the separated region 142, the cooling performance is improved compared to the second embodiment.
  • the same cooling performance can be obtained whether the cooling water flows in the long side direction or the short side direction. Therefore, it is possible to provide a power semiconductor module in which the direction in which the cooling water flows can be selected between the long side direction and the short side direction, while the arrangement of the pin fins 131 remains the same.
  • the fin 133 is an example of a second fin.
  • the fins 133 have an elliptical cross-sectional shape, but may also have a rhombic shape.
  • a plurality of fins 133 are arranged in a direction perpendicular to the surface where the two mounting areas face each other.
  • FIG. 16 is a plan view showing a radiation fin forming surface of a base plate of a power semiconductor module according to Modification 2.
  • FIG. 16 is a plan view showing a radiation fin forming surface of a base plate of a power semiconductor module according to Modification 2.
  • FIG. 10 The difference between this figure and FIG. 10 is that a cylindrical pin fin 131 is also provided in the separation area 142, and one flat plate fin 132 is arranged at each end of the separation area 142.
  • the flat fin 132 is an example of a second fin.
  • the other configurations are the same as those in FIG. 10, so their description will be omitted.
  • the fins in the spaced region 142 are composed of a pair of flat fins 132 and a plurality of cylindrical pin fins 131.
  • the cooling performance of the power semiconductor element mounting area 140 is the same as in the second embodiment. is equivalent to On the other hand, in the separated region 142, since a large number of pin fins 131 are provided, the cooling performance is improved compared to the second embodiment.
  • FIG. 17 is a plan view showing a radiation fin forming surface of a base plate of a power semiconductor module according to Modification Example 3.
  • fins 134 having a substantially square cross-sectional shape are used instead of the cylindrical pin fins 131 in FIG.
  • the diagonal lines of the square forming the cross section of the fin 134 are in the long side direction and the short side direction of the power semiconductor module 100.
  • the other configurations are the same as those in FIG. 10, so their description will be omitted.
  • the fins 134 have a four-fold symmetrical cross-sectional shape.
  • FIG. 18 is a plan view showing a part of the radiation fin forming surface of the base plate of the power semiconductor module according to Modification Example 4.
  • FIG. 10 The difference between this figure and FIG. 10 is that instead of the cylindrical pin fin 131 in FIG. It is that it is arranged.
  • the four adjacent flat plate fins 184 are arranged radially at an angle of 45 degrees with respect to the long side direction (or short side direction) of the power semiconductor module 100.
  • the other configurations are the same as those in FIG. 10, so their description will be omitted.
  • the four adjacent flat plate fins 184 can be said to have a four-fold symmetrical cross-sectional shape when viewed as one body.
  • the base plate 130 of the power semiconductor module 100 having the radiation fin forming surface of this modification has the same flow path per unit length when the cooling water 60 is caused to flow in either the short side direction or the long side direction. Has resistance. Therefore, the power semiconductor element mounting area 140 (FIG. 9B) can be evenly cooled even when the cooling water 60 is caused to flow in either the short side direction or the long side direction. To be more precise, the heat transfer coefficients of the two power semiconductor element mounting regions 140 can be made almost equal even when the cooling water 60 is caused to flow in either the short side direction or the long side direction.
  • FIG. 19 is a plan view showing a part of the radiation fin forming surface of the base plate of the power semiconductor module according to Modification Example 5.
  • fins 194 having a substantially elliptical cross-sectional shape are used instead of the flat fins 184 in FIG. 18.
  • the other configurations are the same as those in FIG. 18, so their description will be omitted.
  • the four adjacent fins 194 can be said to have a four-fold symmetrical cross-sectional shape when viewed as a whole.
  • the heat transfer coefficients of the two power semiconductor element mounting regions 140 can be made approximately equal regardless of whether the cooling water 60 is caused to flow in either the short side direction or the long side direction. Therefore, the same cooling effect as in the first embodiment and the second embodiment can be obtained.
  • FIG. 20 is a plan view showing a part of the radiation fin forming surface of the base plate of the power semiconductor module according to Modification Example 6.
  • FIG. 18 The difference between this figure and FIG. 18 is that flat fins 204a and 204b are used instead of the flat fin 184 in FIG.
  • the flat plate fins 204a and 204b are arranged so that extension lines of their long sides are perpendicular to the other long side.
  • the other configurations are the same as those in FIG. 18, so their description will be omitted.
  • the four adjacent flat plate fins 204a and 204b can be said to have a four-fold symmetrical cross-sectional shape when viewed as a unit.
  • the heat transfer coefficients of the two power semiconductor element mounting regions 140 can be made approximately equal regardless of whether the cooling water 60 is caused to flow in either the short side direction or the long side direction. Therefore, the same cooling effect as in the first embodiment and the second embodiment can be obtained.
  • two power semiconductor element mounting areas 140 are arranged in the long side direction of the power semiconductor module 100, and a separation area 142 is provided between the two power semiconductor element mounting areas 140.
  • the power semiconductor module and power conversion device of the present disclosure are not limited to such a configuration, and two power semiconductor element mounting areas are arranged in the short side direction of the power semiconductor module. It may be a configuration.
  • the dimensions of the power semiconductor module in the long side direction and the short side direction may be equal, and the shape of the plan view may be a square. This is simply a matter of size. In this way, even if the dimensions are different from the above-described embodiments and modifications, the technical content of the present disclosure regarding the configuration of the fins etc. provided in the mounting area and the separation area, the configuration of the cooling medium flow path, etc. Applicable.
  • main power converters for railway vehicles the technology of the present disclosure is not limited to this example, and is applicable to power converters for automobiles, trucks, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is a power semiconductor module comprising two power semiconductor chips, an insulating substrate on which these power semiconductor chips are provided, and a base plate on which the insulating substrate is provided, in which first fins are provided to portions, on a cooling surface which is a reverse surface of the base plate to the surface of the side the power semiconductor chips are provided on, corresponding to the two mounting regions where the two power semiconductor chips are respectively provided, and a separation region is provided between the two mounting regions, wherein a flow path resistance of a cooling medium in a portion, on the cooling surface of the base plate, corresponding to the separation region, is larger in a direction parallel to a surface facing the two mounting regions than in a direction orthogonal to a surface facing the two mounting regions. Thereby, it is made possible to select the direction in which cooling water is made to flow in a power semiconductor module having a separation region between two mounting regions. Moreover, it is made easy to make design changes to the mounting dimensions of an electric power conversion device comprising the power semiconductor module.

Description

パワー半導体モジュール及び電力変換装置Power semiconductor modules and power conversion devices
 本開示は、パワー半導体モジュール及び電力変換装置に関する。 The present disclosure relates to a power semiconductor module and a power conversion device.
 鉄道車両の駆動用モータの制御装置として、パワー半導体素子を用いて電車線電圧を交流から直流に変換する装置(コンバータ)、あるいは直流から交流に変換する装置(インバータ)がある。パワー半導体素子は、変換時損失に起因して発熱するため、パワー半導体素子を適切に冷却して温度上昇を抑制する必要がある。その冷却方法は、高速車両運行や通勤車両運行などの負荷の違いに応じて選択され、負荷の大きい高速車両では効率よく冷却できる水冷装置を用いる場合がある。 As a control device for a drive motor of a railway vehicle, there are a device (converter) that uses power semiconductor elements to convert the contact line voltage from alternating current to direct current, or a device that converts direct current to alternating current (inverter). Since power semiconductor elements generate heat due to loss during conversion, it is necessary to appropriately cool the power semiconductor elements to suppress temperature rise. The cooling method is selected depending on the load, such as high-speed vehicle operation or commuter vehicle operation, and for high-speed vehicles with large loads, a water cooling system that can efficiently cool the vehicle may be used.
 パワー半導体素子を複数設置するパワー半導体モジュールの従来の水冷技術は、パワー半導体モジュールに、例えば熱伝導グリースを介して放熱フィン付きのヒートシンクが取り付けられ、その放熱フィンが冷却水流路の中に浸漬されて放熱する方式(間接水冷方式)である。ところが、熱伝導グリースは、金属に比べて熱伝導率が低いことから、熱抵抗が大きく、温度上昇抑制の妨げとなっている。 In conventional water cooling technology for power semiconductor modules in which multiple power semiconductor elements are installed, a heat sink with radiation fins is attached to the power semiconductor module via, for example, thermal conductive grease, and the radiation fins are immersed in a cooling water flow path. This is a method of dissipating heat (indirect water cooling method). However, since thermal conductivity is lower than that of metal, thermally conductive grease has a large thermal resistance, which hinders the suppression of temperature rise.
 これに対して、より高い冷却能力を確保するために、熱伝導グリースを介さずにパワー半導体素子から冷却水へと熱伝達する方式(直接水冷方式)を適用したパワー半導体モジュールが知られている。その直接水冷方式のパワー半導体モジュールによれば、ベース板の一方の面に絶縁層を介してパワー半導体素子が設置され、他方の面に放熱フィンが設けられている。そのパワー半導体モジュールは、ボルトやビス等を用いて水路形成体に固定され、水路形成体の開口部がベース板の放熱フィン形成面によって覆い塞がれる構造であるので、放熱フィン形成面を冷却水で直接冷やすことになり、パワー半導体素子の発熱を効率よく放熱できる利点を有する。 On the other hand, power semiconductor modules are known that use a method (direct water cooling method) in which heat is transferred from the power semiconductor elements to cooling water without using thermal conductive grease to ensure higher cooling capacity. . According to the direct water-cooled power semiconductor module, a power semiconductor element is installed on one surface of a base plate with an insulating layer interposed therebetween, and a heat radiation fin is provided on the other surface. The power semiconductor module is fixed to the water channel forming body using bolts, screws, etc., and the opening of the water channel forming body is covered and closed by the heat dissipating fin forming surface of the base plate, so that the heat dissipating fin forming surface is cooled. Since it is directly cooled with water, it has the advantage that the heat generated by the power semiconductor element can be efficiently dissipated.
 また、システム電圧の高い鉄道等の高耐圧インバータを高出力化するために、パワー半導体モジュールの多並列使用が重要となっている。パワー半導体モジュールの多並列使用は、パワー半導体モジュール一つあたりの電流負荷を小さくし、パワー半導体素子の温度上昇を抑制する効果がある。 Furthermore, in order to increase the output of high-voltage inverters for railways and other systems with high system voltages, it is important to use multiple power semiconductor modules in parallel. Using multiple power semiconductor modules in parallel has the effect of reducing the current load per power semiconductor module and suppressing the temperature rise of the power semiconductor elements.
 特許文献1には、冷却されるための放熱領域を有し、平面レイアウトにおいて、第1の素子実装範囲と、第2の素子実装範囲と、第1の素子実装範囲および第2の素子実装範囲の間の離間範囲とを有する半導体装置であって、ベース板の面に突出部が直接固定され、突出部は、2つの素子実装範囲内に位置する実装範囲突出部と、離間範囲内に位置する離間範囲突出部とを含み、離間範囲突出部は、1つの突出部のみから構成されているものが開示されている。 Patent Document 1 has a heat dissipation area for cooling, and in a planar layout, a first element mounting range, a second element mounting range, a first element mounting range, and a second element mounting range. A semiconductor device having a mounting range protrusion located within two element mounting ranges and a mounting range protrusion located within the separation range, the protrusion being directly fixed to the surface of the base plate, and the mounting range protrusion located within the separation range. A spaced apart range protrusion is disclosed, and the spaced apart range protrusion is composed of only one protrusion.
特開2016-225339号公報Japanese Patent Application Publication No. 2016-225339
 特許文献1に記載の構成を用いる場合、冷却水を半導体装置の短辺方向にのみ流す場合には、冷却水が入口側から入り、左右に分かれて左右にある素子を効率的に冷却することが可能である。しかしながら、この半導体装置において、長辺方向に冷却水を流そうとすると、離間範囲にある突出部により流れが妨げられ、素子を効果的に冷却することができない。 When using the configuration described in Patent Document 1, when the cooling water flows only in the short side direction of the semiconductor device, the cooling water enters from the inlet side and is divided into left and right parts to efficiently cool the elements on the left and right sides. is possible. However, in this semiconductor device, when attempting to flow cooling water in the long side direction, the flow is obstructed by the protrusions located in the spaced apart range, making it impossible to effectively cool the element.
 また、パワー半導体モジュール(半導体装置)を複数個並列に配置したパワーユニットにおいては、隣接する二個のパワー半導体モジュールの長辺が対向するように配置する場合と、短辺が対向するように配置する場合と、が考えられる。 In addition, in a power unit in which a plurality of power semiconductor modules (semiconductor devices) are arranged in parallel, two adjacent power semiconductor modules may be arranged so that their long sides face each other, or they may be arranged so that their short sides face each other. There are possible cases.
 特許文献1に記載の構成は、長辺が対向するように配置する場合には適用可能であるが、短辺が対向するように配置する場合には適用が困難である。仮に短辺が対向するように配置して長辺方向に冷却水を流す場合には、離間範囲突出部により流れが妨げられ、パワー半導体素子を効果的に冷却できない。したがって、特許文献1に記載の半導体装置においては、冷却水を流す方向が限定されるため、パワーユニットを構成する複数個のパワー半導体モジュールの配置に関して選択肢が少なく、改善の余地があると考えられる。 The configuration described in Patent Document 1 is applicable when the long sides are arranged to face each other, but it is difficult to apply when the short sides are arranged to face each other. If the cooling water is arranged so that the short sides face each other and the cooling water is allowed to flow in the direction of the long sides, the flow will be obstructed by the spaced range protrusion, and the power semiconductor element will not be effectively cooled. Therefore, in the semiconductor device described in Patent Document 1, since the direction in which the cooling water flows is limited, there are few options regarding the arrangement of the plurality of power semiconductor modules that constitute the power unit, and it is thought that there is room for improvement.
 本開示は、二つの実装領域の間に離間領域を有するパワー半導体モジュールにおいて、冷却水を流す方向についての選択肢を増やし、パワー半導体モジュールを備える電力変換装置の実装寸法の設計変更を容易なものとすることを目的とする。 The present disclosure increases options for the direction in which cooling water flows in a power semiconductor module that has a separated area between two mounting areas, and facilitates design changes in the mounting dimensions of a power conversion device including the power semiconductor module. The purpose is to
 本開示の一態様は、二個のパワー半導体チップと、これらのパワー半導体チップが設置された絶縁基板と、絶縁基板が設置されたベース板、を備え、ベース板のパワー半導体チップが設置された側の面の裏面である冷却面であって二個のパワー半導体チップがそれぞれ設置された二つの実装領域に対応する部分には、第一のフィンが設置され、二つの実装領域の間には、離間領域が設けられたパワー半導体モジュールにおいて、ベース板の冷却面であって離間領域に対応する部分における冷却媒体の流路抵抗は、二つの実装領域が対向する面に平行する方向では、二つの実装領域が対向する面に直交する方向に比べて大きいことを特徴とする。 One aspect of the present disclosure includes two power semiconductor chips, an insulating substrate on which these power semiconductor chips are installed, and a base plate on which the insulating substrate is installed, and the power semiconductor chips on the base plate are installed. A first fin is installed on the cooling surface, which is the back side of the side surface, and corresponds to the two mounting areas where two power semiconductor chips are installed, and a first fin is installed between the two mounting areas. In a power semiconductor module provided with a separation area, the flow resistance of the cooling medium on the cooling surface of the base plate corresponding to the separation area is equal to two in the direction parallel to the surface where the two mounting areas face each other. The two mounting areas are larger than those in the direction perpendicular to the opposing surfaces.
 また、本開示の別の態様は、二個のパワー半導体チップと、これらのパワー半導体チップが設置された絶縁基板と、絶縁基板が設置されたベース板、を備え、ベース板のパワー半導体チップが設置された側の面の裏面である冷却面であって二個のパワー半導体チップがそれぞれ設置された二つの実装領域に対応する部分には、第一のフィンが設置され、二つの実装領域の間には、離間領域が設けられたパワー半導体モジュールにおいて、二つの実装領域が対向する面に平行する方向に冷却媒体を流す第一の構成と、二つの実装領域が対向する面に直交する方向に冷却媒体を流す第二の構成と、が選択可能であることを特徴とする。 Another aspect of the present disclosure includes two power semiconductor chips, an insulating substrate on which these power semiconductor chips are installed, and a base plate on which the insulating substrate is installed, and the power semiconductor chips on the base plate are A first fin is installed on the cooling surface, which is the back side of the installed side, and corresponds to the two mounting areas where the two power semiconductor chips are installed. A first configuration in which a cooling medium flows in a direction parallel to a surface where two mounting regions face each other in a power semiconductor module having a spaced region therebetween, and a first configuration in which a cooling medium flows in a direction parallel to a surface where two mounting regions face each other; A second configuration in which a cooling medium flows through the cooling medium can be selected.
 本開示によれば、二つの実装領域の間に離間領域を有するパワー半導体モジュールにおいて、冷却水を流す方向を選択することが可能となる。これにより、パワー半導体モジュールを備える電力変換装置の実装寸法の設計変更が容易となる。 According to the present disclosure, in a power semiconductor module having a separation area between two mounting areas, it is possible to select the direction in which cooling water flows. This makes it easy to change the design of the mounting dimensions of the power conversion device including the power semiconductor module.
第1の実施形態に係る鉄道車両の主電力変換装置を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a main power converter for a railway vehicle according to a first embodiment. 図1の主電力変換装置10を構成するコンバータ4を示す回路図である。2 is a circuit diagram showing a converter 4 that constitutes the main power converter 10 of FIG. 1. FIG. 図1の主電力変換装置10を構成するインバータ5を示す回路図である。2 is a circuit diagram showing an inverter 5 that constitutes the main power converter 10 of FIG. 1. FIG. 第1の実施形態に係るパワー半導体モジュールの冷却装置を示す模式構成図である。FIG. 1 is a schematic configuration diagram showing a cooling device for a power semiconductor module according to a first embodiment. 第1の実施形態に係るパワーユニットの例を示す外観斜視図である。1 is an external perspective view showing an example of a power unit according to a first embodiment. FIG. 図5のパワー半導体モジュール100の主要部分を示す回路図である。6 is a circuit diagram showing main parts of the power semiconductor module 100 of FIG. 5. FIG. 図5のパワー半導体モジュール100を示す外観斜視図である。6 is an external perspective view showing the power semiconductor module 100 of FIG. 5. FIG. 図7のパワー半導体モジュール100のB-B方向の側面図である。8 is a side view of the power semiconductor module 100 in FIG. 7 in the BB direction. FIG. 図7のパワー半導体モジュール100のC-C方向の側面図である。8 is a side view of the power semiconductor module 100 of FIG. 7 in the CC direction. FIG. 図8Bに示すパワー半導体モジュール100の分解図である。8B is an exploded view of the power semiconductor module 100 shown in FIG. 8B. 図9Aのベース板130の素子実装面を示す平面図である。9A is a plan view showing the element mounting surface of the base plate 130 of FIG. 9A. FIG. 図9Bのベース板130の放熱フィン形成面を示す平面図である。9B is a plan view showing a radiation fin forming surface of the base plate 130 of FIG. 9B. FIG. 図5のパワーユニット53の分解斜視図である。6 is an exploded perspective view of the power unit 53 of FIG. 5. FIG. 図11の水路形成体70における冷却水の流れ方向を示す斜視図である。12 is a perspective view showing the flow direction of cooling water in the water channel forming body 70 of FIG. 11. FIG. 図5のA-A断面の一部を示す図である。6 is a diagram showing a part of the AA cross section in FIG. 5. FIG. 第2の実施形態に係るパワー半導体モジュール100のベース板130の放熱フィン形成面を示す平面図である。FIG. 7 is a plan view showing a radiation fin forming surface of a base plate 130 of a power semiconductor module 100 according to a second embodiment. 変形例1に係るパワー半導体モジュールのベース板の放熱フィン形成面を示す平面図である。7 is a plan view showing a radiation fin forming surface of a base plate of a power semiconductor module according to Modification 1. FIG. 変形例2に係るパワー半導体モジュールのベース板の放熱フィン形成面を示す平面図である。7 is a plan view showing a radiation fin forming surface of a base plate of a power semiconductor module according to modification example 2. FIG. 変形例3に係るパワー半導体モジュールのベース板の放熱フィン形成面を示す平面図である。FIG. 7 is a plan view showing a radiation fin forming surface of a base plate of a power semiconductor module according to Modification 3; 変形例4に係るパワー半導体モジュールのベース板の放熱フィン形成面の一部を示す平面図である。FIG. 7 is a plan view showing a part of a radiation fin forming surface of a base plate of a power semiconductor module according to Modification Example 4; 変形例5に係るパワー半導体モジュールのベース板の放熱フィン形成面の一部を示す平面図である。FIG. 7 is a plan view showing a part of a radiation fin forming surface of a base plate of a power semiconductor module according to modification 5; 変形例6に係るパワー半導体モジュールのベース板の放熱フィン形成面の一部を示す平面図である。FIG. 7 is a plan view showing a part of a radiation fin forming surface of a base plate of a power semiconductor module according to Modification Example 6;
 本開示は、パワー半導体チップをモジュール化した構造に関する。 The present disclosure relates to a structure in which power semiconductor chips are modularized.
 以下、本開示の実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
 (第1の実施形態)
 本実施形態においては、一例として、電力変換装置に用いられる直接水冷方式のパワー半導体モジュールについて説明する。
(First embodiment)
In this embodiment, a direct water-cooled power semiconductor module used in a power conversion device will be described as an example.
 図1は、鉄道車両の主電力変換装置を示す概略構成図である。主電力変換装置は、パワー半導体モジュールを有する電力変換装置の一種である。 FIG. 1 is a schematic configuration diagram showing a main power converter for a railway vehicle. The main power converter is a type of power converter that includes a power semiconductor module.
 本図に示すように、主電力変換装置10は、整流回路であるコンバータ4と、インバータ5と、平滑コンデンサ3と、を含む。コンバータ4とインバータ5とは、直流配線40p、40nで接続されている。直流配線40p、40nの間には、平滑コンデンサ3が設けられている。インバータ5は、三相交流配線40u、40v、40wにより交流電動機6に接続されている。コンバータ4、インバータ5、平滑コンデンサ3等は、パワー半導体モジュールを構成する。パワー半導体モジュールは、主電力変換装置10の主たる構成要素である。 As shown in this figure, the main power converter 10 includes a converter 4 that is a rectifier circuit, an inverter 5, and a smoothing capacitor 3. Converter 4 and inverter 5 are connected by DC wiring 40p, 40n. A smoothing capacitor 3 is provided between the DC wirings 40p and 40n. Inverter 5 is connected to AC motor 6 through three- phase AC wiring 40u, 40v, and 40w. Converter 4, inverter 5, smoothing capacitor 3, etc. constitute a power semiconductor module. The power semiconductor module is the main component of the main power conversion device 10.
 コンバータ4には、電車線1から変圧器2を介して交流電力が供給される。交流電力は、コンバータ4によって直流電力に変換される。コンバータ4での整流後、平滑コンデンサ3によって平滑化された直流電力がインバータ5に印加され、所望の電圧及び周波数を有する三相交流電力に逆変換される。三相交流電力は、三相交流配線40u、40v、40wにより交流電動機6に出力される。交流電動機6は、インバータ5の出力制御により所望の回転速度で駆動する。 AC power is supplied to the converter 4 from the overhead contact line 1 via the transformer 2. AC power is converted to DC power by converter 4. After rectification in the converter 4, the DC power smoothed by the smoothing capacitor 3 is applied to the inverter 5, where it is reversely converted into three-phase AC power having a desired voltage and frequency. The three-phase AC power is output to the AC motor 6 through three- phase AC wiring 40u, 40v, and 40w. The AC motor 6 is driven at a desired rotational speed by output control of the inverter 5.
 図2は、図1の主電力変換装置10を構成するコンバータ4を示す回路図である。 FIG. 2 is a circuit diagram showing the converter 4 that constitutes the main power converter 10 of FIG. 1.
 図2に示すように、コンバータ4は、レグ35と、コンバータ制御回路200と、を含む。レグ35は、各相に設けられ、それぞれ、上アームのスイッチング素子31及び整流素子33、並びに下アームのスイッチング素子32及び整流素子34を含む。スイッチング素子31、32及び整流素子33、34は、それぞれがパワー半導体素子である。コンバータ制御回路200は、スイッチング素子31、32に対して駆動信号210を送信するように構成されている。コンバータ4は、交流配線40r、40sにより変圧器2に接続されている。 As shown in FIG. 2, converter 4 includes a leg 35 and a converter control circuit 200. The leg 35 is provided for each phase, and includes a switching element 31 and a rectifying element 33 on the upper arm, and a switching element 32 and a rectifying element 34 on the lower arm, respectively. Each of the switching elements 31 and 32 and the rectifying elements 33 and 34 is a power semiconductor element. Converter control circuit 200 is configured to transmit drive signal 210 to switching elements 31 and 32. Converter 4 is connected to transformer 2 through AC wiring 40r, 40s.
 コンバータ4は、交流配線40r、40sを介して入力される交流電力を直流電力に変換し、直流配線40p、40nに出力する。コンバータ4の内部においては、レグ35が交流電力を整流する。スイッチング素子31、32は、駆動信号210を受信して駆動する。 The converter 4 converts the AC power input through the AC wirings 40r and 40s into DC power, and outputs it to the DC wirings 40p and 40n. Inside the converter 4, legs 35 rectify the AC power. The switching elements 31 and 32 receive the drive signal 210 and are driven.
 なお、本図においては、スイッチング素子31、32としてIGBT(Insulated Gate Bipolar Transistor)、整流素子33、34としてダイオードを用いているが、これらに限らず、他の種類の素子を適用することも可能である。 In this figure, IGBTs (Insulated Gate Bipolar Transistors) are used as the switching elements 31 and 32, and diodes are used as the rectifier elements 33 and 34, but it is not limited to these, and other types of elements can also be applied. It is.
 図3は、図1の主電力変換装置10を構成するインバータ5を示す回路図である。 FIG. 3 is a circuit diagram showing the inverter 5 that constitutes the main power converter 10 of FIG. 1.
 図3に示すように、インバータ5は、レグ35と、インバータ制御回路201と、を含む。レグ35は、出力する各相に設けられ、それぞれ、上アームのスイッチング素子31及び整流素子33、並びに下アームのスイッチング素子32及び整流素子34を含む。インバータ制御回路201は、スイッチング素子31、32に対して駆動信号211を送信するように構成されている。インバータ5は、直流配線40p、40nに接続されている。 As shown in FIG. 3, the inverter 5 includes a leg 35 and an inverter control circuit 201. The leg 35 is provided for each output phase, and includes an upper arm switching element 31 and a rectifying element 33, and a lower arm switching element 32 and a rectifying element 34, respectively. The inverter control circuit 201 is configured to transmit a drive signal 211 to the switching elements 31 and 32. Inverter 5 is connected to DC wiring 40p, 40n.
 インバータ5は、平滑コンデンサ3で平滑化され直流配線40p、40nを介して入力された直流電力を三相交流電力に変換し、三相交流配線40u、40v、40wに出力する。インバータ5のスイッチング素子31、32は、駆動信号211を受信して駆動する。 The inverter 5 converts the DC power smoothed by the smoothing capacitor 3 and input via the DC wirings 40p and 40n into three-phase AC power, and outputs it to the three-phase AC wirings 40u, 40v, and 40w. The switching elements 31 and 32 of the inverter 5 receive and drive the drive signal 211.
 パワー半導体モジュールのコンバータ4及びインバータ5は、スイッチング素子31、32及び整流素子33、34を有するため、その電力変換動作に際して熱が発生し、温度が上昇する。この温度上昇を抑制するために、パワー半導体モジュールには冷却装置が取り付けられている。 Since the converter 4 and inverter 5 of the power semiconductor module include switching elements 31 and 32 and rectifying elements 33 and 34, heat is generated during the power conversion operation, and the temperature rises. In order to suppress this temperature rise, a cooling device is attached to the power semiconductor module.
 図4は、パワー半導体モジュールの冷却装置を示す模式構成図である。 FIG. 4 is a schematic configuration diagram showing a cooling device for a power semiconductor module.
 本図においては、冷却装置20は、複数のパワーユニット53(電力変換装置)において発生する熱を冷却媒体により除去する構成として、ポンプ50と、低温側分配管52と、高温側合流管55と、ラジエータ56と、ファン57と、タンク59と、を有する。複数のパワーユニット53にはそれぞれ、4個のパワー半導体モジュール100が一列に隣り合う状態で配置されている。この例においては、パワーユニット53の数は、3個である。よって、4並列のパワー半導体モジュール100から成るパワーユニット53を3並列としている、と見ることができる。なお、定格出力に応じて、パワー半導体モジュール100の並列数、あるいはパワーユニット53の並列数を変えてもよい。また、並列・直列は、任意に設定することができる。 In this figure, the cooling device 20 is configured to remove heat generated in a plurality of power units 53 (power conversion devices) using a cooling medium, and includes a pump 50, a low-temperature side distribution pipe 52, a high-temperature side merging pipe 55, It has a radiator 56, a fan 57, and a tank 59. In each of the plurality of power units 53, four power semiconductor modules 100 are arranged adjacent to each other in a row. In this example, the number of power units 53 is three. Therefore, it can be seen that the power unit 53 consisting of four parallel power semiconductor modules 100 is three parallel. Note that the number of power semiconductor modules 100 in parallel or the number of power units 53 in parallel may be changed depending on the rated output. Moreover, parallel/series can be set arbitrarily.
 循環する冷却媒体がパワー半導体モジュール100の熱を除去することにより、電力変換装置を安定的に動作させることができる。冷却媒体としては、水やエチレングリコール水溶液が好適であるが、他の液体であってもよい。また、液体に限らず、気体を冷媒としてもよい。以下では、冷却媒体として水を用いるものとして説明する。 The circulating cooling medium removes heat from the power semiconductor module 100, allowing the power converter to operate stably. Water and an aqueous ethylene glycol solution are suitable as the cooling medium, but other liquids may also be used. Furthermore, the refrigerant is not limited to liquid, and gas may be used as the refrigerant. The following description will be made assuming that water is used as the cooling medium.
 ポンプ50から吐き出される低温冷却水51(液体冷媒)は、低温側分配管52によって各パワーユニット53に分配して送られる。低温冷却水51は、各パワーユニット53に設けられたパワー半導体モジュール100の熱を除去する。このとき、水温が上昇するため、高温冷却水54となる。高温冷却水54は、パワーユニット53から流出した後、高温側合流管55によって合流し、ラジエータ56に送られる。ラジエータ56内を通る高温冷却水54は、ファン57によって導入される冷却風58と熱交換して冷却され、低温冷却水51となり、ポンプ50に送られる。したがって、冷却水は、上記のような閉じた循環経路を循環する。 The low temperature cooling water 51 (liquid refrigerant) discharged from the pump 50 is distributed and sent to each power unit 53 by the low temperature side distribution pipe 52. The low-temperature cooling water 51 removes heat from the power semiconductor module 100 provided in each power unit 53. At this time, since the water temperature rises, the water becomes high-temperature cooling water 54. After flowing out of the power unit 53 , the high temperature cooling water 54 joins together through a high temperature side merging pipe 55 and is sent to the radiator 56 . The high-temperature cooling water 54 passing through the radiator 56 is cooled by exchanging heat with the cooling air 58 introduced by the fan 57, becomes low-temperature cooling water 51, and is sent to the pump 50. Therefore, the cooling water circulates through the closed circulation path as described above.
 このような循環経路における冷却水の温度変化に伴う冷却水の体積変化は、タンク59によって吸収される。 The volume change of the cooling water due to the temperature change of the cooling water in such a circulation path is absorbed by the tank 59.
 図5は、パワーユニットの例を示す外観斜視図である。 FIG. 5 is an external perspective view showing an example of the power unit.
 本図に示すように、パワーユニット53は、4並列のパワー半導体モジュール100と、水路形成体70と、を備えている。水路形成体70には、低温側冷却水継手71及び高温側冷却水継手72が設けられている。 As shown in this figure, the power unit 53 includes four parallel power semiconductor modules 100 and a water channel forming body 70. The water channel forming body 70 is provided with a low temperature side cooling water joint 71 and a high temperature side cooling water joint 72.
 図6は、図5のパワー半導体モジュール100の主要部分を示す回路図である。 FIG. 6 is a circuit diagram showing the main parts of the power semiconductor module 100 of FIG. 5.
 図6に示すように、パワー半導体モジュール100は、スイッチング素子31、32と、整流素子33、34と、を含む。これらの素子は、絶縁基板にマウントされている。これらの素子は、図2及び3に示すレグ35を構成するように接続されている。また、スイッチング素子31、32には、ゲート端子110gが接続されている。ゲート端子110gは、スイッチング素子31、32のオンとオフとを制御するものである。このほか、パワー半導体モジュール100には、正極直流端子110p、負極直流端子110n及び交流端子110acが接続されている。これらの端子は、絶縁基板に設置されている。 As shown in FIG. 6, the power semiconductor module 100 includes switching elements 31 and 32 and rectifier elements 33 and 34. These elements are mounted on an insulating substrate. These elements are connected to form legs 35 shown in FIGS. 2 and 3. Further, the switching elements 31 and 32 are connected to a gate terminal 110g. The gate terminal 110g controls turning on and off of the switching elements 31 and 32. In addition, the power semiconductor module 100 is connected to a positive DC terminal 110p, a negative DC terminal 110n, and an AC terminal 110ac. These terminals are installed on an insulating substrate.
 図7は、図5のパワー半導体モジュール100を示す外観斜視図である。 FIG. 7 is an external perspective view showing the power semiconductor module 100 of FIG. 5.
 図7に示すように、パワー半導体モジュール100の外郭は、パワー半導体素子で発生する熱を冷却水に放熱するベース板130と、パワー半導体素子及び絶縁基板を保護する筐体113と、で構成されている。 As shown in FIG. 7, the outer shell of the power semiconductor module 100 is composed of a base plate 130 that radiates heat generated by the power semiconductor elements to cooling water, and a casing 113 that protects the power semiconductor elements and the insulating substrate. ing.
 パワー半導体モジュール100の一方の辺には正極直流端子110p及び負極直流端子110nを配置し、その辺の対辺には交流端子110acを配置している。これらは、強電系の端子である。このほか、中央寄りに弱電系の端子としてゲート端子110g及び弱電系電極111が設けられている。 A positive DC terminal 110p and a negative DC terminal 110n are arranged on one side of the power semiconductor module 100, and an AC terminal 110ac is arranged on the opposite side. These are heavy electrical terminals. In addition, a gate terminal 110g and a weak electric system electrode 111 are provided near the center as weak electric system terminals.
 ベース板130は、パワー半導体モジュールを水路形成体70(図5)に固定するための通し穴114と、ゲートドライブ基板固定用ネジ穴112と、を有する。 The base plate 130 has a through hole 114 for fixing the power semiconductor module to the water channel forming body 70 (FIG. 5) and a screw hole 112 for fixing the gate drive board.
 ベース板130の材料としては、熱伝導率が100W/mKよりも大きいもの、例えば銅、アルミニウム、AlSiC、MgSiC等が好適である。筐体113の材料としては、ポリフェニレンサルファイド樹脂等が好適である。 The material for the base plate 130 is preferably one having a thermal conductivity greater than 100 W/mK, such as copper, aluminum, AlSiC, MgSiC, etc. A suitable material for the housing 113 is polyphenylene sulfide resin or the like.
 図8Aは、図7のパワー半導体モジュール100のB-B方向の側面図である。 FIG. 8A is a side view of the power semiconductor module 100 of FIG. 7 in the BB direction.
 図8Bは、図7のパワー半導体モジュール100のC-C方向の側面図である。 FIG. 8B is a side view of the power semiconductor module 100 of FIG. 7 in the CC direction.
 図8Aに示すように、ベース板130の上部には、筐体113が設置されている。ベース板130が水路形成体70(図5)に当接する面135には、微小円柱状の突起であるピンフィン131(放熱フィン)が、多数(例えば、合計約100本以上)突出している。 As shown in FIG. 8A, a housing 113 is installed on the top of the base plate 130. A large number (for example, about 100 or more in total) of pin fins 131 (radiating fins), which are minute cylindrical projections, protrude from a surface 135 where the base plate 130 contacts the water channel forming body 70 (FIG. 5).
 また、図8Bに示すように、2つのピンフィン131の領域の間には、平板フィン132が設置されている。 Further, as shown in FIG. 8B, a flat plate fin 132 is installed between the areas of the two pin fins 131.
 図9Aは、図8Bに示すパワー半導体モジュール100の分解図である。 FIG. 9A is an exploded view of the power semiconductor module 100 shown in FIG. 8B.
 図9Bは、図9Aのベース板130の素子実装面を示す平面図である。 FIG. 9B is a plan view showing the element mounting surface of the base plate 130 of FIG. 9A.
 図9Aに示すように、パワー半導体素子101(パワー半導体チップ)を設置した絶縁基板102は、単一のベース板130と接合材(図示省略)を介して接合されている。 As shown in FIG. 9A, the insulating substrate 102 on which the power semiconductor element 101 (power semiconductor chip) is installed is bonded to a single base plate 130 via a bonding material (not shown).
 また、図9Bに示すように、ベース板130の素子実装面には、大きく分けて2つのパワー半導体素子実装領域140(単に「実装領域」ともいう。)が設けられている。パワー半導体素子実装領域140には、パワー半導体素子101が実装されている。それぞれのパワー半導体素子実装領域140には、複数個のパワー半導体素子101が実装されていてもよい。それぞれのパワー半導体素子実装領域140は、ベース板130の短辺方向に長辺を有する形状となっている。2つのパワー半導体素子実装領域140の間には、パワー半導体素子が実装されていない離間領域142が設けられている。離間領域142も、ベース板130の短辺方向に長辺を有する形状となっている。 Furthermore, as shown in FIG. 9B, the element mounting surface of the base plate 130 is provided with roughly two power semiconductor element mounting areas 140 (also simply referred to as "mounting areas"). The power semiconductor element 101 is mounted in the power semiconductor element mounting area 140. A plurality of power semiconductor elements 101 may be mounted in each power semiconductor element mounting area 140. Each power semiconductor element mounting area 140 has a shape having a long side in the short side direction of the base plate 130. A separation area 142 in which no power semiconductor element is mounted is provided between the two power semiconductor element mounting areas 140. The spacing region 142 also has a shape with a long side in the direction of the short side of the base plate 130.
 また、筐体113を固定するためのネジ穴116が設けられている。 Furthermore, a screw hole 116 for fixing the housing 113 is provided.
 図10は、図9Bのベース板130の放熱フィン形成面(裏面)を示す平面図である。 FIG. 10 is a plan view showing the radiation fin forming surface (back surface) of the base plate 130 of FIG. 9B.
 図10においては、ベース板130の素子実装面におけるパワー半導体素子実装領域140の裏側に該当する部分には、円柱状のピンフィン131が多数形成されている。一方、離間領域142の裏側に該当する部分には、複数の平板フィン132が形成されている。複数の平板フィン132は、ベース板130の長辺方向に平行に配置されている。 In FIG. 10, a large number of cylindrical pin fins 131 are formed in a portion of the element mounting surface of the base plate 130 that corresponds to the back side of the power semiconductor element mounting area 140. On the other hand, a plurality of flat fins 132 are formed in a portion corresponding to the back side of the separation area 142. The plurality of flat fins 132 are arranged parallel to the long side direction of the base plate 130.
 円柱状のピンフィン131は、鍛造によりベース板130から形成してもよい。また、別途作製したピン形状の部材をベース板130にロウ付け等により接合してもよい。 The cylindrical pin fin 131 may be formed from the base plate 130 by forging. Further, a separately manufactured pin-shaped member may be joined to the base plate 130 by brazing or the like.
 平板フィン132は、鍛造で形成してもよい。また、別途作製した平板をベース板130に、例えばロウ付け等により接合させてもよい。 The flat plate fin 132 may be formed by forging. Further, a separately manufactured flat plate may be joined to the base plate 130 by, for example, brazing.
 さらに、本図に示すように冷却水60(液体冷媒)が短辺方向に流入する場合、平板フィン132が邪魔板となるため、冷却水60は、ピンフィン131が設けられている領域に流入する。 Furthermore, when the cooling water 60 (liquid refrigerant) flows in the short side direction as shown in this figure, the flat plate fins 132 act as baffles, so the cooling water 60 flows into the area where the pin fins 131 are provided. .
 本明細書においては、本図に示すように二つの実装領域が対向する面に平行する方向に冷却媒体を流す構成を「第一の構成」と呼ぶ。第一の構成は、冷却媒体が、ベース板130の冷却面であって二つの実装領域に対応する部分の両方に分流するようにする構成である。 In this specification, the configuration in which the cooling medium flows in a direction parallel to the surfaces where the two mounting regions face each other as shown in this figure is referred to as a "first configuration." The first configuration is a configuration in which the cooling medium is divided into both parts of the cooling surface of the base plate 130 corresponding to the two mounting areas.
 また、ピンフィン131は、「第一のフィン」の一例である。第一のフィンは、ベース板130のパワー半導体チップが設置された側の面の裏面である冷却面であって二個のパワー半導体チップがそれぞれ設置された二つの実装領域に対応する部分に設置されている。 Further, the pin fin 131 is an example of a "first fin." The first fin is installed on the cooling surface, which is the back side of the side of the base plate 130 on which the power semiconductor chips are installed, and in a portion corresponding to the two mounting areas where the two power semiconductor chips are installed, respectively. has been done.
 ピンフィン131は、断面形状が四回対称の形状を構成する。 The pin fin 131 has a cross-sectional shape with fourfold symmetry.
 平板フィン132は、「第二のフィン」の一例である。第二のフィンは、ベース板130の冷却面であって離間領域に対応する部分に設置されている。第二のフィンは、二つの実装領域が対向する面に直交する方向に長軸を有する。 The flat fin 132 is an example of a "second fin." The second fin is installed on the cooling surface of the base plate 130 at a portion corresponding to the separation area. The second fin has a long axis in a direction perpendicular to the surface where the two mounting areas face each other.
 図11は、図5のパワーユニット53の分解斜視図である。 FIG. 11 is an exploded perspective view of the power unit 53 of FIG. 5.
 図11に示すように、パワーユニット53は、水路形成体70の上面に位置する開口部75を塞ぐように、Oリング73を介してパワー半導体モジュール100を設けることによって構成される。パワー半導体モジュール100は、ボルト穴76にボルトを通すことにより固定される。 As shown in FIG. 11, the power unit 53 is constructed by providing a power semiconductor module 100 via an O-ring 73 so as to close an opening 75 located on the upper surface of the water channel forming body 70. Power semiconductor module 100 is fixed by passing bolts through bolt holes 76 .
 本図においては、封止部材としてOリング73を用いているが、他のシール材であってもよい。Oリング73を用いる場合、組み付けの際に、上面からOリング73がOリング用溝74から外れることがないため、組立性が向上する。 In this figure, an O-ring 73 is used as the sealing member, but other sealing materials may be used. When the O-ring 73 is used, the O-ring 73 does not come off from the O-ring groove 74 from the top surface during assembly, which improves assembly efficiency.
 まとめると、パワーユニット53(電力変換装置)は、パワー半導体モジュール100と、水路形成体70と、を備え、パワー半導体モジュール100は、水路形成体70を流れる冷却媒体により冷却されるように構成されている。 In summary, the power unit 53 (power converter) includes a power semiconductor module 100 and a water channel forming body 70, and the power semiconductor module 100 is configured to be cooled by a cooling medium flowing through the water channel forming body 70. There is.
 電力変換装置は、パワー半導体モジュール100を複数個有し、複数個のパワー半導体モジュール100を一個の水路形成体70に設置した構成を有する。 The power conversion device has a plurality of power semiconductor modules 100, and has a configuration in which the plurality of power semiconductor modules 100 are installed in one water channel forming body 70.
 図12は、図11の水路形成体70における冷却水の流れ方向を示す斜視図である。 FIG. 12 is a perspective view showing the flow direction of cooling water in the water channel forming body 70 of FIG. 11.
 図12に示すように、低温冷却水51は、低温側冷却水継手71から水路形成体70に流入する。水路形成体70の内部において、冷却水60は、開口部75が直列に並んでいる方向に流れる。そして、冷却水60は、高温冷却水54となり、高温側冷却水継手72から流出する。 As shown in FIG. 12, the low temperature cooling water 51 flows into the water channel forming body 70 from the low temperature side cooling water joint 71. Inside the water channel forming body 70, the cooling water 60 flows in the direction in which the openings 75 are arranged in series. The cooling water 60 then becomes the high temperature cooling water 54 and flows out from the high temperature side cooling water joint 72.
 図12のように、高温側冷却水継手72の出口は、流路が狭い。低温冷却水51が流入する低温側冷却水継手71の入口も、流路が狭い。一方、隣接する開口部75を水路形成体70の内部で接続する隣接モジュール間流路77は、開口部75の長辺と同等程度に幅を広くしてある。一旦冷却水60がピンフィン131の領域を流れて広がった後は、そのままの流路幅で流す方が、不必要な流路抵抗を生じさせることなく、強制対流の流速を維持することができ、熱交換効率が高くなるからである。 As shown in FIG. 12, the outlet of the high temperature side cooling water joint 72 has a narrow flow path. The inlet of the low temperature side cooling water joint 71 into which the low temperature cooling water 51 flows also has a narrow flow path. On the other hand, the inter-adjacent module flow path 77 that connects the adjacent openings 75 inside the waterway forming body 70 is made as wide as the long sides of the openings 75 . Once the cooling water 60 flows through the area of the pin fins 131 and spreads, it is better to let the cooling water 60 flow with the same flow path width to maintain the flow velocity of forced convection without creating unnecessary flow path resistance. This is because heat exchange efficiency becomes higher.
 図13は、図5のA-A断面の一部を示す図である。 FIG. 13 is a diagram showing a part of the AA cross section in FIG. 5.
 図13に示すように、冷却水60の流路は、ピンフィン131の領域を経て隣接モジュール間流路77につながり、隣接モジュール間流路77ではピンフィン131の領域よりも低い位置に形成されている。言い換えると、隣接モジュール間流路77は、Oリング73及びOリング用溝74の下方においては、ピンフィン131よりも低い位置に形成されている。 As shown in FIG. 13, the flow path of the cooling water 60 is connected to the adjacent module flow path 77 through the pin fin 131 area, and the adjacent module flow path 77 is formed at a lower position than the pin fin 131 area. . In other words, the inter-adjacent module flow path 77 is formed at a position lower than the pin fin 131 below the O-ring 73 and the O-ring groove 74 .
 以上説明した構造による効果を説明する。 The effects of the structure explained above will be explained.
 本実施形態は、図10に示すようにパワー半導体モジュール100のベース板130の短辺方向に冷却水60を流す場合である。 In this embodiment, the cooling water 60 is caused to flow in the short side direction of the base plate 130 of the power semiconductor module 100, as shown in FIG.
 図12のように、冷却水60は、低温側冷却水継手71の側から流入し、計4つのパワー半導体モジュール100(図11)が設置されパワー半導体モジュール100と開口部75との間に形成された空間を流れ、高温側冷却水継手72から流出する。 As shown in FIG. 12, the cooling water 60 flows in from the low temperature side cooling water joint 71 side, and a total of four power semiconductor modules 100 (FIG. 11) are installed, and the cooling water 60 is formed between the power semiconductor modules 100 and the opening 75. The water flows through the space where the water is cooled, and flows out from the high temperature side cooling water joint 72.
 1つ目のパワー半導体モジュールでは、流路入口に低温側冷却水継手71があって流路が狭く、出口は広い。2つ目及び3つ目のパワー半導体モジュールでは、出入口ともに広い。4つ目のパワー半導体モジュールでは、入口が広く、出口は高温側冷却水継手72のために流路が狭い。 In the first power semiconductor module, there is a low-temperature side cooling water joint 71 at the inlet of the flow path, the flow path is narrow, and the outlet is wide. In the second and third power semiconductor modules, both entrances and exits are wide. In the fourth power semiconductor module, the inlet is wide, and the outlet has a narrow flow path due to the high temperature side cooling water joint 72.
 それぞれのパワー半導体モジュールの下の冷却水60の流れ及びその流れに伴う冷却性能について説明する。 The flow of the cooling water 60 under each power semiconductor module and the cooling performance associated with the flow will be explained.
 1つ目のパワー半導体モジュールについて説明する。 The first power semiconductor module will be explained.
 狭い入口から入った冷却水は、図10のように正面にある平板フィン132に当たり、流れが左右に分かれる。そして、左右にあるパワー半導体素子実装領域140にあるピンフィン131の周りに冷却水60が流れるため、パワー半導体素子101の熱を効率的に除去できる。 The cooling water entering from the narrow entrance hits the flat plate fins 132 on the front as shown in Figure 10, and the flow is divided into left and right sides. Since the cooling water 60 flows around the pin fins 131 in the left and right power semiconductor element mounting areas 140, heat from the power semiconductor elements 101 can be efficiently removed.
 また、平板フィン132により離間領域142への冷却水の流れは抑制されるため、パワー半導体素子101(図9A)がなく温度上昇が小さい離間領域142を必要以上に冷却することがない。 Furthermore, since the flow of cooling water to the separated region 142 is suppressed by the flat plate fins 132, the separated region 142, where there is no power semiconductor element 101 (FIG. 9A) and whose temperature rise is small, is not cooled more than necessary.
 離間領域142に複数の平板フィン132を設けたが、入口直近の平板フィン132で流れが左右に分かれても、平板フィン132が入口付近に1つだけでは、ピンフィン131の領域を冷却水が流れているうちに離間領域142に冷却水60がある程度流入するようになる。図10に示すように平板フィン132を入口直近だけでなく重ねて配置することにより、冷却水60が、主として、ピンフィン131の領域を流れるようにすることができる。これにより、冷却水60の流れがピンフィンの領域に偏ることになり、パワー半導体素子実装領域140(図9B)にあるパワー半導体素子101を効率的に冷却できる。 Although a plurality of flat plate fins 132 are provided in the separated area 142, even if the flow is divided into left and right sides at the flat plate fin 132 closest to the inlet, if there is only one flat plate fin 132 near the inlet, the cooling water will not flow through the area of the pin fins 131. During this period, a certain amount of cooling water 60 begins to flow into the separation area 142. As shown in FIG. 10, by arranging the flat plate fins 132 not only in the immediate vicinity of the inlet but also in an overlapping manner, the cooling water 60 can be made to flow mainly through the region of the pin fins 131. Thereby, the flow of the cooling water 60 is biased toward the pin fin region, and the power semiconductor element 101 in the power semiconductor element mounting area 140 (FIG. 9B) can be efficiently cooled.
 ピンフィン131の領域を通過した冷却水60の出口では、流路の幅が広く、ピンフィン131、平板フィン132等、流れの障害となるものがないため、冷却水60は、隣接モジュール間流路77を流れる過程で、流速が一様になる。 At the outlet of the cooling water 60 that has passed through the region of the pin fins 131, the width of the flow path is wide and there is no obstacle to the flow, such as the pin fins 131 or flat plate fins 132, so the cooling water 60 flows through the flow path 77 between adjacent modules. During the process of flowing, the flow velocity becomes uniform.
 2つ目及び3つ目のパワー半導体モジュールについて説明する。 The second and third power semiconductor modules will be explained.
 2つ目及び3つ目のパワー半導体モジュールにおいては、入口側及び出口側ともに、流路の幅が広くしてある。 In the second and third power semiconductor modules, the width of the flow path is widened on both the inlet side and the outlet side.
 入口側では、上述のとおり、幅広い流路から入ってきた冷却水60の流速が一様になっている。離間領域142に向かう冷却水60は、平板フィン132が抵抗となるため、流れが左右に分かれ、ピンフィン131の領域に流入する。また、ピンフィン131の領域に向かう冷却水60も、ピンフィン131の領域に流入するピンフィン131の領域に流入した冷却水60の挙動は、1つ目のパワー半導体モジュールと同様である。 On the inlet side, as described above, the flow velocity of the cooling water 60 entering from the wide flow path is uniform. Since the flat plate fins 132 act as resistance for the cooling water 60 heading toward the separation region 142 , the flow is divided into left and right sides and flows into the region of the pin fins 131 . Further, the behavior of the cooling water 60 flowing into the pin fin 131 area is the same as that of the first power semiconductor module.
 冷却水60は、ピンフィン131の領域に偏って流れるため、流速も速く、パワー半導体素子実装領域140にあるパワー半導体素子101を効率的に冷却することが可能である。 Since the cooling water 60 flows concentratedly in the area of the pin fins 131, the flow rate is fast, and it is possible to efficiently cool the power semiconductor element 101 in the power semiconductor element mounting area 140.
 4つ目のパワー半導体モジュールについて説明する。 The fourth power semiconductor module will be explained.
 4つ目のパワー半導体モジュールにおいては、入口側の流路幅は広く、出口側は狭くしてある。 In the fourth power semiconductor module, the channel width on the inlet side is wide and the channel width on the outlet side is narrow.
 2つ目及び3つ目のパワー半導体モジュールと同様に、幅広い流路から入ってきた冷却水60の流速は一様になっている。ピンフィン131の領域及び離間領域142に流入した冷却水60の挙動は、1つ目、2つ目及び3つ目のパワー半導体モジュールと同様である。ピンフィン131の領域に偏って流れてきた冷却水60は、高温側冷却水継手72のある狭い出口に向かう。 Similar to the second and third power semiconductor modules, the flow velocity of the cooling water 60 entering from the wide flow path is uniform. The behavior of the cooling water 60 that has flowed into the pin fin 131 region and the separation region 142 is similar to the first, second, and third power semiconductor modules. The cooling water 60 that has flowed toward the region of the pin fin 131 heads toward a narrow outlet where the high temperature side cooling water joint 72 is located.
 4つ目のパワー半導体モジュールの場合も、冷却水60がピンフィン131の領域に偏って流れるため、パワー半導体素子実装領域140にあるパワー半導体素子101を効率的に冷却することが可能である。 In the case of the fourth power semiconductor module as well, since the cooling water 60 flows biased toward the pin fin 131 area, it is possible to efficiently cool the power semiconductor element 101 in the power semiconductor element mounting area 140.
 つまり、図11に示すパワーユニット53のように、隣接するパワー半導体モジュール100を長辺が対向するように並べた状態で、パワー半導体モジュール100の短辺方向に冷却水60を流す構成によれば、パワーユニット53を構成するいずれのパワー半導体モジュール100においても、ピンフィン131の領域に冷却水60を集中的に流すことができるため、パワー半導体素子101を効率的に冷却することが可能である。 That is, according to a configuration in which adjacent power semiconductor modules 100 are arranged so that their long sides face each other and the cooling water 60 is flowed in the direction of the short sides of the power semiconductor modules 100, as in the power unit 53 shown in FIG. In any of the power semiconductor modules 100 constituting the power unit 53, the cooling water 60 can be concentratedly flowed into the region of the pin fins 131, so that the power semiconductor elements 101 can be efficiently cooled.
 (第2の実施形態)
 図14は、第2の実施形態に係るパワー半導体モジュール100のベース板130の放熱フィン形成面を示す平面図である。
(Second embodiment)
FIG. 14 is a plan view showing the radiation fin forming surface of the base plate 130 of the power semiconductor module 100 according to the second embodiment.
 本図において、ピンフィン131及び平板フィン132の配置は、図10と同一である。冷却水60を流す方向がパワー半導体モジュール100の短辺方向から長辺方向に変わっている点が異なる。これは、パワーユニット形成のためにパワー半導体モジュール100を並べる方向が図11に示すものとは異なり、図11に示すパワー半導体モジュール100を90度回転して、水路形成体70においてパワー半導体モジュール100の短辺が隣接させるように配置している。その他の構成は、図11と同様であり、説明を省略する。 In this figure, the arrangement of pin fins 131 and flat plate fins 132 is the same as in FIG. 10. The difference is that the direction in which the cooling water 60 flows is changed from the short side direction of the power semiconductor module 100 to the long side direction. This is different from the direction shown in FIG. 11 in which the power semiconductor modules 100 are arranged to form a power unit, and the power semiconductor module 100 shown in FIG. They are arranged so that their short sides are adjacent. The other configurations are the same as those in FIG. 11, and their explanation will be omitted.
 つぎに、図14に示す構成による効果を説明する。 Next, the effects of the configuration shown in FIG. 14 will be explained.
 1つ目のパワー半導体モジュールについて説明する。 The first power semiconductor module will be explained.
 狭い入口から入った冷却水60は、図14のように正面付近のパワー半導体素子実装領域140にあるピンフィン131に当たる。冷却水60は、ピンフィン131の領域にほぼ均等に分配され流入する。ピンフィン131は、密であり、冷却水60の流れがパワー半導体モジュールの短辺側であるため、長辺方向の流れに流速分布は生じにくい。冷却水60がこの方向に流れる場合は、離間領域142にある平板フィン132による流れの阻害はほとんど生じない。次いで出口側のピンフィン131の領域に入っても、冷却水60はほぼ一様に流れる。ピンフィン131の領域から流出した後は、流路幅が広く、流れを阻害するものがないため、流れの一様性は維持される。 The cooling water 60 entering from the narrow entrance hits the pin fins 131 in the power semiconductor element mounting area 140 near the front as shown in FIG. The cooling water 60 flows into the area of the pin fins 131 in a substantially evenly distributed manner. Since the pin fins 131 are dense and the flow of the cooling water 60 is on the short side of the power semiconductor module, a flow velocity distribution is unlikely to occur in the flow in the long side direction. When the cooling water 60 flows in this direction, the flow is hardly obstructed by the flat plate fins 132 in the separation region 142. The cooling water 60 then flows almost uniformly even when it enters the region of the pin fins 131 on the outlet side. After flowing out from the area of the pin fins 131, the uniformity of the flow is maintained because the flow path is wide and there is nothing to obstruct the flow.
 つまり、ピンフィン131の領域をほぼ一様に冷却水60が流れるため、パワー半導体素子101の発熱を効率的に冷却できる。また、離間領域142においては、平板フィン132による抵抗がないため、冷却水60を送るための動力に無駄が生じない。 In other words, since the cooling water 60 flows almost uniformly in the area of the pin fins 131, the heat generated by the power semiconductor element 101 can be efficiently cooled. Further, in the separation region 142, there is no resistance due to the flat plate fins 132, so that the power for sending the cooling water 60 is not wasted.
 2つ目及び3つ目のパワー半導体モジュールについて説明する。 The second and third power semiconductor modules will be explained.
 2つ目及び3つ目のパワー半導体モジュールにおいては、入口側及び出口側ともに、流路の幅が広くしてある。 In the second and third power semiconductor modules, the width of the flow path is widened on both the inlet side and the outlet side.
 入口側では、上述のとおり、幅広い流路から入ってきた冷却水60の流速が一様になっている。冷却水60は、一様な流れを維持した状態でピンフィン131の領域に流入する。そして、冷却水60は、一様な流れを維持したまま、離間領域142及び出口側のピンフィン131の領域を通過し、流出する。 On the inlet side, as described above, the flow velocity of the cooling water 60 entering from the wide flow path is uniform. Cooling water 60 flows into the region of pin fins 131 while maintaining a uniform flow. Then, the cooling water 60 passes through the separation region 142 and the region of the pin fins 131 on the outlet side and flows out while maintaining a uniform flow.
 よって、冷却水60は、ピンフィン131の領域に一様な流れを維持した状態で流れるため、パワー半導体素子実装領域140にあるパワー半導体素子101を均等に冷却することができる。 Therefore, since the cooling water 60 flows while maintaining a uniform flow in the area of the pin fins 131, the power semiconductor element 101 in the power semiconductor element mounting area 140 can be evenly cooled.
 4つ目のパワー半導体モジュールについて説明する。 The fourth power semiconductor module will be explained.
 4つ目のパワー半導体モジュールにおいては、入口側の流路幅は広く、出口側は狭くしてある。 In the fourth power semiconductor module, the channel width on the inlet side is wide and the channel width on the outlet side is narrow.
 2つ目及び3つ目のパワー半導体モジュールと同様に、幅広い流路から入ってきた冷却水60の流速は一様になっている。ピンフィン131の領域及び離間領域142に流入した冷却水60の挙動は、1つ目、2つ目及び3つ目のパワー半導体モジュールと同様である。ピンフィン131の領域に偏って流れてきた冷却水60は、高温側冷却水継手72のある狭い出口に向かう。 Similar to the second and third power semiconductor modules, the flow velocity of the cooling water 60 entering from the wide flow path is uniform. The behavior of the cooling water 60 that has flowed into the pin fin 131 region and the separation region 142 is similar to the first, second, and third power semiconductor modules. The cooling water 60 that has flowed toward the region of the pin fin 131 heads toward a narrow outlet where the high temperature side cooling water joint 72 is located.
 よって、冷却水60は、ピンフィン131の領域に一様な流れを維持した状態で流れるため、パワー半導体素子実装領域140にあるパワー半導体素子101を均等に冷却することができる。 Therefore, since the cooling water 60 flows while maintaining a uniform flow in the area of the pin fins 131, the power semiconductor element 101 in the power semiconductor element mounting area 140 can be evenly cooled.
 本明細書においては、本図に示すように二つの実装領域が対向する面に直交する方向に冷却媒体を流す構成を「第二の構成」と呼ぶ。第二の構成は、冷却媒体が、ベース板130の冷却面であって二つの実装領域のうちの一方に対応する部分を流れた後、ベース板130の冷却面であって離間領域に対応する部分を流れ、その後、ベース板130の冷却面であって二つの実装領域のうちの他方に対応する部分を流れるようにする構成である。 In this specification, the configuration in which the cooling medium flows in a direction perpendicular to the surfaces where the two mounting areas face each other as shown in this figure is referred to as a "second configuration." In the second configuration, after the cooling medium flows through a portion of the cooling surface of the base plate 130 that corresponds to one of the two mounting areas, the cooling medium flows through a portion of the cooling surface of the base plate 130 that corresponds to one of the two mounting areas. After that, the cooling surface of the base plate 130 is configured to flow through a portion corresponding to the other of the two mounting areas.
 以上のとおり、図10及び図14に示す放熱フィン形成面を有するパワー半導体モジュール100のベース板130は、冷却水60を短辺方向及び長辺方向のいずれの方向に流す場合であっても、パワー半導体素子実装領域140(図9B)を均等に冷却することができる。 As described above, the base plate 130 of the power semiconductor module 100 having the radiation fin forming surface shown in FIGS. 10 and 14 allows the cooling water 60 to flow in either the short side direction or the long side direction. The power semiconductor element mounting area 140 (FIG. 9B) can be uniformly cooled.
 (変形例1)
 図15は、変形例1に係るパワー半導体モジュールのベース板の放熱フィン形成面を示す平面図である。
(Modification 1)
FIG. 15 is a plan view showing the radiation fin forming surface of the base plate of the power semiconductor module according to Modification Example 1.
 本図における図10との相違点は、図10の平板フィン132の代わりに、断面形状が略楕円形状のフィン133を1列あたり複数用いていることである。その他の構成は、図10と同一であるため、説明を省略する。 The difference between this figure and FIG. 10 is that, instead of the flat fins 132 in FIG. 10, a plurality of fins 133 having a substantially elliptical cross-sectional shape are used per row. The other configurations are the same as those in FIG. 10, so their description will be omitted.
 本変形例の構成による効果を説明する。 The effects of the configuration of this modification will be explained.
 冷却水の流れに関する効果は、平板フィン132の場合と同様であるが、フィン133と平板フィン132とが同一の高さを有する場合、略楕円同士の間に隙間が空くために、パワー半導体モジュール100の短辺方向に冷却水を流した場合に離間領域142を流れる冷却水の量が多くなり、相対的にパワー半導体素子実装領域140を流れる冷却水の量が減る。 The effect regarding the flow of cooling water is the same as in the case of the flat plate fins 132, but when the fins 133 and the flat plate fins 132 have the same height, there is a gap between the approximately ellipses, so that the power semiconductor module When cooling water flows in the direction of the short side of 100, the amount of cooling water flowing through the separation area 142 increases, and the amount of cooling water flowing through the power semiconductor element mounting area 140 relatively decreases.
 そのため、第1の実施形態に対してパワー半導体素子実装領域140の冷却性能は減少するが、離間領域142の冷却性能が向上する。 Therefore, although the cooling performance of the power semiconductor element mounting area 140 is reduced compared to the first embodiment, the cooling performance of the separation area 142 is improved.
 また、第2の実施形態のように長辺方向に冷却水を流した場合には、パワー半導体素子実装領域140の流れは同等であるため、冷却性能は同等であるが、離間領域142では、略楕円形状で流路幅が進行方向で変化するために流れが乱される。このため、離間領域142においては、第2の実施形態に対して冷却性能が向上する。 In addition, when the cooling water flows in the long side direction as in the second embodiment, the flow in the power semiconductor element mounting area 140 is the same, so the cooling performance is the same, but in the separated area 142, The flow is disturbed because it has a substantially elliptical shape and the width of the flow path changes in the direction of travel. Therefore, in the separated region 142, the cooling performance is improved compared to the second embodiment.
 また、平板フィン132の場合と同様に、冷却水の流れが長辺方向であっても短辺方向であっても同等の冷却性能を得ることができる。そのため、ピンフィン131の配置は同一のまま、冷却水を流す方向を長辺方向と短辺方向とで選択可能なパワー半導体モジュールとすることができる。 Further, as in the case of the flat plate fins 132, the same cooling performance can be obtained whether the cooling water flows in the long side direction or the short side direction. Therefore, it is possible to provide a power semiconductor module in which the direction in which the cooling water flows can be selected between the long side direction and the short side direction, while the arrangement of the pin fins 131 remains the same.
 なお、フィン133は、第二のフィンの一例である。フィン133は、断面形状が楕円形であるが、菱形であってもよい。フィン133は、二つの実装領域が対向する面に直交する方向に複数個配置されている。 Note that the fin 133 is an example of a second fin. The fins 133 have an elliptical cross-sectional shape, but may also have a rhombic shape. A plurality of fins 133 are arranged in a direction perpendicular to the surface where the two mounting areas face each other.
 (変形例2) 
 図16は、変形例2に係るパワー半導体モジュールのベース板の放熱フィン形成面を示す平面図である。
(Modification 2)
FIG. 16 is a plan view showing a radiation fin forming surface of a base plate of a power semiconductor module according to Modification 2. FIG.
 本図における図10との相違点は、離間領域142にも円柱状のピンフィン131を設け、かつ、離間領域142の両端部に平板フィン132を1個ずつ配置していることである。平板フィン132は、第二のフィンの一例である。その他の構成は、図10と同一であるため、説明を省略する。 The difference between this figure and FIG. 10 is that a cylindrical pin fin 131 is also provided in the separation area 142, and one flat plate fin 132 is arranged at each end of the separation area 142. The flat fin 132 is an example of a second fin. The other configurations are the same as those in FIG. 10, so their description will be omitted.
 本変形例の構成による効果を説明する。 The effects of the configuration of this modification will be explained.
 図16においては、離間領域142のフィンが一対の平板フィン132と複数の円柱状のピンフィン131とで構成されている。 In FIG. 16, the fins in the spaced region 142 are composed of a pair of flat fins 132 and a plurality of cylindrical pin fins 131.
 この構成の場合、パワー半導体モジュール100の短辺方向に冷却水を流した場合、入口側の直近の平板フィン132によって流れが左右に分かれ、左右のパワー半導体素子実装領域140にあるピンフィン131の領域に偏って流入する。 In this configuration, when cooling water flows in the short side direction of the power semiconductor module 100, the flow is divided into left and right by the nearest flat plate fin 132 on the inlet side, and the area of the pin fin 131 in the left and right power semiconductor element mounting areas 140 There is a biased inflow into the country.
 冷却水は、流れが徐々に図中左右に広がって離間領域142にも流入するが、出口近傍にある平板フィン132により、パワー半導体素子実装領域140の出口近傍では、再び流れがパワー半導体素子実装領域140に偏ることとなる。 The flow of cooling water gradually spreads to the left and right in the figure and flows into the separated area 142, but the flat plate fins 132 near the outlet cause the flow to flow again near the outlet of the power semiconductor element mounting area 140. It will be biased towards area 140.
 そのため、第1の実施形態に比べて流れの偏りの度合いが減少するために、パワー半導体素子実装領域140の冷却性能の向上分が減少する。 Therefore, since the degree of flow bias is reduced compared to the first embodiment, the improvement in cooling performance of the power semiconductor element mounting area 140 is reduced.
 一方、パワー半導体モジュール100の長辺方向に冷却水を流した場合、冷却水の流れは、第2の実施形態と同等であり、パワー半導体素子実装領域140の冷却性能は、第2の実施形態と同等である。一方、離間領域142では、多数のピンフィン131が設けられているため、第2の実施形態より冷却性能が向上する。 On the other hand, when the cooling water flows in the long side direction of the power semiconductor module 100, the flow of the cooling water is the same as in the second embodiment, and the cooling performance of the power semiconductor element mounting area 140 is the same as in the second embodiment. is equivalent to On the other hand, in the separated region 142, since a large number of pin fins 131 are provided, the cooling performance is improved compared to the second embodiment.
 (変形例3)
 図17は、変形例3に係るパワー半導体モジュールのベース板の放熱フィン形成面を示す平面図である。
(Modification 3)
FIG. 17 is a plan view showing a radiation fin forming surface of a base plate of a power semiconductor module according to Modification Example 3.
 本図における図10との相違点は、図10の円柱状のピンフィン131の代わりに、断面形状が略正方形状のフィン134を用いていることである。そして、フィン134の断面を構成する正方形の対角線は、パワー半導体モジュール100の長辺方向及び短辺方向となっている。その他の構成は、図10と同一であるため、説明を省略する。 The difference between this figure and FIG. 10 is that fins 134 having a substantially square cross-sectional shape are used instead of the cylindrical pin fins 131 in FIG. The diagonal lines of the square forming the cross section of the fin 134 are in the long side direction and the short side direction of the power semiconductor module 100. The other configurations are the same as those in FIG. 10, so their description will be omitted.
 本変形例においても、第1の実施形態及び第2の実施形態と同様の冷却効果が得られる。 Also in this modification, the same cooling effect as in the first embodiment and the second embodiment can be obtained.
 なお、フィン134は、断面形状が四回対称の形状を構成する。 Note that the fins 134 have a four-fold symmetrical cross-sectional shape.
 (変形例4)
 図18は、変形例4に係るパワー半導体モジュールのベース板の放熱フィン形成面の一部を示す平面図である。
(Modification 4)
FIG. 18 is a plan view showing a part of the radiation fin forming surface of the base plate of the power semiconductor module according to Modification Example 4.
 本図における図10との相違点は、図10の円柱状のピンフィン131の代わりに、平板フィン184をパワー半導体モジュール100の長辺方向及び短辺方向のいずれに対しても斜めに交わるように配置していることである。そして、近接する4つの平板フィン184がパワー半導体モジュール100の長辺方向(又は短辺方向)に対して45度の角度で放射状に配置された構成を有している。その他の構成は、図10と同一であるため、説明を省略する。 The difference between this figure and FIG. 10 is that instead of the cylindrical pin fin 131 in FIG. It is that it is arranged. The four adjacent flat plate fins 184 are arranged radially at an angle of 45 degrees with respect to the long side direction (or short side direction) of the power semiconductor module 100. The other configurations are the same as those in FIG. 10, so their description will be omitted.
 なお、近接する4つの平板フィン184は、これらを一体として見た場合、断面形状が四回対称の形状を構成すると言える。 Note that the four adjacent flat plate fins 184 can be said to have a four-fold symmetrical cross-sectional shape when viewed as one body.
 本変形例の放熱フィン形成面を有するパワー半導体モジュール100のベース板130は、冷却水60を短辺方向及び長辺方向のいずれの方向に流す場合にも、同様の単位長さ当たりの流路抵抗を有する。このため、冷却水60を短辺方向及び長辺方向のいずれの方向に流す場合にも、パワー半導体素子実装領域140(図9B)をむらなく冷却することができる。更に厳密に言うと、冷却水60を短辺方向及び長辺方向のいずれの方向に流す場合にも、2つのパワー半導体素子実装領域140の伝熱係数をほぼ等しくすることができる。 The base plate 130 of the power semiconductor module 100 having the radiation fin forming surface of this modification has the same flow path per unit length when the cooling water 60 is caused to flow in either the short side direction or the long side direction. Has resistance. Therefore, the power semiconductor element mounting area 140 (FIG. 9B) can be evenly cooled even when the cooling water 60 is caused to flow in either the short side direction or the long side direction. To be more precise, the heat transfer coefficients of the two power semiconductor element mounting regions 140 can be made almost equal even when the cooling water 60 is caused to flow in either the short side direction or the long side direction.
 よって、本変形例においても、第1の実施形態及び第2の実施形態と同様の冷却効果が得られる。 Therefore, in this modification as well, the same cooling effect as in the first embodiment and the second embodiment can be obtained.
 (変形例5)
 図19は、変形例5に係るパワー半導体モジュールのベース板の放熱フィン形成面の一部を示す平面図である。
(Modification 5)
FIG. 19 is a plan view showing a part of the radiation fin forming surface of the base plate of the power semiconductor module according to Modification Example 5.
 本図における図18との相違点は、図18の平板フィン184の代わりに、断面形状が略楕円形状のフィン194を用いていることである。その他の構成は、図18と同一であるため、説明を省略する。 The difference between this figure and FIG. 18 is that fins 194 having a substantially elliptical cross-sectional shape are used instead of the flat fins 184 in FIG. 18. The other configurations are the same as those in FIG. 18, so their description will be omitted.
 なお、近接する4つのフィン194は、これらを一体として見た場合、断面形状が四回対称の形状を構成すると言える。 Note that the four adjacent fins 194 can be said to have a four-fold symmetrical cross-sectional shape when viewed as a whole.
 本変形例においても、冷却水60を短辺方向及び長辺方向のいずれの方向に流す場合にも、2つのパワー半導体素子実装領域140の伝熱係数をほぼ等しくすることができる。
よって、第1の実施形態及び第2の実施形態と同様の冷却効果が得られる。
In this modification as well, the heat transfer coefficients of the two power semiconductor element mounting regions 140 can be made approximately equal regardless of whether the cooling water 60 is caused to flow in either the short side direction or the long side direction.
Therefore, the same cooling effect as in the first embodiment and the second embodiment can be obtained.
 (変形例6)
 図20は、変形例6に係るパワー半導体モジュールのベース板の放熱フィン形成面の一部を示す平面図である。
(Modification 6)
FIG. 20 is a plan view showing a part of the radiation fin forming surface of the base plate of the power semiconductor module according to Modification Example 6.
 本図における図18との相違点は、図18の平板フィン184の代わりに、平板フィン204a、204bを用いていることである。図20においては、平板フィン204a、204bの長辺の延長線が互いに他方の長辺に直交するように配置されている。その他の構成は、図18と同一であるため、説明を省略する。 The difference between this figure and FIG. 18 is that flat fins 204a and 204b are used instead of the flat fin 184 in FIG. In FIG. 20, the flat plate fins 204a and 204b are arranged so that extension lines of their long sides are perpendicular to the other long side. The other configurations are the same as those in FIG. 18, so their description will be omitted.
 なお、近接する4つの平板フィン204a、204bは、これらを一体として見た場合、断面形状が四回対称の形状を構成すると言える。 Note that the four adjacent flat plate fins 204a and 204b can be said to have a four-fold symmetrical cross-sectional shape when viewed as a unit.
 本変形例においても、冷却水60を短辺方向及び長辺方向のいずれの方向に流す場合にも、2つのパワー半導体素子実装領域140の伝熱係数をほぼ等しくすることができる。
よって、第1の実施形態及び第2の実施形態と同様の冷却効果が得られる。
In this modification as well, the heat transfer coefficients of the two power semiconductor element mounting regions 140 can be made approximately equal regardless of whether the cooling water 60 is caused to flow in either the short side direction or the long side direction.
Therefore, the same cooling effect as in the first embodiment and the second embodiment can be obtained.
 なお、上記の実施形態及び変形例においては、パワー半導体モジュール100の長辺方向に2つのパワー半導体素子実装領域140を配置し、2つのパワー半導体素子実装領域140の間に離間領域142を設けた構成について説明しているが、本開示のパワー半導体モジュール及び電力変換装置は、そのような構成に限定されるものではなく、パワー半導体モジュールの短辺方向に2つのパワー半導体素子実装領域を配置した構成であってもよい。また、パワー半導体モジュールの長辺方向及び短辺方向の寸法が等しく、平面図の形状が正方形であってもよい。このことは、単なる寸法の問題である。このように、上記の実施形態及び変形例と寸法が異なっていても、実装領域及び離間領域に設けたフィン等の構成、冷却媒体の流路の構成等に関する本開示の技術内容は、同様に適用できる。 Note that in the above embodiments and modifications, two power semiconductor element mounting areas 140 are arranged in the long side direction of the power semiconductor module 100, and a separation area 142 is provided between the two power semiconductor element mounting areas 140. Although the configuration has been described, the power semiconductor module and power conversion device of the present disclosure are not limited to such a configuration, and two power semiconductor element mounting areas are arranged in the short side direction of the power semiconductor module. It may be a configuration. Alternatively, the dimensions of the power semiconductor module in the long side direction and the short side direction may be equal, and the shape of the plan view may be a square. This is simply a matter of size. In this way, even if the dimensions are different from the above-described embodiments and modifications, the technical content of the present disclosure regarding the configuration of the fins etc. provided in the mounting area and the separation area, the configuration of the cooling medium flow path, etc. Applicable.
 上記の実施形態及び変形例は、鉄道車両向けの主電力変換装置を例として示しているが、本開示の技術は、この例に限定されるものではなく、自動車やトラックなどの電力変換装置、船舶や航空機などの電力変換装置、工場設備を駆動する電動機の制御装置として用いられる産業用電力変換装置、家庭の太陽光発電システムや家庭の電化製品を駆動する電動機の制御装置に用いられる家庭用電力変換装置に対しても適用することができる。 Although the above-described embodiments and modifications are exemplified by main power converters for railway vehicles, the technology of the present disclosure is not limited to this example, and is applicable to power converters for automobiles, trucks, etc. Power conversion devices for ships and aircraft, industrial power conversion devices used as control devices for electric motors that drive factory equipment, and domestic power conversion devices used for control devices for electric motors that drive home solar power generation systems and home appliances. It can also be applied to power converters.
 上記の実施形態及び変形例は、本開示の内容をわかりやすく説明するためのものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above-described embodiments and modified examples are for explaining the contents of the present disclosure in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
 1:電車線、2:変圧器、3:平滑コンデンサ、4:コンバータ、5:インバータ、6:交流電動機、10:主電力変換装置、31、32:スイッチング素子、33、34:整流素子、35:レグ、50:ポンプ、51:低温冷却水、52:低温側分配管、53:パワーユニット、54:高温冷却水、55:高温側合流管、56:ラジエータ、57:ファン、58:冷却風、59:タンク、60:冷却水、70:水路形成体、71:低温側冷却水継手、72:高温側冷却水継手、73:Oリング、74:Oリング用溝、75:開口部、76:ボルト穴、77:隣接モジュール間流路、100:パワー半導体モジュール、101:パワー半導体素子、102:絶縁基板、110p:正極直流端子、110n:負極直流端子、110ac:交流端子、110g:ゲート端子、111:弱電系電極、112:ゲートドライブ基板固定用ネジ穴、113:筐体、114:通し穴、130:ベース板、131:ピンフィン、132:平板フィン、133、134:フィン、135:面、140:パワー半導体素子実装領域、142:離間領域、200:コンバータ制御回路、201:インバータ制御回路。 1: Electrical line, 2: Transformer, 3: Smoothing capacitor, 4: Converter, 5: Inverter, 6: AC motor, 10: Main power converter, 31, 32: Switching element, 33, 34: Rectifying element, 35 : Leg, 50: Pump, 51: Low-temperature cooling water, 52: Low-temperature side distribution pipe, 53: Power unit, 54: High-temperature cooling water, 55: High-temperature side merging pipe, 56: Radiator, 57: Fan, 58: Cooling air, 59: Tank, 60: Cooling water, 70: Channel forming body, 71: Low temperature side cooling water joint, 72: High temperature side cooling water joint, 73: O ring, 74: O ring groove, 75: Opening, 76: Bolt hole, 77: Channel between adjacent modules, 100: Power semiconductor module, 101: Power semiconductor element, 102: Insulating substrate, 110p: Positive DC terminal, 110n: Negative DC terminal, 110ac: AC terminal, 110g: Gate terminal, 111: Weak electric system electrode, 112: Screw hole for fixing gate drive board, 113: Housing, 114: Through hole, 130: Base plate, 131: Pin fin, 132: Flat plate fin, 133, 134: Fin, 135: Surface, 140: Power semiconductor element mounting area, 142: Separation area, 200: Converter control circuit, 201: Inverter control circuit.

Claims (11)

  1.  二個のパワー半導体チップと、
     これらのパワー半導体チップが設置された絶縁基板と、前記絶縁基板が設置されたベース板、を備え、
     前記ベース板の前記パワー半導体チップが設置された側の面の裏面である冷却面であって前記二個のパワー半導体チップがそれぞれ設置された二つの実装領域に対応する部分には、第一のフィンが設置され、
     前記二つの実装領域の間には、離間領域が設けられたパワー半導体モジュールにおいて、
     前記ベース板の前記冷却面であって前記離間領域に対応する部分における冷却媒体の流路抵抗は、前記二つの実装領域が対向する面に平行する方向では、前記二つの実装領域が対向する前記面に直交する方向に比べて大きいことを特徴とするパワー半導体モジュール。
    two power semiconductor chips,
    An insulated substrate on which these power semiconductor chips are installed, and a base plate on which the insulated substrate is installed,
    A cooling surface that is the back side of the side on which the power semiconductor chips are installed on the base plate, and which corresponds to the two mounting areas where the two power semiconductor chips are installed, has a first cooling surface. fins are installed,
    In a power semiconductor module in which a separation area is provided between the two mounting areas,
    The flow resistance of the cooling medium in the portion of the cooling surface of the base plate that corresponds to the separation area is, in the direction parallel to the surface where the two mounting areas face each other, A power semiconductor module characterized by being larger in the direction perpendicular to the plane.
  2.  二個のパワー半導体チップと、
     これらのパワー半導体チップが設置された絶縁基板と、前記絶縁基板が設置されたベース板、を備え、
     前記ベース板の前記パワー半導体チップが設置された側の面の裏面である冷却面であって前記二個のパワー半導体チップがそれぞれ設置された二つの実装領域に対応する部分には、第一のフィンが設置され、
     前記二つの実装領域の間には、離間領域が設けられたパワー半導体モジュールにおいて、
     前記二つの実装領域が対向する面に平行する方向に冷却媒体を流す第一の構成と、
     前記二つの実装領域が対向する前記面に直交する方向に前記冷却媒体を流す第二の構成と、が選択可能であることを特徴とするパワー半導体モジュール。
    two power semiconductor chips,
    An insulated substrate on which these power semiconductor chips are installed, and a base plate on which the insulated substrate is installed,
    A cooling surface that is the back side of the side on which the power semiconductor chips are installed on the base plate, and which corresponds to the two mounting areas where the two power semiconductor chips are installed, has a first cooling surface. fins are installed,
    In a power semiconductor module in which a separation area is provided between the two mounting areas,
    a first configuration in which a cooling medium flows in a direction parallel to surfaces where the two mounting areas face each other;
    A power semiconductor module characterized in that a second configuration in which the cooling medium flows in a direction perpendicular to the surface where the two mounting areas face each other can be selected.
  3.  前記第一の構成は、前記冷却媒体が、前記ベース板の前記冷却面であって前記二つの実装領域に対応する部分の両方に分流するようにする構成であり、
     前記第二の構成は、前記冷却媒体が、前記ベース板の前記冷却面であって前記二つの実装領域のうちの一方に対応する部分を流れた後、前記ベース板の前記冷却面であって前記離間領域に対応する部分を流れ、その後、前記ベース板の前記冷却面であって前記二つの実装領域のうちの他方に対応する部分を流れるようにする構成である、請求項2記載のパワー半導体モジュール。
    The first configuration is a configuration in which the cooling medium is divided into both parts of the cooling surface of the base plate corresponding to the two mounting areas,
    In the second configuration, after the cooling medium flows through a portion of the cooling surface of the base plate that corresponds to one of the two mounting areas, the cooling medium flows through the cooling surface of the base plate. 3. The power according to claim 2, wherein the power flows through a portion corresponding to the separation area, and then flows through a portion of the cooling surface of the base plate that corresponds to the other of the two mounting areas. semiconductor module.
  4.  前記ベース板の前記冷却面であって前記離間領域に対応する前記部分には、第二のフィンが設置され、
     前記第二のフィンは、前記二つの実装領域が対向する前記面に直交する方向に長軸を有する、請求項1又は2に記載のパワー半導体モジュール。
    A second fin is installed on the portion of the cooling surface of the base plate that corresponds to the separation area,
    The power semiconductor module according to claim 1 or 2, wherein the second fin has a long axis in a direction perpendicular to the surface on which the two mounting regions face each other.
  5.  前記第一のフィンは、断面形状が四回対称の形状を構成する、請求項1又は2に記載のパワー半導体モジュール。 The power semiconductor module according to claim 1 or 2, wherein the first fin has a cross-sectional shape with four-fold symmetry.
  6.  前記第一のフィンは、断面形状が円形又は正方形である、請求項1又は2に記載のパワー半導体モジュール。 The power semiconductor module according to claim 1 or 2, wherein the first fin has a circular or square cross-sectional shape.
  7.  前記第二のフィンは、断面形状が楕円形、菱形又は長方形である、請求項4記載のパワー半導体モジュール。 The power semiconductor module according to claim 4, wherein the second fin has an elliptical, rhombic, or rectangular cross-sectional shape.
  8.  前記第二のフィンは、前記二つの実装領域が対向する前記面に平行する方向に複数個配置されている、請求項4記載のパワー半導体モジュール。 5. The power semiconductor module according to claim 4, wherein a plurality of the second fins are arranged in a direction parallel to the surface where the two mounting regions face each other.
  9.  前記第二のフィンは、断面形状が楕円形又は菱形であり、前記二つの実装領域が対向する前記面に直交する方向に複数個配置されている、請求項4記載のパワー半導体モジュール。 The power semiconductor module according to claim 4, wherein the second fins have an elliptical or rhombic cross-sectional shape, and a plurality of the second fins are arranged in a direction perpendicular to the surface where the two mounting regions face each other.
  10.  請求項1又は2に記載のパワー半導体モジュールと、
     水路形成体と、を備え、
     前記パワー半導体モジュールは、前記水路形成体を流れる前記冷却媒体により冷却されるように構成されている、電力変換装置。
    The power semiconductor module according to claim 1 or 2,
    A water channel forming body;
    The power converter device is configured such that the power semiconductor module is cooled by the cooling medium flowing through the water channel forming body.
  11.  前記パワー半導体モジュールを複数個有し、
     前記複数個の前記パワー半導体モジュールを一個の前記水路形成体に設置した構成を有する、請求項10記載の電力変換装置。
    having a plurality of the power semiconductor modules;
    The power conversion device according to claim 10, having a configuration in which the plurality of power semiconductor modules are installed in one of the waterway forming bodies.
PCT/JP2022/044811 2022-03-28 2022-12-06 Power semiconductor module and power conversion apparatus WO2023188551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022051276A JP2023144350A (en) 2022-03-28 2022-03-28 Power semiconductor module and power conversion device
JP2022-051276 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023188551A1 true WO2023188551A1 (en) 2023-10-05

Family

ID=88200025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044811 WO2023188551A1 (en) 2022-03-28 2022-12-06 Power semiconductor module and power conversion apparatus

Country Status (2)

Country Link
JP (1) JP2023144350A (en)
WO (1) WO2023188551A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093034A (en) * 2008-10-07 2010-04-22 Toyota Industries Corp Cooling device for electronic component
JP2012015240A (en) * 2010-06-30 2012-01-19 Denso Corp Semiconductor device and method of manufacturing the same
JP2015088625A (en) * 2013-10-30 2015-05-07 シチズンホールディングス株式会社 Cooling mechanism of substrate
WO2016194158A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler
JP2018004177A (en) * 2016-07-04 2018-01-11 レノボ・シンガポール・プライベート・リミテッド Vapor chamber and electronic equipment
WO2022025250A1 (en) * 2020-07-31 2022-02-03 日本電産株式会社 Cooling member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093034A (en) * 2008-10-07 2010-04-22 Toyota Industries Corp Cooling device for electronic component
JP2012015240A (en) * 2010-06-30 2012-01-19 Denso Corp Semiconductor device and method of manufacturing the same
JP2015088625A (en) * 2013-10-30 2015-05-07 シチズンホールディングス株式会社 Cooling mechanism of substrate
WO2016194158A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler
JP2018004177A (en) * 2016-07-04 2018-01-11 レノボ・シンガポール・プライベート・リミテッド Vapor chamber and electronic equipment
WO2022025250A1 (en) * 2020-07-31 2022-02-03 日本電産株式会社 Cooling member

Also Published As

Publication number Publication date
JP2023144350A (en) 2023-10-11

Similar Documents

Publication Publication Date Title
JP6512266B2 (en) Semiconductor device
CN106899215B (en) Power conversion device
US11276622B2 (en) Inverter arrangement
US9439324B2 (en) Electric power converter
US6822850B2 (en) Laminated bus bar for use with a power conversion configuration
CN110383470B (en) Cooling system
US6885553B2 (en) Bus bar assembly for use with a compact power conversion assembly
WO2014069174A1 (en) Semiconductor device
US10879782B2 (en) Semiconductor device having switching element suppressing potential variation
WO2013069277A1 (en) Semiconductor device
WO2006103721A1 (en) Power converter cooling structure
JP2010104204A (en) Power converter
US10504820B2 (en) Semiconductor module and electric power conversion device
JP7208124B2 (en) Power converter and motor-integrated power converter
JP2006210516A (en) Cooling structure of electronic equipment
KR20180028109A (en) cooling module for Insulated Gate Bipolar Transistors
US10957621B2 (en) Heat sink for a power semiconductor module
GB2565071A (en) Semiconductor module
WO2023188551A1 (en) Power semiconductor module and power conversion apparatus
WO2022270013A1 (en) Power conversion device
WO2019244502A1 (en) Electric power converter
JP6961047B1 (en) Power converter
WO2024185183A1 (en) Semiconductor device
CN113314484A (en) Radiator, packaging structure and electronic equipment
CN220274101U (en) Heat abstractor, power module, electrical power generating system, vehicle and photovoltaic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935680

Country of ref document: EP

Kind code of ref document: A1