WO2022269824A1 - Battery module and motor system - Google Patents

Battery module and motor system Download PDF

Info

Publication number
WO2022269824A1
WO2022269824A1 PCT/JP2021/023848 JP2021023848W WO2022269824A1 WO 2022269824 A1 WO2022269824 A1 WO 2022269824A1 JP 2021023848 W JP2021023848 W JP 2021023848W WO 2022269824 A1 WO2022269824 A1 WO 2022269824A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
battery module
battery cell
battery
cell groups
Prior art date
Application number
PCT/JP2021/023848
Other languages
French (fr)
Japanese (ja)
Inventor
和征 榊原
Original Assignee
株式会社EViP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社EViP filed Critical 株式会社EViP
Priority to PCT/JP2021/023848 priority Critical patent/WO2022269824A1/en
Publication of WO2022269824A1 publication Critical patent/WO2022269824A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to battery modules and motor systems.
  • Patent Literature 1 discloses a technique for suppressing voltage fluctuations in power lines to the three-phase motors.
  • the present invention has been made in view of this background, and aims to provide a technique that can efficiently control discharge.
  • the main invention of the present invention for solving the above problems is a battery module comprising a battery cell group, a first state in which the battery cell group is connected in series, a second state in which the battery cell group is connected in parallel, or , and a third state in which all conduction paths between the battery cell groups are cut off; The state changes to any one of the first state to the third state.
  • FIG. 2 is a circuit block diagram showing an outline of the configuration of a battery module 2 according to this embodiment
  • FIG. 1 is a circuit block diagram showing an outline of the configuration of a motor system 101 according to this embodiment
  • FIG. 3 is a circuit block diagram showing an outline of state a in the configuration of the battery module 3 according to this embodiment.
  • 3 is a circuit block diagram showing an outline of state b in the configuration of the battery module 3 according to this embodiment.
  • FIG. 3 is a circuit block diagram showing an outline of state c in the configuration of the battery module 3 according to this embodiment.
  • FIG. 1 is a circuit block diagram showing an outline of the configuration of a motor system 106 according to this embodiment;
  • FIG. 4 is a flow chart diagram showing an outline of control of the main controller 9 of the motor system 106 according to this embodiment.
  • FIG. 4 is a time chart diagram showing the waveform of the output voltage of one inverter 6 in the motor system 106 according to this embodiment and the waveform of the input voltage from the battery module 3 to the inverter 6.
  • FIG. 4 is a flow chart diagram showing an outline of control of the main controller 9 of the motor system 106 according to this embodiment.
  • FIG. 4 is a time chart diagram showing the waveform of the output voltage of one inverter 6 in the motor system 106 according to this embodiment and the waveform of the input voltage from the battery module 3 to the inverter 6.
  • the battery module 2 includes a high-voltage-rated lithium-ion secondary battery cell group 1H formed by connecting a plurality of lithium-ion secondary battery cells in series. It is connected to a terminal 5 via an FET 4 as an element.
  • the module controller 3 detects the voltage of the lithium ion secondary battery cell group 1H or the current of the lithium ion secondary battery cell group 1H, that is, the voltage appearing across the shunt resistor 6, and turns the FET 4 on or off. to control the output or stop of the discharge output from the terminal 5.
  • the motor system 101 transmits the DC voltage output by the battery module 2U, the battery module 2V, and the battery module 2W, which have the same configuration as the battery module 2, through the high voltage power line 5U and the high voltage power line 5U. 5V and applied to the inverter 6U, the inverter 6V, and the inverter 6W via the high voltage power line 5W, respectively.
  • the inverter 6U, the inverter 6V, and the inverter 6W input high-voltage DC voltage from the battery module 2U, the battery module 2V, and the battery module 2W, respectively, convert it to AC voltage, and shift the phase to a desired electrical angle.
  • Three single-phase AC voltages are applied to the magnetic pole coils 7U, 7V, and 7W, which are arranged in three phases in the motor, respectively, to generate a rotating magnetic field between the magnetic pole coils, thereby rotating the rotor.
  • the insulated communication lines 8a, 8b, and 8g transmit and receive insulated signals between the inverters arranged in independent closed circuits to synchronize the three single-phase alternating currents output from the three inverters. It is used to synchronize the voltage phase and shift it to the desired electrical angle.
  • Another state of battery module 3, state b, battery module 3(b) turns on or off two high voltage rated lithium ion secondary battery cell groups 1H, respectively, as shown in FIG. They are connected in parallel via the operated switch 6 and connected to the terminal 7 . That is, the rated voltage appearing at the terminal 7 of the battery module 3(b) has the same high voltage rating as the high voltage rated lithium ion secondary battery cell group 1H. If there is an imbalance in remaining capacity between the two lithium ion secondary battery cell groups, connecting in parallel via the switch 6 will balance the remaining capacity of the two lithium ion secondary battery cell groups. do.
  • the switch 6 is schematically illustrated as a contact switch in FIG.
  • a semiconductor switch such as an FET in order to perform switching control of the switch 6 at high speed in controlling the motor system 106, which will be described later. Since the total energization time of the FETs required for balance using the FETs is relatively extremely short compared to the discharge time of the battery module, for example, when the switch 6 is an FET, the energization time of the FETs is also extremely short. The effect of heat generation on the heat generation of the entire system is extremely small, and the additional cost of the FETs contributes very little to the total cost of the system.
  • the motor system 106 has a configuration in which the battery module 2 of the motor system 101 is replaced with the battery module 3 and a main controller 9 is added, as shown in FIG.
  • Main controller 9 communicates with battery module 3U, battery module 3V, and battery module 3W using insulated communication signal 10 to obtain information on each battery module. , to switch to any one of the states a through c.
  • the main controller 9 uses the insulating communication signal 13 to communicate with the inverters 6U, 6V, and 6W, respectively, and obtains information on each inverter. The timing of the zero crossing of the AC voltage output of the inverter 6 is detected, and reflected in the balance control between the two lithium ion secondary battery cell groups 1H in the battery module 3, which will be described later.
  • Motor system 106 supplies DC voltage output from battery module 3U, battery module 3V, and battery module 3W, which have the same configuration as battery module 3, to high-voltage power line 5U, high-voltage power line 5V, and high-voltage power line 5V. 5W to the inverters 6U, 6V, and 6W.
  • the inverter 6U, the inverter 6V, and the inverter 6W input high-voltage DC voltage from the battery module 3U, the battery module 3V, and the battery module 3W, respectively, converts them to AC voltage, and converts them into desired electrical angles for each phase.
  • Three phase-shifted single-phase AC voltages are applied to the magnetic pole coils 7U, 7V, and 7W arranged in three phases in the motor to generate a rotating magnetic field between the magnetic pole coils, thereby rotating the rotor. controls the rotation of the
  • Insulated communication lines 8a, 8b, and 8g communicate between three inverters arranged in independent closed circuits by insulated signals using photocouplers, and output three inverters from the three inverters. is used to shift the phase of the single-phase AC voltage to the desired electrical angle.
  • Step 1 the main controller 9 of the motor system 106 detects the control state of the inverter 6U, the inverter 6V, and the inverter 6W using the insulating communication signal 13, and detects whether the motor is being driven. .
  • the process proceeds to Step 2, and the three phases belonging to the three phases are connected using the insulating communication signal 10. All of the battery modules 3 are instructed to switch to state a, and all of the three battery modules 3 switch to state a.
  • the output voltage from the terminals 7 of the battery module 3U, the battery module 3V, and the battery module 3W is twice as high as the rated voltage of the lithium ion secondary battery cell group 1H. 6U, inverter 6V, and inverter 6W are uniformly applied.
  • Step 3 the process proceeds to Step 3.
  • the communication signal 10 is used to instruct all of the three battery modules 3 belonging to three phases to switch to the state b, and all the three battery modules 3 switch to the state b. Carry out charging.
  • a method of charging a plurality of battery modules for example, a method of connecting a plurality of battery modules in series or in parallel and charging them collectively, or a method of charging a plurality of battery modules individually.
  • the voltage of the battery module is increased for the purpose of extending the cruising distance per charge of an electric vehicle
  • the charging of the charger for charging the battery module with the increased voltage The output voltage rating of the circuit also needs to be increased, and the increase in the output voltage rating of the charging circuit leads to a significant increase in the cost of the charger.
  • the rated voltage appearing at the terminal 7 of the battery module 3 can be reduced to half of the normal discharging state a by switching to the former state b in the above Step 3.
  • the output voltage rating of the charging circuit can also be halved, contributing to cost reduction of the charger.
  • Step 5 the main controller 9 of the motor system 106 uses the insulating communication signal 10 to detect the states of the three battery modules 3 belonging to the three phases, and sets one of the three phases to the X phase. Select a control target.
  • the selection of the X-phase is preferably performed in descending order of remaining capacity imbalance between the two lithium-ion secondary battery cell groups 1H included in each battery module 3 .
  • Step 6 the battery module 3X belonging to the X-phase closed circuit is instructed to be switched to the state a, and the battery module X maintains the state a as it was in Step 2, or is changed from Step 10 to be described later. When returned, the battery module 3X switches from state b to state a.
  • Step 7 the main controller 9 communicates with the battery module 3X using the insulating communication signal 10 to obtain information from the acceleration sensor 7 of the battery module 3X, and determines whether the rate of change in acceleration is less than a predetermined value. detect whether If it is determined that the rate of change in acceleration is less than a predetermined value, that is, that the electric vehicle is running at a constant speed, the process proceeds to Step 8, in which the insulating communication signal 13 is used to communicate with the inverter 6X, and the inverter 6X outputs. The timing at which the AC voltage reaches zero cross is acquired, and it is detected whether or not it is within a predetermined electrical angle or within a predetermined period of time with the point of time of the zero cross as the midpoint.
  • Step 6 If it is determined that it is not within the predetermined angle or the time range within the predetermined time with the time of the zero crossing as the midpoint, it returns to Step 6, instructs to switch the battery module 3X to the state a, and the battery module 3X is in the state a. While switching to state a, if it is determined that the state is within a predetermined angle or within a predetermined period of time with the point of time of the zero crossing as the middle point, the process proceeds to step 9, and an instruction is given to switch the battery module 3X to state b. , the battery module 3X is switched to the state b, the two lithium ion secondary battery cell groups 1H are connected in parallel, and the remaining capacities are balanced.
  • Step 10 the main controller 9 of the motor system 106 acquires the information of the battery module 3X using the insulating communication signal 10, and balance of the two lithium ion secondary battery cell groups 1H in the battery module 3X is completed. If it is determined that the balance has not been completed, that is, the voltage difference between the two lithium ion secondary battery cell groups 1H is not equal to or less than a predetermined value, the process returns to Step 6 and the balance is completed. Until, that is, until it is determined that the voltage difference between the two lithium ion secondary battery cell groups 1H is equal to or less than a predetermined value, the switching between state a and state b is repeated each time the zero cross timing of steps 7 and 8 is reached. .
  • the time in the state b is short, but each time the zero cross is repeated multiple times, sufficient current flows between the lithium ion secondary battery cell groups 1H to complete the balance, and the voltages thereof are balanced. .
  • the balance between the two lithium ion secondary battery cell groups 1H was described, but by balancing the lithium ion secondary battery cell groups 1H, the lithium ions contained therein There is also a substantial balancing effect for the individual remaining capacity imbalance of the single cells of the secondary battery.
  • Step 11 communicates with the battery module 3X using the insulating communication signal 10 to obtain information from the acceleration sensor 7 of the battery module 3X, detects whether or not the acceleration change rate exceeds a predetermined value, and detects whether the acceleration change rate exceeds a predetermined value. exceeds a predetermined value, i.e., an electric vehicle collision accident has occurred, the process proceeds to Step 12, an instruction is given to switch the battery module 3X to state c, and in Step 12 the battery module 3X is switched to state c.
  • the switching to the state c may be performed not only for the X phase, which is the object of balance control, but also for other phases or all the phases.
  • control for switching the battery module 3X to the state c when the acceleration change rate exceeds a predetermined value is not limited to the control method based on the detection and determination by the main controller 9, and the module controller in the battery module 3 It is preferable to employ a method of performing control based on the detection and judgment by 4 in parallel with the control by the main controller 9 to further increase reliability.
  • (i) is the waveform of the output voltage of the inverter 6X
  • (ii) is the waveform of the input voltage of the inverter 6X, that is, the output voltage of the battery module 3X
  • (iii) is the waveform of the two batteries in the battery module 3X.
  • 1 shows the time change of the voltage difference ⁇ V of the lithium ion secondary battery cell group 1H.
  • the output voltage waveform of the inverter 6X is approximately a sine wave of alternating current. That is, it detects and determines that it is within the time range of Tz ⁇ t, and switches the output of the battery module 3X from state a to state b in step 9 .
  • the output voltage of the battery module 3X is switched from 2V in state a to V in state b.
  • state b two lithium-ion secondary battery cell groups 1H are connected in parallel, and current flows between the two lithium-ion secondary battery cell groups 1H.
  • the output voltage of the X-phase inverter 6X which is limited to a specific phase among the three phases, is near zero cross, that is, approximately 0. Since there is, and the two phases other than the X phase are in the state a, the control of the three-phase motor is not affected.
  • the rated voltage of the three battery modules is increased, and the remaining capacity imbalance of the lithium-ion battery cell group in the battery module is eliminated.
  • the discharge capacity of the battery module it is possible to further extend the cruising range per charge of an electric vehicle, reduce the total cost of electric vehicle chargers, and improve reliability in the event of a collision. .
  • the discharge capacity of the lithium ion secondary battery can be maximized without causing the remaining capacity imbalance. can be extended, and the cruising range per charge can be further extended while suppressing cost increases.
  • the rated voltage of the battery power supply is increased, it is possible to prevent the formation of chaotic short circuits that cannot occur due to the original circuit configuration of the prior art due to the deformation and contact of metal parts, etc., in the event of a collision accident of an electric vehicle. .

Abstract

[Problem] To make it possible to efficiently control electrical discharging. [Solution] A battery module comprising: battery cell groups; a switching circuit that switches the battery cell groups to any one of a first state in which the battery cell groups are connected in series, a second state in which the battery cell groups are connected in parallel, and a third state in which all conduction paths between the battery cell groups are cut off; and an acceleration sensor, wherein a switch is made to any one of the first to third states in accordance with the rate of change of acceleration detected by the acceleration sensor.

Description

電池モジュール及びモータシステムBattery module and motor system
 本発明は、電池モジュール及びモータシステムに関する。 The present invention relates to battery modules and motor systems.
 近年、地球環境への配慮から、内燃機関すなわちエンジンで駆動する自動車がモータで駆動する電気自動車またはエンジンとモータで駆動するハイブリッド自動車に置き換わりつつある。電気自動車やハイブリッド自動車では3相モータが用いられており、特許文献1には、3相モータへの電力ラインにおける電圧変動を抑制する技術が開示されている。 In recent years, in consideration of the global environment, vehicles driven by internal combustion engines are being replaced by electric vehicles driven by motors or hybrid vehicles driven by both engines and motors. Three-phase motors are used in electric vehicles and hybrid vehicles, and Patent Literature 1 discloses a technique for suppressing voltage fluctuations in power lines to the three-phase motors.
特開2019-140824号公報JP 2019-140824 A
 従来技術のモータシステムでは、電池電源から昇圧コンバータへ入力する放電電流が非常に大きくなりがちである。 In conventional motor systems, the discharge current input from the battery power supply to the boost converter tends to be very large.
 本発明はこのような背景を鑑みてなされたものであり、効率的に放電を制御することができる技術を提供することを目的とする。 The present invention has been made in view of this background, and aims to provide a technique that can efficiently control discharge.
 上記課題を解決するための本発明の主たる発明は、電池モジュールであって、電池セル群と、前記電池セル群を直列接続する第1状態、前記電池セル群を並列接続する第2状態、または、前記電池セル群間の全ての通電経路を遮断する第3状態、のいずれか1個の状態に切り換える切換回路と、加速度センサと、を備え、前記加速度センサにより検知した加速度変化率に応じて前記第1状態ないし前記第3状態のいずれか1個の状態に変化する。 The main invention of the present invention for solving the above problems is a battery module comprising a battery cell group, a first state in which the battery cell group is connected in series, a second state in which the battery cell group is connected in parallel, or , and a third state in which all conduction paths between the battery cell groups are cut off; The state changes to any one of the first state to the third state.
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems disclosed by the present application and their solutions will be clarified in the section of the embodiment of the invention and the drawings.
 本発明によれば、効率的に放電を制御することができる。 According to the present invention, discharge can be efficiently controlled.
本実施形態に係る電池モジュール2の構成の概略を示す回路ブロック図である。2 is a circuit block diagram showing an outline of the configuration of a battery module 2 according to this embodiment; FIG. 本実施形態に係るモータシステム101の構成の概略を示す回路ブロック図である。1 is a circuit block diagram showing an outline of the configuration of a motor system 101 according to this embodiment; FIG. 本実施形態に係る電池モジュール3の構成における状態aの概略を示す回路ブロック図である。FIG. 3 is a circuit block diagram showing an outline of state a in the configuration of the battery module 3 according to this embodiment. 本実施形態に係る電池モジュール3の構成における状態bの概略を示す回路ブロック図である。3 is a circuit block diagram showing an outline of state b in the configuration of the battery module 3 according to this embodiment. FIG. 本実施形態に係る電池モジュール3の構成における状態cの概略を示す回路ブロック図である。3 is a circuit block diagram showing an outline of state c in the configuration of the battery module 3 according to this embodiment. FIG. 本実施形態に係るモータシステム106の構成の概略を示す回路ブロック図である。1 is a circuit block diagram showing an outline of the configuration of a motor system 106 according to this embodiment; FIG. 本実施形態に係るモータシステム106のメインコントローラ9の制御の概略を示すフローチャート図である。4 is a flow chart diagram showing an outline of control of the main controller 9 of the motor system 106 according to this embodiment. FIG. 本実施形態に係るモータシステム106内の1個のインバータ6の出力電圧の波形、および、電池モジュール3からインバータ6への入力電圧の波形を示すタイムチャート図である。4 is a time chart diagram showing the waveform of the output voltage of one inverter 6 in the motor system 106 according to this embodiment and the waveform of the input voltage from the battery module 3 to the inverter 6. FIG.
 電池モジュール2は、図1に示すように、複数のリチウムイオン二次電池セルを直列接続して成る高電圧定格のリチウムイオン二次電池セル群1Hを、その放電出力を出力または停止する通電遮断素子としてのFET4を介して端子5に接続する。モジュールコントローラ3は、前記リチウムイオン二次電池セル群1Hの電圧、または、前記リチウムイオン二次電池セル群1Hの電流、すなわち、シャント抵抗6の両端に現れる電圧を検知してFET4をオンまたはオフに操作し端子5からの放電出力の出力または停止を制御する。 As shown in FIG. 1, the battery module 2 includes a high-voltage-rated lithium-ion secondary battery cell group 1H formed by connecting a plurality of lithium-ion secondary battery cells in series. It is connected to a terminal 5 via an FET 4 as an element. The module controller 3 detects the voltage of the lithium ion secondary battery cell group 1H or the current of the lithium ion secondary battery cell group 1H, that is, the voltage appearing across the shunt resistor 6, and turns the FET 4 on or off. to control the output or stop of the discharge output from the terminal 5.
 モータシステム101は、図2に示すように、前記電池モジュール2と同じ構成を有する電池モジュール2U、電池モジュール2V、および、電池モジュール2Wが出力する直流電圧を高電圧パワーライン5U、高電圧パワーライン5V、および、高電圧パワーライン5Wを介してインバータ6U、インバータ6V、および、インバータ6Wへそれぞれ印加する。インバータ6U、インバータ6V、および、インバータ6Wは、前記電池モジュール2U、電池モジュール2V、および、電池モジュール2Wからそれぞれ高電圧の直流電圧を入力し交流電圧に変換し、所望の電気角度に位相をずらした3個の単相交流電圧をモータ内の3相に配置される磁極コイル7U、磁極コイル7V、および、磁極コイル7Wへそれぞれ印加し前記磁極コイル間に回転磁界を発生させてロータの回転を制御する。絶縁性通信ライン8a、8b、および8gは、独立したそれぞれの閉回路に配置される各インバータ間で絶縁性信号を送受信して同期し前記3個のインバータから出力される3個の単相交流電圧の位相を同期し、前記所望の電気角度にずらすために用いる。 The motor system 101, as shown in FIG. 2, transmits the DC voltage output by the battery module 2U, the battery module 2V, and the battery module 2W, which have the same configuration as the battery module 2, through the high voltage power line 5U and the high voltage power line 5U. 5V and applied to the inverter 6U, the inverter 6V, and the inverter 6W via the high voltage power line 5W, respectively. The inverter 6U, the inverter 6V, and the inverter 6W input high-voltage DC voltage from the battery module 2U, the battery module 2V, and the battery module 2W, respectively, convert it to AC voltage, and shift the phase to a desired electrical angle. Three single-phase AC voltages are applied to the magnetic pole coils 7U, 7V, and 7W, which are arranged in three phases in the motor, respectively, to generate a rotating magnetic field between the magnetic pole coils, thereby rotating the rotor. Control. The insulated communication lines 8a, 8b, and 8g transmit and receive insulated signals between the inverters arranged in independent closed circuits to synchronize the three single-phase alternating currents output from the three inverters. It is used to synchronize the voltage phase and shift it to the desired electrical angle.
 電池モジュール3の1つの状態、状態aである電池モジュール3(a)は、図3に示すように、2個の高電圧定格のリチウムイオン二次電池セル群1Hをオンまたはオフにそれぞれ操作されたスイッチ6を介して直列接続されて端子7に接続される。つまり、前記電池モジュール3(a)の端子7に現れる定格電圧は、前記高電圧定格のリチウムイオン二次電池セル群1Hの2倍、すなわち、電池モジュール2の端子5に現れる定格電圧の2倍の高電圧になる。 One state of the battery module 3, state a, in which the battery module 3(a), as shown in FIG. are connected in series through the switch 6 and connected to the terminal 7 . That is, the rated voltage appearing at the terminal 7 of the battery module 3(a) is twice that of the high-voltage rated lithium ion secondary battery cell group 1H, that is, twice the rated voltage appearing at the terminal 5 of the battery module 2. high voltage.
 電池モジュール3の別の1つの状態、状態bである電池モジュール3(b)は、図4に示すように、2個の高電圧定格のリチウムイオン二次電池セル群1Hをオンまたはオフにそれぞれ操作されたスイッチ6を介して並列接続されて端子7に接続される。つまり、前記電池モジュール3(b)の端子7に現れる定格電圧は、前記高電圧定格のリチウムイオン二次電池セル群1Hと同じ高電圧定格を有することになる。仮に、前記2個のリチウムイオン二次電池セル群間に残容量アンバランスがあった場合、前記スイッチ6を介して並列接続すると、前記2個のリチウムイオン二次電池セル群の残容量がバランスする。図4ではスイッチ6を模式的に有接点スイッチで図示したが、後述するモータシステム106の制御においてスイッチ6のスイッチング制御を高速で行うために例えば、FET等の半導体スイッチを用いることが好ましいが、前記FETを用いてバランスに要するFETの通電合計時間は電池モジュールの放電時間と比較して相対的に極めて短いため、例えばスイッチ6をFETとした場合、そのFETの通電時間も極めて短く前記FETの発熱のシステム全体の発熱への影響が極めて少なく前記FETの追加分のコストはシステムのトータルコストの寄与率として軽微である。 Another state of battery module 3, state b, battery module 3(b) turns on or off two high voltage rated lithium ion secondary battery cell groups 1H, respectively, as shown in FIG. They are connected in parallel via the operated switch 6 and connected to the terminal 7 . That is, the rated voltage appearing at the terminal 7 of the battery module 3(b) has the same high voltage rating as the high voltage rated lithium ion secondary battery cell group 1H. If there is an imbalance in remaining capacity between the two lithium ion secondary battery cell groups, connecting in parallel via the switch 6 will balance the remaining capacity of the two lithium ion secondary battery cell groups. do. Although the switch 6 is schematically illustrated as a contact switch in FIG. 4, it is preferable to use a semiconductor switch such as an FET in order to perform switching control of the switch 6 at high speed in controlling the motor system 106, which will be described later. Since the total energization time of the FETs required for balance using the FETs is relatively extremely short compared to the discharge time of the battery module, for example, when the switch 6 is an FET, the energization time of the FETs is also extremely short. The effect of heat generation on the heat generation of the entire system is extremely small, and the additional cost of the FETs contributes very little to the total cost of the system.
 電池モジュール3のさらに別の1つの状態、状態cである電池モジュール3(c)は、図5に示すように、2個の高電圧定格のリチウムイオン二次電池セル群1Hについて、全てのスイッチ6がオフに操作されてあらゆる部位が電気的に遮断された状態である。したがって、前記2個のリチウムイオン二次電池セル群1Hは、それぞれ電気的に浮いた状態であるため、電気自動車の衝突事故の際の金属部品の変形および接触に伴う後述のモータシステム106が有する独立した3個の閉回路の内のいずれか1個の閉回路内の短絡電流、または、前記3個の閉回路の内のいずれか2個の閉回路に渡る短絡経路形成の発生確率を低下できる。 Yet another state of the battery module 3, state c, the battery module 3(c), as shown in FIG. 6 is turned off and all parts are electrically cut off. Therefore, since the two lithium ion secondary battery cell groups 1H are in an electrically floating state, the motor system 106, which will be described later, is equipped with deformation and contact of metal parts in the event of a collision accident of an electric vehicle. Reduce the probability of occurrence of a short-circuit current in any one of three independent closed circuits or a short-circuit path across any two of the three closed circuits can.
 モータシステム106は、図6に示すように、モータシステム101の電池モジュール2を電池モジュール3に置き換え、および、メインコントローラ9を付加した構成である。メインコントローラ9は絶縁性通信信号10を用いて電池モジュール3U、電池モジュール3V、および、電池モジュール3Wとそれぞれ通信を行い各電池モジュールの情報を取得し、また、電池モジュール3内のモジュールコントローラ4へ、前記状態aないし前記状態cのいずれか1個の状態に切り換えるように指示する。また、メインコントローラ9は絶縁性通信信号13を用いてインバータ6U、インバータ6V、および、インバータ6Wとそれぞれ通信を行い各インバータの情報を取得し、前記3個のインバータ6の内のいずれか1個のインバータ6の交流電圧出力のゼロクロスとなるタイミングを検知して、後述の前記電池モジュール3内の前記2個のリチウムイオン二次電池セル群1H間のバランス制御に反映する。 The motor system 106 has a configuration in which the battery module 2 of the motor system 101 is replaced with the battery module 3 and a main controller 9 is added, as shown in FIG. Main controller 9 communicates with battery module 3U, battery module 3V, and battery module 3W using insulated communication signal 10 to obtain information on each battery module. , to switch to any one of the states a through c. In addition, the main controller 9 uses the insulating communication signal 13 to communicate with the inverters 6U, 6V, and 6W, respectively, and obtains information on each inverter. The timing of the zero crossing of the AC voltage output of the inverter 6 is detected, and reflected in the balance control between the two lithium ion secondary battery cell groups 1H in the battery module 3, which will be described later.
 モータシステム106は、電池モジュール3と同じ構成を有する電池モジュール3U、電池モジュール3V、および、電池モジュール3Wが出力する直流電圧を高電圧パワーライン5U、高電圧パワーライン5V、および、高電圧パワーライン5Wを介してインバータ6U、インバータ6V、および、インバータ6Wへそれぞれ印加する。インバータ6U、インバータ6V、および、インバータ6Wは、前記電池モジュール3U、電池モジュール3V、および、電池モジュール3Wからそれぞれ高電圧の直流電圧を入力し交流電圧に変換し、相毎に所望の電気角度に位相をずらした3個の単相交流電圧をモータ内の3相に配置される磁極コイル7U、磁極コイル7V、および、磁極コイル7Wへそれぞれ印加し前記磁極コイル間に回転磁界を発生してロータの回転を制御する。 Motor system 106 supplies DC voltage output from battery module 3U, battery module 3V, and battery module 3W, which have the same configuration as battery module 3, to high-voltage power line 5U, high-voltage power line 5V, and high-voltage power line 5V. 5W to the inverters 6U, 6V, and 6W. The inverter 6U, the inverter 6V, and the inverter 6W input high-voltage DC voltage from the battery module 3U, the battery module 3V, and the battery module 3W, respectively, converts them to AC voltage, and converts them into desired electrical angles for each phase. Three phase-shifted single-phase AC voltages are applied to the magnetic pole coils 7U, 7V, and 7W arranged in three phases in the motor to generate a rotating magnetic field between the magnetic pole coils, thereby rotating the rotor. controls the rotation of the
 絶縁性通信ライン8a、8b、および8gは、フォトカプラを利用した絶縁性信号により独立したそれぞれの閉回路に配置される3個のインバータ間で通信し前記3個のインバータから出力される3個の単相交流電圧の位相を前記所望の電気角度にずらすために用いる。 Insulated communication lines 8a, 8b, and 8g communicate between three inverters arranged in independent closed circuits by insulated signals using photocouplers, and output three inverters from the three inverters. is used to shift the phase of the single-phase AC voltage to the desired electrical angle.
 モータシステム106のメインコントローラ9の制御について、次に、図7のフローチャート図を用いて説明する。 Next, the control of the main controller 9 of the motor system 106 will be explained using the flowchart of FIG.
 モータシステム106のメインコントローラ9は、Step1にて、絶縁性通信信号13を用いてインバータ6U、インバータ6V、および、インバータ6Wの制御状態を検知し、モータが駆動中であるか否かを検知する。前記モータが駆動中、すなわち、当該モータシステム106を搭載する電気自動車が走行中または走行準備中であると判定した場合はStep2へ移行し絶縁性通信信号10を用いて3相に属する3個の電池モジュール3の全てを状態aに切り換えるように指示し、前記3個の電池モジュール3の全てが状態aに切り換わる。ここでは、電池モジュール3U、電池モジュール3V、および、電池モジュール3Wの端子7からの出力電圧は前記リチウムイオン二次電池セル群1Hの定格電圧の2倍の高電圧となり、それらの高電圧がインバータ6U、インバータ6V,および、インバータ6Wの全てに均一に印加される。 In Step 1, the main controller 9 of the motor system 106 detects the control state of the inverter 6U, the inverter 6V, and the inverter 6W using the insulating communication signal 13, and detects whether the motor is being driven. . When it is determined that the motor is driving, that is, the electric vehicle equipped with the motor system 106 is running or preparing to run, the process proceeds to Step 2, and the three phases belonging to the three phases are connected using the insulating communication signal 10. All of the battery modules 3 are instructed to switch to state a, and all of the three battery modules 3 switch to state a. Here, the output voltage from the terminals 7 of the battery module 3U, the battery module 3V, and the battery module 3W is twice as high as the rated voltage of the lithium ion secondary battery cell group 1H. 6U, inverter 6V, and inverter 6W are uniformly applied.
 一方、モータシステム106のメインコントローラ9は、Step1にて、前記モータが駆動中でない場合、すなわち、当該モータシステム106を搭載する電気自動車が停車中であると判定した場合はStep3に移行し絶縁性通信信号10を用いて3相に属する3個の電池モジュール3の全てを状態bに切り換えるように指示し、前記3個の電池モジュール3の全てが状態bに切り換わり、Step4にて充電器による充電を実行する。 On the other hand, if the main controller 9 of the motor system 106 determines in Step 1 that the motor is not being driven, that is, if it determines that the electric vehicle equipped with the motor system 106 is stopped, the process proceeds to Step 3. The communication signal 10 is used to instruct all of the three battery modules 3 belonging to three phases to switch to the state b, and all the three battery modules 3 switch to the state b. Carry out charging.
 前記充電器による電池モジュールの充電に関して、従来技術により複数の電池モジュールを充電する方法、例えば、複数の電池モジュールを直列接続または並列接続してまとめて充電する方法、または、複数の電池モジュールを個別にそれぞれ充電する方法、いずれを用いる場合においても、電気自動車の1充電あたりの航続距離延長を目的として電池モジュールを高電圧化すると、その高電圧化した電池モジュールを充電するための充電器の充電回路の出力電圧定格も高電圧化を要し、前記充電回路の出力電圧定格の高電圧化が充電器の顕著なコストアップにつながる。一方、本発明の実施例の電池モジュール3では、前記Step3で前期状態bに切り換えて電池モジュール3の端子7に現れる定格電圧を通常の放電時である状態aに対して半減できるため、充電器の充電回路の出力電圧定格も半減でき、前記充電器のコストダウンに寄与する。 Regarding the charging of the battery modules by the charger, a method of charging a plurality of battery modules according to the conventional technology, for example, a method of connecting a plurality of battery modules in series or in parallel and charging them collectively, or a method of charging a plurality of battery modules individually. In either case, if the voltage of the battery module is increased for the purpose of extending the cruising distance per charge of an electric vehicle, the charging of the charger for charging the battery module with the increased voltage The output voltage rating of the circuit also needs to be increased, and the increase in the output voltage rating of the charging circuit leads to a significant increase in the cost of the charger. On the other hand, in the battery module 3 of the embodiment of the present invention, the rated voltage appearing at the terminal 7 of the battery module 3 can be reduced to half of the normal discharging state a by switching to the former state b in the above Step 3. The output voltage rating of the charging circuit can also be halved, contributing to cost reduction of the charger.
 モータシステム106のメインコントローラ9は、Step5にて、絶縁性通信信号10を用いて3相に属する3個の電池モジュール3の状態をそれぞれ検知し、3相の内の1相をX相とする制御対象を選択する。前記X相の選択は、各電池モジュール3が有する2個のリチウムイオン二次電池セル群1H間の残容量アンバランスが相対的に大きいものから順に選択することが好ましい。次に、Step6にて、X相の閉回路に属する電池モジュール3Xを状態aに切り換えるように指示し、前記電池モジュールXはStep2の状態のままの状態aを維持し、または、後述するStep10から帰還した場合は、電池モジュール3Xは状態bから状態aに切り換わる。 In Step 5, the main controller 9 of the motor system 106 uses the insulating communication signal 10 to detect the states of the three battery modules 3 belonging to the three phases, and sets one of the three phases to the X phase. Select a control target. The selection of the X-phase is preferably performed in descending order of remaining capacity imbalance between the two lithium-ion secondary battery cell groups 1H included in each battery module 3 . Next, in Step 6, the battery module 3X belonging to the X-phase closed circuit is instructed to be switched to the state a, and the battery module X maintains the state a as it was in Step 2, or is changed from Step 10 to be described later. When returned, the battery module 3X switches from state b to state a.
 Step7にて、メインコントローラ9は、絶縁性通信信号10を用いて電池モジュール3Xと通信を行い前記電池モジュール3Xが有する加速度センサ7の情報を取得し、加速度変化率が所定値未満であるか否かを検知する。前記加速度変化率が所定値未満である、すなわち、電気自動車が定速走行中である、と判定するとStep8へ進み、絶縁性通信信号13を用いてインバータ6Xと通信を行い前記インバータ6Xが出力する交流電圧がゼロクロスとなるタイミングを取得し、前記ゼロクロスの時点を中点とする所定電気角度以内または所定時間以内の時間の範囲内か否かを検知する。前記ゼロクロスの時点を中点とする所定角度以内または所定時間以内の時間の範囲内でないと判定すると、Step6へ帰還し、電池モジュール3Xを状態aに切り換えるように指示し、前記電池モジュール3Xが状態aに切り換わる一方、前記ゼロクロスの時点を中点とする所定角度以内または所定時間以内の時間の範囲内であると判定すると、Step9へ移行し、電池モジュール3Xを状態bに切り換えるように指示し、前記電池モジュール3Xが状態bに切り換わり前記2個のリチウムイオン二次電池セル群1Hが並列接続されて残容量がバランスする。 In Step 7, the main controller 9 communicates with the battery module 3X using the insulating communication signal 10 to obtain information from the acceleration sensor 7 of the battery module 3X, and determines whether the rate of change in acceleration is less than a predetermined value. detect whether If it is determined that the rate of change in acceleration is less than a predetermined value, that is, that the electric vehicle is running at a constant speed, the process proceeds to Step 8, in which the insulating communication signal 13 is used to communicate with the inverter 6X, and the inverter 6X outputs. The timing at which the AC voltage reaches zero cross is acquired, and it is detected whether or not it is within a predetermined electrical angle or within a predetermined period of time with the point of time of the zero cross as the midpoint. If it is determined that it is not within the predetermined angle or the time range within the predetermined time with the time of the zero crossing as the midpoint, it returns to Step 6, instructs to switch the battery module 3X to the state a, and the battery module 3X is in the state a. While switching to state a, if it is determined that the state is within a predetermined angle or within a predetermined period of time with the point of time of the zero crossing as the middle point, the process proceeds to step 9, and an instruction is given to switch the battery module 3X to state b. , the battery module 3X is switched to the state b, the two lithium ion secondary battery cell groups 1H are connected in parallel, and the remaining capacities are balanced.
 モータシステム106のメインコントローラ9は、Step10にて、絶縁性通信信号10を用いて電池モジュール3Xの情報を取得し前記電池モジュール3X内の2個のリチウムイオン二次電池セル群1Hのバランスが完了したか否かを検知し、前記バランスが完了していない、すなわち、前記2個のリチウムイオン二次電池セル群1Hの電圧差が所定値以下でないと判定するとStep6へ帰還し前記バランスが完了するまで、すなわち、前記2個のリチウムイオン二次電池セル群1Hの電圧差が所定値以下であると判定するまで前記Step7ないしStep8の前記ゼロクロスのタイミングの都度、状態aおよび状態bの切り換えを繰り返す。状態bである時間は短いが、前記ゼロクロスの都度、複数回繰り返されることで前記バランスを完了するのに十分な前記リチウムイオン二次電池セル群1H間の電流が往来しそれらの電圧が均衡する。本発明の実施例では、前記2個のリチウムイオン二次電池セル群1H間のバランスについて説明したが、前記リチウムイオン二次電池セル群1H間のバランスを行うことにより、それらに含まれるリチウムイオン二次電池の単セル個別の残容量アンバランスに対しても実質的なバランス効果がある。 In Step 10, the main controller 9 of the motor system 106 acquires the information of the battery module 3X using the insulating communication signal 10, and balance of the two lithium ion secondary battery cell groups 1H in the battery module 3X is completed. If it is determined that the balance has not been completed, that is, the voltage difference between the two lithium ion secondary battery cell groups 1H is not equal to or less than a predetermined value, the process returns to Step 6 and the balance is completed. Until, that is, until it is determined that the voltage difference between the two lithium ion secondary battery cell groups 1H is equal to or less than a predetermined value, the switching between state a and state b is repeated each time the zero cross timing of steps 7 and 8 is reached. . The time in the state b is short, but each time the zero cross is repeated multiple times, sufficient current flows between the lithium ion secondary battery cell groups 1H to complete the balance, and the voltages thereof are balanced. . In the embodiment of the present invention, the balance between the two lithium ion secondary battery cell groups 1H was described, but by balancing the lithium ion secondary battery cell groups 1H, the lithium ions contained therein There is also a substantial balancing effect for the individual remaining capacity imbalance of the single cells of the secondary battery.
 一方、モータシステム106のメインコントローラ9は、Step10にて前記バランスが完了した、すなわち、前記2個のリチウムイオン二次電池セル群1Hの電圧差が所定値以下であると判定するとStep11へ移行し、絶縁性通信信号10を用いて電池モジュール3Xと通信を行い前記電池モジュール3Xが有する加速度センサ7の情報を取得し、加速度変化率が所定値を超えるか否かを検知し、前記加速度変化率が所定値を超える、すなわち、電気自動車の衝突事故が発生した、と判定するとStep12に進み、電池モジュール3Xを状態cに切り換えるように指示し、Step12にて前記電池モジュール3Xが状態cに切り換わる。ここで、前記2個の高電圧定格のリチウムイオン二次電池セル群1Hは、それぞれ電気的に浮いた状態となるため、前記電気自動車の衝突事故の際の金属部品の変形および接触に伴う3個の閉回路の内のいずれか1個の閉回路内の短絡経路の形成、または、前記3個の閉回路の内のいずれか2個の閉回路に渡る短絡経路の形成の発生確率を低減しリチウムイオン二次電池の短絡電流を起因とする発火リスクを予防できる。なお、前記状態cへの切り換えはバランス制御対象のX相に限らず他の相または全ての相に対して行っても良い。 On the other hand, when the main controller 9 of the motor system 106 determines in Step 10 that the balance has been completed, that is, that the voltage difference between the two lithium ion secondary battery cell groups 1H is equal to or less than a predetermined value, the process proceeds to Step 11. , communicates with the battery module 3X using the insulating communication signal 10 to obtain information from the acceleration sensor 7 of the battery module 3X, detects whether or not the acceleration change rate exceeds a predetermined value, and detects whether the acceleration change rate exceeds a predetermined value. exceeds a predetermined value, i.e., an electric vehicle collision accident has occurred, the process proceeds to Step 12, an instruction is given to switch the battery module 3X to state c, and in Step 12 the battery module 3X is switched to state c. . Here, since the two lithium-ion secondary battery cell groups 1H with high voltage rating are in an electrically floating state, the 3 cells due to deformation and contact of metal parts in the case of a collision accident of the electric vehicle. Reduce the probability of forming a short-circuit path within any one of the closed circuits, or forming a short-circuit path across any two of the three closed circuits. It is possible to prevent the risk of ignition caused by the short-circuit current of the lithium-ion secondary battery. It should be noted that the switching to the state c may be performed not only for the X phase, which is the object of balance control, but also for other phases or all the phases.
 前述の加速度変化率の検知については、前記Step7以降の電気自動車の定速走行中の3相内の1相に限定する電池モジュール3Xの状態aまたは状態bの切り換え制御により電気自動車の加速時などの過渡的なモータ制御への影響を無くすこと、および、前記Step11以降の状態cへの切り換え制御により電気自動車の電気自動車の衝突事故時の信頼性を向上することを目的としており、電池モジュール3X内の加速度センサ7を用いる方法、または、電池モジュール3Xの外に配置される加速度センサを用いる方法、のいずれの方法であっても良い。また、上述の加速度変化率が所定値を超えた場合に電池モジュール3Xを状態cに切り換える制御は、前記メインコントローラ9による検知および判定に基づき制御する方法に限らず、電池モジュール3内のモジュールコントローラ4による検知および判定に基づく制御を前記メインコントローラ9による制御と並行して行い信頼性をより高める手法を採ると好適である。 Regarding the detection of the rate of change in acceleration described above, when the electric vehicle is accelerated by switching control of state a or state b of the battery module 3X, which is limited to one of the three phases during constant speed running of the electric vehicle after Step 7, and to improve the reliability of the electric vehicle at the time of a collision accident by switching control to the state c after the above Step 11, and the battery module 3X Either a method using the acceleration sensor 7 inside the battery module 3X or a method using an acceleration sensor arranged outside the battery module 3X may be used. Further, the control for switching the battery module 3X to the state c when the acceleration change rate exceeds a predetermined value is not limited to the control method based on the detection and determination by the main controller 9, and the module controller in the battery module 3 It is preferable to employ a method of performing control based on the detection and judgment by 4 in parallel with the control by the main controller 9 to further increase reliability.
 上述のStep6ないしStep10の制御について、図8のタイムチャート図を用いて、次に説明する。 The control of Steps 6 to 10 described above will be described below using the time chart diagram of FIG.
 図8の(i)は、インバータ6Xの出力電圧の波形、(ii)は、インバータ6Xの入力電圧すなわち電池モジュール3Xの出力電圧の波形、また、(iii)は、電池モジュール3X内の2個のリチウムイオン二次電池セル群1Hの電圧差ΔVの時間変化を示す。 In FIG. 8, (i) is the waveform of the output voltage of the inverter 6X, (ii) is the waveform of the input voltage of the inverter 6X, that is, the output voltage of the battery module 3X, and (iii) is the waveform of the two batteries in the battery module 3X. 1 shows the time change of the voltage difference ΔV of the lithium ion secondary battery cell group 1H.
 図8(i)に示すようにインバータ6Xの出力電圧波形は交流の概ね正弦波であり、Step8にて前記インバータ6Xの出力波形がゼロクロスとなる時点Tzを中点とする所定時間tの範囲内、すなわち、Tz±tの時間範囲内にあることを検出および判定しStep9にて電池モジュール3Xの出力を状態aから状態bに切り換える。この際、前記リチウムイオン二次電池セル群1Hの定格電圧をVとすると、前記電池モジュール3Xの出力電圧は状態aの2Vから状態bのVに切り換わる。状態bでは2個のリチウムイオン二次電池セル群1Hが並列接続された状態につき2個のリチウムイオン二次電池セル群1H間で電流が往来しそれぞれの電圧が均衡しΔVがほぼ0になり、状態aでΔVは相応の値を示し、状態bおよび状態aの切り換えが繰り返される度に徐々に状態aにおけるΔVが低下して0に近づき、最終的に、状態bおよび状態aにおいてΔV=0となり前記2個のリチウムイオン二次電池セル群1H間の残容量アンバランスが解消され、その放電性能を最大限発揮し、この制御が3相の閉回路に属する全ての電池モジュール3に順次適用されて、電気自動車の1充電あたりの航続距離延長に貢献する。また、X相に属する前記電池モジュール3Xが状態bである時間範囲内は、3相の内、特定の1相に限られる前記X相のインバータ6Xの出力電圧がゼロクロス付近、すなわち、ほぼ0であり、かつ、前記X相以外の2相が状態aであるため、3相モータの制御に影響しない。 As shown in FIG. 8(i), the output voltage waveform of the inverter 6X is approximately a sine wave of alternating current. That is, it detects and determines that it is within the time range of Tz±t, and switches the output of the battery module 3X from state a to state b in step 9 . At this time, if the rated voltage of the lithium ion secondary battery cell group 1H is V, the output voltage of the battery module 3X is switched from 2V in state a to V in state b. In state b, two lithium-ion secondary battery cell groups 1H are connected in parallel, and current flows between the two lithium-ion secondary battery cell groups 1H. , .DELTA.V in the state a shows a corresponding value, and every time the switching between the state b and the state a is repeated, the .DELTA.V in the state a gradually decreases and approaches 0, and finally, in the state b and the state a, .DELTA.V= 0, the remaining capacity imbalance between the two lithium ion secondary battery cell groups 1H is eliminated, the discharge performance is maximized, and this control is sequentially applied to all the battery modules 3 belonging to the three-phase closed circuit. Applied, it contributes to the extension of the cruising range per charge of electric vehicles. Further, within the time range in which the battery module 3X belonging to the X phase is in the state b, the output voltage of the X-phase inverter 6X, which is limited to a specific phase among the three phases, is near zero cross, that is, approximately 0. Since there is, and the two phases other than the X phase are in the state a, the control of the three-phase motor is not affected.
 以上より、モータシステム106を搭載した電気自動車は、前記3個の電池モジュールの定格電圧を高電圧化して、かつ、前記電池モジュール内のリチツムイオン電池セル群の残容量アンバランスを解消してそれぞれの電池モジュールの放電容量を最大限に発揮し電気自動車の1充電あたりのさらなる航続距離延長、電気自動車の充電器も含むトータルコストダウン、および、衝突事故を想定した信頼性の向上の両立を実現できる。 As described above, in the electric vehicle equipped with the motor system 106, the rated voltage of the three battery modules is increased, and the remaining capacity imbalance of the lithium-ion battery cell group in the battery module is eliminated. By maximizing the discharge capacity of the battery module, it is possible to further extend the cruising range per charge of an electric vehicle, reduce the total cost of electric vehicle chargers, and improve reliability in the event of a collision. .
 本発明のモータシステムを搭載する電気自動車では、電池電源の定格電圧を従来比の2倍に上げても残容量アンバランスを生じることなくリチウムイオン二次電池の放電容量を最大限発揮し放電時間を延長でき、コストアップを抑制しながら1充電あたりのさらなる航続距離延長を実現できる。また、前記電池電源の定格電圧を上げても電気自動車の衝突事故の際の金属部品等の変形および接触に伴う従来技術の本来の回路構成上起こり得ない無秩序な短絡回路形成の発生を予防できる。 In an electric vehicle equipped with the motor system of the present invention, even if the rated voltage of the battery power supply is doubled compared to the conventional one, the discharge capacity of the lithium ion secondary battery can be maximized without causing the remaining capacity imbalance. can be extended, and the cruising range per charge can be further extended while suppressing cost increases. In addition, even if the rated voltage of the battery power supply is increased, it is possible to prevent the formation of chaotic short circuits that cannot occur due to the original circuit configuration of the prior art due to the deformation and contact of metal parts, etc., in the event of a collision accident of an electric vehicle. .
 同様に、本発明のモータシステムを搭載するハイブリッド自動車では、電池電源からモータへの放電時間を延長でき、コストアップを抑制しながらさらなる燃費向上も実現できる。
さらに、充電器のコストダウンにより電気自動車またはプラグインハイブリッド自動車のシステムトータルのコストダウンを実現できる。
Similarly, in a hybrid vehicle equipped with the motor system of the present invention, it is possible to extend the discharge time from the battery power supply to the motor, thereby realizing further improvement in fuel efficiency while suppressing cost increases.
Furthermore, the reduction in the cost of the charger makes it possible to reduce the total system cost of the electric vehicle or the plug-in hybrid vehicle.
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 Although the present embodiment has been described above, the above embodiment is intended to facilitate understanding of the present invention, and is not intended to limit and interpret the present invention. The present invention can be modified and improved without departing from its spirit, and the present invention also includes equivalents thereof.
  3   電池モジュール
  9   メインコントローラ
  106 モータシステム
3 battery module 9 main controller 106 motor system

Claims (2)

  1.  電池セル群と、
     前記電池セル群を直列接続する第1状態、前記電池セル群を並列接続する第2状態、または、前記電池セル群間の全ての通電経路を遮断する第3状態、のいずれか1個の状態に切り換える切換回路と、
     加速度センサと、
     を備え、
     前記加速度センサにより検知した加速度変化率に応じて前記第1状態ないし前記第3状態のいずれか1個の状態に変化する電池モジュール。
    a battery cell group;
    Any one state of a first state in which the battery cell groups are connected in series, a second state in which the battery cell groups are connected in parallel, or a third state in which all current paths between the battery cell groups are cut off. a switching circuit that switches to
    an acceleration sensor;
    with
    A battery module that changes to one of the first state through the third state according to the acceleration change rate detected by the acceleration sensor.
  2.  電池電源によってモータを駆動するモータシステムであって、
     複数の励磁コイルまたは磁極コイルにそれぞれ交流電圧を印加してロータを回転するモータと、
     複数の電池モジュールと、
     を備え、
     前記電池モジュールと前記モータの励磁コイルまたは磁極コイルは、インバータ回路を介してそれぞれ独立した複数の閉回路を構成し、
     前記複数の閉回路の内少なくとも1個の閉回路において、前記加速度変化率が所定値未満である状態を検知した場合、および、前記インバータ回路が出力する交流電圧のゼロクロス時点を中点とする所定の電気角度以下の時間範囲内にある場合、前記電池モジュールを前記第2状態とし、
     前記ゼロクロス時点を中点とする所定の電気角度以下の時間範囲外にある場合、前記電池モジュールを前記第1状態とし、
     前記加速度変化率が所定値以上である状態を検知した場合、前記電池モジュールを前記第3状態とするモータシステム。
    A motor system that drives a motor with a battery power supply,
    a motor that rotates a rotor by applying AC voltages to a plurality of excitation coils or magnetic pole coils;
    a plurality of battery modules;
    with
    The battery module and the excitation coil or the magnetic pole coil of the motor constitute a plurality of independent closed circuits via an inverter circuit,
    When it is detected that the rate of change in acceleration is less than a predetermined value in at least one closed circuit among the plurality of closed circuits, and when the zero cross point of the AC voltage output by the inverter circuit is set as a midpoint the battery module is in the second state when the time range is equal to or less than the electrical angle of
    if the time is outside the time range equal to or less than a predetermined electrical angle centered at the zero cross point, the battery module is placed in the first state;
    A motor system in which the battery module is placed in the third state when a state in which the rate of change in acceleration is equal to or greater than a predetermined value is detected.
PCT/JP2021/023848 2021-06-23 2021-06-23 Battery module and motor system WO2022269824A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023848 WO2022269824A1 (en) 2021-06-23 2021-06-23 Battery module and motor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023848 WO2022269824A1 (en) 2021-06-23 2021-06-23 Battery module and motor system

Publications (1)

Publication Number Publication Date
WO2022269824A1 true WO2022269824A1 (en) 2022-12-29

Family

ID=84545399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023848 WO2022269824A1 (en) 2021-06-23 2021-06-23 Battery module and motor system

Country Status (1)

Country Link
WO (1) WO2022269824A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170602A (en) * 1993-12-15 1995-07-04 Toshiba Corp Electric vehicle
JPH11252711A (en) * 1998-03-04 1999-09-17 Motor Jidosha Kk Power device for electric car
CN107128189A (en) * 2017-04-26 2017-09-05 纳恩博(北京)科技有限公司 battery control method, device and electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170602A (en) * 1993-12-15 1995-07-04 Toshiba Corp Electric vehicle
JPH11252711A (en) * 1998-03-04 1999-09-17 Motor Jidosha Kk Power device for electric car
CN107128189A (en) * 2017-04-26 2017-09-05 纳恩博(北京)科技有限公司 battery control method, device and electric vehicle

Similar Documents

Publication Publication Date Title
AU2019410616B2 (en) Charging method for power battery, motor control circuit and vehicle
US11685267B2 (en) Battery with a battery cell and method of operation thereof
JP2023184574A (en) Power conversion device, program, and method of controlling power conversion device
WO2022131019A1 (en) Power conversion device
US11303145B2 (en) Charging system
US20160118922A1 (en) Drive battery for in-phase operation of an electric motor, drive system and a method for operating the drive system
CN115917836B (en) Charging and discharging circuit, system and control method thereof
JP2020005389A (en) Power supply system
CN109962660B (en) Driving circuit, electric automobile driving system and driving method
EP4358395A1 (en) Charging and discharging circuit and system, and control method therefor
De Simone et al. Comparative analysis of modulation techniques for modular multilevel converters in traction drives
CN116061765B (en) Battery heating system and electric truck
WO2022269824A1 (en) Battery module and motor system
CN209982383U (en) Drive circuit and electric automobile driving system
JP5960912B2 (en) Drive system for electric vehicle and method for charging a battery by an internal combustion engine
CN113783477B (en) Multi-working-mode motor driving system for electric automobile
JP2020005394A (en) Power source system
WO2022137531A1 (en) Power supply circuit
CN106788117B (en) Electric drive device and electric apparatus
WO2022269826A1 (en) Charging system
JP2021005944A (en) Charging system
WO2023073979A1 (en) Charge/discharge circuit
WO2022269828A1 (en) Electrical discharge system
WO2022269827A1 (en) Charging system
WO2022137532A1 (en) Power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE