WO2022269827A1 - Charging system - Google Patents

Charging system Download PDF

Info

Publication number
WO2022269827A1
WO2022269827A1 PCT/JP2021/023851 JP2021023851W WO2022269827A1 WO 2022269827 A1 WO2022269827 A1 WO 2022269827A1 JP 2021023851 W JP2021023851 W JP 2021023851W WO 2022269827 A1 WO2022269827 A1 WO 2022269827A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery modules
sequence
charging system
circuit
Prior art date
Application number
PCT/JP2021/023851
Other languages
French (fr)
Japanese (ja)
Inventor
和征 榊原
Original Assignee
株式会社EViP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社EViP filed Critical 株式会社EViP
Priority to PCT/JP2021/023851 priority Critical patent/WO2022269827A1/en
Priority to JP2023529340A priority patent/JP7416511B2/en
Publication of WO2022269827A1 publication Critical patent/WO2022269827A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to charging systems.
  • the present invention has been made in view of this background, and aims to provide a technology that can efficiently control charging.
  • the main aspect of the present invention for solving the above-mentioned problems is a charging system comprising a charging circuit, at least three battery modules, and a balance circuit for controlling the remaining capacity imbalance between the battery modules. It alternately switches between a charging sequence in which charging control is performed selectively and individually in order from the battery modules having the relatively first and second highest remaining capacities, and a balancing sequence in which the balance control is performed.
  • charging can be efficiently controlled.
  • FIG. 2 is a circuit block diagram showing state a, which is one state of the charging system 100 according to the present embodiment.
  • 1 is a circuit block diagram of a charging system 101(a) showing state a, which is one state of the charging system 101 according to the present embodiment;
  • FIG. 4 is a circuit block diagram of charging system 101(b) showing another state b, which is another state of charging system 101 according to the present embodiment. 4 is a flow chart diagram showing an outline of control of the main controller 40 of the charging system 101 according to the present embodiment.
  • one specific battery module 2 out of three battery modules 2 having a lithium ion secondary battery cell group 1 is turned on or off. It is connected to the charging circuit 3 via the switch 6 . As a result, an energization path through which a charging current flows from the charging circuit 3 to the specific one battery module 2 is formed, and the battery module 2 relatively having the highest remaining capacity is selectively and individually charged.
  • two specific battery modules 2 out of three battery modules 2 each having a lithium ion secondary battery cell group 1 are turned on or off. It is connected to charging circuit 3A and charging circuit 3B via switch 6, respectively.
  • two independent conduction paths are formed through which charging currents flow individually from the charging circuit 3A and the charging circuit 3B to the specific two battery modules 2 according to the flow chart of FIG. 4, which will be described later.
  • the two battery modules 2 are charged simultaneously.
  • a common circuit board can be used for the charging circuit 3A and the charging circuit 3B, and the charging system 101 can reduce the total cost even if the number of charging circuit boards increases compared to the charging circuit 3 of the charging system 100.
  • the main controller 40 of the charging system 101 detects the remaining capacities of the three battery modules 2 in Step 1, and detects the remaining capacities of the three battery modules 2 relative to the first and second among the three battery modules 2 in Step 2.
  • a battery module 2 with a large capacity is selected.
  • the remaining capacity is detected by a method in which the main controller 40 directly detects the voltage appearing at the terminals of the battery module 2, or by communicating with a module controller in the battery module 2 (not shown) to detect the group of lithium ion secondary battery cells. method of acquiring one voltage value information.
  • the main controller 40 of the charging system 101 charges the two battery modules 2 with the first and second highest remaining capacities among the three battery modules 2 selected in Step 2 by the charging circuit 3A and the main controller 40.
  • the charging sequence proceeds to Step 3 in which two batteries are independently charged simultaneously using the charging circuit 3B.
  • the charging method in the charging sequence is that the charging circuits 3A and 3B respectively input an AC voltage, which is a commercial power supply, convert it to a DC voltage, and independently perform desired CCCV charging.
  • Step 4 the main controller 40 of the charging system 101 uses a communication signal (not shown) to determine whether or not either the charging circuit 3A or the charging circuit 3B has detected an abnormal state during charging. It detects whether the lithium ion secondary battery cell group 1 in the module 2 is in an overvoltage state or a high temperature state. When it is determined in Step 4 that the abnormal state is not present, the process proceeds to Step 5, and either one of the charging circuit 3A or the charging circuit 3B has completed charging of at least one battery module 2 out of the two battery modules 2. detect whether or not In Step 5, if it is determined that the charging circuit 3A or the charging circuit 3B has not completed charging the at least one battery module 2, the process returns to Step 3, while charging the at least one battery module 2 has been completed.
  • Step 6 executes the balance sequence.
  • the balancing sequence occurs in state b, the configuration of charging system 101(b), shown in FIG.
  • the main controller 40 turns on all the switches 6 to connect the three battery modules 2 in parallel.
  • the balance between the one battery module 2 fully charged in Step 5 another battery module 2 in the middle of charging in Step 3, and the remaining one battery module 2 that has not been charged. Eliminates capacity imbalance. That is, the remaining capacity of the two battery modules 2 which were not fully charged approaches 100% due to the balance sequence.
  • the main controller 40 of the charging system 101 determines whether or not an abnormal state has been detected during balancing in Step 7. For example, the lithium ion secondary battery cell group in at least one of the three battery modules 2 is checked. 1 detects whether it is in an overvoltage state, an overcurrent state, or a high temperature state. If it is determined in Step 7 that the abnormal condition is not present, the process proceeds to Step 8 to determine whether the balance has been completed, that is, whether the remaining capacity difference, ie, the voltage difference, between the three battery modules 2 connected in parallel is equal to or less than a predetermined value. detect whether or not In Step 8, if it is determined that the balance has not been completed, the process returns to Step 6. If it is determined that the balance has been completed, the process proceeds to Step 10.
  • Step 3 whether or not all three battery modules 2 have completed charging. detect whether or not When it is determined that charging of all the three battery modules 2 has been completed, the control of the charging system 100 ends. On the other hand, when it is determined that charging of all the three battery modules 2 has not been completed, the process returns to Step 1, Until all of the three battery modules 2 are fully charged, the two battery modules 2 with the relatively first and second highest remaining capacities in Steps 1 to 3 are selectively and individually charged at the same time. sequence, and the balance sequence of Step 6 are repeated.
  • Lithium ion secondary batteries which are generally used to drive motors of electric vehicles, have low internal resistance, so the voltage balance due to current flow between the lithium ion secondary batteries is fast, and the time required for the balance is the charging time of normal CCCV charging. can be used to be relatively very short for . Therefore, even if the output current ratings of charging circuit 3A and charging circuit 3B are lower than that of charging circuit 3 of charging system 100 and the charging time for one battery module 2 is correspondingly longer, the first and second current ratings are relatively high. By combining the charging sequence for selectively and individually charging two battery modules 2 with a large remaining capacity at the same time and the short-time balance sequence, the cost of the charging system can be reduced and the total charging time of the three battery modules 2 can be shortened. Both shortening can be achieved.
  • Step 4 if it is determined that the abnormal state is present, the process proceeds to Step 9 and interrupts the entire sequence, that is, the charging sequence and the balancing sequence. At this time, the charging system 101 turns off all of the switches 6, cuts off the energization of all parts in the charging system, and ensures safety by dealing with various failure modes of the lithium ion secondary battery.

Abstract

[Problem] To make it possible to efficiently control charging. [Solution] This charging system comprises: a charging circuit; at least three battery modules; and a balancing circuit that performs a control to balance the remaining capacity imbalance among the battery modules. The charging system alternately switches between a charging sequence in which a charging control is selectively and individually performed in order starting with the battery modules having the relatively most and second most remaining capacities, and a balancing sequence in which said balancing control is performed.

Description

充電システムcharging system
 本発明は、充電システムに関する。 The present invention relates to charging systems.
 近年、地球環境への配慮から、内燃機関すなわちエンジンで駆動するエンジン駆動式自動車がモータで駆動する電気自動車、エンジンおよびモータで駆動するハイブリッド自動車または充電器による充電が可能なプラグインハイブリッド自動車に置き換わりつつある。特に、前記電気自動車またはプラグインハイブリッド自動車の性能の向上に伴い電気自動車1台当たりの電池電源すなわち電池モジュールの搭載量が増える傾向にある。 In recent years, in consideration of the global environment, engine-driven vehicles driven by an internal combustion engine have been replaced by electric vehicles driven by a motor, hybrid vehicles driven by an engine and a motor, or plug-in hybrid vehicles that can be charged using a charger. It's getting In particular, as the performance of electric vehicles or plug-in hybrid vehicles improves, the number of battery power sources, that is, the number of battery modules mounted per electric vehicle tends to increase.
特開2020-129863号公報JP 2020-129863 A
 従来技術の電気自動車に搭載される電池電源とモータを備えるモータシステムでは、前記電気自動車の1充電あたりの航続距離を延長するための種々の工夫が為されているが、その航続距離は前記エンジン駆動式自動車の燃料満タン1回あたりの航続距離にはおよばない。 In a conventional motor system equipped with a battery power supply and a motor mounted on an electric vehicle, various measures have been taken to extend the cruising distance per charge of the electric vehicle. It does not reach the cruising distance per full tank of fuel of a drive-type vehicle.
 本発明はこのような背景を鑑みてなされたものであり、効率的に充電を制御することができる技術を提供することを目的とする。 The present invention has been made in view of this background, and aims to provide a technology that can efficiently control charging.
 上記課題を解決するための本発明の主たる発明は、充電システムであって、充電回路と、少なくとも3個の電池モジュールと、前記電池モジュール間の残容量アンバランスをバランス制御するバランス回路と、を備え、相対的に1番目および2番目に残容量の多い電池モジュールから順に選択的かつ個別に充電制御を行う充電シーケンスと、前記バランス制御を行うバランスシーケンスを交互に切り換える。 The main aspect of the present invention for solving the above-mentioned problems is a charging system comprising a charging circuit, at least three battery modules, and a balance circuit for controlling the remaining capacity imbalance between the battery modules. It alternately switches between a charging sequence in which charging control is performed selectively and individually in order from the battery modules having the relatively first and second highest remaining capacities, and a balancing sequence in which the balance control is performed.
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems disclosed by the present application and their solutions will be clarified in the section of the embodiment of the invention and the drawings.
 本発明によれば、効率的に充電を制御することができる。 According to the present invention, charging can be efficiently controlled.
本実施形態に係る充電システム100の1つの状態である状態aを示す回路ブロック図である。FIG. 2 is a circuit block diagram showing state a, which is one state of the charging system 100 according to the present embodiment. 本実施形態に係る充電システム101の1つの状態である状態aを示す充電システム101(a)の回路ブロック図である。1 is a circuit block diagram of a charging system 101(a) showing state a, which is one state of the charging system 101 according to the present embodiment; FIG. 本実施形態に係る充電システム101の別の1つの状態である状態bを示す充電システム101(b)の回路ブロック図である。FIG. 4 is a circuit block diagram of charging system 101(b) showing another state b, which is another state of charging system 101 according to the present embodiment. 本実施形態に係る充電システム101のメインコントローラ40の制御の概略を示すフローチャート図である。4 is a flow chart diagram showing an outline of control of the main controller 40 of the charging system 101 according to the present embodiment. FIG.
 充電システム100(a)は、図1に示すように、リチウムイオン二次電池セル群1を有する3個の電池モジュール2の内、特定の1個の電池モジュール2がそれぞれオンまたはオフに操作されたスイッチ6を介して充電回路3と接続される。これにより前記充電回路3から前記特定の1個の電池モジュール2へ充電電流が流れる通電経路が形成され、相対的に1番目に残容量の多い電池モジュール2から選択的個別に充電が行われる。 In the charging system 100(a), as shown in FIG. 1, one specific battery module 2 out of three battery modules 2 having a lithium ion secondary battery cell group 1 is turned on or off. It is connected to the charging circuit 3 via the switch 6 . As a result, an energization path through which a charging current flows from the charging circuit 3 to the specific one battery module 2 is formed, and the battery module 2 relatively having the highest remaining capacity is selectively and individually charged.
 充電システム101(a)は、図2に示すように、リチウムイオン二次電池セル群1を有する3個の電池モジュール2の内、特定の2個の電池モジュール2がそれぞれオンまたはオフに操作されたスイッチ6を介して充電回路3Aおよび充電回路3Bとそれぞれ接続される。これにより、後述の図4のフローチャート図に従い前記充電回路3Aおよび充電回路3Bから前記特定の2個の電池モジュール2へ個別に充電電流が流れる独立した2個の通電経路が形成され、前記特定の2個の電池モジュール2に対する充電が同時に行われる。前記充電回路3Aおよび充電回路3Bは共通の回路基板を用いることができ、前記充電システム101は、充電システム100の充電回路3よりも充電回路基板の個数が増えても前記共通化によりトータルコストダウンを実現する。 In the charging system 101(a), as shown in FIG. 2, two specific battery modules 2 out of three battery modules 2 each having a lithium ion secondary battery cell group 1 are turned on or off. It is connected to charging circuit 3A and charging circuit 3B via switch 6, respectively. As a result, two independent conduction paths are formed through which charging currents flow individually from the charging circuit 3A and the charging circuit 3B to the specific two battery modules 2 according to the flow chart of FIG. 4, which will be described later. The two battery modules 2 are charged simultaneously. A common circuit board can be used for the charging circuit 3A and the charging circuit 3B, and the charging system 101 can reduce the total cost even if the number of charging circuit boards increases compared to the charging circuit 3 of the charging system 100. Realize
 充電システム101(b)は、図3に示すように、スイッチ6の全てがオンに操作され、3個の電池モジュール2を並列接続する。仮に、前記3個の電池モジュール2間の残容量がアンバランスであった場合、前記並列接続によって前記3個の電池モジュール2間に電流が往来して電圧が均衡し自律的に前記3個の電池モジュール2の残容量がバランスする。 In the charging system 101(b), as shown in FIG. 3, all the switches 6 are turned on to connect the three battery modules 2 in parallel. If the remaining capacities of the three battery modules 2 are unbalanced, the parallel connection allows the current to flow between the three battery modules 2 to balance the voltages, thereby autonomously balancing the three battery modules. The remaining capacities of the battery modules 2 are balanced.
 充電システム101のメインコントローラ40の制御について、次に、図4のフローチャート図を用いて説明する。 Next, the control of the main controller 40 of the charging system 101 will be explained using the flowchart of FIG.
 充電システム101のメインコントローラ40は、Step1にて、3個の電池モジュール2の残容量を検知し、Step2にて、前記3個の電池モジュール2の内、相対的に1番目および2番目に残容量の多い電池モジュール2を選択する。前記残容量の検知は、前記メインコントローラ40が前記電池モジュール2の端子に現れる電圧を直接検知する方法、または、図示しない前記電池モジュール2内のモジュールコントローラと通信を行いリチウムイオン二次電池セル群1の電圧値情報を取得する方法、のいずれであっても良い。 The main controller 40 of the charging system 101 detects the remaining capacities of the three battery modules 2 in Step 1, and detects the remaining capacities of the three battery modules 2 relative to the first and second among the three battery modules 2 in Step 2. A battery module 2 with a large capacity is selected. The remaining capacity is detected by a method in which the main controller 40 directly detects the voltage appearing at the terminals of the battery module 2, or by communicating with a module controller in the battery module 2 (not shown) to detect the group of lithium ion secondary battery cells. method of acquiring one voltage value information.
 充電システム101のメインコントローラ40は、Step2にて選択した前記3個の電池モジュール2の内、対的に1番目および2番目に残容量の多い2個の電池モジュール2に対する充電を充電回路3Aおよび充電回路3Bを用いて独立に2個同時に充電を行うStep3の充電シーケンスへ移行する。前記充電シーケンスにおける充電の方法は、前記充電回路3Aおよび充電回路3Bが商用電源である交流電圧をそれぞれ入力し直流電圧に変換し独立にそれぞれ所望のCCCV充電を行う。 The main controller 40 of the charging system 101 charges the two battery modules 2 with the first and second highest remaining capacities among the three battery modules 2 selected in Step 2 by the charging circuit 3A and the main controller 40. The charging sequence proceeds to Step 3 in which two batteries are independently charged simultaneously using the charging circuit 3B. The charging method in the charging sequence is that the charging circuits 3A and 3B respectively input an AC voltage, which is a commercial power supply, convert it to a DC voltage, and independently perform desired CCCV charging.
 充電システム101のメインコントローラ40は、Step4にて、図示しない通信信号を用いて充電回路3Aまたは充電回路3Bのいずれかが充電中に異常状態を検知したか否か、例えば、前記2個の電池モジュール2内のリチウムイオン二次電池セル群1が過電圧状態か否か、または、高温状態か否かを検知する。Step4にて前記異常状態でないと判定するとStep5へ移行し、前記充電回路3Aまたは充電回路3Bのいずれか1個が前記2個の電池モジュール2内の少なくとも1個の電池モジュール2の充電を完了したか否かを検知する。Step5にて、前記充電回路3Aまたは充電回路3Bが前記少なくとも1個の電池モジュール2を充電完了していないと判定するとStep3に帰還する一方、前記少なくとも1個の電池モジュール2を充電完了した、すなわち、前記少なくとも1個の電池モジュール2が満充電になったと判定すると充電回路3Aおよび充電回路3Bの充電電流の出力を停止しStep6へ移行しバランスシーケンスを実行する。バランスシーケンスは、図3に示す状態bすなわち充電システム101(b)の構成で行われる。メインコントローラ40は、スイッチ6の全てをオンに操作し、3個の電池モジュール2を並列接続する。この際、Step5で満充電となった1個の前記電池モジュール2、Step3にて充電途中の別の1個の電池モジュール2、および、充電されていない残り1個の電池モジュール2の間の残容量アンバランスが解消する。すなわち、満充電でなかった前記2個の電池モジュール2がバランスシーケンスによりそれらの残容量が満充電すなわち100%に近づく。 In Step 4, the main controller 40 of the charging system 101 uses a communication signal (not shown) to determine whether or not either the charging circuit 3A or the charging circuit 3B has detected an abnormal state during charging. It detects whether the lithium ion secondary battery cell group 1 in the module 2 is in an overvoltage state or a high temperature state. When it is determined in Step 4 that the abnormal state is not present, the process proceeds to Step 5, and either one of the charging circuit 3A or the charging circuit 3B has completed charging of at least one battery module 2 out of the two battery modules 2. detect whether or not In Step 5, if it is determined that the charging circuit 3A or the charging circuit 3B has not completed charging the at least one battery module 2, the process returns to Step 3, while charging the at least one battery module 2 has been completed. , when it is determined that the at least one battery module 2 is fully charged, the charging circuit 3A and the charging circuit 3B stop outputting the charging current, and the process proceeds to Step 6 to execute the balance sequence. The balancing sequence occurs in state b, the configuration of charging system 101(b), shown in FIG. The main controller 40 turns on all the switches 6 to connect the three battery modules 2 in parallel. At this time, the balance between the one battery module 2 fully charged in Step 5, another battery module 2 in the middle of charging in Step 3, and the remaining one battery module 2 that has not been charged. Eliminates capacity imbalance. That is, the remaining capacity of the two battery modules 2 which were not fully charged approaches 100% due to the balance sequence.
 充電システム101のメインコントローラ40は、Step7にてバランス中に異常状態を検知したか否か、例えば、3個の電池モジュール2の内少なくとも1個の電池モジュール2内のリチウムイオン二次電池セル群1が過電圧状態か否か、過電流状態か否か、または、高温状態か否かを検知する。Step7にて前記異常状態でないと判定するとStep8へ移行し、バランスが完了したか否か、すなわち、前記並列接続された3個の電池モジュール2間の残容量差すなわち電圧差が所定値以下であるか否かを検知する。Step8にて、バランスが完了していないと判定するとStep6へ帰還する一方、前記バランスが完了したと判定するとStep10へ移行し、Step3の充電シーケンスにおいて3個の電池モジュール2の全てが充電完了したか否かを検知する。前記3個の電池モジュール2の全てが充電完了したと判定すると充電システム100の制御が終了し、一方、前記3個の電池モジュール2が全て充電完了していないと判定すると、Step1へ帰還し、前記3個の電池モジュール2の全てが充電完了するまで、Step1ないしStep3の相対的に1番目および2番目に残容量の多い2個の電池モジュール2に対して選択個別に2個同時に充電する充電シーケンス、およびStep6のバランスシーケンスを繰り返す。 The main controller 40 of the charging system 101 determines whether or not an abnormal state has been detected during balancing in Step 7. For example, the lithium ion secondary battery cell group in at least one of the three battery modules 2 is checked. 1 detects whether it is in an overvoltage state, an overcurrent state, or a high temperature state. If it is determined in Step 7 that the abnormal condition is not present, the process proceeds to Step 8 to determine whether the balance has been completed, that is, whether the remaining capacity difference, ie, the voltage difference, between the three battery modules 2 connected in parallel is equal to or less than a predetermined value. detect whether or not In Step 8, if it is determined that the balance has not been completed, the process returns to Step 6. If it is determined that the balance has been completed, the process proceeds to Step 10. In the charging sequence of Step 3, whether or not all three battery modules 2 have completed charging. detect whether or not When it is determined that charging of all the three battery modules 2 has been completed, the control of the charging system 100 ends. On the other hand, when it is determined that charging of all the three battery modules 2 has not been completed, the process returns to Step 1, Until all of the three battery modules 2 are fully charged, the two battery modules 2 with the relatively first and second highest remaining capacities in Steps 1 to 3 are selectively and individually charged at the same time. sequence, and the balance sequence of Step 6 are repeated.
 一般に電気自動車のモータ駆動用に使用されるリチウムイオン二次電池は内部抵抗が低いため前記リチウムイオン二次電池間の電流往来による電圧均衡が速く前記バランスに要する時間は通常のCCCV充電による充電時間に対して比較的極めて短いことを利用できる。したがって、充電回路3Aおよび充電回路3Bの出力電流定格を充電システム100の充電回路3よりも下げて1個の電池モジュール2に対する充電時間が相応に長くなる場合においても相対的に1番目および2番目に残容量の多い電池モジュール2に対して選択的個別に2個同時に充電する充電シーケンスと前記短時間のバランスシーケンスを組み合わせることにより充電システムのコストダウンと3個の電池モジュール2の合計充電時間の短縮の両立を実現できる。 Lithium ion secondary batteries, which are generally used to drive motors of electric vehicles, have low internal resistance, so the voltage balance due to current flow between the lithium ion secondary batteries is fast, and the time required for the balance is the charging time of normal CCCV charging. can be used to be relatively very short for . Therefore, even if the output current ratings of charging circuit 3A and charging circuit 3B are lower than that of charging circuit 3 of charging system 100 and the charging time for one battery module 2 is correspondingly longer, the first and second current ratings are relatively high. By combining the charging sequence for selectively and individually charging two battery modules 2 with a large remaining capacity at the same time and the short-time balance sequence, the cost of the charging system can be reduced and the total charging time of the three battery modules 2 can be shortened. Both shortening can be achieved.
 また一方、Step4にて、前記異常状態であると判定するとStep9へ移行し全シーケンス、すなわち、充電シーケンスおよびバランスシーケンスを中断する。この際、充電システム101は、スイッチ6の全てをオフに操作した状態となり、充電システム内のあらゆる箇所の通電を遮断しリチウムイオン二次電池の様々な故障モードに対応し安全性を確保する。 On the other hand, in Step 4, if it is determined that the abnormal state is present, the process proceeds to Step 9 and interrupts the entire sequence, that is, the charging sequence and the balancing sequence. At this time, the charging system 101 turns off all of the switches 6, cuts off the energization of all parts in the charging system, and ensures safety by dealing with various failure modes of the lithium ion secondary battery.
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 Although the present embodiment has been described above, the above embodiment is intended to facilitate understanding of the present invention, and is not intended to limit and interpret the present invention. The present invention can be modified and improved without departing from its spirit, and the present invention also includes equivalents thereof.
  2   電池モジュール
  40  メインコントローラ
  101 充電システム
2 battery module 40 main controller 101 charging system

Claims (2)

  1.  充電回路と、
     少なくとも3個の電池モジュールと、
     前記電池モジュール間の残容量アンバランスをバランス制御するバランス回路と、
     を備え、
     相対的に1番目および2番目に残容量の多い電池モジュールから順に選択的かつ個別に充電制御を行う充電シーケンスと、前記バランス制御を行うバランスシーケンスを交互に切り換える充電システム。
    a charging circuit;
    at least three battery modules;
    a balance circuit that balances and controls the remaining capacity imbalance between the battery modules;
    with
    A charging system that alternately switches between a charging sequence in which charging control is performed selectively and individually in order from battery modules with the relatively first and second highest remaining capacities, and a balancing sequence in which the balance control is performed.
  2.  前記電池モジュールの内少なくとも1個の電池モジュールの異常を検知した場合に、前記充電シーケンスおよび前記バランスシーケンスを中断する請求項1に記載の充電システム。 The charging system according to claim 1, wherein the charging sequence and the balancing sequence are interrupted when an abnormality is detected in at least one of the battery modules.
PCT/JP2021/023851 2021-06-23 2021-06-23 Charging system WO2022269827A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/023851 WO2022269827A1 (en) 2021-06-23 2021-06-23 Charging system
JP2023529340A JP7416511B2 (en) 2021-06-23 2021-06-23 charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023851 WO2022269827A1 (en) 2021-06-23 2021-06-23 Charging system

Publications (1)

Publication Number Publication Date
WO2022269827A1 true WO2022269827A1 (en) 2022-12-29

Family

ID=84545386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023851 WO2022269827A1 (en) 2021-06-23 2021-06-23 Charging system

Country Status (2)

Country Link
JP (1) JP7416511B2 (en)
WO (1) WO2022269827A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086825A1 (en) * 2010-12-21 2012-06-28 日本電気株式会社 Charging device and charging method
JP2015015777A (en) * 2013-07-03 2015-01-22 ソニー株式会社 Power storage device and control method power storage device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4248332B2 (en) 2003-07-04 2009-04-02 ローランド株式会社 Mobile communication body, performance information transfer system, and performance information transfer program
TW200937798A (en) 2008-02-29 2009-09-01 Cheng Uei Prec Ind Co Ltd Balance circuit for battery pack
JP6428107B2 (en) 2014-09-29 2018-11-28 株式会社村田製作所 Power storage device, electronic device, electric vehicle and power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086825A1 (en) * 2010-12-21 2012-06-28 日本電気株式会社 Charging device and charging method
JP2015015777A (en) * 2013-07-03 2015-01-22 ソニー株式会社 Power storage device and control method power storage device

Also Published As

Publication number Publication date
JP7416511B2 (en) 2024-01-17
JPWO2022269827A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
CN111264014B (en) Power storage system
JP5789846B2 (en) Power supply device for vehicle and vehicle equipped with this power supply device
JP5375927B2 (en) Battery equalization apparatus and method
US9627896B2 (en) Battery system including a voltage detecting circuit for detecting voltages of plural battery cells through voltage detecting lines having different lengths
US20190106011A1 (en) Autonomous interconnection of a drive battery
US20190225096A1 (en) Vehicle
JP5187406B2 (en) Auxiliary battery charger
KR20180069628A (en) Battery system and method for controlling the same
JP2013526243A (en) Battery having cell balancing function
US11843274B2 (en) Charge control apparatus for controlling charging of an energy storage device via purality of charging paths connected in parallel anssociated energy storage appartus, and an associated charging method
US20230086550A1 (en) Power supply system
WO2013157576A1 (en) Battery balancing system and method
KR20190128489A (en) Battery pack for vehicle
CN113939970A (en) Vehicle traction battery circuit and control system
WO2022269827A1 (en) Charging system
WO2022269826A1 (en) Charging system
JP6668210B2 (en) Power supply control device and power supply system
WO2023073979A1 (en) Charge/discharge circuit
CN107431370A (en) Method for running battery assembly module
WO2023286184A1 (en) Charging device
US11469600B2 (en) Electrical energy store, device and method for operating an electrical energy store
US11951871B2 (en) Multi-voltage storage system for an at least partly electrically driven vehicle
WO2022269824A1 (en) Battery module and motor system
JP2013074708A (en) Vehicular power unit and vehicle with the same
WO2022269832A1 (en) Discharge control circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947112

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529340

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE