WO2022269826A1 - Charging system - Google Patents

Charging system Download PDF

Info

Publication number
WO2022269826A1
WO2022269826A1 PCT/JP2021/023850 JP2021023850W WO2022269826A1 WO 2022269826 A1 WO2022269826 A1 WO 2022269826A1 JP 2021023850 W JP2021023850 W JP 2021023850W WO 2022269826 A1 WO2022269826 A1 WO 2022269826A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery modules
sequence
charging system
battery
Prior art date
Application number
PCT/JP2021/023850
Other languages
French (fr)
Japanese (ja)
Inventor
和征 榊原
Original Assignee
株式会社EViP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社EViP filed Critical 株式会社EViP
Priority to PCT/JP2021/023850 priority Critical patent/WO2022269826A1/en
Priority to JP2023529339A priority patent/JP7416510B2/en
Publication of WO2022269826A1 publication Critical patent/WO2022269826A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to charging systems.
  • the present invention has been made in view of this background, and aims to provide a technology that can efficiently control charging.
  • the main aspect of the present invention for solving the above-mentioned problems is a charging system comprising a charging circuit, a plurality of battery modules, and a balance circuit that balances and controls the remaining capacity imbalance between the plurality of battery modules. It alternately switches between a charging sequence in which charging control is performed selectively and individually in order from the battery module with the relatively large remaining capacity, and a balancing sequence in which the balance control is performed.
  • charging can be efficiently controlled.
  • FIG. 2 is a graph of charging voltage waveforms and charging current waveforms showing a method of charging a lithium ion secondary battery cell according to the present embodiment
  • 1 is a circuit block diagram showing a charging system for charging three battery modules 2 connected in series according to this embodiment.
  • FIG. 1 is a circuit block diagram showing a charging system that charges three battery modules 2 connected in parallel according to this embodiment.
  • FIG. 1 is a circuit block diagram showing a charging system 100 according to this embodiment;
  • FIG. 1 is a circuit block diagram of a charging system 100(a) showing state a, which is one state of the charging system 100 according to the present embodiment;
  • FIG. 2 is a circuit block diagram of a charging system 100(b) showing a state b, which is one state of the charging system 100 according to the present embodiment
  • 4 is a flow chart diagram showing an outline of control of the main controller 4 of the charging system 100 according to the present embodiment.
  • the lithium ion secondary battery cell is first charged at a predetermined constant current (CC charge), and the charging voltage rises as the remaining capacity of the lithium ion secondary battery cell increases.
  • the battery is charged at a constant voltage while gradually reducing the charging current so as to maintain the predetermined voltage value (CV charging).
  • CV charging There is generally a charging method called CCCV charging in which the state is determined as full charge and charging is stopped.
  • the CV value is proportional to the number of lithium-ion secondary battery cells or battery modules having lithium-ion secondary battery cells to be charged, and the CC value needs to be increased to shorten the charging time.
  • the output voltage rating of the charging circuit related to the CV value and the output current rating of the charging circuit related to the CC value directly affect cost increase.
  • three battery modules 2 each having a lithium ion secondary battery cell group 1 are connected to a charging circuit 3 via switches 6.
  • all of the switches 6 are in the off state, but the main controller 4 sends an instruction signal 5 or an instruction signal 7 to turn the switches 6 on or off, or to charge the charging circuit 3 according to the flowchart shown later. Operate current output or stop.
  • the switch 6 is schematically shown as a contact switch in FIG. 4, a semiconductor switch such as an FET may be used.
  • a charging circuit 3 is connected to the two groups of battery modules to charge the plurality of battery modules 2 collectively.
  • the charging system 100(a) charges one battery module 2 out of three battery modules 2 via a switch 6 that is turned on or off. Circuit 3 is connected. As a result, CCCV charging is performed by the charging circuit 3, and only one battery module 2 out of the three battery modules 2 is selectively and individually charged.
  • the main controller 4 of the charging system 100 detects the remaining capacities of the three battery modules 2 in Step 1, and in Step 2 selects the three battery modules 2 with the relatively highest remaining capacities. Select battery module 2.
  • the remaining capacity is detected by a method in which the main controller 4 directly detects the voltage appearing at the terminals of the battery module 2, or by communicating with a module controller in the battery module 2 (not shown) to detect the voltage of the lithium ion secondary battery cell group 1. Any method of acquiring value information may be used.
  • the main controller 4 of the charging system 100 shifts to the charging sequence of Step 3 in which the battery module 2 with the relatively highest remaining capacity among the three battery modules 2 selected in Step 2 is charged.
  • the charging sequence is performed in state a shown in FIG. 5, ie, the configuration of charging system 100(a).
  • FIG. 5 shows a state in which the center one of the three battery modules 2 is selected.
  • the charging circuit 3 of the charging system 100 inputs AC voltage, which is a commercial power supply, converts it to DC voltage, and performs desired CCCV charging.
  • the charging circuit 3 is connected in series or in parallel. Unlike the method of collectively charging three connected battery modules 2, CC charging and CV charging for selectively and individually charging one battery module 2, that is, the output voltage rating of the charging circuit 3 and Since the output current rating is matched to one battery module 2, the cost does not increase.
  • Step 4 the main controller 4 of the charging system 100 uses a communication signal (not shown) to determine whether the charging circuit 3 has detected an abnormal state during charging. 1 detects whether it is in an overvoltage state or whether it is in a high temperature state. If it is determined in Step 4 that the abnormal state is not present, the process proceeds to Step 5 to detect whether or not the charging circuit 3 has completed charging the battery module 2 . In Step 5, if the charging circuit 3 determines that the charging of the battery modules 2 has not been completed selectively and individually, the process returns to Step 3. 2 is fully charged, the output of the charging current from the charging circuit 3 is stopped, and the process proceeds to Step 6 to execute the balance sequence.
  • the balancing sequence occurs in state b, the configuration of charging system 100(b), shown in FIG.
  • the main controller 4 turns on all the switches 6 to connect the three battery modules 2 in parallel. At this time, current flows between the one battery module 2 that has been fully charged in Step 5 and the remaining two battery modules 2 that are not fully charged, and the voltages are balanced and balanced autonomously. That is, the remaining two battery modules 2, which were not fully charged, have their remaining capacities approaching full charge, ie, 100%, due to the balance sequence.
  • the main controller 4 of the charging system 100 determines whether an abnormal state has been detected during balancing in Step 7, for example, whether the lithium ion secondary battery cell group 1 in the battery module 2 is in an overvoltage state or an overcurrent state. or whether it is in a high temperature state. If it is determined in Step 7 that the abnormal condition is not present, the process proceeds to Step 8 to determine whether the balance has been completed, that is, whether the remaining capacity difference, ie, the voltage difference, between the three battery modules 2 connected in parallel is equal to or less than a predetermined value. detect whether or not In Step 8, if it is determined that the balance has not been completed, the process returns to Step 6. If it is determined that the balance has been completed, the process proceeds to Step 10.
  • Step 3 whether or not all three battery modules 2 have completed charging. detect whether or not When it is determined that charging of all the three battery modules 2 has been completed, the control of the charging system 100 ends. On the other hand, when it is determined that charging of all the three battery modules 2 has not been completed, the process returns to Step 1, The charging sequence of step 1 to step 3 for selectively and individually charging the battery modules 2 with relatively large remaining capacity and the balance sequence of step 6 are repeated until all the three battery modules 2 are fully charged.
  • the time required for the balance is relatively extremely short compared to the normal charging time for CCCV charging. Therefore, even if the charging time for one battery module 2 is relatively long without increasing the output current rating of the charging circuit 3, the battery modules 2 with relatively large remaining capacity in Steps 1 to 3 are selectively and individually charged.
  • the charging sequence for shortening the charging time by combining the three battery modules 2 in Step 6 with the short-time balancing sequence, the cost of the charging circuit can be reduced and the total charging time of the three battery modules 2 can be shortened. compatibility can be achieved.
  • Step 4 when it is determined that the abnormal state is present, the process proceeds to Step 9 and the entire sequence, that is, the charging sequence and the balancing sequence, is interrupted.
  • the charging system 100 has a configuration in which all of the switches 6 shown in FIG. Respond and ensure safety.

Abstract

[Problem] To make it possible to efficiently control charging. [Solution] A charging system (100) comprises: a charging circuit (3); a plurality of battery modules (2); and a balancing circuit that performs a control to balance the remaining capacity imbalance among the plurality of battery modules. The charging system (100) alternately switches between a charging sequence in which a charging control is selectively and individually performed in order starting with the battery module having the relatively most remaining capacity, and a balancing sequence in which said balancing control is performed. [Selected drawing] FIG. 3

Description

充電システムcharging system
 本発明は、充電システムに関する。 The present invention relates to charging systems.
 近年、地球環境への配慮から、内燃機関すなわちエンジンで駆動するエンジン駆動式自動車がモータで駆動する電気自動車、エンジンおよびモータで駆動するハイブリッド自動車または充電器による充電が可能なプラグインハイブリッド自動車に置き換わりつつある。特に、前記電気自動車またはプラグインハイブリッド自動車の性能の向上に伴い電気自動車1台当たりの電池電源すなわち電池モジュールの搭載量が増える傾向にある。 In recent years, in consideration of the global environment, engine-driven vehicles driven by an internal combustion engine have been replaced by electric vehicles driven by a motor, hybrid vehicles driven by an engine and a motor, or plug-in hybrid vehicles that can be charged using a charger. It's getting In particular, as the performance of electric vehicles or plug-in hybrid vehicles improves, the number of battery power sources, that is, the number of battery modules mounted per electric vehicle tends to increase.
特開2020-129863号公報JP 2020-129863 A
 従来技術の電気自動車に搭載される電池電源とモータを備えるモータシステムでは、前記電気自動車の1充電あたりの航続距離を延長するための種々の工夫が為されているが、その航続距離は前記エンジン駆動式自動車の燃料満タン1回あたりの航続距離にはおよばない。 In a conventional motor system equipped with a battery power supply and a motor mounted on an electric vehicle, various measures have been taken to extend the cruising distance per charge of the electric vehicle. It does not reach the cruising distance per full tank of fuel of a drive-type vehicle.
 本発明はこのような背景を鑑みてなされたものであり、効率的に充電を制御することができる技術を提供することを目的とする。 The present invention has been made in view of this background, and aims to provide a technology that can efficiently control charging.
 上記課題を解決するための本発明の主たる発明は、充電システムであって、充電回路と、複数の電池モジュールと、前記複数の電池モジュール間の残容量アンバランスをバランス制御するバランス回路と、を備え、相対的に残容量の多い電池モジュールから順に選択的かつ個別に充電制御を行う充電シーケンスと、前記バランス制御を行うバランスシーケンスとを交互に切り換える。 The main aspect of the present invention for solving the above-mentioned problems is a charging system comprising a charging circuit, a plurality of battery modules, and a balance circuit that balances and controls the remaining capacity imbalance between the plurality of battery modules. It alternately switches between a charging sequence in which charging control is performed selectively and individually in order from the battery module with the relatively large remaining capacity, and a balancing sequence in which the balance control is performed.
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems disclosed by the present application and their solutions will be clarified in the section of the embodiment of the invention and the drawings.
 本発明によれば、効率的に充電を制御することができる。 According to the present invention, charging can be efficiently controlled.
本実施形態に係るリチウムイオン二次電池セルの充電方法を示す充電電圧波形および充電電流波形のグラフ図である。FIG. 2 is a graph of charging voltage waveforms and charging current waveforms showing a method of charging a lithium ion secondary battery cell according to the present embodiment; 本実施形態に係る3個の電池モジュール2を直列接続して充電する充電システムを示す回路ブロック図である。1 is a circuit block diagram showing a charging system for charging three battery modules 2 connected in series according to this embodiment. FIG. 本実施形態に係る3個の電池モジュール2を並列接続して充電する充電システムを示す回路ブロック図である。1 is a circuit block diagram showing a charging system that charges three battery modules 2 connected in parallel according to this embodiment. FIG. 本実施形態に係る充電システム100を示す回路ブロック図である。1 is a circuit block diagram showing a charging system 100 according to this embodiment; FIG. 本実施形態に係る充電システム100の1つの状態である状態aを示す充電システム100(a)の回路ブロック図である。1 is a circuit block diagram of a charging system 100(a) showing state a, which is one state of the charging system 100 according to the present embodiment; FIG. 本実施形態に係る充電システム100の1つの状態である状態bを示す充電システム100(b)の回路ブロック図である。FIG. 2 is a circuit block diagram of a charging system 100(b) showing a state b, which is one state of the charging system 100 according to the present embodiment; 本実施形態に係る充電システム100のメインコントローラ4の制御の概略を示すフローチャート図である。4 is a flow chart diagram showing an outline of control of the main controller 4 of the charging system 100 according to the present embodiment. FIG.
 図1に示すように、リチウムイオン二次電池セルの充電は、最初に、所定の定電流で充電し(CC充電)、前記リチウムイオン二次電池セルの残容量の増加に伴い充電電圧が上昇し所定電圧値に達した後に、その所定電圧値を維持するように充電電流を徐々に絞りながら定電圧で充電し(CV充電)、充電電流が所定値を下回った状態を検知した場合にその状態を満充電として判定し充電を停止するCCCV充電と呼ばれる充電方式が一般にある。前記CV値は充電対称とするリチウムイオン二次電池セルまたはリチウムイオン二次電池セルを有する電池モジュールの直列個数に比例し、また、充電時間を短縮するためにCC値の増加を必要とし、前記CV値に係る充電回路の出力電圧定格、および、前記CC値に係る充電回路の出力電流定格の高低はコストアップに直接影響する。 As shown in FIG. 1, the lithium ion secondary battery cell is first charged at a predetermined constant current (CC charge), and the charging voltage rises as the remaining capacity of the lithium ion secondary battery cell increases. After reaching a predetermined voltage value, the battery is charged at a constant voltage while gradually reducing the charging current so as to maintain the predetermined voltage value (CV charging). There is generally a charging method called CCCV charging in which the state is determined as full charge and charging is stopped. The CV value is proportional to the number of lithium-ion secondary battery cells or battery modules having lithium-ion secondary battery cells to be charged, and the CC value needs to be increased to shorten the charging time. The output voltage rating of the charging circuit related to the CV value and the output current rating of the charging circuit related to the CC value directly affect cost increase.
 複数のリチウムイオン二次電池セルで成る複数個の電池モジュールが搭載される電気自動車の充電について、例えば、図2に示すように、リチウムイオン二次電池セル群1を有する3個の電池モジュール2を直列接続して電池モジュール2群を構成し、前記電池モジュール2群に充電回路3を接続して前記3個の電池モジュール2をまとめて充電する方法がある。 Regarding charging of an electric vehicle equipped with a plurality of battery modules composed of a plurality of lithium ion secondary battery cells, for example, as shown in FIG. are connected in series to form two groups of battery modules, and a charging circuit 3 is connected to the two groups of battery modules to charge the three battery modules 2 collectively.
 充電システム100は、図4に示すように、リチウムイオン二次電池セル群1を有する3個の電池モジュール2がスイッチ6を介して充電回路3と接続される。ここでは、前記スイッチ6の全てはオフ状態にあるが、後述のフローチャート図に従いメインコントローラ4が指示信号5または指示信号7を送信して前記スイッチ6のオンまたはオフ、または、充電回路3の充電電流の出力または停止を操作する。 In the charging system 100, as shown in FIG. 4, three battery modules 2 each having a lithium ion secondary battery cell group 1 are connected to a charging circuit 3 via switches 6. Here, all of the switches 6 are in the off state, but the main controller 4 sends an instruction signal 5 or an instruction signal 7 to turn the switches 6 on or off, or to charge the charging circuit 3 according to the flowchart shown later. Operate current output or stop.
 なお、図4では、スイッチ6を模式的に有接点スイッチで図示したが、FET等の半導体スイッチを用いても良い。 Although the switch 6 is schematically shown as a contact switch in FIG. 4, a semiconductor switch such as an FET may be used.
 また、リチウムイオン二次電池セルで成る複数個の電池モジュールが搭載される電気自動車の充電について、例えば、図3に示すように、リチウムイオン二次電池セル群1を有する3個の電池モジュール2を並列接続して電池モジュール2群を構成し、前記電池モジュール2群に充電回路3を接続して前記複数の電池モジュール2をまとめて充電する方法がある。 In addition, regarding charging of an electric vehicle equipped with a plurality of battery modules composed of lithium ion secondary battery cells, for example, as shown in FIG. are connected in parallel to constitute two groups of battery modules, and a charging circuit 3 is connected to the two groups of battery modules to charge the plurality of battery modules 2 collectively.
 本実施形態に係る充電システム100(a)は、図5に示すように、それぞれオンまたはオフに操作されたスイッチ6を介して3個の電池モジュール2の内の1個の電池モジュール2と充電回路3が接続される。これにより充電回路3によるCCCV充電が実行されて前記3個の電池モジュール2の内の1個の電池モジュール2みが選択的個別に充電される。 The charging system 100(a) according to the present embodiment, as shown in FIG. 5, charges one battery module 2 out of three battery modules 2 via a switch 6 that is turned on or off. Circuit 3 is connected. As a result, CCCV charging is performed by the charging circuit 3, and only one battery module 2 out of the three battery modules 2 is selectively and individually charged.
 本実施形態に係る充電システム100(b)は、図6に示すように、リチウムイオン二次電池セル群1を有する3個の電池モジュール2が全てオンに操作されたスイッチ6を介して並列接続されて、前記3個の電池モジュール2間の残容量アンバランスがある場合には、前記3個の電池モジュール間に電流が往来して電圧が均衡して自律的にバランスする。この際、充電回路3は充電電流を出力せず停止状態にある。 In the charging system 100(b) according to the present embodiment, as shown in FIG. 6, three battery modules 2 each having a lithium ion secondary battery cell group 1 are connected in parallel via switches 6 that are all turned on. Thus, when there is an imbalance in remaining capacity among the three battery modules 2, the current flows between the three battery modules and the voltages are balanced and balanced autonomously. At this time, the charging circuit 3 does not output charging current and is in a stopped state.
 充電システム100のメインコントローラ4の制御について、次に、図7のフローチャート図を用いて説明する。 Next, the control of the main controller 4 of the charging system 100 will be explained using the flowchart of FIG.
 充電システム100のメインコントローラ4は、Step1にて、3個の電池モジュール2の残容量を検知し、Step2にて、前記3個の電池モジュール2の内、相対的に1番目に残容量の多い電池モジュール2を選択する。前記残容量の検知は、メインコントローラ4が電池モジュール2の端子に表れる電圧を直接検知する方法、または、図示しない電池モジュール2内のモジュールコントローラと通信を行いリチウムイオン二次電池セル群1の電圧値情報を取得する方法、のいずれであっても良い。 The main controller 4 of the charging system 100 detects the remaining capacities of the three battery modules 2 in Step 1, and in Step 2 selects the three battery modules 2 with the relatively highest remaining capacities. Select battery module 2. The remaining capacity is detected by a method in which the main controller 4 directly detects the voltage appearing at the terminals of the battery module 2, or by communicating with a module controller in the battery module 2 (not shown) to detect the voltage of the lithium ion secondary battery cell group 1. Any method of acquiring value information may be used.
 充電システム100のメインコントローラ4は、Step2にて選択した3個の電池モジュール2の内、相対的に1番目に残容量の多い電池モジュール2に対する充電を行うStep3の充電シーケンスへ移行する。充電シーケンスは、図5に示す状態aすなわち充電システム100(a)の構成で行われる。なお、図5では、3つの電池モジュール2のうち中央のものが選択された状態を示している。前記充電シーケンスにおける充電の方法は、充電システム100の充電回路3が商用電源である交流電圧を入力し直流電圧に変換し所望のCCCV充電を行うが、前記充電回路3は、直列接続または並列接続続された3個の電池モジュール2をまとめて充電する方法と異なり、1個の電池モジュール2を選択的個別に充電するためのCC充電およびCV充電、すなわち、前記充電回路3の出力電圧定格および出力電流定格を1個の電池モジュール2に合わせるためコストアップしない、すなわち、同じ個数の電池モジュールを充電する充電システムに対して大幅にコストダウンできる。 The main controller 4 of the charging system 100 shifts to the charging sequence of Step 3 in which the battery module 2 with the relatively highest remaining capacity among the three battery modules 2 selected in Step 2 is charged. The charging sequence is performed in state a shown in FIG. 5, ie, the configuration of charging system 100(a). Note that FIG. 5 shows a state in which the center one of the three battery modules 2 is selected. In the charging method in the charging sequence, the charging circuit 3 of the charging system 100 inputs AC voltage, which is a commercial power supply, converts it to DC voltage, and performs desired CCCV charging. The charging circuit 3 is connected in series or in parallel. Unlike the method of collectively charging three connected battery modules 2, CC charging and CV charging for selectively and individually charging one battery module 2, that is, the output voltage rating of the charging circuit 3 and Since the output current rating is matched to one battery module 2, the cost does not increase.
 充電システム100のメインコントローラ4は、Step4にて、図示しない通信信号を用いて充電回路3が充電中に異常状態を検知したか否か、例えば、電池モジュール2内のリチウムイオン二次電池セル群1が過電圧状態か否か、または、高温状態か否かを検知する。Step4にて前記異常状態でないと判定するとStep5へ移行し、前記充電回路3が前記電池モジュール2の充電を完了したか否かを検知する。Step5にて、前記充電回路3が前記電池モジュール2を選択的個別に充電完了していないと判定するとStep3に帰還する一方、前記電池モジュール2を選択的個別に充電完了した、すなわち、前記電池モジュール2が満充電になったと判定すると充電回路3の充電電流の出力を停止しStep6へ移行しバランスシーケンスを実行する。バランスシーケンスは、図6に示す状態bすなわち充電システム100(b)の構成で行われる。メインコントローラ4は、スイッチ6の全てをオンに操作し、3個の電池モジュール2を並列接続する。この際、Step5で満充電となった1個の前記電池モジュール2、および、満充電でない残り2個の電池モジュール2の間に電流が往来して電圧が均衡し自律的にバランスする。つまり、前記満充電でなかった前記残り2個の電池モジュール2がバランスシーケンスによりそれらの残容量が満充電すなわち100%に近づく。 In Step 4, the main controller 4 of the charging system 100 uses a communication signal (not shown) to determine whether the charging circuit 3 has detected an abnormal state during charging. 1 detects whether it is in an overvoltage state or whether it is in a high temperature state. If it is determined in Step 4 that the abnormal state is not present, the process proceeds to Step 5 to detect whether or not the charging circuit 3 has completed charging the battery module 2 . In Step 5, if the charging circuit 3 determines that the charging of the battery modules 2 has not been completed selectively and individually, the process returns to Step 3. 2 is fully charged, the output of the charging current from the charging circuit 3 is stopped, and the process proceeds to Step 6 to execute the balance sequence. The balancing sequence occurs in state b, the configuration of charging system 100(b), shown in FIG. The main controller 4 turns on all the switches 6 to connect the three battery modules 2 in parallel. At this time, current flows between the one battery module 2 that has been fully charged in Step 5 and the remaining two battery modules 2 that are not fully charged, and the voltages are balanced and balanced autonomously. That is, the remaining two battery modules 2, which were not fully charged, have their remaining capacities approaching full charge, ie, 100%, due to the balance sequence.
 充電システム100のメインコントローラ4は、Step7にてバランス中に異常状態を検知したか否か、例えば、電池モジュール2内のリチウムイオン二次電池セル群1が過電圧状態か否か、過電流状態か否か、または、高温状態か否かを検知する。Step7にて前記異常状態でないと判定するとStep8へ移行し、バランスが完了したか否か、すなわち、前記並列接続された3個の電池モジュール2間の残容量差すなわち電圧差が所定値以下であるか否かを検知する。Step8にて、バランスが完了していないと判定するとStep6へ帰還する一方、前記バランスが完了したと判定するとStep10へ移行し、Step3の充電シーケンスにおいて3個の電池モジュール2の全てが充電完了したか否かを検知する。前記3個の電池モジュール2の全てが充電完了したと判定すると充電システム100の制御が終了し、一方、前記3個の電池モジュール2が全て充電完了していないと判定すると、Step1へ帰還し、前記3個の電池モジュール2の全てが充電完了するまでStep1ないしStep3の相対的に残容量の多い電池モジュール2に対して選択個別に充電する充電シーケンス、およびStep6のバランスシーケンスを繰り返す。 The main controller 4 of the charging system 100 determines whether an abnormal state has been detected during balancing in Step 7, for example, whether the lithium ion secondary battery cell group 1 in the battery module 2 is in an overvoltage state or an overcurrent state. or whether it is in a high temperature state. If it is determined in Step 7 that the abnormal condition is not present, the process proceeds to Step 8 to determine whether the balance has been completed, that is, whether the remaining capacity difference, ie, the voltage difference, between the three battery modules 2 connected in parallel is equal to or less than a predetermined value. detect whether or not In Step 8, if it is determined that the balance has not been completed, the process returns to Step 6. If it is determined that the balance has been completed, the process proceeds to Step 10. In the charging sequence of Step 3, whether or not all three battery modules 2 have completed charging. detect whether or not When it is determined that charging of all the three battery modules 2 has been completed, the control of the charging system 100 ends. On the other hand, when it is determined that charging of all the three battery modules 2 has not been completed, the process returns to Step 1, The charging sequence of step 1 to step 3 for selectively and individually charging the battery modules 2 with relatively large remaining capacity and the balance sequence of step 6 are repeated until all the three battery modules 2 are fully charged.
 一般に電気自動車のモータ駆動用に使用されるリチウムイオン二次電池は内部抵抗が低いため前記バランスに要する時間はCCCV充電による通常の充電時間に対して比較的極めて短い。したがって、充電回路3の出力電流定格を上げることなく1個の電池モジュール2に対する充電時間が相応に長い場合もStep1ないしStep3の相対的に残容量の多い電池モジュール2に対して選択的個別に充電することで充電時間を短縮する充電シーケンス、および、Step6の3個の電池モジュール2の短時間のバランスシーケンスを組み合わせることにより充電回路のコストダウンと3個の電池モジュール2の合計充電時間の短縮の両立を実現できる。 Because lithium-ion secondary batteries, which are generally used to drive the motors of electric vehicles, have low internal resistance, the time required for the balance is relatively extremely short compared to the normal charging time for CCCV charging. Therefore, even if the charging time for one battery module 2 is relatively long without increasing the output current rating of the charging circuit 3, the battery modules 2 with relatively large remaining capacity in Steps 1 to 3 are selectively and individually charged. By combining the charging sequence for shortening the charging time by combining the three battery modules 2 in Step 6 with the short-time balancing sequence, the cost of the charging circuit can be reduced and the total charging time of the three battery modules 2 can be shortened. compatibility can be achieved.
 また一方、Step4にて、前記異常状態であると判定するとStep9へ移行し全シーケンス、すなわち、充電シーケンスおよびバランスシーケンスを中断する。この際、充電システム100は、図2に示すスイッチ6の全てをオフに操作した充電システム100の構成となり、充電システム内のあらゆる箇所の通電を遮断しリチウムイオン二次電池の様々な故障モードに対応し安全性を確保する。 On the other hand, in Step 4, when it is determined that the abnormal state is present, the process proceeds to Step 9 and the entire sequence, that is, the charging sequence and the balancing sequence, is interrupted. At this time, the charging system 100 has a configuration in which all of the switches 6 shown in FIG. Respond and ensure safety.
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 Although the present embodiment has been described above, the above embodiment is intended to facilitate understanding of the present invention, and is not intended to limit and interpret the present invention. The present invention can be modified and improved without departing from its spirit, and the present invention also includes equivalents thereof.
  2   電池モジュール
  4   メインコントローラ
  100 充電システム
2 battery module 4 main controller 100 charging system

Claims (2)

  1.  充電回路と、
     複数の電池モジュールと、
     前記複数の電池モジュール間の残容量アンバランスをバランス制御するバランス回路と、
     を備え、
     相対的に残容量の多い電池モジュールから順に選択的かつ個別に充電制御を行う充電シーケンスと、前記バランス制御を行うバランスシーケンスとを交互に切り換える充電システム。
    a charging circuit;
    a plurality of battery modules;
    a balance circuit that balances and controls the remaining capacity imbalance between the plurality of battery modules;
    with
    A charging system that alternately switches between a charging sequence in which charging control is performed selectively and individually in order from a battery module having a relatively large remaining capacity, and a balance sequence in which the balance control is performed.
  2.  前記複数の電池モジュールの内少なくとも1個の電池モジュールの異常を検知した場合に、前記充電シーケンスおよび前記バランスシーケンスを中断する請求項1に記載の充電システム。 The charging system according to claim 1, wherein the charging sequence and the balancing sequence are interrupted when an abnormality is detected in at least one of the plurality of battery modules.
PCT/JP2021/023850 2021-06-23 2021-06-23 Charging system WO2022269826A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/023850 WO2022269826A1 (en) 2021-06-23 2021-06-23 Charging system
JP2023529339A JP7416510B2 (en) 2021-06-23 2021-06-23 charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023850 WO2022269826A1 (en) 2021-06-23 2021-06-23 Charging system

Publications (1)

Publication Number Publication Date
WO2022269826A1 true WO2022269826A1 (en) 2022-12-29

Family

ID=84545382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023850 WO2022269826A1 (en) 2021-06-23 2021-06-23 Charging system

Country Status (2)

Country Link
JP (1) JP7416510B2 (en)
WO (1) WO2022269826A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248332A (en) * 1991-01-24 1992-09-03 Sony Corp Battery pack
JP2009232559A (en) * 2008-02-29 2009-10-08 Cheng Uei Precision Industry Co Ltd Battery pack charging balancing circuit
JP2013013236A (en) * 2011-06-29 2013-01-17 Toyota Industries Corp Cell balance control device and cell balance control method
JP2014033604A (en) * 2012-07-13 2014-02-20 Sanyo Electric Co Ltd Charge/discharge state equalization method for battery system, charge/discharge state change method for battery system, and battery system
WO2016051635A1 (en) * 2014-09-29 2016-04-07 ソニー株式会社 Electric power storage device, electronic device, electric vehicle, and electric power system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4248332B2 (en) 2003-07-04 2009-04-02 ローランド株式会社 Mobile communication body, performance information transfer system, and performance information transfer program
JPWO2012086825A1 (en) 2010-12-21 2014-06-05 日本電気株式会社 Charging apparatus and charging method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248332A (en) * 1991-01-24 1992-09-03 Sony Corp Battery pack
JP2009232559A (en) * 2008-02-29 2009-10-08 Cheng Uei Precision Industry Co Ltd Battery pack charging balancing circuit
JP2013013236A (en) * 2011-06-29 2013-01-17 Toyota Industries Corp Cell balance control device and cell balance control method
JP2014033604A (en) * 2012-07-13 2014-02-20 Sanyo Electric Co Ltd Charge/discharge state equalization method for battery system, charge/discharge state change method for battery system, and battery system
WO2016051635A1 (en) * 2014-09-29 2016-04-07 ソニー株式会社 Electric power storage device, electronic device, electric vehicle, and electric power system

Also Published As

Publication number Publication date
JPWO2022269826A1 (en) 2022-12-29
JP7416510B2 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
CN111264014B (en) Power storage system
US10369900B1 (en) Onboard DC charging circuit using traction drive components
CN102975630B (en) For motor vehicle supply unit and the vehicle possessing this supply unit
CN105936248B (en) Power supply system
EP2793308A1 (en) Battery module and control method thereof
JP2016203969A (en) Power supply unit
JP5187406B2 (en) Auxiliary battery charger
KR20180069628A (en) Battery system and method for controlling the same
JP2016203793A (en) Power supply unit
KR100623750B1 (en) Fuel cell-supercap hybrid and method of controlling a starting for the same
WO2022269826A1 (en) Charging system
CN114619909B (en) Charging control method and device, charging system and charging equipment of electric aircraft
EP4119390A1 (en) Battery control
CN110816311A (en) Method for operating a battery pack system and electric vehicle
WO2022269827A1 (en) Charging system
JP6668210B2 (en) Power supply control device and power supply system
KR20170065322A (en) Apparatus and method for blancing battery
JP2019134636A (en) Charging system and charging method
KR20170070525A (en) Apparatus for autonomous battery balancing
WO2023073979A1 (en) Charge/discharge circuit
CN107431370A (en) Method for running battery assembly module
US20240047978A1 (en) Power storage system
US20220006300A1 (en) Electrical energy store, device and method for operating an electrical energy store
JP7111012B2 (en) power system
US11951871B2 (en) Multi-voltage storage system for an at least partly electrically driven vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947111

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529339

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE