WO2022269940A1 - タイヤ成形用金型及びタイヤ製造方法 - Google Patents

タイヤ成形用金型及びタイヤ製造方法 Download PDF

Info

Publication number
WO2022269940A1
WO2022269940A1 PCT/JP2021/043047 JP2021043047W WO2022269940A1 WO 2022269940 A1 WO2022269940 A1 WO 2022269940A1 JP 2021043047 W JP2021043047 W JP 2021043047W WO 2022269940 A1 WO2022269940 A1 WO 2022269940A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tread
design surface
molding
holder
Prior art date
Application number
PCT/JP2021/043047
Other languages
English (en)
French (fr)
Inventor
泰之 石原
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP21947219.8A priority Critical patent/EP4360844A1/en
Priority to CN202180099459.XA priority patent/CN117545608A/zh
Publication of WO2022269940A1 publication Critical patent/WO2022269940A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/20Opening, closing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/42Moulds for making articles of definite length, i.e. discrete articles for undercut articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/42Moulds for making articles of definite length, i.e. discrete articles for undercut articles
    • B29C2043/425Moulds for making articles of definite length, i.e. discrete articles for undercut articles mould parts or sliders being movable independently from the mould halves for making undercut portions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2030/00Pneumatic or solid tyres or parts thereof

Definitions

  • the present invention relates to a tire molding die and a tire manufacturing method.
  • an annular tread molding part that molds the tread of a tire is used as a tire molding mold for vulcanizing and molding an unvulcanized green tire to produce a tire. It is known that the opening is divided into a plurality of segments aligned in parallel, and is configured to open and close by moving each segment in the radial direction (see, for example, Patent Documents 1 to 3).
  • the tread design is applied to the tread design surface facing radially inward of each segment.
  • projections such as ribs or blades projecting radially inward from the surface are provided.
  • the present invention has been made in view of the above problems, and its object is to provide a tire molding die and a tire manufacturing method that can reduce the undercut resistance of projections against the tread when the tire is released from the mold. to provide.
  • a tire molding die of the present invention comprises an annular tread molding portion which is divided into a plurality of segments arranged in a circumferential direction and configured to open and close by moving the respective segments in a radial direction.
  • a plurality of design surface division mold parts each having a tread design surface for molding the tread of the tire, and arranged side by side in a circumferential direction inside the holder in a radial direction; and the holder and the plurality of design surface division molds.
  • the leaf spring member elastically deforms radially inward, so that the plurality of design surface division mold portions move along an axis parallel to the axis of the tread molding portion. It is characterized in that it is configured to move in a direction away from the holder while rotating about the center.
  • one circumferential end portion of the leaf spring member is fixed to one circumferential end surface of the holder, and the leaf spring member has a circular shape.
  • the other end in the circumferential direction may be fixed to the end surface of the holder on the other side in the circumferential direction.
  • the tire molding die of the present invention can be configured to include a plurality of the leaf spring members arranged at intervals in a direction parallel to the axis of the tread molding portion. .
  • a tire manufacturing method includes a tire having an annular tread forming portion which is divided into a plurality of segments arranged in a circumferential direction and configured to open and close by moving each of the segments in a radial direction.
  • a plurality of design surface division mold portions are provided side by side, and when the respective segments are moved radially outward to open the tread forming portion, the leaf spring member is elastically deformed radially inward.
  • the tire is released from the tread molding portion while rotating the plurality of design surface dividing mold portions about an axis parallel to the axis of the tread molding portion.
  • FIG. 2 is a cross-sectional view of the tread forming portion shown in FIG. 1 in a plan view;
  • FIG. 2 is a front sectional view of the tire molding die shown in FIG. 1 in an opened state;
  • FIG. 2 is a plan view cross-sectional view of the tread forming portion shown in FIG. 1 in an opened state;
  • FIG. 2 is a cross-sectional view in a front view showing an enlarged detailed structure of a main part of the tire molding die shown in FIG. 1 ;
  • FIG. 6 is a plan view cross-sectional view of one segment shown in FIG. 5 ;
  • FIG. 6 is a view of one segment shown in FIG. 5 viewed from the radially inner side;
  • FIG. 4 is a cross-sectional view showing a fixing structure of the design surface dividing mold portion to the leaf spring member;
  • FIG. 6 is a cross-sectional view of one segment shown in FIG. 5 in a plan view showing a state when the tire is released from the mold;
  • a tire molding die 1 according to an embodiment of the present invention shown in FIG. 1 vulcanizes a raw tire formed mainly of unvulcanized (before vulcanization) synthetic rubber into a predetermined shape. It is used to manufacture the tire 2 by molding.
  • the tire 2 is made mainly of synthetic rubber, has a pair of sidewalls 2a and 2b and a tread 2c, and is a hollow tire formed in a shape having a space filled with gas such as air or nitrogen. is.
  • the tire molding die 1 has a sidewall molding portion 10 and a tread molding portion 20 .
  • the sidewall molding portion 10 includes, for example, an annular lower sidewall molding portion 11 fixed to the upper surface of the lower container 3 and an annular upper sidewall molding portion 12 fixed to the lower surface of the upper container 4. can be configured with
  • the sidewall molding portion 10 has an annular tire 2 or green tire between the lower sidewall molding portion 11 and the upper sidewall molding portion 12, and the central axis thereof coincides with the central axis O of the sidewall molding portion 10. It can be placed (stored) in a coaxial posture.
  • the lower sidewall molding portion 11 has an annular, upward-facing lower sidewall design surface 11a centered on the central axis O. 1), the outer surface of the sidewall 2a can be molded.
  • the upper sidewall molding portion 12 has an annular downward upper sidewall design surface 12a centered on the central axis O. 1) can be shaped. As shown in FIG.
  • the upper container 4 moves upward relative to the lower container 3 (in the direction in which the two move away from each other along the central axis of the tire 2), thereby opening the sidewall forming portion 10 and opening the tire. 2 is released from the sidewall molded portion 10 .
  • the sidewall forming section 10 is closed from the open state to a state in which the tire 2 or green tire can be formed.
  • the configuration of the sidewall molding section 10 can be changed as appropriate, for example, the configuration in which the lower container 3 moves downward relative to the upper container 4 to open.
  • the tread molded portion 20 has an annular shape coaxial with the sidewall molded portion 10 and is arranged adjacent to the outer side in the radial direction of the lower sidewall molded portion 11 and the upper sidewall molded portion 12 .
  • the inner peripheral surface of the tread forming portion 20 facing radially inward serves as a tread design surface 20a for forming the outer peripheral surface of the tread 2c of the tire 2. As shown in FIG.
  • the tread forming portion 20 is divided into a plurality of segments 21 arranged in the circumferential direction.
  • Each segment 21 has an arc shape in a plan view, and is combined in the circumferential direction to form a tread molding portion 20 that forms an annular mold as a whole.
  • the tread forming portion 20 is divided into nine segments 21 having the same length in the circumferential direction.
  • the number of divisions of the tread forming portion 20 in the circumferential direction is preferably 7 to 13, but is not limited to this and can be changed as appropriate.
  • each segment 21 is fixed to the inside of the corresponding intermediate container 5 on its outer peripheral surface facing radially outward, and is driven by the intermediate container 5 to drive the axis of the tread forming portion 20 (central axis). O) and moves radially.
  • the tread forming portion 20 can be opened and closed by radially moving each segment 21 .
  • the intermediate container 5 has a tapered surface 5a on the outer peripheral surface facing radially outward, the tapered surface 5a being inclined so that the outer diameter gradually decreases upward.
  • an annular outer ring 6 arranged radially outside the intermediate container 5 is fixed to the lower surface of the upper container 4 .
  • the outer ring 6 has a tapered surface 6a on the inner peripheral surface facing radially inward, the tapered surface 6a being inclined so that the outer diameter gradually decreases upward.
  • the outer ring 6 is connected to each intermediate container 5 by a guide member or the like (not shown) so that the tapered surface 6a slides along the tapered surface 5a of the intermediate container 5 in the vertical direction.
  • each intermediate container 5 moves radially outward about the axial center of the tread forming portion 20 .
  • each segment 21 is driven by the corresponding intermediate container 5 as shown in FIGS. and move radially outward together with the intermediate container 5 .
  • the tread forming portion 20 is opened to a position where the tread design surface 20a is separated from the tire 2 or the tread 2c of the raw tire.
  • the tread molding section 20 is opened as described above, the tread molding section 20 is located at a position (above the position shown in FIG. position).
  • the tread moldings 20 are lowered to a position adjacent to the lower sidewall moldings 11, and then the outer rings 6 are positioned intermediate each other. It moves downward with respect to the container 5 , and each intermediate container 5 moves radially inward about the axis of the tread forming portion 20 .
  • each segment 21 is driven by the corresponding intermediate container 5 and moves radially inward together with the intermediate container 5, and the tread forming portion 20 is formed from the tire 2 or raw material. It is closed to the extent that the tire can be molded.
  • the annular tread molding portion 20 is divided into a plurality of segments 21 arranged in the circumferential direction, and each segment 21 moves in the radial direction. It is configured to open and close by
  • the opening and closing mechanism of the tread forming portion 20 is not limited to the configuration using the outer ring 6, and various configurations can be adopted.
  • the tire molding die 1 is provided with a bladder 7 which is arranged inside a green tire and expands when supplied with pressurized steam.
  • the tire molding die 1 also includes heaters (not shown) for heating the sidewall molding portion 10 and the tread molding portion 20 .
  • the installation location of the heater can be set as appropriate.
  • the plurality of segments 21 forming the tread molding portion 20 are each provided with a holder 22 and a radially inner circumferential portion of the holder 22 . and a plurality of design surface division mold parts 23 arranged side by side in the direction.
  • each of the segments 21 has five design surface division mold sections 23 .
  • the holder 22 is a portion that is fixed to the intermediate container 5 and driven radially outward by the intermediate container 5 when the tread forming portion 20 is opened.
  • the holder 22 is driven radially inwardly by the intermediate container 5 when the tread forming section 20 is closed.
  • the holder 22 can be formed by cutting a block made of metal such as low carbon steel.
  • the holder 22 is detachably fixed to the intermediate container 5 .
  • a plurality of types of segments 21 having different shapes of tread design surfaces 20a can be selectively attached to the intermediate container 5, and the tire molding die 1 can be used for many types of tires 2 having different tread patterns. can be applied to the manufacture of
  • the five design surface dividing mold parts 23 are parts constituting the tread design surface 20a for molding the tread 2c of the tire 2, respectively. As shown in FIGS. 6 and 7, each of the five designed surface dividing mold portions 23 has an arc shape in a plan view, and extends in the direction of the axis (center axis O) of the tread molding portion 20 (the width direction of the tire 2). It has an elongated rod shape that extends in a wavy shape toward the .
  • the five design surface division mold portions 23 have the same shape, and two adjacent design surface division mold portions 23 are in contact with each other at their end surfaces in the circumferential direction.
  • the radially inwardly facing surfaces of the five design surface division mold portions 23 respectively constitute part of the tread design surface 20a divided in the circumferential direction. That is, the tread design surface 20 a of the tread forming portion 20 is divided in the circumferential direction by the design surface division mold portions 23 provided for each of the plurality of segments 21 . Therefore, while the tread forming portion 20 is divided into 9 pieces in the circumferential direction, the tread design surface 20a is divided into 45 pieces in the circumferential direction. .
  • the tread design surface 20a provided in the design surface split mold portion 23 is provided with a plurality of protrusions 24 that protrude radially inward from the tread design surface 20a. ing.
  • the plurality of protrusions 24 form grooves, sipes, etc. that form a tread pattern on the tread 2c of the tire 2 during vulcanization molding.
  • the plurality of protrusions 24 can be of various shapes or large (lengths) corresponding to the tread pattern, such as those extending in the tire width direction and those extending in the tire circumferential direction.
  • the design surface dividing mold part 23 is preferably formed by casting a metal material with high thermal conductivity such as an aluminum alloy.
  • rib-shaped or blade-shaped protrusions 24 made of steel may be integrated with the design surface division mold portion 23 when the design surface division mold portion 23 is cast. can be done.
  • the leaf spring member 25 includes a leaf spring body 25a and a pair of leaf spring body 25a and a pair of leaf spring body 25a that are integrally connected to both circumferential ends of the leaf spring body 25a to form both circumferential ends of the leaf spring member 25. It is set as the structure provided with the fixing
  • the leaf spring main body 25a has an arc shape in a plan view, and is attached to the holder 22 so as to contact the radially inner surface of the holder 22 and the radially outer surfaces of the five design surface split mold portions 23. It is arranged in a state of being sandwiched between five design surface dividing mold parts 23 . Further, as shown in detail in FIG. 8, the plate spring main body 25a is attached to the radially outer side surface of each of the design surface division mold portions 23 by means of a bolt 26 inserted through the hole portion 22a of the holder 22 from the radially outer side. Fixed.
  • one fixing portion 25b has a shape bent radially outward from a circumferential end portion of the leaf spring main body 25a, and is positioned on one side of the holder 22 in the circumferential direction. It is fixed to the end face using fixing means (not shown) such as a screw member.
  • the other fixing portion 25b has a shape bent radially outward from a circumferential end portion of the plate spring main body 25a, and is attached to the other circumferential end surface of the holder 22, for example, It is fixed using fixing means (not shown) such as a screw member.
  • the plate spring member 25 has a fixing portion 25b fixed to the holder 22 as a fulcrum, and the plate spring body 25a changes from an arc shape concave radially outward in a plan view to a shape convex radially inward. It can be elastically deformed.
  • the leaf spring main body 25a is elastically deformed into a shape that protrudes radially inward, the five design surface division mold portions 23 fixed to the leaf spring main body 25a move from their prescribed positions to the holder together with the leaf spring main body 25a. 22 in a direction away from it.
  • the defined position is a position where the tread design surfaces 20a provided on the design surface dividing mold portions 23 are continuously connected along the circumferential direction.
  • the segment 21 includes a plurality of leaf spring members 25 arranged at intervals in a direction parallel to the axis (central axis O) of the tread molding portion 20 between the holder 22 and the design surface division mold portions 23.
  • a direction parallel to the axis of the tread molding portion 20 (the width direction of the tire 2) is provided between the holder 22 and each of the design surface dividing mold portions 23.
  • two leaf spring members 25 are provided with an interval therebetween.
  • the number of leaf spring members 25 may be one, or three or more.
  • a green tire is placed inside the tire molding die 1 with the sidewall molding section 10 and the tread molding section 20 opened, and then the sidewall molding section 10 and the tread molding section 20 are closed. do.
  • pressurized steam is supplied to the bladder 7 disposed inside the green tire to inflate the bladder 7, and both sidewalls of the green tire are formed into the lower sidewall design surface 11a or the upper side of the sidewall molding portion 10, respectively.
  • the tread is pressed against the tread design surface 20a of the tread forming portion 20.
  • the sidewall molding portion 10 and the tread molding portion 20 are heated by the heater, and the synthetic rubber constituting the raw tire is vulcanized by the heat, and the tire 2 is molded into a predetermined shape.
  • the sidewall molding section 10 and the tread molding section 20 are opened, and the molded tire 2 is taken out.
  • each design surface dividing mold portion 23 has a holder 22 A driving force is applied to resist the adhesion force generated between the tread 2c of the tire 2 and the inner peripheral surface of the tread design surface 20a and the undercut resistance generated between the tread 2c of the tire 2 and the protrusion 24 via the It will be.
  • the five designed surface dividing mold portions 23 in each segment 21 are fixed to leaf spring members 25 fixed to the holders 22, respectively.
  • the holder 22 Due to the adhesion force generated between the tread 2c of the tire 2 and the inner peripheral surface of the tread design surface 20a and the undercut resistance generated between the tread 2c of the tire 2 and the protrusion 24, the holder 22 is pulled away from the holder 22. .
  • the leaf spring main body 25a of the leaf spring member 25 is elastically deformed in a radially inwardly convex direction, thereby dividing each designed surface.
  • the mold part 23 spontaneously moves (pan action) in a direction away from the holder 22 .
  • the four designed surface dividing mold portions 23, which are displaced from the center position of the holder 22 in the circumferential direction toward both end portions in the circumferential direction, are arranged so that the posture of the tire 2 with respect to the tread 2c changes. Then, it moves away from the holder 22 while rotating or turning about an axis parallel to the axis of the tread forming portion 20 (the width direction of the tire 2). Therefore, these four design surface dividing mold portions 23 move in a direction away from the tread 2c while rotating with respect to the tread 2c of the tire 2 about an axis parallel to the axis of the tread forming portion 20. Become.
  • the tread molding portion 20 when the tread molding portion 20 is opened after vulcanization molding of the tire 2, the tread molding portion 20 is radially inward of the leaf spring member 25.
  • the tire 2 is moved away from the tread molding portion 20 while rotating the design surface dividing mold portion 23 with respect to the tread 2c of the tire 2 around an axis parallel to the axis of the tread molding portion 20 by elastic deformation. can be modeled.
  • the tread of the tire 2 is set so that the design surface dividing mold portions 23, which are particularly arranged on both ends in the circumferential direction, are in a posture that reduces the undercut resistance generated by the protrusions 24 against the tread 2c of the tire 2. 2c can be released from the tread molded portion 20, the undercut resistance of the protrusions 24 to the tread 2c when releasing the tire 2 can be reduced.
  • the tire molding die 1 or the tire manufacturing method of the present embodiment when the tire 2 is released from the tread molding portion 20, the undercut resistance becomes excessively large, and the molded tire 2 It is possible to suppress problems such as permanent deformation of the tread 2c and breakage of the projections 24.
  • the design surface dividing mold portions 23 arranged on both circumferential end side portions of the leaf spring member 25 are elastically deformed toward the inner side in the radial direction so that the tread of the tire 2 is opened.
  • the tread 2c of the tire 2 is gradually released from both ends of the segment 21 in the circumferential direction.
  • outside air is gradually introduced between the tread design surface 20a and the tread 2c from both ends in the circumferential direction, so that the tread 2c of the tire 2 in close contact with the tread design surface 20a is more effectively shaped into a tread design.
  • the tire 2 can be more easily released from the tread molded portion 20 by peeling off from the surface 20a.
  • the undercut resistance of the protrusions 24 against the tread 2c when releasing the tire 2 can be reduced, and the tread design surface 20a can be Since the tread 2c of the tire 2 in close contact can be more effectively separated from the tread design surface 20a, the driving force applied to the segment 21 when the tire 2 is released from the mold can be reduced, and the mold for tire molding can be opened. 1 can be downsized to reduce manufacturing costs.
  • the undercut resistance of the protrusions 24 against the tread 2c when releasing the tire 2 can be reduced, so that a more complicated tread can be formed.
  • a tire 2 having a pattern can be manufactured relatively easily. Thereby, the degree of freedom in manufacturing the tire 2 having a complicated tread pattern can be increased.
  • one fixing portion 25b constituting one circumferential end portion of the leaf spring member 25 is fixed to one circumferential end surface of the holder 22 so that the plate spring member 25 is Since the other fixing portion 25b constituting the other circumferential end portion of the spring member 25 is fixed to the other circumferential end surface of the holder 22, the leaf spring member 25 is fixed to the other circumferential end surface of the holder 22.
  • the portion between the portions 25b, that is, the plate spring main body 25a can be easily elastically deformed radially inward, so that the undercut resistance of the projections 24 against the tread 2c when the tire 2 is released from the mold can be effectively reduced. can be substantially reduced.
  • the tire molding die 1 of the present embodiment is configured to include a plurality of leaf spring members 25 arranged at intervals in a direction parallel to the axis of the tread molding portion 20, a plurality of designs can be obtained.
  • a configuration in which the surface-divided mold portion 23 is supported by a plurality of plate spring members 25 can be employed.
  • the plate spring member 25 elastically deforms from an arcuate shape that is concave radially outward to a shape that is convex radially inward, the plurality of design surface dividing mold portions 23 are more stably formed.
  • the leaf spring member 25 rotates and moves away from the holder 22, so that the undercut resistance or the adhesion force of the protrusion 24 to the tread 2c when the tire 2 is released from the mold is effectively reduced. can be reduced to
  • the tire molding die of the example has the above configuration, the designed surface division die part is made of aluminum alloy (AC4C), the difference between the maximum inner diameter and the minimum inner diameter is 35 mm, and the holder is made of low carbon steel.
  • a tire with an inner diameter of 600 mm and a tire width of 255 mm was manufactured by a machining method made of (S45C equivalent material), and a leaf spring that deformed by about 1 mm when a load of 100 kg was applied was used.
  • the external force (driving force applied to the holder) required to release the mold was measured. As a result, it was confirmed that the external force of the tire molding die of the example can be reduced by about 22% compared to the tire molding die of the comparative example in which the design surface division mold part is fixed to the holder. .
  • each of the segments 21 is configured to have five design surface division mold portions 23, but if it has a plurality of design surface division mold portions 23, four A configuration having one or less design surface division mold portions 23 may be employed, or a configuration having six or more design surface division mold portions 23 may be employed.
  • the holder 22 of the segment 21 is fixed to the intermediate container 5, but the holder 22 may be integrated with the intermediate container 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

複数のセグメント(21)が径方向に移動することで開閉するように構成されたトレッド成形部(20)を備えたタイヤ成形用金型(1)であって、それぞれのセグメント(21)が、ホルダ(22)と、ホルダ(22)の径方向内側に円周方向に並べて配置された複数の意匠面分割金型部(23)と、複数の意匠面分割金型部(23)が固定されるとともに円周方向の両端部においてホルダ(22)に固定された板バネ部材(25)とを有し、トレッド成形部(20)が開かれるときに、板バネ部材(25)が弾性変形することで、複数の意匠面分割金型部(23)が回動しながらホルダ(22)から離間する方向に移動するように構成されていることを特徴とするタイヤ成形用金型(1)及びこれを用いたタイヤ製造方法。

Description

タイヤ成形用金型及びタイヤ製造方法
 本発明は、タイヤ成形用金型及びタイヤ製造方法に関する。
 従来、未加硫の生タイヤを加硫成形してタイヤを製造する際に用いられるタイヤ成形用金型として、タイヤのトレッドを成形する円環状のトレッド成形部(トレッドモールド)が、円周方向に並ぶ複数のセグメントに分割されるとともに、それぞれのセグメントが径方向に移動することで開閉するように構成されたものが知られている(例えば、特許文献1~3参照)。
特開2000-326332号公報 特開2000-334740号公報 特開2009-149079号公報
 上記従来のタイヤ成形用金型では、成形後のタイヤのトレッドに溝やサイプなどからなる凹凸のトレッドパターンを形成するために、それぞれのセグメントの径方向内側を向くトレッド意匠面に、当該トレッド意匠面から径方向内側に向けて突出するリブやブレード等の突起が設けられるのが一般的である。
 しかし、トレッド意匠面に突起が設けられた構成では、加硫成形後にセグメントを径方向外側に向けて移動させてタイヤをトレッド成形部から離型する際に、特にセグメントの円周方向の両端部側において、突起がトレッドに対して大きなアンダーカット抵抗を生じることになる。そのため、複雑なトレッドパターンを有するタイヤを成形する場合などにおいて、当該アンダーカット抵抗が過度に大きくなって、離型後にタイヤのトレッドに永久変形が生じたり、突起が破損したりするなどの不具合が生じる虞があった。
 本発明は、上記課題を鑑みて成されたものであり、その目的は、タイヤを離型する際のトレッドに対する突起のアンダーカット抵抗を低減することができるタイヤ成形用金型及びタイヤ製造方法を提供することにある。
 本発明のタイヤ成形用金型は、円周方向に並ぶ複数のセグメントに分割されるとともにそれぞれの前記セグメントが径方向に移動することで開閉するように構成された円環状のトレッド成形部を備え、未加硫の生タイヤをタイヤに加硫成形するタイヤ成形用金型であって、それぞれの前記セグメントが、前記トレッド成形部が開かれるときに径方向外側に向けて駆動されるホルダと、それぞれ前記タイヤのトレッドを成形するトレッド意匠面を備え、前記ホルダの径方向内側に円周方向に並べて配置された複数の意匠面分割金型部と、前記ホルダと複数の前記意匠面分割金型部との間に配置され、複数の前記意匠面分割金型部が固定されるとともに円周方向の両端部において前記ホルダに固定された板バネ部材と、を有し、前記タイヤの加硫成形後に前記トレッド成形部が開かれるときに、前記板バネ部材が径方向内側に向けて弾性変形することで、複数の前記意匠面分割金型部が、前記トレッド成形部の軸線と平行な軸を中心として回動しながら前記ホルダから離間する方向に移動するように構成されていることを特徴とする。
 本発明のタイヤ成形用金型は、1つの実施形態として、前記板バネ部材の円周方向の一端部が、前記ホルダの円周方向の一方側の端面に固定され、前記板バネ部材の円周方向の他端部が、前記ホルダの円周方向の他方側の端面に固定されている構成とすることができる。
 本発明のタイヤ成形用金型は、1つの実施形態として、前記トレッド成形部の軸線と平行な方向に間隔を空けて配置された複数の前記板バネ部材を備えている構成とすることができる。
 本発明のタイヤ製造方法は、円周方向に並ぶ複数のセグメントに分割されるとともにそれぞれの前記セグメントが径方向に移動することで開閉するように構成された円環状のトレッド成形部を備えたタイヤ成形用金型を用いて、未加硫の生タイヤを加硫成形してタイヤを製造するタイヤ製造方法であって、前記トレッド成形部に、それぞれ板バネ部材に固定されるとともに円周方向に並べて設けられた複数の意匠面分割金型部を設け、それぞれの前記セグメントを径方向外側に移動させて前記トレッド成形部を開くときに、前記板バネ部材を径方向内側に向けて弾性変形させつつ複数の前記意匠面分割金型部を前記トレッド成形部の軸線と平行な軸を中心として回動させながら、前記タイヤを前記トレッド成形部から離型させることを特徴とする。
 本発明によれば、タイヤを離型する際のトレッドに対する突起のアンダーカット抵抗を低減することができるタイヤ成形用金型及びタイヤ製造方法を提供することができる。
本発明の一実施の形態であるタイヤ成形用金型の正面視での断面図である。 図1に示すトレッド成形部の平面視での断面図である。 図1に示すタイヤ成形用金型の開かれた状態における正面視での断面図である。 図1に示すトレッド成形部の開かれた状態における平面視での断面図である。 図1に示すタイヤ成形用金型の要部の詳細構造を拡大して示す正面視での断面図である。 図5に示す1つのセグメントの平面視での断面図である。 図5に示す1つのセグメントを径方向内側から見た図である。 板バネ部材への意匠面分割金型部の固定構造を示す断面図である。 図5に示す1つのセグメントの、タイヤを離型する際の状態を示す平面視での断面図である。
 以下、本発明の一実施の形態に係るタイヤ成形用金型及びタイヤ製造方法を、図面を参照しつつ詳細に例示説明する。なお、各図において共通する部材・部位には同一の符号を付している。
 図1に示す本発明の一実施の形態に係るタイヤ成形用金型1は、未加硫(加硫前)の合成ゴムを主体として形成された生タイヤを、加硫しつつ所定の形状に成形してタイヤ2を製造するために用いられるものである。
 なお、タイヤ2は、合成ゴムを主体として、一対のサイドウォール2a、2bとトレッド2cとを有し、内部に空気や窒素等の気体が充填される空間を備えた形状に形成された中空タイヤである。
 タイヤ成形用金型1は、サイドウォール成形部10とトレッド成形部20とを備えている。
 サイドウォール成形部10は、例えば、下側コンテナ3の上面に固定された円環状の下側サイドウォール成形部11と、上側コンテナ4の下面に固定された円環状の上側サイドウォール成形部12とを備えた構成とすることができる。
 サイドウォール成形部10は、下側サイドウォール成形部11と上側サイドウォール成形部12との間に、円環状のタイヤ2ないし生タイヤを、その中心軸がサイドウォール成形部10の中心軸Oと同軸となる姿勢で配置(収納)することができる。下側サイドウォール成形部11は、中心軸Oを中心とした円環状で上向きの下側サイドウォール意匠面11aを備えており、下側サイドウォール意匠面11aによりタイヤ2ないし生タイヤの一方(図1において下方を向く側)のサイドウォール2aの外側面を成形することができる。同様に、上側サイドウォール成形部12は、中心軸Oを中心とした円環状で下向きの上側サイドウォール意匠面12aを備えており、上側サイドウォール意匠面12aによりタイヤ2ないし生タイヤの他方(図1において上方を向く側)のサイドウォール2bの外側面を成形することができる。図3に示すように、下側コンテナ3に対して上側コンテナ4が上方(タイヤ2の中心軸に沿って両者が離れる方向)に相対移動することで、サイドウォール成形部10は開かれ、タイヤ2はサイドウォール成形部10から離型される。一方、上側コンテナ4が図1に示す元の位置にまで下方に移動することにより、サイドウォール成形部10は、開いた状態からタイヤ2ないし生タイヤの成形が可能な状態にまで閉じられる。
 なお、サイドウォール成形部10の構成は、例えば、上側コンテナ4に対して下側コンテナ3が下方に相対移動して開かれる構成とするなど、その構成は適宜変更可能である。
 トレッド成形部20は、サイドウォール成形部10と同軸の円環状となっており、下側サイドウォール成形部11及び上側サイドウォール成形部12の径方向外側に隣接して配置されている。トレッド成形部20の径方向内側を向く内周面は、タイヤ2のトレッド2cの外周面を成形するトレッド意匠面20aとなっている。
 図2に示すように、トレッド成形部20は、円周方向に並ぶ複数のセグメント21に分割されている。それぞれのセグメント21は平面視において円弧状となっており、円周方向に組み合わされて全体として円環状の金型となるトレッド成形部20を構成している。本実施の形態では、トレッド成形部20は、円周方向の長さが互いに同一の9つのセグメント21に分割された構成とされている。なお、トレッド成形部20の円周方向への分割数は、7~13とするのが好ましいが、これに限らず適宜変更可能である。
 図1に示すように、それぞれのセグメント21は、径方向外側を向く外周面において、対応する中間コンテナ5の内側に固定され、中間コンテナ5により駆動されてトレッド成形部20の軸心(中心軸O)を中心とした径方向に向けて移動するようになっている。トレッド成形部20は、それぞれのセグメント21が径方向に移動することで開閉することができる。
 より具体的には、中間コンテナ5は、径方向外側を向く外周面に、上方に向けて徐々に外径が小さくなるように傾斜するテーパー面5aを備えている。一方、上側コンテナ4の下面には、中間コンテナ5の径方向外側に配置された円環状のアウターリング6が固定されている。アウターリング6は、径方向内側を向く内周面に、上方に向けて徐々に外径が小さくなるように傾斜するテーパー面6aを備えている。アウターリング6は、テーパー面6aが中間コンテナ5のテーパー面5aに沿って上下方向に摺動するように、図示しないガイド部材等により、それぞれの中間コンテナ5に連結されている。
 下側コンテナ3に対して上側コンテナ4が上方に相対移動すると、アウターリング6がテーパー面6aを中間コンテナ5のテーパー面5aに沿って摺動させながらそれぞれの中間コンテナ5に対して上方に移動し、これにより図3に示すように、それぞれの中間コンテナ5がトレッド成形部20の軸心を中心とした径方向外側に向けて移動する。それぞれの中間コンテナ5がトレッド成形部20の軸心を中心とした径方向外側に向けて移動すると、図3、図4に示すように、それぞれのセグメント21が、対応する中間コンテナ5により駆動されて中間コンテナ5とともに径方向外側に向けて移動する。これにより、トレッド成形部20は、トレッド意匠面20aがタイヤ2ないし生タイヤのトレッド2cから離間する位置にまで開かれる。なお、トレッド成形部20は、上記のように開かれた後、アウターリング6に吊り下げられた状態で上側コンテナ4とともに成形後のタイヤ2を取り出し可能な位置(図3に示す位置よりも上側位置)にまで上昇する構成とすることもできる。一方、上側コンテナ4が図1に示す元の位置にまで下方に移動すると、トレッド成形部20は、下側サイドウォール成形部11に隣接する位置にまで下降し、次いでアウターリング6がそれぞれの中間コンテナ5に対して下方に移動し、それぞれの中間コンテナ5がトレッド成形部20の軸心を中心とした径方向内側に向けて移動する。これにより、図1、図2に示すように、それぞれのセグメント21が対応する中間コンテナ5に駆動されて中間コンテナ5とともに径方向内側に向けて移動し、トレッド成形部20は、タイヤ2ないし生タイヤの成形が可能な状態にまで閉じられる。
 このように、本実施の形態のタイヤ成形用金型1では、円環状のトレッド成形部20は、円周方向に並ぶ複数のセグメント21に分割されるとともに、それぞれのセグメント21が径方向に移動することで開閉するように構成されている。
 なお、トレッド成形部20の開閉機構は、アウターリング6を用いた構成に限らず、種々の構成を採用することができる。
 タイヤ成形用金型1は、生タイヤの内部に配置され、加圧蒸気が供給されることにより膨張するブラダー7を備えている。また、タイヤ成形用金型1は、サイドウォール成形部10及びトレッド成形部20を加熱するためのヒーター(不図示)を備えている。ヒーターの設置場所は適宜設定可能である。
 図5、図6に示すように、本実施の形態のタイヤ成形用金型1では、トレッド成形部20を構成する複数のセグメント21は、それぞれホルダ22と、ホルダ22の径方向内側に円周方向に並べて配置された複数の意匠面分割金型部23と、を有している。本実施の形態では、複数のセグメント21は、それぞれ5つの意匠面分割金型部23を有している。
 ホルダ22は中間コンテナ5に固定され、トレッド成形部20が開かれるときに中間コンテナ5により径方向外側に向けて駆動される部分である。ホルダ22は、トレッド成形部20が閉じられるときには、中間コンテナ5により径方向内側に向けて駆動される。ホルダ22は、例えば低炭素鋼などの金属製のブロックを切削加工して形成されたものとすることができる。
 本実施の形態では、ホルダ22は、中間コンテナ5に着脱自在に固定された構成とされている。これにより、トレッド意匠面20aの形状が相違する複数種類のセグメント21を中間コンテナ5に選択的に装着することを可能として、タイヤ成形用金型1を、トレッドパターンが相違する多種類のタイヤ2の製造に適用可能なものとすることができる。
 5つの意匠面分割金型部23は、それぞれタイヤ2のトレッド2cを成形するトレッド意匠面20aを構成する部分である。図6、図7に示すように、5つの意匠面分割金型部23は、それぞれ平面視において円弧状であるとともに、トレッド成形部20の軸線(中心軸O)方向(タイヤ2の幅方向)に向けて波状に延びる細長い棒形状となっている。5つの意匠面分割金型部23の形状は同一であり、隣り合う2つの意匠面分割金型部23は、円周方向の端面において互いに接している。5つの意匠面分割金型部23の径方向内側を向く面は、それぞれトレッド意匠面20aの円周方向に分割された一部を構成している。すなわち、トレッド成形部20のトレッド意匠面20aは、複数のセグメント21のそれぞれに設けられた意匠面分割金型部23に円周方向に分割して設けられている。したがって、トレッド成形部20が、円周方向に向けて9つに分割された構成であるのに対し、トレッド意匠面20aは、円周方向に向けて45個に分割された構成となっている。
 図5に示すように、意匠面分割金型部23に設けられるトレッド意匠面20aには、それぞれトレッド意匠面20aから径方向内側に向けて径方向に沿って突出する複数の突起24が設けられている。複数の突起24は、加硫成形の際に、タイヤ2のトレッド2cにトレッドパターンを形成する溝ないしサイプ等を成形するものである。複数の突起24は、タイヤ幅方向に延びるもの、タイヤ周方向に延びるものなど、トレッドパターンに対応した種々の形状ないし大きな(長さ)のものとすることができる。
 意匠面分割金型部23は、例えばアルミニウム合金などの熱伝導性の高い金属材料を鋳造して形成されたものとするのが好ましい。この場合、例えば、鋼材によりリブ状ないしブレード状に形成された突起24を、意匠面分割金型部23を鋳造する際に意匠面分割金型部23に一体化させて設けた構成とすることができる。
 図5~図7に示されるように、ホルダ22とそれぞれの意匠面分割金型部23との間には、5つの意匠面分割金型部23が固定されるとともに円周方向の両端部においてホルダ22に固定された板バネ部材25が配置されている。これにより、セグメント21は、タイヤ2の加硫成形後にトレッド成形部20が開かれるときに、板バネ部材25が径方向内側に向けて弾性変形することで、複数の意匠面分割金型部23が、それぞれ板バネ部材25を径方向内側に向けて弾性変形させて、トレッド成形部20の軸線(中心軸O)と平行な軸を中心として回動しながらホルダ22から離間する方向に移動するように構成されている
 本実施の形態では、板バネ部材25は、板バネ本体25aと、板バネ本体25aの円周方向の両端部に一体に連なって板バネ部材25の円周方向の両端部を構成する一対の固定部25bとを備えた構成とされている。
 板バネ本体25aは平面視で円弧状となっており、ホルダ22の径方向内側の面に当接するとともに5つの意匠面分割金型部23の径方向外側面に当接するように、ホルダ22と5つの意匠面分割金型部23との間に挟み込まれた状態で配置されている。また、板バネ本体25aは、図8に詳細を示すように、ホルダ22の穴部22aに径方向外側から挿通されたボルト26により、それぞれの意匠面分割金型部23の径方向外側面に固定されている。
 図6に示すように、一方の固定部25bは、板バネ本体25aの円周方向の端部から径方向外側に向けて折り曲げられた形態を有し、ホルダ22の円周方向の一方側の端面に、例えばネジ部材等の固定手段(不図視)を用いて固定されている。同様に、他方の固定部25bは、板バネ本体25aの円周方向の端部から径方向外側に向けて折り曲げられた形態を有し、ホルダ22の円周方向の他方側の端面に、例えばネジ部材等の固定手段(不図視)を用いて固定されている。
 板バネ部材25は、ホルダ22に固定された固定部25bを支点とし、板バネ本体25aが平面視で径方向外側に向けて凹む円弧状の形状から径方向内側に向けて凸となる形状に弾性変形することができる。板バネ本体25aが径方向内側に向けて凸となる形状に弾性変形すると、板バネ本体25aに固定されている5つの意匠面分割金型部23は、それぞれ規定位置から板バネ本体25aとともにホルダ22から離間する方向に移動する。なお、規定位置とは、それぞれの意匠面分割金型部23が、これらに設けられたトレッド意匠面20aが円周方向に沿って連続的に連なる姿勢となる位置である。
 セグメント21は、ホルダ22とそれぞれの意匠面分割金型部23との間に、トレッド成形部20の軸線(中心軸O)と平行な方向に間隔を空けて配置された複数の板バネ部材25を備えた構成とすることができる。本実施の形態では、図5、図7に示すように、ホルダ22とそれぞれの意匠面分割金型部23との間に、トレッド成形部20の軸線と平行な方向(タイヤ2の幅方向)に間隔を空けて、2つの板バネ部材25を設けるようにしている。なお、板バネ部材25の数は、1つでもよく、3つ以上でもよい。
 次に、上記構成を有するタイヤ成形用金型1を用いて、生タイヤを加硫成形して所定形状のタイヤ2を製造する方法、すなわち本発明の一実施の形態であるタイヤ製造方法について説明する。
 まず、サイドウォール成形部10及びトレッド成形部20を開いた状態として、タイヤ成形用金型1の内部に生タイヤを配置し、次いで、サイドウォール成形部10及びトレッド成形部20を閉じた状態とする。
 次に、生タイヤの内部に配置したブラダー7に加圧蒸気を供給して当該ブラダー7を膨張させ、生タイヤの両サイドウォールをそれぞれサイドウォール成形部10の下側サイドウォール意匠面11aないし上側サイドウォール意匠面12aに押し付けるとともに、トレッドをトレッド成形部20のトレッド意匠面20aに押し付ける。そして、この状態で、ヒーターによってサイドウォール成形部10及びトレッド成形部20を加熱し、当該熱により生タイヤを構成する合成ゴムを加硫して、所定形状のタイヤ2に成形する。
 タイヤ2の成形が完了した後、サイドウォール成形部10及びトレッド成形部20を開き、成形されたタイヤ2を取り出す。
 ここで、タイヤ2を加硫成形した後、トレッド成形部20を開くために、それぞれのセグメント21が径方向外側に向けて移動するとき、それぞれの意匠面分割金型部23には、ホルダ22を介して、タイヤ2のトレッド2cとトレッド意匠面20aの内周面との間に生じる密着力及びタイヤ2のトレッド2cと突起24との間に生じるアンダーカット抵抗に抗する駆動力が加えられることになる。そして、それぞれのセグメント21における5つの意匠面分割金型部23は、それぞれホルダ22に固定された板バネ部材25に固定されているので、径方向外側に移動するホルダ22に対して、タイヤ2のトレッド2cとトレッド意匠面20aの内周面との間に生じる密着力及びタイヤ2のトレッド2cと突起24との間に生じるアンダーカット抵抗により、ホルダ22から離間する方向に引かれることになる。これにより、トレッド成形部20が開かれるときには、図9に示すように、板バネ部材25の板バネ本体25aが径方向内側に向けて凸となる方向に弾性変形して、それぞれの意匠面分割金型部23はホルダ22から離間する方向に自発的に移動(パーンアクション)する。このとき、ホルダ22の円周方向の中心位置に対して円周方向の両端部側にずれて配置された4つの意匠面分割金型部23は、タイヤ2のトレッド2cに対する姿勢が変化するように、トレッド成形部20の軸線(タイヤ2の幅方向)に平行な軸を中心として回動ないし旋回しながらホルダ22から離間するように移動する。したがって、これら4つの意匠面分割金型部23は、トレッド成形部20の軸線と平行な軸を中心としてタイヤ2のトレッド2cに対して回動しながらトレッド2cから離間する方向に移動することになる。
 このように、本実施の形態のタイヤ成形用金型1を用いたタイヤ製造方法では、タイヤ2を加硫成形した後、トレッド成形部20が開かれるとき、板バネ部材25の径方向内側に向けた弾性変形により、意匠面分割金型部23を、トレッド成形部20の軸線と平行な軸を中心としてタイヤ2のトレッド2cに対して回動させながら、タイヤ2をトレッド成形部20から離型させることができる。これにより、特に円周方向の両端部側に配置される意匠面分割金型部23を、突起24がタイヤ2のトレッド2cに対して生じるアンダーカット抵抗を低減する姿勢としつつ、タイヤ2のトレッド2cをトレッド成形部20から離型させることができるので、タイヤ2を離型するときのトレッド2cに対する突起24のアンダーカット抵抗を低減することができる。
 したがって、本実施の形態のタイヤ成形用金型1ないしタイヤ製造方法によれば、タイヤ2をトレッド成形部20から離型させる際に、アンダーカット抵抗が過度に大きくなって、成形後のタイヤ2のトレッド2cに永久変形が生じたり、突起24が破損したりするなどの不具合を抑制することができる。
 また、トレッド成形部20が開かれる際、板バネ部材25の径方向内側に向けた弾性変形により、円周方向の両端部側に配置される意匠面分割金型部23が、タイヤ2のトレッド2cに対して回動することで、タイヤ2のトレッド2cは、セグメント21の円周方向の両端部側から徐々に離型することになる。これにより、トレッド意匠面20aとトレッド2cとの間に、これらの円周方向両端側から徐々に外気が導入されて、トレッド意匠面20aに密着するタイヤ2のトレッド2cがより効果的にトレッド意匠面20aから剥がれるようにして、より容易にタイヤ2をトレッド成形部20から離型させることができる。
 さらに、本実施の形態のタイヤ成形用金型1ないしタイヤ製造方法によれば、タイヤ2を離型する際のトレッド2cに対する突起24のアンダーカット抵抗を低減することができるとともにトレッド意匠面20aに密着するタイヤ2のトレッド2cがより効果的にトレッド意匠面20aから剥がれるようにすることができるので、タイヤ2を離型する際にセグメント21に加える駆動力を低減して、タイヤ成形用金型1を含む製造装置全体を小型化して、製造コストを低減することができる。
 さらに、本実施の形態のタイヤ成形用金型1ないしタイヤ製造方法によれば、タイヤ2を離型する際のトレッド2cに対する突起24のアンダーカット抵抗を低減することができるので、より複雑なトレッドパターンを有するタイヤ2を比較的簡易に製造することができる。これにより、複雑なトレッドパターンを有するタイヤ2の製造の自由度を高めることができる。
 本実施の形態のタイヤ成形用金型1では、板バネ部材25を、円周方向の一端部を構成する一方の固定部25bがホルダ22の円周方向の一方側の端面に固定され、板バネ部材25の円周方向の他端部を構成する他方の固定部25bがホルダ22の円周方向の他方側の端面に固定されている構成としたので、板バネ部材25が、これらの固定部25bの間の部分すなわち板バネ本体25aにおいて容易に径方向内側に向けて弾性変形することができるようにして、タイヤ2を離型する際のトレッド2cに対する突起24のアンダーカット抵抗をより効果的に低減することができる。
 また、本実施の形態のタイヤ成形用金型1では、トレッド成形部20の軸線と平行な方向に間隔を空けて配置された複数の板バネ部材25を備えた構成としたので、複数の意匠面分割金型部23を複数の板バネ部材25で支持する構成とすることができる。これにより、板バネ部材25が径方向外側に向けて凹む円弧状の形状から径方向内側に向けて凸となる形状に弾性変形するときに、複数の意匠面分割金型部23がより安定的に板バネ部材25の弾性変形により回動しつつホルダ22から離間する方向に移動するようにして、タイヤ2を離型する際のトレッド2cに対する突起24のアンダーカット抵抗ないし密着力をより効果的に低減することができる。
 実施例のタイヤ成形用金型として、上記構成を有し、意匠面分割金型部をアルミニウム合金(AC4C)製で最大内径と最小内径との差が35mmとなるものとし、ホルダを低炭素鋼(S45C相当材)製の機械加工法で製作されたものとし、板バネを100kgの負荷を印加したときに1mm程度変形するものとしたものを用い、内径が600mm、タイヤ幅が255mmのタイヤを成形し、これを離型する際に必要な外力(ホルダに付与する駆動力)を測定した。その結果、意匠面分割金型部がホルダに固定された構成の比較例のタイヤ成形用金型に対して、実施例のタイヤ成形用金型は、外力を22%程度低減できることが確認された。
 本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 例えば、前記実施の形態では、複数のセグメント21は、それぞれ5つの意匠面分割金型部23を有する構成とされているが、複数の意匠面分割金型部23を有していれば、4つ以下の意匠面分割金型部23を有する構成としてもよく、6つ以上の意匠面分割金型部23を有する構成としてもよい。
 また、前記実施の形態では、セグメント21のホルダ22を中間コンテナ5に固定した構成としているが、ホルダ22を中間コンテナ5と一体とした構成としてもよい。
 1:タイヤ成形用金型、 2:タイヤ、 2a:サイドウォール、 2b:サイドウォール、 2c:トレッド、 3:下側コンテナ、 4:上側コンテナ、 5:中間コンテナ、 5a:テーパー面、 6:アウターリング、 6a:テーパー面、 7:ブラダー、 10:サイドウォール成形部、 11:下側サイドウォール成形部、 11a:下側サイドウォール意匠面、 12:上側サイドウォール成形部、 12a:上側サイドウォール意匠面、 20:トレッド成形部、 20a:トレッド意匠面、 21:セグメント、 22:ホルダ、 22a:穴部、 23:意匠面分割金型部、 24:突起、 25:板バネ部材、 25a:板バネ本体、 25b:固定部、 26:ボルト

Claims (4)

  1.  円周方向に並ぶ複数のセグメントに分割されるとともにそれぞれの前記セグメントが径方向に移動することで開閉するように構成された円環状のトレッド成形部を備え、未加硫の生タイヤをタイヤに加硫成形するタイヤ成形用金型であって、
     それぞれの前記セグメントが、
     前記トレッド成形部が開かれるときに径方向外側に向けて駆動されるホルダと、
     それぞれ前記タイヤのトレッドを成形するトレッド意匠面を備え、前記ホルダの径方向内側に円周方向に並べて配置された複数の意匠面分割金型部と、
     前記ホルダと複数の前記意匠面分割金型部との間に配置され、複数の前記意匠面分割金型部が固定されるとともに円周方向の両端部において前記ホルダに固定された板バネ部材と、を有し、
     前記タイヤの加硫成形後に前記トレッド成形部が開かれるときに、前記板バネ部材が径方向内側に向けて弾性変形することで、複数の前記意匠面分割金型部が、前記トレッド成形部の軸線と平行な軸を中心として回動しながら前記ホルダから離間する方向に移動するように構成されていることを特徴とするタイヤ成形用金型。
  2.  前記板バネ部材の円周方向の一端部が、前記ホルダの円周方向の一方側の端面に固定され、前記板バネ部材の円周方向の他端部が、前記ホルダの円周方向の他方側の端面に固定されている、請求項1に記載のタイヤ成形用金型。
  3.  前記トレッド成形部の軸線と平行な方向に間隔を空けて配置された複数の前記板バネ部材を備えている、請求項1または2に記載のタイヤ成形用金型。
  4.  円周方向に並ぶ複数のセグメントに分割されるとともにそれぞれの前記セグメントが径方向に移動することで開閉するように構成された円環状のトレッド成形部を備えたタイヤ成形用金型を用いて、未加硫の生タイヤを加硫成形してタイヤを製造するタイヤ製造方法であって、
     前記トレッド成形部に、それぞれ板バネ部材に固定されるとともに円周方向に並べて設けられた複数の意匠面分割金型部を設け、
     それぞれの前記セグメントを径方向外側に移動させて前記トレッド成形部を開くときに、前記板バネ部材を径方向内側に向けて弾性変形させつつ複数の前記意匠面分割金型部を前記トレッド成形部の軸線と平行な軸を中心として回動させながら、前記タイヤを前記トレッド成形部から離型させることを特徴とするタイヤ製造方法。
PCT/JP2021/043047 2021-06-22 2021-11-24 タイヤ成形用金型及びタイヤ製造方法 WO2022269940A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21947219.8A EP4360844A1 (en) 2021-06-22 2021-11-24 Tire molding die and tire production method
CN202180099459.XA CN117545608A (zh) 2021-06-22 2021-11-24 用于形成轮胎的模具及轮胎生产方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-103646 2021-06-22
JP2021103646A JP2023002402A (ja) 2021-06-22 2021-06-22 タイヤ成形用金型及びタイヤ製造方法

Publications (1)

Publication Number Publication Date
WO2022269940A1 true WO2022269940A1 (ja) 2022-12-29

Family

ID=84543744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043047 WO2022269940A1 (ja) 2021-06-22 2021-11-24 タイヤ成形用金型及びタイヤ製造方法

Country Status (4)

Country Link
EP (1) EP4360844A1 (ja)
JP (1) JP2023002402A (ja)
CN (1) CN117545608A (ja)
WO (1) WO2022269940A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117564224A (zh) * 2024-01-17 2024-02-20 山东豪迈机械科技股份有限公司 一种轮胎模具铸造石膏圈

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008169A1 (fr) * 2001-07-17 2003-01-30 Bridgestone Corporation Moule de vulcanisation de pneumatiques
JP2006021357A (ja) * 2004-07-06 2006-01-26 Toyo Tire & Rubber Co Ltd タイヤ成型用金型及びそれにより成型された空気入りタイヤ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008169A1 (fr) * 2001-07-17 2003-01-30 Bridgestone Corporation Moule de vulcanisation de pneumatiques
JP2006021357A (ja) * 2004-07-06 2006-01-26 Toyo Tire & Rubber Co Ltd タイヤ成型用金型及びそれにより成型された空気入りタイヤ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117564224A (zh) * 2024-01-17 2024-02-20 山东豪迈机械科技股份有限公司 一种轮胎模具铸造石膏圈
CN117564224B (zh) * 2024-01-17 2024-04-23 山东豪迈机械科技股份有限公司 一种轮胎模具铸造石膏圈

Also Published As

Publication number Publication date
EP4360844A1 (en) 2024-05-01
CN117545608A (zh) 2024-02-09
JP2023002402A (ja) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2022269943A1 (ja) タイヤ成形用金型及びタイヤ製造方法
EP1629963B1 (en) Tire curing bladder
JP4601784B2 (ja) タイヤ製造用の2つの部分からなる剛性コア
WO2022269940A1 (ja) タイヤ成形用金型及びタイヤ製造方法
JP6605738B2 (ja) タイヤ加硫装置及びタイヤ加硫装置の組み立て方法
JP6734923B2 (ja) タイヤ加硫装置
WO2022269939A1 (ja) タイヤ成形用金型及びタイヤ製造方法
KR101207638B1 (ko) 팽창성 블래더
WO2023079782A1 (ja) タイヤ成形用金型及びタイヤ製造方法
JP4998987B2 (ja) タイヤ加硫成型装置及び加硫成型方法
JP6605737B2 (ja) タイヤ加硫装置及びタイヤの製造方法
WO2022269941A1 (ja) タイヤ成形用金型及びタイヤ製造方法
JP6738426B2 (ja) タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
WO2022269942A1 (ja) タイヤ成形用金型及びタイヤ製造方法
JP6701350B2 (ja) タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
JP7410702B2 (ja) タイヤ加硫用金型
JP6738427B2 (ja) タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
JP2008143049A (ja) タイヤの製造方法
JP2012232471A (ja) タイヤ加硫装置及びタイヤ製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947219

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099459.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021947219

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947219

Country of ref document: EP

Effective date: 20240122