WO2022268097A1 - 一种光放大器以及光通信系统 - Google Patents

一种光放大器以及光通信系统 Download PDF

Info

Publication number
WO2022268097A1
WO2022268097A1 PCT/CN2022/100288 CN2022100288W WO2022268097A1 WO 2022268097 A1 WO2022268097 A1 WO 2022268097A1 CN 2022100288 W CN2022100288 W CN 2022100288W WO 2022268097 A1 WO2022268097 A1 WO 2022268097A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical amplifier
optical
value
signal light
light
Prior art date
Application number
PCT/CN2022/100288
Other languages
English (en)
French (fr)
Inventor
熊迪
赵壮
邓宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022268097A1 publication Critical patent/WO2022268097A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2931Signal power control using AGC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control

Definitions

  • the embodiments of the present application relate to the technical field of optical transmission, and in particular to an optical amplifier and an optical communication system.
  • EDFA erbium-doped fiber amplifier
  • Figure 1 a multi-stage amplification structure as shown in Figure 1 is usually adopted, where the first stage The erbium fiber of the optical amplification structure is in a saturated state, which leads to the strengthening of the gain competition between the channels, and the cascading of optical amplifiers in the communication network link, the increase in the number of waves added and dropped, the switching speed becomes faster, and even the fiber is broken.
  • the open-loop response time of the optical amplifier is usually reduced through the electronic control circuit to change the pumping power of the optical amplifier structure at all levels, so that the change of the pumping power Try to keep up with the change of optical power at the input end of the optical amplifier to reduce signal overshoot.
  • the change of the optical power at the input end of the optical amplifier is detected by the detector at the input end, and then the configuration table is queried by the optical amplifier controller according to the current input power of the optical amplifier, and the optical amplifier structure of each level is controlled through the corresponding pump current of pump power.
  • the electronic control open-loop response time cannot be infinitely reduced, and the electronic control response always lags behind the optical power change at the input end of the optical amplifier. Therefore, the current method can only suppress part of the transient overshoot of the optical amplifier, but cannot completely eliminate it.
  • the transient overshoot phenomenon of optical amplifiers; and with the increase of the cascaded number of optical amplifiers, this transient overshoot effect will be continuously enlarged, thereby affecting network performance.
  • the embodiment of the present application provides an optical amplifier and an optical communication system, by adaptively adjusting the energy of the complementary light corresponding to the signal light, real-time and dynamically releasing or consuming the pumping energy required by the optical amplification structures at all levels, Thereby eliminating the transient overshoot phenomenon.
  • the embodiment of the present application provides an optical amplifier.
  • the optical amplifier includes an optical amplifier controller, a multiplexer, a first device and an N-level optical amplification structure arranged in a cascaded manner.
  • the optical amplifier controller is connected with the first device and the optical amplification structures of each level in the N-level optical amplification structure.
  • the multiplexer is connected to the input end of the first-stage optical amplification structure, or between the output end of the Kth-stage optical amplification structure and the input end of the K+1-th-stage optical amplification structure.
  • the first end of the first device is connected to the multiplexer, and the second end of the first device is connected to the output end of the Nth optical amplification structure or is connected to the output end of the Mth optical amplification structure and the M+th Between the input terminals of the first-stage optical amplification structure, N ⁇ 2, 1 ⁇ K ⁇ M, 2 ⁇ M ⁇ N, where N, M and K are integers.
  • the N-level optical amplification structure is used to amplify signal light.
  • the optical amplifier controller is configured to obtain a first gain value of the signal light, and determine a first VOA value and a first pumping current value corresponding to the first gain value according to the association relationship.
  • the described correlation is the relationship between the first gain value, the first VOA value and the first pumping current value
  • the first VOA value reflects the loop attenuation of the first device
  • the first pumping current value reflects the N-level light
  • the optical amplifier controller then sends the first VOA value to the first device.
  • the first device is used to adjust the attenuation of the loop according to the first VOA value, so as to lase the complementary light corresponding to the signal light.
  • the first device in the optical control loop can first adjust the attenuation of the loop according to the first VOA value corresponding to the first gain value, so as to ensure that the complementary light corresponding to the signal light can remain normal Work.
  • the complementary optical when the wave is added and dropped, due to the fast response speed of the optical control circuit, the complementary optical According to the optical amplifier input power of the signal light, it can release or consume the pumping energy of the optical amplifier structures at all levels under the enablement of the first pumping current value, thereby eliminating the optical amplifier transients generated by the signal light in the optical amplifier structures of all levels overshoot phenomenon.
  • the optical amplifier controller is further configured to obtain a second gain value of the signal light, and a second VOA value and a second pumping current value corresponding to the second gain value. And, when the first gain value is not equal to the second gain value, the optical amplifier controller updates the first gain value to the second gain value, updates the first VOA value to the second VOA value, and The current value is updated to the second pumping current value.
  • the optical amplifier controller can also update the first gain value to the second gain value when the first gain value is not equal to the second gain value, and update the first VOA value to the second VOA value and the The first pumping current value is updated to the second pumping current value, which can dynamically adjust the gain of the signal light to meet the requirements of different users on the gain of the signal light.
  • the optical amplifier controller is also used to obtain the input power of the optical amplifier at the current moment and the input power of the optical amplifier at the previous moment of the signal light, and The input power of the optical amplifier determines the change of the input power of the optical amplifier. Then, when the variation of the input power of the optical amplifier is greater than the open-loop threshold, the optical amplifier controller also controls the pumping power of the optical amplifier structures at all levels according to the second pumping current value, and sends the second VOA value to the first device . In this way, the first device is also used to adjust the loop attenuation according to the second VOA value.
  • the optical amplifier controller is also used to obtain the output power of the optical amplifier at the current moment of the signal light, and calculate the actual gain of the signal light based on the input power of the optical amplifier at the current moment and the output power of the optical amplifier at the current moment value. Then, the optical amplifier controller calculates a gain difference value between the actual gain value and the second gain value. And, when the gain difference value is greater than or equal to the closed-loop threshold value, the optical amplifier controller adjusts the third pumping current value corresponding to the actual gain value according to the gain difference value, so as to control the pumping power of the optical amplification structures at all levels, and adjusting the third VOA value corresponding to the actual gain value according to the gain difference value.
  • the closed-loop threshold is smaller than the open-loop threshold.
  • the first device is also used for: adjusting the loop attenuation according to the third VOA value.
  • the optical amplifier further includes a second device.
  • the first end of the second device is connected to the output end of the Mth level optical amplification structure, the first end of the second device is connected to the input end of the M+1th level optical amplification structure, and the third end of the second device connected to the first device.
  • the first end of the second device is connected to the output end of the Nth-level optical amplification structure.
  • the second device is used to determine the wavelength band of the complementary light, or determine the split power of the complementary light.
  • the second device can be used as an integral part of the aforementioned optical control circuit to determine the wavelength band of complementary light, or determine the split power of complementary light, and provide a laser wavelength for the process of lasing complementary light.
  • the second device includes a first wave splitter.
  • the first wave splitter is used to separate the waveband of the signal light and the waveband of the complementary light to determine the waveband of the complementary light.
  • the first wave splitter is used to generate filter spectral lines and acquire spontaneous emission ASE spectral lines modulated by the N-stage optical amplification structure, and determine the the wavelength of complementary light.
  • the second device includes a coupler.
  • the coupler is used to determine the split power of the signal light and the complementary light.
  • the first device includes a first adjustable optical attenuator and a first filter.
  • the first filter is used to select the lasing wavelength from the wave band of the complementary light, so as to lasing the complementary light according to the lasing wavelength after the first adjustable optical attenuator adjusts the attenuation of the loop.
  • the first device includes a second adjustable optical attenuator.
  • the second adjustable optical attenuator is used for lasing the complementary light according to the wavelength of the complementary light after adjusting the attenuation of the loop.
  • the second device in the optical amplifier does not include the first filter, and can directly determine the wavelength of the complementary light through the second wave splitter, without the need to select a suitable wavelength from the wave band of the complementary light through the filter again. Lasing wavelength saves cost and volume.
  • the first device includes a third adjustable optical attenuator and a second filter.
  • the second filter is used to determine the optical power of the complementary light from the light split power of the signal light and the complementary light, so as to use the third adjustable optical attenuator to adjust the attenuation of the loop, and use the complementary light according to the complementary light Optical power lasing.
  • the optical amplifier further includes a third filter and an output terminal of the optical amplifier.
  • the first end of the third filter is connected to the output end of the optical amplifier, and the second end of the third filter is connected to the optical amplifier controller.
  • the third filter is used to filter the complementary light before the optical amplifier controller acquires the output power of the optical amplifier at the current moment of the signal light.
  • the optical amplifier further includes an input detector.
  • the first end of the input end detector is connected to the input end of the first-stage optical amplification structure, and the second end of the input end detector is connected to the optical amplifier controller.
  • the input detector is used to detect the input power of the optical amplifier at the current moment of the signal light, and send the input power of the optical amplifier at the current moment to the optical amplifier controller.
  • the optical amplifier further includes an output detector.
  • the first end of the output detector is connected to the output end of the Nth stage optical amplification structure or the second device, and the second end of the output detector is connected to the optical amplifier controller.
  • the detector at the output end is used to detect the output power of the optical amplifier at the current moment of the signal light, and send the output power of the optical amplifier at the current moment to the optical amplifier controller.
  • the optical amplifier further includes an optical amplifier input end.
  • the optical amplifier input end is connected to the input end of the first stage optical amplification structure.
  • an embodiment of the present application provides an optical communication system, and the optical communication system may include an optical transmitter and at least one optical amplifier according to the first aspect or any possible optical amplifier of the first aspect.
  • the optical transmitter is used to generate signal light.
  • the optical communication system may further include a first optical multiplexer/demultiplexer, a second optical multiplexer/demultiplexer, an optical fiber link, and an optical receiver.
  • the optical communication system may further include a filter device.
  • the embodiment of the present application provides a transient overshoot processing method.
  • the transient overshoot processing method can be applied to optical amplifiers.
  • the optical amplifier acquires a first gain value of the signal light, and determines a first VOA value and a first pumping current value corresponding to the first gain value according to an association relationship.
  • the correlation is the relationship between the first gain value, the first VOA value and the first pumping current value
  • the first VOA value reflects the loop attenuation of the first device in the optical amplifier
  • the pumping current value reflects the pumping current required by each level of optical amplification structures in the N-level optical amplification structures in the optical amplifier.
  • the optical amplifier adjusts the attenuation of the loop according to the first VOA value, so as to excite the complementary light corresponding to the signal light.
  • the processing method further includes: acquiring a second gain value of the signal light, and a second VOA value and a second pumping current value corresponding to the second gain value.
  • the optical amplifier updates the first gain value to the second gain value, and updates the first VOA value to the second VOA value and updating the first pumping current value to the second pumping current value.
  • the processing method further includes: the optical amplifier acquires the optical amplifier input power of the signal light at the current moment and the optical amplifier input power at the previous moment, and according to the optical amplifier input power at the current moment and the previous optical amplifier input power The input power of the optical amplifier at any moment determines the variation of the input power of the optical amplifier. Then, the optical amplifier controls the pumping power of the optical amplification structure at each stage according to the second pumping current value, and adjusts the loop attenuation according to the second VOA value when the variation of the input power of the optical amplifier is greater than the open-loop threshold. size.
  • the processing method further includes: the optical amplifier acquires the output power of the optical amplifier at the current moment of the signal light, and calculates the signal based on the input power of the optical amplifier at the current moment and the output power of the optical amplifier at the current moment. The actual gain value of the light. Then, the optical amplifier calculates a gain difference value between said actual gain value and said second gain value. Moreover, the optical amplifier also adjusts the third pumping current value corresponding to the actual gain value according to the gain difference value when the gain difference value is greater than or equal to the closed-loop threshold value, so as to control the optical amplifying the pumping power of the structure, and adjusting a third VOA value corresponding to the actual gain value according to the gain difference value. Wherein, the closed-loop threshold is smaller than the open-loop threshold. The optical amplifier also adjusts the loop attenuation according to the third VOA value.
  • the processing method further includes: the optical amplifier determines the wavelength band of the complementary light or determines the split power of the complementary light.
  • the processing method further includes: an optical amplifier separates the wave band of the signal light from the wave band of the complementary light, so as to determine the wave band of the complementary light.
  • the optical amplifier selects a lasing wavelength from the wavelength band of the complementary light for lasing the complementary light according to the lasing wavelength after adjusting the attenuation of the loop.
  • the processing method further includes: the optical amplifier generates a filter spectrum line and acquires the spontaneous emission ASE spectrum line modulated by the N-level optical amplification structure, and based on the filter spectrum line and the spontaneous emission ASE spectrum The line determines the wavelength of the complementary light.
  • the optical amplifier lases the complementary light according to the wavelength of the complementary light after adjusting the attenuation of the loop.
  • the processing method further includes: an optical amplifier determining the split power of the signal light and the complementary light. Moreover, the optical amplifier determines the optical power of the complementary light from the split power of the signal light and the complementary light, so as to convert the complementary light according to the complementary light after adjusting the attenuation of the loop. of optical power lasing.
  • the processing method further includes: the optical amplifier filters the complementary light before the optical amplifier controller obtains the optical amplifier output power of the signal light at the current moment.
  • the processing method further includes: the optical amplifier detects the input power of the optical amplifier at the current moment of the signal light.
  • the processing method further includes: the optical amplifier detects the output power of the optical amplifier at the current moment of the signal light.
  • the optical amplifier controller controls the pumping power of the optical amplification structures at all levels according to the first pumping current value, and the first VOA value is fed back to the first device.
  • the first device can first adjust the loop attenuation according to the first VOA value, thereby adjusting the energy of the complementary light.
  • the complementary light can release or consume the pumping energy of the optical amplification structures at all levels under the enablement of the first pumping current value, so as to eliminate the transient overshoot of the optical amplifiers generated by the signal light in the optical amplification structures of all levels. Phenomenon.
  • FIG. 1 is a schematic diagram of a multi-stage amplification structure in the related art
  • FIG. 2a provides a schematic structural diagram of an optical amplifier according to an embodiment of the present application
  • FIG. 2b-FIG. 2d are another schematic structural diagram of the optical amplifier provided by the embodiment of the present application.
  • Fig. 3 is another structural schematic diagram of the optical amplifier provided by the embodiment of the present application.
  • Figure 4a is a schematic diagram of the open-loop regulation provided by the embodiment of the present application.
  • Fig. 4b is a schematic diagram of the closed-loop adjustment provided by the embodiment of the present application.
  • Fig. 5a-Fig. 5b is another structural schematic view of the optical amplifier provided in the embodiment of the present application.
  • FIG. 6a-FIG. 6b are another schematic structural diagram of the optical amplifier provided in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of an equivalent filter band provided in an embodiment of the present application.
  • FIG. 9 is another schematic structural diagram of the optical amplifier provided in the embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of the optical amplifier provided in the embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of the optical amplifier provided in the embodiment of the present application.
  • Figure 12a is a schematic diagram of the spectrum of the optical amplification structure of the intermediate stage
  • Figure 12b is a schematic diagram of the spectrum at the output end of the optical amplifier
  • Fig. 13a is a schematic diagram of the transient overshoot generated in the process of adding and dropping waves in the existing scheme
  • Figure 13b is a schematic diagram of the transient overshoot generated in the process of adding and dropping waves provided by this embodiment
  • FIG. 14a is a schematic structural diagram of the optical communication system provided by this embodiment.
  • FIG. 14b is another schematic structural diagram of the optical communication system provided by this embodiment.
  • FIG. 15 is a schematic flowchart of a transient overshoot processing method provided by an embodiment of the present application.
  • the embodiment of the present application provides an optical amplifier and an optical communication system, which are used to dynamically release or consume the pumps required by the optical amplification structures at all levels by adaptively adjusting the energy of the complementary light corresponding to the signal light. energy, thereby eliminating transient overshoot.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b or c can represent: a, b, c, a and b, a and c, b and c or a and b and c, wherein a, b and c can be It can be single or multiple.
  • at least one item (item) can also be interpreted as “one item (item) or multiple items (item)”.
  • the multi-stage amplification structure shown in Figure 1 above is usually used to pursue adjustable gain and better noise performance.
  • the erbium fiber of the first-stage optical amplification structure 1021 is in a saturated state, which results in strengthening the gain competition between channels.
  • the cascading of optical amplifiers the increase in the number of added and dropped waves, the faster switching speed, and even fiber breaks will further increase the transient overshoot of the optical amplifier in the process of adding and dropping waves (including transient overshoots). Overshoot and transient undershoot) effects, resulting in momentary business interruption, affecting the normal operation of the system.
  • the current way to reduce the transient overshoot effect of the optical amplifier in the process of adding and dropping waves is to reduce the open-loop response time of the optical amplifier by the electronic control circuit, so as to change the pumping power of the optical amplifier structure at all levels, so that the pumping power Change as much as possible to keep up with the change of optical power at the input end of the optical amplifier to reduce signal overshoot.
  • the detector at the input end detects the change of the optical power at the input end of the optical amplifier; then, the optical amplifier controller 101 queries the configuration table according to the current input power of the optical amplifier, and controls the optical amplifiers at all levels through the corresponding pump current value.
  • the pump power of the structure is to reduce the open-loop response time of the optical amplifier by the electronic control circuit, so as to change the pumping power of the optical amplifier structure at all levels, so that the pumping power Change as much as possible to keep up with the change of optical power at the input end of the optical amplifier to reduce signal overshoot.
  • the response time of the electronic control loop to the open loop cannot be infinitely reduced, and the response of the electronic control loop always lags behind the optical power change at the input end of the optical amplifier. Therefore, the current method can only suppress the transient overshoot of part of the optical amplifier, but cannot completely eliminate the transient overshoot phenomenon of the optical amplifier. Moreover, as the number of cascaded optical amplifiers increases, this transient overshoot effect will be continuously enlarged, thereby affecting network performance.
  • an embodiment of the present application provides an optical amplifier, which is applied to an optical communication wavelength division network.
  • the optical amplifier provided in this application can realize the real-time and dynamic release or consumption of the pump energy required by the optical amplification structure at all levels by adaptively adjusting the energy of the complementary light corresponding to the signal light, thereby eliminating the transient overshoot Phenomenon. It can be understood that since the response speed of the optical control circuit is faster than that of the electric control circuit, in the optical amplifier provided in the embodiment of the present application, it is possible to switch between any two-stage optical amplification structures, or between the optical amplifier input An optical control circuit is introduced between the end and the output end of the optical amplifier.
  • the optical control loop can adjust its own loop attenuation according to the VOA value fed back by the electronic control loop, and then adaptively adjust the energy of the complementary light corresponding to the signal light according to the size of the input signal light, thereby releasing or consuming it in real time
  • the pump energy required by the optical amplification structure at all levels eliminates the transient overshoot phenomenon of the optical amplifier.
  • Fig. 2a provides a schematic structural diagram of an optical amplifier according to an embodiment of the present application.
  • the optical amplifier 10 may include an optical amplifier controller 101, a multiplexer 103, a first device 104, and an N-stage optical amplification structure 102 arranged in a cascaded manner.
  • the above-mentioned N-stage optical amplification structure 102 is used to amplify signal light.
  • the optical amplifier controller 101 is configured to obtain a first gain value of signal light, and determine a first VOA value and a first pumping current value corresponding to the first gain value according to an association relationship.
  • the optical amplifier controller 101 sends the first VOA value to the first device 104 .
  • the first device 104 is used to adjust the attenuation of the loop according to the first VOA value, so as to excite complementary light corresponding to the signal light.
  • the described N-level (N ⁇ 2, and N is an integer) optical amplification structures are connected in a cascaded manner, for example, the first-level optical amplification structure 1021 shown in Figure 2a, the second-level optical amplification structure 1022 . . . and the Nth-level optical amplification structure 102N are arranged in series.
  • the described first-level optical amplification structure 1021 can be understood as the first optical amplification structure arranged in the N-level optical amplification structure 102, while the other second-level optical amplification structures 1022... and the N-level optical amplification structure 102N can be Refer to the first-stage optical amplification structure 1021 for understanding, and details will not be repeated.
  • each level of optical amplification structures in the N-level optical amplification structure 102 can amplify signal light and provide gain for signal light. Gain can be understood as the degree to which signal light is amplified by the entire optical amplifier 10 .
  • the described optical amplifier controller 101 is connected to the first device 104 and to the optical amplification structures of each level in the N-level optical amplification structure 102 .
  • the described multiplexer 103 may be connected to the input end of the first-stage optical amplification structure 1021, or connected between the output end of the Kth-stage optical amplification structure and the input end of the K+1-th-stage optical amplification structure.
  • the first end of the described first device 104 is connected to the multiplexer 103, and the second end of the first device 104 is connected to the output end of the Nth-level optical amplification structure 102N or is connected to the output of the M-th-level optical amplification structure Between the terminal and the input terminal of the M+1th stage optical amplification structure, wherein, 1 ⁇ K ⁇ M, 2 ⁇ M ⁇ N, M and K are integers.
  • the multiplexer 103 is connected between the output end of the first-stage optical amplification structure 1021 and the input end of the second-stage optical amplification structure 1022, and the second end of the first device 104 is connected to the Nth stage
  • the output end of the optical amplification structure 102N is only a schematic description. In practical applications, the multiplexer 103 is not limited to the connection relationship shown in FIG. 2a, and the first device 104 is not limited to the connection relationship shown in FIG. 2a.
  • FIG. 2b-FIG. 2d are another schematic structural diagrams of the optical amplifier provided by the embodiment of the present application.
  • the multiplexer 103 can be connected to the input end of the first-stage optical amplification structure 1021, and the described first-stage optical amplification structure 1021 can be understood with reference to FIG. 2a.
  • the multiplexer 103 can also be connected between the output end of the N-1th optical amplification structure 102N-1 and the input end of the Nth optical amplification structure 102N.
  • connection relationship of the second end of the first device 104 can also be understood with reference to FIG. 2d. It can be seen from FIG. 2 d that the first device 104 may be connected between the output end of the second-level optical amplification structure 1022 and the input end of the third-level optical amplification structure 1023 .
  • At least one level of optical amplification structure needs to be separated between the multiplexer 103 and the second end of the first device 104 .
  • a loop is formed by connecting the second-stage optical amplification structure 1022 to the Nth-stage optical amplification structure 102N and the output end of the optical amplifier.
  • the loop formed by connecting the multiplexer 103 , the second-stage optical amplification structure 1022 to the Nth-stage optical amplification structure 102N, and the first device 104 can be understood as an optical control loop.
  • the relationship between the first gain value of the signal light, the first variable optical attenuator (variable optical attenuator, VOA) value and the first pumping current value can be set in the configuration table, and store the configuration table in the optical amplifier controller 101.
  • Both the described first VOA value and the first pumping current value correspond to the first gain value, and the first VOA value can be used to reflect the loop attenuation of the optical control loop where the first device 104 is located.
  • the first The value of the pumping current can reflect the pumping current required by the optical amplification structure at all levels.
  • the optical amplifier controller 101 controls the pumping power of the optical amplification structures at all levels through the first pumping current value, and then controls the pumping energy of the optical amplification structures at all levels for the signal light
  • the amplification structure will not produce transient overshoot phenomenon during the signal light amplification process, so the signal light can also be attenuated by the first device 104 in the light control loop under different gain setting conditions. That is: as much as the gain needs to be reduced, then the corresponding attenuation is increased; or, as much as the gain needs to be increased, the corresponding attenuation is reduced to achieve a flat output of signal light.
  • both the optical control loop and the electric control loop are in working state at this time.
  • the optical amplifier controller 101 can obtain the first gain value of the signal light from the configuration table, and determine the first VOA value and the first pumping current value according to the association relationship.
  • the optical amplifier controller 101 needs to feed back the first VOA value to the first device 104; on the other hand, the optical amplifier controller 101 also needs to adjust the pumping voltages in the optical amplifier structures at all levels according to the first pumping current value. power.
  • the first device 104 in the optical control loop can adjust the attenuation of the loop according to the first VOA value, so as to ensure that the complementary light corresponding to the signal light can maintain normal operation.
  • the complementary The light can be released according to the input power of the optical amplifier of the signal light or consume the pumping energy of the optical amplifier structures at all levels under the enablement of the first pump current value, thereby eliminating the optical amplifier transients generated by the signal light in the optical amplifier structures of all levels. state overshoot phenomenon.
  • the described complementary light can be understood as the lasing light formed in the optical control circuit by the noise generated by the optical amplification structures at various levels.
  • the described optical control circuit may vary with the connection positions of the multiplexer 103 and the first device 104 .
  • the optical control circuit at this time can be regarded as the multiplexer 103, the first-stage optical amplification structure 1021, the second-stage optical amplification structure 1022...the Nth-stage optical The amplifying structure 102N and the first device 104 are connected to form a loop.
  • the optical control loop at this time can be regarded as a loop formed by connecting the multiplexer 103 , the Nth-stage optical amplification structure 102N, and the first device 104 .
  • the circuit formed by connecting the multiplexer 103, the second-stage optical amplification structure 1022, and the first device 104 can also be understood as an optical control circuit. The details are not limited in this application.
  • FIG. 2a In addition to the situation of connecting the multiplexer 103 to the input end of the first-stage optical amplifying structure 1021 shown in FIG. 2b above, for the optical control circuit shown in FIG. 2a, FIG.
  • the wave filter 103 is connected to the corresponding optical control circuit between the output end of the Kth-level optical amplification structure and the input end of the K+1-th level optical amplification structure, so that the noise performance of the optical amplifier 10 can not be deteriorated, The phenomenon of instantaneous overshoot of the optical amplifier 10 is eliminated.
  • complementary light is introduced between the optical amplifying structures of the intermediate stages of the entire optical amplifier 10, or between the optical amplifying structures of the intermediate stages and the output end of the optical amplifier, complementary light is introduced to eliminate the pumping of signal light in the optical amplifying structures of all levels.
  • Pu energy and further eliminate the transient overshoot phenomenon of the optical amplifier 10 on the basis of not degrading the noise performance of the optical amplifier 10.
  • the described intermediate-level optical amplification structure can be understood as other optical amplification structures except the first-level optical amplification structure 1021 , which is not limited here.
  • NF is the optical amplifier noise index corresponding to the third-stage optical amplifier structure 1023
  • NF1 is the optical amplifier noise index corresponding to the first-stage optical amplifier structure 1021
  • NF2 is the optical amplifier noise index corresponding to the second-stage optical amplifier structure 1022
  • L is the loss
  • G1 is the gain provided by the first-stage optical amplification structure 1021 .
  • the introduced loss will have little impact on NF1, especially when the introduced loss is much smaller than G1, it will hardly degrade the noise performance of the original optical amplifier.
  • the optical control loop is not formed at the input end of the first-stage optical amplification structure 1021, the adjustment range of the optical amplifier input power of the overall optical amplifier 10 will not be reduced, and the dynamic adjustable range of the gain of the signal light can be guaranteed.
  • the complementary light corresponding to the signal light is introduced to eliminate the signal light in the optical amplification structures of all levels.
  • the pump energy of the optical amplifier 10 can eliminate the instantaneous overshoot phenomenon of the optical amplifier 10 without degrading the gain performance of the optical amplifier 10.
  • the above mainly describes that the optical amplifier controller 101 feeds back the constant first gain value in the configuration table to the first device 104, so that the first device 104 can adjust the loop attenuation according to the first VOA value, so as to emit Complementary light to eliminate the phenomenon of transient overshoot of optical amplifiers.
  • the optical amplifier controller 101 On the basis of eliminating the phenomenon of transient overshoot of the optical amplifier, in order that the optical amplifier structure at all levels can still provide stable gain for the signal light, the optical amplifier controller 101 also needs to realize real-time Adjust the corresponding VOA value according to the gain setting value and configuration table, so as to ensure the normal operation of the light control circuit. Therefore, on the basis of the above optical amplifier 10 shown in FIG. The second VOA value and the second pumping current value corresponding to the second gain value. Moreover, when the first gain value and the second gain value are not equal, the optical amplifier controller 101 updates the first gain value to the second gain value, updates the first VOA value to the second VOA value, and updates the first pump The pumping current value is updated to the second pumping current value.
  • the loss of the optical communication system changes, it is necessary to provide corresponding gains through various levels of optical amplification structures to compensate for the loss. Therefore, in the process of making up the loss through the gain, the gain will change with the change of the loss; and the stability of the gain needs to be realized by the complementary light corresponding to the signal light, and the lasing complementary light needs to be attenuated by the loop In this case, the VOA value needs to be updated through the optical amplifier controller 101.
  • the optical amplifier controller 101 first needs to obtain the second gain value of the signal light determined based on the loss, and obtain the second VOA value and the second pumping current value corresponding to the second gain value. In this way, the optical amplifier controller 101 judges whether the first gain value is equal to the second gain value. If the first gain value is not equal to the second gain value, then the optical amplifier controller 101 needs to update the first gain value in the configuration table to the second gain value, and update the first VOA value to the second VOA value, updating the first pumping current value to the second pumping current value, effectively realizing the dynamic adjustment of the gain of the signal light.
  • the gain setting value of the signal light is the first gain value, such as: 10db.
  • the second gain value i.e.: 13db
  • update the 10db in the original configuration table to 13db
  • update the corresponding first VOA value to the VOA value corresponding to 13db
  • updating the first pumping current value to a pumping current value corresponding to 13db.
  • the optical amplifier controller 101 can also control and adjust the gain of the signal light through an open-loop adjustment operation. Specifically, the optical amplifier controller 101 can also obtain the optical amplifier input power at the current moment and the optical amplifier input power at the previous moment of the signal light, and based on the optical amplifier input power and the optical amplifier input power at the previous moment Determine the magnitude of the change in the input power of the optical amplifier. Then, when the variation of the input power of the optical amplifier is greater than the open-loop threshold, the optical amplifier controller 101 controls the pumping power of the optical amplification structures at each stage according to the second pumping current value, and sends the second VOA value to to the first device 104 . The first device 104 is also used to adjust the loop attenuation according to the second VOA value.
  • the optical amplifier controller 101 can obtain the optical amplifier input power at the current moment and the optical amplifier input power at the previous moment of the signal light, and determine the optical amplifier input power at the current moment and the optical amplifier input power at the previous moment.
  • the magnitude of the input power change that is: Among them, K is the variation of the input power of the optical amplifier, A is the input power of the optical amplifier at the current moment, and B is the input power of the optical amplifier at the previous moment.
  • the optical amplifier controller 101 can perform an open-loop regulation operation when the variation of the input power of the optical amplifier is greater than the open-loop threshold.
  • the change in the input power of the optical amplifier described can be understood as the value of the change in the input power of the optical amplifier due to wave addition and drop when the signal light enters the optical amplifier 10 from the input end of the optical amplifier, that is, the multiple of the change.
  • the variation of the input power of the optical amplifier exceeds a certain preset value
  • the aforementioned open-loop adjustment operation is triggered.
  • the certain preset value can be understood as an open-loop threshold.
  • the optical amplifier controller 101 can also perform a closed-loop adjustment operation, and the specifically described closed-loop adjustment operation can be understood with reference to the content described in FIG. 4b , where Let me not go into details.
  • Fig. 4a is a schematic diagram of the open-loop adjustment provided by the embodiment of the present application. It can be seen from FIG. 4a that the optical amplifier controller 101 determines the gain setting value in the configuration table at this time, that is, the second gain value, by querying the configuration table. Then, the optical amplifier controller 101 determines the second pumping current value and the second VOA value based on the second gain value and the correlation. On the one hand, the optical amplifier controller 101 can control the pumping power of the optical amplifier structures at all levels according to the second pumping current value; on the other hand, the optical amplifier controller 101 also needs to feed back the second VOA value to the first device 104, This enables the first device 104 to also adjust the loop attenuation according to the second value.
  • the first device 104 can first adjust the attenuation of the loop according to the second VOA value, so that the complementary light can work normally.
  • the normally working complementary light can release or consume the optical amplification structures at all levels at the second pumping current value.
  • Pump energy with enable It not only eliminates the phenomenon of transient overshoot of the optical amplifier generated by the signal light in the optical amplification structures of various levels, but also can adjust the gain of the signal light to approach the set second gain value.
  • the optical amplifier controller 101 in order to accurately control the stability of the gain, is also used to obtain the output power of the optical amplifier at the current moment of the signal light, and based on the input power of the optical amplifier at the current moment and the optical amplifier at the current moment output power, and calculate the actual gain value of the signal light. Then the optical amplifier controller 101 calculates a gain difference value between the actual gain value and the second gain value. Moreover, when the gain difference value is greater than or equal to the closed-loop threshold value, the optical amplifier controller 101 adjusts the third pumping current value corresponding to the actual gain value according to the gain difference value, so as to control the optical amplification structure of each stage pump power, and adjust a third VOA value corresponding to the actual gain value according to the gain difference value. Wherein, the closed-loop threshold is smaller than the open-loop threshold. The first device 104 is also used to adjust the loop attenuation according to the third VOA value.
  • the optical amplifier controller 101 can also obtain the output power of the optical amplifier at the current moment of the signal light, and combine the above-described input power of the optical amplifier at the current moment to calculate the actual output power of the signal light. gain value. Then, the optical amplifier controller 101 processes the actual gain value and the second gain value in the configuration table to obtain a gain difference value. If the gain difference value is greater than or equal to the closed-loop threshold, the optical amplifier controller 101 can perform a closed-loop adjustment operation to fine-tune the pumping current value corresponding to the pumping power used to control the optical amplification structure at each stage, and fine-tune the VOA value.
  • the certain preset value can be understood as a closed-loop threshold.
  • the closed-loop thresholds described are smaller than the open-loop thresholds.
  • Fig. 4b is a schematic diagram of the closed-loop adjustment provided by the embodiment of the present application. It can be seen from Fig. 4b that when the gain difference value is greater than or equal to the closed-loop threshold value, the optical amplifier controller 101 can adjust the third pumping current value corresponding to the actual gain value according to the gain difference value, and according to the gain difference value The difference value adjusts the third VOA value corresponding to the actual gain value. And by repeatedly performing the closed-loop adjustment operation, fine-tune the third pumping current value and the third VOA value until the gain difference between the actual gain value and the second gain value in the configuration table is less than the closed-loop threshold.
  • the adjusted pumping current value corresponding to the actual gain value can approach the second pumping current value corresponding to the second gain value set in the configuration table, and the adjusted third VOA value It can also approach the VOA value corresponding to the second gain value set in the configuration table, which means that the gain of the signal light at this time can be precisely controlled and kept stable.
  • the optical amplifier controller 101 can control the pumping power of the optical amplifier structures at all levels according to the adjusted third pumping current value; and the optical amplifier controller 101 can also feed back the adjusted third VOA value to the first A device 104, so that the first device 104 can also adjust the loop attenuation according to the adjusted third VOA value.
  • the first device 104 can first adjust the loop attenuation according to the adjusted third VOA value, so that the complementary light corresponding to the signal light can work normally. And in the process of the optical amplifier controller 101 adjusting the pumping power in the optical amplification structures at all levels according to the adjusted third pumping current value, the complementary light can release or consume the optical amplification structures at all levels at the same value as the second gain value The pump energy when the corresponding pump current value is enabled. Not only can the gain of the signal light be accurately controlled in real time to keep the gain stable, but also the transient overshoot phenomenon of the optical amplifier generated by the signal light in all levels of optical amplification structures can be eliminated.
  • Fig. 5a is another schematic structural diagram of the optical amplifier provided in the embodiment of the present application. It can be seen from FIG. 5a that the optical amplifier 10 may also include a second device 105, wherein the second device 105 is connected to the output end of the Nth-level optical amplification structure 102N, or connected to the output of the M-th-level optical amplification structure. terminal and the input terminal of the M+1th stage optical amplification structure, the second device 105 is also connected to the first device 104;
  • the second device 105 is configured to determine the wavelength band of the complementary light, or determine the split power of the complementary light.
  • the second device 105 can be used as a component of the aforementioned light control circuit.
  • the second device 105 is used to determine the wavelength band of the complementary light or determine the split power of the complementary light.
  • a candidate range of lasing wavelength or lasing power is provided.
  • the second device 105 described in FIG. 5a can be added on the basis of any schematic diagram in FIG. 2a-FIG. 2d and FIG. 3 .
  • the structure in which the optical amplifier 10 described in FIG. 2a is added to the second device 105 is used as an example for illustration.
  • FIG. 5a is connected to the output end of the Nth-level optical amplification structure 102N, which is only a schematic description. In practical applications, the second device 105 is not limited to the connection relationship shown in FIG. 5a.
  • FIG. 5b is another schematic structural diagram of the optical amplifier provided by the embodiment of the present application. It can be seen from 5b that the second device 105 can be connected between the output end of the N-1th optical amplification structure 102N-1 and the input end of the Nth optical amplification structure 102N, which is not limited here.
  • various devices may be used to perform the functions performed by the second device 105 .
  • a wave splitter or a coupler may be used to perform the function performed by the second device 105 .
  • the following will describe from different embodiments respectively:
  • the second device 105 includes a first wave splitter 1051 .
  • Fig. 6a is another schematic structural diagram of the optical amplifier provided by the embodiment of the present application.
  • the second device 105 may include a first wave splitter 1051 .
  • the first wave splitter 1051 is used to separate the wave band of the signal light from the wave band of the complementary light to determine the wave band of the complementary light; or, the first wave splitter 1051 is used to generating filter spectral lines and acquiring spontaneous emission ASE spectral lines modulated by the N-level optical amplification structure, and determining the wavelength of the complementary light based on the filtering spectral lines and the spontaneous emission ASE spectral lines.
  • the signal light and the complementary light output by the Nth-stage optical amplification structure 102N are mixed together. Therefore, after the mixed signal light and complementary light pass through the first wave splitter 1051, the first wave splitter 1051 can separate the wave band of the signal light from the wave band of the complementary light, thereby obtaining the wave band of the complementary light. wave band. Subsequently, the first wave splitter 1051 feeds back the waveband of the complementary light to the first device 104 . In this way, the first device 104 can select the lasing wavelength from the wavelength band of the complementary light, and then lasing the complementary light according to the lasing wavelength of the complementary light after adjusting the loop attenuation.
  • the optical amplification structures at all levels include gain flattening filters (GFF)
  • GFF gain flattening filters
  • the spectral lines of the amplified spontaneous emission (ASE) of the optical amplification structures at all levels will be modulated.
  • the signal light is output from the Nth stage optical amplification structure 102N and passes through the first wave splitter 1051
  • the first wave splitter 1051 will also generate corresponding filter spectral lines. Therefore, after the first demultiplexer 1051 acquires the ASE spectral lines modulated by the N-stage optical amplification structure 102, it can combine the filtering spectral lines to determine an equivalent filter band, and then determine the wavelength of the complementary light. In this way, the first device 104 can directly lasing the complementary light according to the wavelength of the complementary light after adjusting the attenuation of the loop.
  • the described equivalent filter band can be understood as the filter band obtained when the ASE spectral line intersects the filter spectral line, and can be understood specifically by referring to the schematic diagram of the equivalent filter band shown in FIG. 7 .
  • the second device 105 includes a coupler 1052 .
  • Fig. 6b is another schematic structural diagram of the optical amplifier provided by the embodiment of the present application. It can be seen from FIG. 6 b that the second device 105 may comprise a coupler 1052 . Wherein, the coupler 1052 is used to determine the split power of the signal light and the complementary light.
  • the signal light and the complementary light output by the Nth-stage optical amplification structure 102N are mixed together. Therefore, after the mixed signal light and complementary light pass through the coupler 1052, the coupler 1052 cannot filter out the wavelength band of the complementary light, but determines the split power 1052 of the mixed signal light and complementary light, and Feedback to the first device 104 . Subsequently, the first device 104 filters out the optical power of the complementary light from the split power of the signal light and the complementary light, and then lases the complementary light according to the optical power of the complementary light after adjusting the attenuation of the loop.
  • various devices may be used to perform the functions performed by the first device 104 .
  • an adjustable optical attenuator and a filter may be used to perform the functions performed by the first device 104, or only an adjustable optical attenuator may be used to perform the functions performed by the first device 104.
  • an adjustable optical attenuator and a filter may be used to perform the functions performed by the first device 104, or only an adjustable optical attenuator may be used to perform the functions performed by the first device 104.
  • the first device 104 includes a first adjustable optical attenuator 1041 and a first filter 1042 .
  • Fig. 8a is another schematic structural diagram of the optical amplifier provided by the embodiment of the present application.
  • the first device 104 may include a first adjustable optical attenuator 1041 and a first filter 1042 .
  • the first filter 1042 is used to select the lasing wavelength from the wavelength band of the complementary light, so that after the first adjustable optical attenuator 1041 adjusts the attenuation of the loop, the complementary light Lases at the stated lasing wavelength.
  • the signal light and the complementary light output by the Nth-stage optical amplification structure 102N are mixed together. Therefore, after the mixed signal light and complementary light pass through the first wave splitter 1051, the first wave splitter 1051 can separate the wave band of the signal light from the wave band of the complementary light, thereby obtaining the wave band of the complementary light. wave band.
  • the first filter 1042 can select any lasing wavelength from the wavelength band of the complementary light, and after the first adjustable optical attenuator 1041 adjusts the attenuation of the loop, the complementary light is lased according to the lasing wavelength , so that the complementary light can release or consume the pumping energy of the optical amplification structures at all levels when the second pumping current value is enabled. Not only can the gain of the signal light be accurately controlled in real time to keep the gain stable, but also the transient overshoot phenomenon of the optical amplifier generated by the signal light in all levels of optical amplification structures can be eliminated.
  • the lasing complementary light can be lased at the long-wave position, or can be lased at the short-wave position, which is not limited here.
  • the first device 104 includes a second adjustable optical attenuator 1043 .
  • Fig. 8b is another schematic structural diagram of the optical amplifier provided by the embodiment of the present application. It can be seen from FIG. 8 b that the first device 104 may include a second adjustable optical attenuator 1043 . Wherein, the second adjustable optical attenuator 1043 is used for lasing the complementary light according to the wavelength of the complementary light after adjusting the attenuation of the loop.
  • the effective filter band determines the wavelength of the complementary light.
  • the complementary light can still be lased according to the wavelength of the complementary light determined by the first wave splitter 1051, so that the complementary light can be released or
  • the pumping energy of the optical amplification structures at all levels is consumed when the second pumping current value is enabled. Not only can the gain of the signal light be accurately controlled in real time to keep the gain stable, but also the transient overshoot phenomenon of the optical amplifier generated by the signal light in all levels of optical amplification structures can be eliminated.
  • the lasing complementary light can be lased at the long-wave position, or can be lased at the short-wave position, which is not limited here.
  • the first device 104 in the optical amplifier 10 shown in FIG. 8 b does not include the first filter 1042 . Therefore, in order to be able to emit complementary light after the second adjustable optical attenuator 1043 adjusts the loop attenuation according to the VOA value fed back by the optical amplifier controller 101, the spontaneous emission ASE spectral line and filter spectrum can be used at this time The line directly determines the wavelength of this complementary light. There is no need to select a suitable lasing wavelength from the complementary light waveband through the first filter 1041 shown in FIG. 8a again, which saves cost and volume.
  • the first device 104 includes a third adjustable optical attenuator 1044 and a second filter 1045 .
  • Fig. 8c is another schematic structural diagram of the optical amplifier provided by the embodiment of the present application. It can be seen from FIG. 8 c that the first device 104 may include a third adjustable optical attenuator 1044 and a second filter 1045 . Wherein, the second filter 1045 is used to determine the optical power of the complementary light from the split power of the signal light and the complementary light, so as to adjust the loop attenuation in the third adjustable optical attenuator 1044 After the size, the complementary light is lased according to the optical power of the complementary light.
  • the signal light and the complementary light output by the Nth-stage optical amplification structure 102N are mixed together. Therefore, after the mixed signal light and complementary light pass through the coupler 1052, the coupler 1052 cannot filter out the wavelength band of the complementary light, but determines the split power of the mixed signal light and complementary light, and feeds back to the second filter 1045 . Subsequently, the second filter 1045 may filter out the optical power of the complementary light from the split power of the signal light and the complementary light.
  • the second filter 1045 lases the complementary light according to the optical power of the complementary light after the third adjustable optical attenuator 1044 adjusts the attenuation of the loop, so that the complementary light can release or consume all levels of optical amplification
  • the pumping energy of the structure enabled by the second pumping current value can be used to control the gain of the signal light.
  • the lasing complementary light can be lased at the long-wave position, or can be lased at the short-wave position, which is not limited here.
  • FIG. 8d is another schematic structural diagram of the optical amplifier provided by the embodiment of the present application. It can be seen from FIG. 8 d that the optical amplifier 10 further includes a third filter 106 and an optical amplifier output terminal 107 , and the third filter 106 is connected between the optical amplifier output terminal 107 and the optical amplifier controller 101 .
  • the third filter 106 is used to filter the complementary light before the optical amplifier controller 101 acquires the output power of the optical amplifier at the current moment of the signal light.
  • the detector at the output end will The detection of the power should be the detection of the independent signal light. Therefore, before the optical amplifier controller 101 acquires the output power of the optical amplifier at the current moment of the signal light from the detector at the output end, the signal light and the complementary light should be separated by the third filter 106 to ensure that independent signal light is obtained , so as to ensure that the accurate output power of the optical amplifier at the current moment of the signal light can be detected subsequently, so as to ensure that no error occurs during the closed-loop adjustment performed by the optical amplifier controller 101 .
  • FIG. 9 is a schematic structural diagram of another optical amplifier provided in the embodiment of the present application.
  • the optical amplifier 10 also includes an input detector 108, the first end of the input detector 108 is connected to the input end of the first-stage optical amplification structure 1021, and the input detector 108 The second end of is connected to the optical amplifier controller 101.
  • the input detector 108 is used to detect the current optical amplifier input power of the signal light, and send the current optical amplifier input power to the optical amplifier controller 101 .
  • FIG. 10 is a schematic structural diagram of another optical amplifier provided in the embodiment of the present application. It can be seen from FIG. 10 that the optical amplifier 10 also includes an output detector 109, the first end of which is connected to the output end of the Nth-level optical amplification structure 102N or the second device 105, and the output end detects The second end of the device 109 is connected to the optical amplifier controller 101.
  • the output detector 109 is configured to detect the current optical amplifier output power of the signal light, and send the current optical amplifier output power to the optical amplifier controller 101 .
  • FIG. 11 is a schematic diagram of another structure of an optical amplifier provided in this embodiment of the present application. It can be seen from FIG. 11 that the optical amplifier 10 further includes an optical amplifier input end 1010 , and the optical amplifier input end 1010 is connected to the input end of the first-stage optical amplification structure 1021 .
  • FIGS. 12a-12b will describe the spectrum after applying the optical amplifier 10 provided by this embodiment from the perspective of spectrum.
  • Fig. 12a is a schematic diagram of the spectrum of the optical amplification structure of the intermediate stage. It can be seen from Figure 12a that since the generation of complementary light is generated by using the optical control circuit described above to loop back the ASE light outside the service channel, the complementary light will not occupy the service channel for transmitting signal light, and will not affect the signal The quality of light has an effect. It should be noted that the complementary light shown in FIG. 12a can be irradiated at either the long-wave position or the short-wave position, which is not limited here.
  • Fig. 12b is a schematic diagram of the spectrum at the output end of the optical amplifier. Due to the enabling function of the second device 105, such as the first wave splitter 1051, the complementary light is cut off at the output end of the optical amplifier. Therefore, it can be seen from FIG. 12b that the output end of the optical amplifier only outputs the signal light transmitted through the traffic channel.
  • Fig. 13a is a schematic diagram of the transient overshoot generated in the process of adding and dropping waves in the existing solution
  • Fig. 13b is a schematic diagram of the transient overshoot generated in the process of adding and dropping waves provided by this embodiment. It can be seen from Fig. 13a that in the application of the existing solution to eliminate the transient overshoot effect of the optical amplifier, when the dropout occurs, the optical amplifier power amplifier in the signal channel first overshoots and oscillates, and then restores stability.
  • Fig. 14a is a schematic structural diagram of the optical communication system provided by this embodiment.
  • the optical communication system may include an optical transmitter 20, an optical receiver 30, a first optical multiplexer/demultiplexer 40, a second optical multiplexer/demultiplexer 50, an optical fiber link 60 and At least one optical amplifier 10.
  • the optical transmitter 20 generates multiple signal lights, and after the multiple signal lights are multiplexed by the first optical multiplexer/demultiplexer 40, a wavelength division multiplexed signal can be formed. Then, the wavelength division multiplexed signal is transmitted to the optical fiber link 60 and at least one optical amplifier 10 compensates for the loss. After being demultiplexed by the second optical multiplexer/demultiplexer 50, it is received by the optical receiver 30.
  • the described optical amplifier 10 can be understood with reference to the optical amplifier 10 described above in FIG. 2 a to FIG. 11 . Moreover, in the optical communication system shown in FIG. 14a, only the optical amplifier 10 described in any one of FIGS. The transient overshoot phenomenon of the system optical amplifier maintains the stability of the entire optical communication system. However, in practical applications, an optical amplifier 10 described in any one of Figs. The transient overshoot phenomenon of the optical amplifier of the system caused by the dropped wave signal.
  • Fig. 14b is another schematic structural diagram of the optical communication system provided by this embodiment.
  • the optical communication system may include an optical transmitter 20, an optical receiver 30, a first optical multiplexer/demultiplexer 40, a second optical multiplexer/demultiplexer 50, a filter device 70, an optical fiber link 60 and at least one optical amplifier 10 .
  • the optical transmitter 20 generates multiple channels of signal light, and the multiple channels of signal light can form wavelength division multiplexed signals after being multiplexed by the first optical multiplexer/demultiplexer 30 .
  • the wavelength division multiplexed signal enters the optical fiber link 60 and is compensated for loss by at least one optical amplifier 10 .
  • After being filtered by the filter device 70 and demultiplexed by the second optical multiplexer/demultiplexer 50 it is received by the optical receiver 30 .
  • the described optical amplifier 10 can be understood with reference to the optical amplifier 10 described in the foregoing FIGS. 8c to 8d.
  • the optical amplifier described in Fig. 8c to Fig. 8d When the optical amplifier described in Fig. 8c to Fig. 8d is applied in the optical communication system shown in Fig. 14b, it can be placed at the originating end of the optical multiplex section (optical multiplex section, OMS) of the optical communication system, and the optical amplifiers of other levels can be Use the optical amplifier in the existing scheme.
  • complementary light is generated inside the optical amplifier 10 to which this embodiment is applied, is output together with the signal light, and is transmitted in the OMS segment.
  • the complementary light attenuates along with the signal light in the optical fiber link 60 and is amplified in the remaining levels of optical amplifiers, and the remaining levels of optical amplifiers eliminate the transient process through the complementary light generated by the optical amplifier 10 of this embodiment
  • the impulse effect is used to maintain the stability of the signal light power of the overall optical communication system.
  • the embodiment of the present application also provides a transient overshoot processing method.
  • the processing method of the present application will be described in detail below in conjunction with the above-mentioned optical amplifier provided in FIG. 2a-FIG. 11.
  • Regarding the method embodiment Please refer to the above-mentioned embodiment of the optical amplifier 10 for understanding of the details not exhausted in the above.
  • FIG. 15 is a schematic flowchart of a transient overshoot processing method provided by an embodiment of the present application.
  • This processing method can be applied to the optical amplifier 10 shown in FIGS. 2a-11 above.
  • the optical amplifier may include: an optical amplifier controller, a multiplexer, a first device, and an N-stage optical amplification structure arranged in a cascaded manner.
  • the optical amplifier controller is connected to the first device and to each level of optical amplification structures in the N-level optical amplification structures.
  • the multiplexer is connected to the input end of the first-stage optical amplification structure, or between the output end of the Kth-stage optical amplification structure and the input end of the K+1-th-stage optical amplification structure.
  • the first end of the first device is connected to the multiplexer, and the second end of the first device is connected to the output end of the Nth stage optical amplification structure or connected to the output end of the Mth stage optical amplification structure and the first
  • the N-level optical amplification structure is used for amplifying signal light.
  • the processing method may include the following steps:
  • the first VOA value reflects the loop attenuation of the first device
  • the first pumping current value reflects the pumping current required by each level of the optical amplification structure in the N-level optical amplification structure.
  • both the described first VOA value and the first pumping current value correspond to the first gain value.
  • the first VOA value can be used to reflect the loop attenuation of the optical control loop where the first device in the optical amplifier is located, and the first pumping current value can reflect the pumping current required by the optical amplification structure of each level. Therefore, when the user wants the signal light to obtain a preset gain, the relationship between the first gain value of the signal light, the first VOA value and the first pumping current value can be set in the configuration table, and stored The configuration table. Then, the optical amplifier can determine the first VOA value and the first pumping current value corresponding to the first gain value based on the first gain value and the correlation relationship.
  • the signal light can also be attenuated under different gain settings. That is: how much the gain needs to be reduced, then the corresponding attenuation needs to be increased; or, how much the gain needs to be increased, then the corresponding attenuation needs to be reduced, so as to achieve a flat output of signal light.
  • the attenuation of the loop can be adjusted according to the first VOA value, so as to ensure that the complementary light corresponding to the signal light can maintain normal operation.
  • the complementary light can be released or consumed according to the input power of the optical amplifier of the signal light.
  • the pumping energy of the structure is amplified under the enablement of the first pumping current value, thereby eliminating the transient overshoot phenomenon of the optical amplifier generated by the signal light in the optical amplification structures of all levels.
  • the described complementary light can be understood as the lasing light formed in the optical control circuit by the noise generated by the optical amplification structures at various levels.
  • the processing method may further include: acquiring a second gain value of the signal light, and a second VOA value and a second pumping current value corresponding to the second gain value. And, when the first gain value is not equal to the second gain value, update the first gain value to the second gain value, update the first VOA value to the second VOA value, and update the first gain value to the second VOA value. A pumping current value is updated to the second pumping current value.
  • the first gain value in the configuration table needs to be updated to the second gain value, and the first VOA value is updated to the second VOA value, and the first pump The pumping current value is updated to the second pumping current value, which effectively realizes dynamically adjusting the gain of the signal light.
  • the processing method may further include: acquiring the input power of the optical amplifier at the current moment and the input power of the optical amplifier at the previous moment of the signal light; The input power of the optical amplifier at any time determines the variation of the input power of the optical amplifier; when the variation of the input power of the optical amplifier is greater than the open-loop threshold, control the pumping power of the optical amplification structure at each level according to the second pumping current value, and Adjust the attenuation of the loop according to the second VOA value.
  • the optical amplifier when the variation of the input power of the optical amplifier is greater than the open-loop threshold, the optical amplifier can perform an open-loop adjustment operation.
  • the specifically described open-loop adjustment operation can be understood with reference to the aforementioned FIG. 4 a , and details are not repeated here.
  • the described variation of the input power of the optical amplifier, the open-loop threshold, etc. can also be understood by referring to the foregoing content, and will not be repeated here.
  • the processing method may further include: acquiring the output power of the optical amplifier at the current moment of the signal light; based on the input power of the optical amplifier at the current moment and the output power of the optical amplifier at the current moment, calculating The actual gain value of the signal light; calculate the gain difference value between the actual gain value and the second gain value; when the gain difference value is greater than or equal to the closed-loop threshold, adjust and The pumping current value corresponding to the actual gain value is used to control the pumping power of the optical amplification structure at each level, and adjust the third VOA value corresponding to the actual gain value according to the gain difference value, wherein , the closed-loop threshold is smaller than the open-loop threshold; and the loop attenuation is adjusted according to a third VOA value corresponding to the actual gain value.
  • the optical amplifier in order to be able to precisely control the stability of the gain, can also perform a closed-loop adjustment operation.
  • the specifically described closed-loop adjustment operation can be understood with reference to the aforementioned FIG. 4 b , and details are not repeated here.
  • the described closed-loop threshold can also be understood by referring to the foregoing content, and details are not described here.
  • the optical amplifier may further include a second device, the first terminal of the second device is connected to the output terminal connected to the Mth stage optical amplification structure, and the first terminal of the second device It is connected to the input end of the M+1th stage optical amplification structure, and the third end of the second device is connected to the first device.
  • the first end of the second device is connected to the output end of the Nth-level optical amplification structure.
  • the processing method may further include: determining the wavelength band of the complementary light or determining the spectral power of the complementary light.
  • the second device can be understood with reference to the content described in FIG. 5 a , which will not be repeated here.
  • the processing method may also include the following situations:
  • the processing method may further include: separating the wave band of the signal light from the wave band of the complementary light to determine the wave band of the complementary light or, generating filter spectral lines and acquiring spontaneous emission ASE spectral lines modulated by the N-level optical amplification structure, and determining the wavelength of the complementary light based on the filtering spectral lines and the spontaneous emission ASE spectral lines .
  • the optical amplifier described in FIG. 6a it can be understood with reference to the optical amplifier described in FIG. 6a , and details are not described here.
  • the processing method may further include: determining the split power of the signal light and the complementary light. Specifically, it can be understood with reference to the optical amplifier described in FIG. 6 b , and details are not described here.
  • the processing method may further include: before acquiring the output power of the optical amplifier at the current moment of the signal light, filtering the complementary light. In this way, by separating the signal light from the complementary light, it is ensured that independent signal light is obtained, and then the output power of the optical amplifier that can accurately detect the signal light is ensured, thereby ensuring that no errors occur during the closed-loop adjustment process.
  • the processing method may also include the following situations:
  • the processing method may further include: selecting a lasing wavelength from the wave band of complementary light for use in After adjusting the attenuation of the loop, lasing the complementary light according to the lasing wavelength.
  • the mixed signal light and complementary light can be processed to separate the wave band of the signal light from the wave band of the complementary light, thereby obtaining the wave band of the complementary light. Further select any lasing wavelength from the wave band of the complementary light, and after adjusting the attenuation of the circuit, lasing the complementary light according to the lasing wavelength, so that the complementary light can release or consume all levels of optical amplification structures Pumping energy at the enablement of the second pumping current value. Not only can the gain of the signal light be accurately controlled in real time to keep the gain stable, but also the transient overshoot phenomenon of the optical amplifier generated by the signal light in all levels of optical amplification structures can be eliminated. Specifically, it can be understood with reference to the optical amplifier described in FIG. 8a , and details are not described here.
  • the processing method may further include: after adjusting the attenuation of the loop, converting the complementary light according to the wavelength of the complementary light lasing.
  • the complementary light in the case that the first device does not include the first filter, the complementary light can also be emitted after adjusting the attenuation of the loop. Then, at this time, the complementary light may be lased according to the wavelength of the complementary light after the wavelength of the complementary light is directly determined by using the spontaneous emission ASE spectral line and the filtering spectral line. There is no need to select a suitable lasing wavelength again from the wave band of complementary light, and the efficiency is high. Specifically, it can be understood with reference to the optical amplifier described in FIG. 8 b , and details are not described here.
  • the processing method may further include: determining the power of the complementary light from the split power of the signal light and the complementary light The optical power is used for lasing the complementary light according to the optical power of the complementary light after adjusting the attenuation of the loop.
  • the mixed signal light and complementary light since the output signal light and complementary light are mixed together, and the mixed signal light and complementary light may not be able to filter out the waveband of complementary light after processing, but can only determine Spectral power of signal light and complementary light mixed together. Therefore, the optical power of the complementary light can also be filtered out from the split power of the signal light and the complementary light. And after adjusting the attenuation of the loop, lasing the complementary light according to the optical power of the complementary light, so that the complementary light can release or consume the pumping of the optical amplification structures at all levels under the enabling of the second pumping current value energy.
  • the processing method may further include: detecting the input power of the optical amplifier at the current moment of the signal light.
  • the processing method may further include: detecting the output power of the optical amplifier at the current moment of the signal light.
  • FIG. 15 the processing methods described in FIG. 15 and the optional example corresponding to FIG. 15 are mainly applied to the optical amplifiers provided in the aforementioned FIGS. 2 a - 11 . Its more detailed content can also be understood with reference to the content of the optical amplifier described in the aforementioned FIGS.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lasers (AREA)

Abstract

本申请公开了一种光放大器以及光通信系统,通过自适应地调整与信号光对应的互补光的能量,实时地且动态地释放或者消耗各级光放大结构所需的泵浦能量,进而消除瞬态过冲现象。前述的光放大器可以包括光放控制器、合波器、第一器件以及按照级联的方式排列的N级光放大结构。其中,N级光放大结构用于放大信号光;光放控制器,用于获取信号光的第一增益值,并根据第一增益值和关联关系,确定与第一增益值对应的第一VOA值和第一泵浦电流值,并且将与第一增益值对应的第一VOA值发送至第一器件。该第一器件用于根据第一VOA值调整回路衰减大小,以激射与信号光对应的互补光。

Description

一种光放大器以及光通信系统
本申请要求于2021年6月22日提交中国国家知识产权局、申请号202110694346.6、申请名称为“一种光放大器以及光通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光传输技术领域,具体涉及一种光放大器以及光通信系统。
背景技术
随着自动交换光网络(automatically switched optical network,ASON)、动态光分插复用(reconfigurable optical add/drop multiplexer,ROADM)站点的部署,光通信波分网络中动态加掉波道的场景越来越多。加掉波发生时,会引起光放输入端的信号光的光功率发生急剧变化。加波时,进入光放大器的光功率增大,导致泵浦光对各信号波道的贡献减小,单波光功率突然下降,发生瞬态下冲;掉波时,进入光放大器的光功率突然减小,导致过剩的泵浦光对剩余信号波道的贡献增大,单波光功率增加,发生瞬态上冲。以现网中的掺饵光纤放大器(erbium-doped fiber amplifier,EDFA)为例,为了追求增益可调和更优的噪声性能,通常采用如图1所示的多级放大结构,其中,第一级光放大结构铒纤处于饱和状态,导致波道间的增益竞争关系加强,而通信网络链路中光放大器级联、加掉波数目增大、切换速度变快、甚至断纤等,均会进一步增加光放大器在加掉波过程中的瞬态过冲(包括瞬态上冲和瞬态下冲)效应,导致业务发生瞬断,影响系统正常运行。
当前为了降低光放大器在加掉波过程中的瞬态过冲效应,通常通过电控回路降低光放大器的开环响应时间,以改变各级光放大结构的泵浦功率,使得泵浦功率的改变尽量跟上光放输入端的光功率的变化,以降低信号过冲。具体地,通过输入端探测器检测光放输入端的光功率的变化,然后再通过光放控制器根据当前光放输入功率,查询配置表,并通过相应的泵浦电流来控制各级光放大结构的泵浦功率。然而,电控开环响应的时间不能无限降低,而且电控响应总是滞后于光放输入端的光功率变化,因此通过当前的方式只能抑制部分光放的瞬态过冲,而不能完全消除光放的瞬态过冲现象;而且随着光放大器的级联数目的增加,这种瞬态过冲效应将被不断地扩大,进而影响网络性能。
发明内容
本申请实施例提供了一种光放大器以及光通信系统,通过自适应地调整与信号光对应的互补光的能量,实时地且动态地释放或者消耗各级光放大结构所需的泵浦能量,进而消除瞬态过冲现象。
第一方面,本申请实施例提供了一种光放大器。该光放大器包括光放控制器、合波器、第一器件以及按照级联的方式排列的N级光放大结构。其中,该光放控制器与第一器件、以及与N级光放大结构中的各级光放大结构连接。合波器连接于第一级光放大结构的输入端、或者连接于第K级光放大结构的输出端与第K+1级光放大结构的输入端之间。而且,第一器件的第一端连接于合波器,该第一器件的第二端连接于第N级光放大结构的输出端或者连接 于第M级光放大结构的输出端与第M+1级光放大结构的输入端之间,N≥2,1≤K≤M,2≤M≤N,N、M、K为整数。N级光放大结构用于放大信号光。光放控制器,用于获取信号光的第一增益值,并根据关联关系,确定与第一增益值对应的第一VOA值和第一泵浦电流值。所描述的关联关系为第一增益值、第一VOA值以及第一泵浦电流值之间的关系,第一VOA值反映第一器件的回路衰减大小,第一泵浦电流值反映N级光放大结构中的各级光放大结构所需的泵浦电流。然后,该光放控制器将该第一VOA值发送至第一器件。第一器件用于根据第一VOA值调整回路衰减大小,以激射与信号光对应的互补光。
通过上述方式,在加掉波发生前,光控回路中的第一器件可以先根据与第一增益值对应的第一VOA值调整回路衰减大小,从而保证与信号光对应的互补光能够保持正常工作。这样,在加掉波发生的时候,由于光控回路的响应速度较快,使得在光放控制器根据第一泵浦电流值调整各级光放大结构中的泵浦功率的过程中,互补光能够根据信号光的光放输入功率释放或者消耗各级光放大结构在第一泵浦电流值的使能下的泵浦能量,进而消除信号光在各级光放大结构中产生的光放瞬态过冲的现象。
在一些可选的示例中,光放控制器还用于获取信号光的第二增益值、以及与第二增益值对应的第二VOA值和第二泵浦电流值。并且,在第一增益值与第二增益值不相等时,该光放控制器将第一增益值更新为第二增益值、将第一VOA值更新为第二VOA值以及将第一泵浦电流值更新为第二泵浦电流值。
通过上述方式,光放控制器还可以在第一增益值与第二增益值不相等时,将第一增益值更新为第二增益值,并且将第一VOA值更新为第二VOA值以及将第一泵浦电流值更新为第二泵浦电流值,能够实现对信号光的增益进行动态地调整,以满足不同用户对于信号光的增益的需求。
在一些可选的示例中,光放控制器还用于获取信号光当前时刻的光放输入功率和前一时刻的光放输入功率,并根据当前时刻的光放输入功率和前一时刻的光放输入功率确定光放输入功率变化大小。然后,在光放输入功率变化大小大于开环阈值时,该光放控制器还根据第二泵浦电流值控制各级光放大结构的泵浦功率,以及将第二VOA值发送至第一器件。这样,第一器件还用于根据第二VOA值调整回路衰减大小。通过上述方式,能够实现在消除光放瞬态过冲的现象的基础上,通过执行开环调节操作,使得各级光放大结构依旧能够为信号光提供稳定的增益。
在一些可选的示例中,光放控制器还用于获取信号光当前时刻的光放输出功率,并基于当前时刻的光放输入功率和当前时刻的光放输出功率,计算信号光的实际增益值。然后,该光放控制器计算实际增益值与第二增益值之间的增益差异值。并且,在增益差异值大于或等于闭环阈值时,该光放控制器根据增益差异值调整与实际增益值对应的第三泵浦电流值,以用于控制各级光放大结构的泵浦功率,以及根据增益差异值调整与实际增益值对应的第三VOA值。其中,闭环阈值小于开环阈值。第一器件还用于:根据第三VOA值调整回路衰减大小。通过上述方式,如果该增益差异值大于或等于闭环阈值,光放控制器通过微调第三泵浦电流值以及第三VOA值,使得调整后第三泵浦电流值能够趋近于第二泵浦电流值,以及调整后的第三VOA值也能够趋近于第二VOA值,确保此时信号光的增益能够被精确控制,且保持稳定。
在一些可选的示例中,光放大器还包括第二器件。第二器件的第一端连接于连接于第M级光放大结构的输出端,该第二器件的第一端连接于第M+1级光放大结构的输入端,第二器件的第三端与第一器件连接。或者,该第二器件的第一端连接于第N级光放大结构的输出端。第二器件,用于确定互补光的波带,或者确定互补光的分光功率。通过上述方式,第二器件可以作为前述光控回路中的组成部分,用于确定互补光的波带,或者确定互补光的分光功率,为在激射互补光的过程中,提供了激射波长的候选范围,或者激射功率。
在一些可选的示例中,第二器件包括第一分波器。该第一分波器用于分离所述信号光的波带与所述互补光的波带,以确定所述互补光的波带。或者,该第一分波器,用于生成滤波谱线以及获取由所述N级光放大结构调制的自发辐射ASE光谱线,并基于所述滤波谱线和所述自发辐射ASE光谱线确定所述互补光的波长。
在一些可选的示例中,第二器件包括耦合器。该耦合器用于确定所述信号光与所述互补光的分光功率。
在一些可选的示例中,第一器件包括第一可调式光衰减器和第一滤波器。其中,第一滤波器,用于从互补光的波带中选取激射波长,以用于在第一可调式光衰减器调整回路衰减大小后,将互补光按照激射波长激射。
在一些可选的示例中,第一器件包括第二可调式光衰减器。其中,该第二可调节光衰减器用于在调整回路衰减大小后,将互补光按照互补光的波长激射。通过上述方式,光放大器中的第二器件不包括第一滤波器,也能够直接通过第二分波器直接确定出互补光的波长,无需再次通过滤波器从互补光的波带中选取合适的激射波长,节省了成本和体积。
在一些可选的示例中,第一器件包括第三可调式光衰减器和第二滤波器。其中,第二滤波器,用于从信号光与互补光的分光功率中确定互补光的光功率,以用于在第三可调式光衰减器调整回路衰减大小后,将互补光按照互补光的光功率激射。
在一些可选的示例中,光放大器还包括第三滤波器和光放输出端。其中,第三滤波器的第一端连接于光放输出端,该第三滤波器的第二端连接于光放控制器。该第三滤波器用于在光放控制器获取信号光当前时刻的光放输出功率之前,过滤互补光。
在一些可选的示例中,光放大器还包括输入端探测器。该输入端探测器的第一端连接于第一级光放大结构的输入端,该输入端探测器的第二端连接于所述光放控制器。该输入端探测器,用于检测信号光当前时刻的光放输入功率,并向光放控制器发送当前时刻的光放输入功率。
在一些可选的示例中,光放大器还包括输出端探测器。该输出端探测器的第一端连接于第N级光放大结构的输出端或所述第二器件,所述输出端探测器的第二端连接于所述光放控制器。该输出端探测器用于检测信号光当前时刻的光放输出功率,并向光放控制器发送当前时刻的光放输出功率。
在一些可选的示例中,该光放大器还包括光放输入端。该光放输入端连接于第一级光放大结构的输入端。
第二方面,本申请实施例提供了一种光通信系统,该光通信系统可以包括光发射机、以及至少一个如第一方面或第一方面任意一种可能的光放大器。其中,该光发射机用于生成信号光。
在一些可选的示例中,该光通信系统还可以包括第一光复用/解复用器、第二光复用/解复用器、光纤链路以及光接收机。
在一些可选的示例中,光通信系统还可以包括滤波器件。
第三方面,本申请实施例提供了一种瞬态过冲的处理方法。该瞬态过冲的处理方法可以应用于光放大器。在该处理方法中,光放大器获取信号光的第一增益值,并根据关联关系确定与所述第一增益值对应的第一VOA值和第一泵浦电流值。其中,关联关系为第一增益值、第一VOA值以及第一泵浦电流值之间的关系,所述第一VOA值反映该光放大器中第一器件的回路衰减大小,所述第一泵浦电流值反映所述光放大器中N级光放大结构中的各级光放大结构所需的泵浦电流。然后,该光放大器根据第一VOA值调整回路衰减大小,以激射与所述信号光对应的互补光。
在一些可选的示例中,该处理方法还包括:获取所述信号光的第二增益值、以及与所述第二增益值对应的第二VOA值和第二泵浦电流值。并且,光放大器还在所述第一增益值与所述第二增益值不相等时,将所述第一增益值更新为所述第二增益值、将第一VOA值更新为第二VOA值以及将第一泵浦电流值更新为第二泵浦电流值。
在一些可选的示例中,该处理方法还包括:光放大器获取所述信号光当前时刻的光放输入功率和前一时刻的光放输入功率,并根据当前时刻的光放输入功率和前一时刻的光放输入功率确定光放输入功率变化大小。然后,该光放大器并在光放输入功率变化大小大于开环阈值时,根据第二泵浦电流值控制所述各级光放大结构的泵浦功率,以及根据第二VOA值调整所述回路衰减大小。
在一些可选的示例中,该处理方法还包括:光放大器获取信号光当前时刻的的光放输出功率,并基于当前时刻的光放输入功率和当前时刻的光放输出功率,计算所述信号光的实际增益值。然后,该光放大器计算所述实际增益值与所述第二增益值之间的增益差异值。而且,该光放大器还在所述增益差异值大于或等于闭环阈值时,根据所述增益差异值调整与所述实际增益值对应的第三泵浦电流值,以用于控制所述各级光放大结构的泵浦功率,以及根据所述增益差异值调整与所述实际增益值对应的第三VOA值。其中,该闭环阈值小于所述开环阈值。该光放大器还根据第三VOA值调整所述回路衰减大小。
在一些可选的示例中,该处理方法还包括:光放大器确定所述互补光的波带或者确定所述互补光的分光功率。
在一些可选的示例中,该处理方法还包括:光放大器分离所述信号光的波带与所述互补光的波带,以确定所述互补光的波带。并且,光放大器从所述互补光的波带中选取激射波长,以用于在调整所述回路衰减大小后,将所述互补光按照所述激射波长激射。
在一些可选的示例中,该处理方法还包括:光放大器生成滤波谱线以及获取由N级光放大结构调制的自发辐射ASE光谱线,并基于所述滤波谱线和所述自发辐射ASE光谱线确定所述互补光的波长。该光放大器在调整所述回路衰减大小后,将所述互补光按照所述互补光的波长激射。
在一些可选的示例中,该处理方法还包括:光放大器确定所述信号光与所述互补光的分光功率。并且,该光放大器从所述信号光与所述互补光的分光功率中确定所述互补光的光功率,以用于在调整所述回路衰减大小后,将所述互补光按照所述互补光的光功率激射。
在一些可选的示例中,该处理方法还包括:光放大器在所述光放控制器获取所述信号光当前时刻的光放输出功率之前,过滤互补光。
在一些可选的示例中,该处理方法还包括:光放大器检测信号光当前时刻的光放输入功率。
在一些可选的示例中,该处理方法还包括:光放大器检测所述信号光当前时刻的光放输出功率。
从以上技术方案可以看出,本申请实施例具有以下优点:
在本申请实施例中,由光放控制器根据第一泵浦电流值控制各级光放大结构的泵浦功率,并且第一VOA值反馈至第一器件。这样,在光放控制器根据第一泵浦电流值调整各级光放大结构的泵浦功率的过程中,第一器件能够先根据第一VOA值调整回路衰减大小,从而调整互补光的能量,进而该互补光能够释放或者消耗各级光放大结构在第一泵浦电流值的使能下的泵浦能量,以实现消除信号光在各级光放大结构中产生的光放瞬态过冲的现象。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1为相关技术中的一个多级放大结构的示意图;
图2a为本申请实施例提供了光放大器的一种结构示意图;
图2b-图2d为本申请实施例提供的光放大器的另一个结构示意图;
图3为本申请实施例提供的光放大器的另一个结构示意图;
图4a为本申请实施例提供的开环调节的示意图;
图4b为本申请实施例提供的闭环调节的示意图;
图5a-图5b为本申请实施例中提供的光放大器的另一个结构示意图;
图6a-图6b为本申请实施例中提供的光放大器的另一个结构示意图;
图7为本申请实施例中提供的等效滤波带的示意图;
图8a-图8d为本申请实施例中提供的光放大器的另一个结构示意图;
图9为本申请实施例中提供的光放大器的另一个结构示意图;
图10为本申请实施例中提供的光放大器的另一个结构示意图;
图11为本申请实施例中提供的光放大器的另一个结构示意图;
图12a为中间级的光放大结构的光谱示意图;
图12b为光放输出端的光谱示意图;
图13a为现有方案在加掉波过程中产生的瞬态过冲示意图;
图13b为本实施例提供的在加掉波过程中产生的瞬态过冲示意图;
图14a为本实施例提供的光通信系统的一个结构示意图;
图14b为本实施例提供的光通信系统的另一个结构示意图;
图15为本申请实施例提供的瞬态过冲的处理方法的一种流程示意图。
具体实施方式
本申请实施例提供了一种光放大器以及光通信系统,用于通过自适应地调整与信号光对应的互补光的能量,实时地且动态地释放或者消耗各级光放大结构所需的泵浦能量,进而消除瞬态过冲现象。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”以及它的任何变形,意图在于覆盖不排他的包含。在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a、b和c可以是单个,也可以是多个。值得注意的是,“至少一项(个)”还可以解释成“一项(个)或多项(个)”。
随着ASON和ROADM站点的部署,光通信波分网络中动态加掉波道的场景越来越多。加掉波发生时,会引起光放输入端的信号光的光功率发生急剧变化。加波时,进入光放大器的光功率增大,导致泵浦光对各信号波道的贡献减小,单波光功率突然下降,发生瞬态下冲;掉波时,进入光放大器的光功率突然减小,导致过剩的泵浦光对剩余信号波道的贡献增大,单波光功率增加,发生瞬态上冲。
以现网中的EDFA为例,通常采用如前述图1所示的多级放大结构来追求增益可调和更优的噪声性能。其中,第一级光放大结构1021铒纤处于饱和状态,导致波道间的增益竞争关系加强。而通信网络链路中光放大器级联、加掉波数目增大、切换速度变快、甚至断纤等,均会进一步增加光放大器在加掉波过程中的瞬态过冲(包括瞬态上冲和瞬态下冲)效应,导致业务发生瞬断,影响系统正常运行。
当前降低光放大器在加掉波过程中的瞬态过冲效应的方式,是由电控回路降低光放大器的开环响应时间,以改变各级光放大结构的泵浦功率,使得泵浦功率的改变尽量跟上光放输入端的光功率的变化,以降低信号过冲。具体地,由输入端探测器检测光放输入端的光功率的变化;然后再通过光放控制器101根据当前光放输入功率查询配置表,并通过相应的泵浦电流值来控制各级光放大结构的泵浦功率。然而,电控回路对于开环响应的时间不能无限降低,并且电控回路的响应总是滞后于光放输入端的光功率变化。因此,通过当前的方式只能抑制部分光放的瞬态过冲,而不能完全消除光放的瞬态过冲现象。而且,随着光放大器的级联数目的增加,这种瞬态过冲效应将被不断地扩大,进而影响网络性能。
因此,为了消除上述所描述光放大器产生的瞬态过冲现象,本申请实施例提供了一种 光放大器,应用于光通信波分网络中。本申请所提供的光放大器能够实现通过自适应地调整与信号光对应的互补光的能量,实时地且动态地释放或者消耗各级光放大结构所需的泵浦能量,进而消除瞬态过冲现象。可以理解的是,由于光控回路的响应速度优于电控回路的响应速度,因而在本申请实施例所提供的光放大器中,能够在任意两级光放大结构之间、或者在光放输入端与光放输出端之间引入光控回路。这样,光控回路能够根据电控回路反馈的VOA值来调整自身的回路衰减大小,进而自适应地根据输入的信号光的大小调节与信号光对应的互补光的能量,从而实时地释放或者消耗各级光放大结构所需的泵浦能量,消除光放的瞬态过冲现象。
图2a为本申请实施例提供了光放大器的一种结构示意图。从图2a可以看出,该光放大器10可以包括光放控制器101、合波器103、第一器件104以及按照级联的方式排列的N级光放大结构102。其中,上述的N级光放大结构102,用于放大信号光。该光放控制器101,用于获取信号光的第一增益值,并根据关联关系确定与所述第一增益值对应的第一VOA值和第一泵浦电流值。并且,该光放控制器101将第一VOA值发送至所述第一器件104。该第一器件104用于根据第一VOA值调整回路衰减大小,以激射与所述信号光对应的互补光。
该示例中,所描述的N级(N≥2,且N为整数)光放大结构通过级联的方式连接,例如,图2a所示的第一级光放大结构1021、第二级光放大结构1022…以及第N级光放大结构102N以串联的方式排序。所描述的第一级光放大结构1021可以理解成排列在N级光放大结构102中的第一个光放大结构,而其他的第二级光放大结构1022…以及第N级光放大结构102N可以参照第一级光放大结构1021进行理解,不做具体赘述。另外,这N级光放大结构102中的各级光放大结构均可以放大信号光,为信号光提供增益。增益可以理解成信号光被整个光放大器10放大的程度。
另外,所描述的光放控制器101与第一器件104、以及与这N级光放大结构102中的各级光放大结构连接。而且,所描述的合波器103可以连接于第一级光放大结构1021的输入端、或者连接于第K级光放大结构的输出端与第K+1级光放大结构的输入端之间。所描述的第一器件104的第一端连接于合波器103,该第一器件104的第二端连接于第N级光放大结构102N的输出端或者连接于第M级光放大结构的输出端与第M+1级光放大结构的输入端之间,其中,1≤K≤M,2≤M≤N,M、K为整数。
从图2a可以看出,合波器103连接于第一级光放大结构1021的输出端与第二级光放大结构1022的输入端之间,第一器件104的第二端连接于第N级光放大结构102N的输出端,仅仅是一个示意性的描述。在实际应用中,该合波器103并不限定于图2a所示的连接关系,该第一器件104并不限定于图2a所示的连接关系。
举例来说,还可以参阅图2b-图2d,为本申请实施例提供的光放大器的另一个结构示意图。从该2b可以看出,合波器103可以连接于第一级光放大结构1021的输入端,所描述的第一级光放大结构1021可以参照图2a进行理解。另外,从图2c可以看出,该合波器103还可以连接于第N-1级光放大结构102N-1的输出端与第N级光放大结构102N的输入端之间。
对于第一器件104的第二端的连接关系,也可以参阅图2d进行理解。从图2d可以看出,该第一器件104可以连接于第二级光放大结构1022的输出端与第三级光放大结构1023的输入端之间。
需理解,合波器103与第一器件104的第二端之间,需要间隔至少一级光放大结构。
以图2a所示的合波器103、第一器件104的连接关系为例,电控回路可以由光放控制器101、光放输入端、第一级光放大结构1021、合波器103、第二级光放大结构1022至第N级光放大结构102N以及光放输出端连接形成的回路。而且,合波器103、第二级光放大结构1022至第N级光放大结构102N、第一器件104连接形成的回路,可以理解成光控回路。
为了使得信号光获得预设的增益,可以将信号光的第一增益值、第一可调光衰减器(variable optical attenuator,VOA)值以及第一泵浦电流值之间的关联关系设置在配置表中,并将配置表存储于该光放控制器101。所描述的第一VOA值和第一泵浦电流值均与该第一增益值相对应,并且第一VOA值能够用来反映出第一器件104所在的光控回路的回路衰减大小,第一泵浦电流值可以反映出各级光放大结构所需的泵浦电流。
而光放控制器101在通过第一泵浦电流值对各级光放大结构的泵浦功率进行控制,进而控制各级光放大结构对于信号光的泵浦能量的过程中,要想各级光放大结构对于信号光的放大过程不会产生瞬态过冲现象,那么还可以在不同的增益设置情况下,通过光控回路中的第一器件104对信号光进行衰减。即:增益需要减少多少,那么相应的衰减大小就增加多少;或者,增益需要增加多少,那么相应的衰减大小就减少多少,进而实现信号光的平坦输出。
基于此,在信号光的第一增益值以及关联关系已经配置在光放控制器101后,此时光控回路与电控回路均处于工作状态。这样,光放控制器101可以从配置表中获取该信号光的第一增益值,并根据关联关系确定第一VOA值以及第一泵浦电流值。一方面,光放控制器101需要将第一VOA值反馈至第一器件104;另一方面,光放控制器101还需要根据第一泵浦电流值,调整各级光放大结构中的泵浦功率。
在加掉波发生前,光控回路中的第一器件104可以先根据第一第一VOA值调整回路衰减大小,从而保证与信号光对应的互补光能够保持正常工作。这样,在加掉波发生的时候,由于光控回路的响应速度较快,使得在光放控制器101根据第一泵浦电流值调整各级光放大结构中的泵浦功率的过程中,互补光能够根据信号光的光放输入功率释放或者消耗各级光放大结构在第一泵浦电流值的使能下的泵浦能量,进而消除信号光在各级光放大结构中产生的光放瞬态过冲的现象。所描述的互补光可以理解成各级光放大结构产生的噪声在光控回路中形成的激射光。
需要理解的是,所描述的光控回路可以随着合波器103、第一器件104的连接位置的不同而不同。譬如说,在上述图2b所示的光放大器10中,此时的光控回路可以看成是合波器103、第一级光放大结构1021、第二级光放大结构1022…第N级光放大结构102N、以及第一器件104连接形成的回路。又或者,在上述图2c所示的光放大器10中,此时的光控回路可以看成是合波器103、第N级光放大结构102N以及第一器件104连接形成的回路。又或者,在上述图2d所示的光放大器10中,合波器103、第第二级光放大结构1022、以及第一器件104连接形成的回路,也可以理解为光控回路。具体在本申请中不做限定说明。
而除了上述图2b所示出的将合波器103连接于第一级光放大结构1021的输入端的情形以外,对于上述图2a、图2c-图2d所示的光控回路,或者是将合波器103连接于第K级光放大 结构的输出端与第K+1级光放大结构的输入端之间的所对应的光控回路,能够在不劣化光放大器10的噪声性能的基础上,实现消除光放大器10的瞬间过冲的现象。换句话说,在整个光放大器10的中间级的光放大结构之间、或者中间级的光放大结构与光放输出端之间,引入互补光来消除信号光在各级光放大结构中的泵浦能量,进而在不劣化光放大器10的噪声性能的基础上,实现消除光放大器10的瞬间过冲的现象。所描述的中间级的光放大结构可以理解成除了第一级光放大结构1021以外的其余光放大结构,此处不做限定。
图3为本实施例提供的光放大器的另一种结构示意图。从图3可以看出,在N=3时,光控回路可以看成由合波器103、第二级光放大结构1022、第三级光放大结构1023以及第一器件104连接形成的回路。而且,在第三级光放大结构1023输出信号光,所对应的光放噪声指数不会劣化第一级光放大结构1021输出的信号光所对应的噪声性能。具体可以参照以下公式进行理解:
Figure PCTCN2022100288-appb-000001
其中,NF为第三级光放大结构1023对应的光放噪声指数,NF1为第一级光放大结构1021对应的光放噪声指数,NF2为第二级光放大结构1022对应的光放噪声指数,L为损耗,G1为第一级光放大结构1021提供的增益。
从上述公式可以看出,引入的损耗将对NF1的影响较小,尤其是当引入的损耗远小于G1时,几乎不会劣化原光放大器的噪声性能。而且,由于光控回路并没有在第一级光放大结构1021的输入端形成,因此也不会降低整体光放大器10的光放输入功率的调节范围,能够保证信号光的增益的动态可调节范围。此外,在整个光放大器10的中间级的光放大结构之间、或者输出端的光放大结构与光放中间级之间,引入与信号光对应的互补光来消除信号光在各级光放大结构中的泵浦能量,进而在不劣化光放大器10的增益性能的基础上,实现消除光放大器10的瞬间过冲的现象。上述主要描述了光放控制器101将配置表中恒定的第一增益值反馈至第一器件104,使得第一器件104能够根据第一VOA值调整回路衰减大小,以激射与信号光对应的互补光,实现消除光放瞬态过冲的现象。而在实现消除光放瞬态过冲的现象的基础上,为了各级光放大结构依旧能够为信号光提供稳定的增益,那么光放控制器101还需要在增益设定值发生改变时,实时地根据增益设定值和配置表调整相应的VOA值,从而保证光控回路正常工作。因此,在上述图2a所示的光放大器10的基础上,在另一些可选的示例中,光放控制器101还可以用于:获取所述信号光的第二增益值、以及与所述第二增益值对应的第二VOA值和第二泵浦电流值。并且,该光放控制器101在第一增益值与第二增益值不相等时,将第一增益值更新为第二增益值、将第一VOA值更新为第二VOA值以及将第一泵浦电流值更新为第二泵浦电流值。
在该示例中,在光通信系统的损耗发生改变时,需要通过各级光放大结构提供相应的增益,以弥补损耗。因此,在通过增益弥补损耗的过程中,增益会随着损耗的变化而发生改变;而增益的稳定又需要通过与信号光对应的互补光来实现,而且激射互补光又需要通过回路衰减大小来实现,那么此时需要通过光放控制器101更新VOA值。
具体地,光放控制器101首先需要获取基于损耗确定出的该信号光的第二增益值,并且获取与第二增益值对应的第二VOA值和第二泵浦电流值。这样,光放控制器101通过判断第一增益值是否与第二增益值相等。如果该第一增益值与第二增益值不相等,那么光放控制 器101就需要将配置表中的第一增益值更新为第二增益值,并且将与第一VOA值更新为第二VOA值,将第一泵浦电流值更新为第二泵浦电流值,有效地实现了动态地调节信号光的增益。
举例来说,在当前的配置表中,信号光的增益设定值为第一增益值,如:10db。若根据损耗,希望最终信号光的增益可以变成13db。此时,光放控制器101就需要获取该第二增益值(即:13db)后,将原来配置表中的10db更新为13db,并且更新相应的第一VOA值为与13db对应的VOA值,以及更新第一泵浦电流值为与13db对应的泵浦电流值。应当理解的是,所描述的10db、13db仅仅是一个示意性的描述,在实际应用中不做限定说明。
在另一些示例中,在光放控制器101更新VOA值以及泵浦电流值之后,该光放控制器101还可以通过开环调节操作来控制调节信号光的增益。具体地,该光放控制器101还可以获取信号光当前时刻的光放输入功率和前一时刻的光放输入功率,并根据所述光放输入功率和所述前一时刻的光放输入功率确定光放输入功率变化大小。然后,在所述光放输入功率变化大小大于开环阈值时,该光放控制器101根据第二泵浦电流值控制所述各级光放大结构的泵浦功率,以及将第二VOA值发送至所述第一器件104。该第一器件104还用于根据与第二VOA值调整回路衰减大小。
该示例中,光放控制器101在更新得到第二VOA值和第二泵浦电流值后,便可以获知需要通过多少的增益来弥补损耗。此时,光放控制器101可以通过获取信号光当前时刻的光放输入功率和前一时刻的光放输入功率,并根据当前时刻的光放输入功率和前一时刻的光放输入功率确定光放输入功率变化大小,即:
Figure PCTCN2022100288-appb-000002
其中,K为光放输入功率变化大小,A为当前时刻的光放输入功率,B为前一时刻的光放输入功率。
这样,光放控制器101在光放输入功率变化大小大于开环阈值时,可以执行开环调节操作。需说明,所描述的光放输入功率变化大小可以理解成信号光从光放输入端进入光放大器10时,因发生加掉波而导致光放输入功率发生改变的值,即变化的倍数大小。另外,在光放输入功率变化大小超过某一预设值时,进而触发前述的开环调节操作,此时可以将该某一预设值理解成开环阈值。
另外,在光放输入功率变化大小小于或等于开环阈值时,光放控制器101也可以执行闭环调节操作,具体所描述的闭环调节操作可以参照后续图4b所描述的内容进行理解,此处先不做赘述。
图4a为本申请实施例提供的开环调节的示意图。从图4a可以看出,光放控制器101通过查询配置表,确定出此时配置表中的增益设定值,即第二增益值。然后,光放控制器101再基于第二增益值和关联关系确定出第二泵浦电流值,以及确定出第二VOA值。一方面,光放控制器101能够根据第二泵浦电流值控制各级光放大结构的泵浦功率;另一方面,光放控制器101还需要将第二VOA值反馈至第一器件104,使得第一器件104也能够根据第二值调整回路衰减大小。
这样,第一器件104可以先根据第二VOA值调整回路衰减大小,从而使互补光能够正常工作。在光放控制器101根据第二泵浦电流值调整各级光放大结构中的泵浦功率的过程中,正常工作的互补光能够释放或者消耗各级光放大结构在第二泵浦电流值的使能下的泵浦能量。不仅消除信号光在各级光放大结构中产生的光放瞬态过冲的现象,而且还能够调整信号光的增益趋近于所设定的第二增益值附近。
在另一些示例中,为了能够精确地控制增益的稳定,该光放控制器101还用于获取信号光当前时刻的光放输出功率,并基于当前时刻的光放输入功率和当前时刻的光放输出功率,计算所述信号光的实际增益值。然后该光放控制器101计算所述实际增益值与所述第二增益值之间的增益差异值。并且,在所述增益差异值大于或等于闭环阈值时,该光放控制器101根据增益差异值调整与实际增益值对应的第三泵浦电流值,以用于控制所述各级光放大结构的泵浦功率,以及根据所述增益差异值调整与所述实际增益值对应的第三VOA值。其中,所述闭环阈值小于所述开环阈值。该第一器件104还用于根据第三VOA值调整所述回路衰减大小。
也就是理解成,在执行开环调节后,该光放控制器101还可以获取信号光当前时刻的光放输出功率,并结合上述所描述当前时刻的光放输入功率,计算出信号光的实际增益值。然后,该光放控制器101将实际增益值与配置表中的第二增益值进行处理,得到增益差异值。如果该增益差异值大于或等于闭环阈值,那么光放控制器101可以执行闭环调节操作,以微调用于控制各级光放大结构的泵浦功率所对应的泵浦电流值、以及微调VOA值。
需说明,在光放输入功率变化大小超过某一预设值时,进而触发前述的闭环调节操作,此时可以将该某一预设值理解成闭环阈值。一般情况下,所描述的闭环阈值小于开环阈值。
图4b为本申请实施例提供的闭环调节的示意图。从图4b可以看出,光放控制器101在增益差异值大于或等于闭环阈值时,可以根据该增益差异值调整与所述实际增益值对应的第三泵浦电流值,以及根据所述增益差异值调整与所述实际增益值对应的第三VOA值。并通过重复执行闭环调节的操作,微调第三泵浦电流值和第三VOA值,直至实际增益值与配置表中的第二增益值之间的增益差异值小于闭环阈值。换句话说,调整后的与实际增益值对应的泵浦电流值能够趋近于与配置表中所设定的第二增益值对应的第二泵浦电流值,以及调整后的第三VOA值也能够趋近于与配置表中所设定的第二增益值对应的VOA值,可以说明此时信号光的增益能够被精确控制,且保持稳定。
因此,光放控制器101能够根据调整后的第三泵浦电流值控制各级光放大结构的泵浦功率;以及,光放控制器101还可以要将调整后的第三VOA值反馈至第一器件104,使得第一器件104也能够根据调整后的第三VOA值调整回路衰减大小。
这样,第一器件104可以先根据调整后的第三VOA值调整回路衰减大小,使得与信号光对应的互补光能够正常工作。并在光放控制器101根据调整后的第三泵浦电流值调整各级光放大结构中的泵浦功率的过程中,该互补光能够释放或者消耗各级光放大结构在与第二增益值对应的泵浦电流值的使能下的泵浦能量。不仅能够实时地精确地控制信号光的增益,保持增益的稳定,而且还能够消除信号光在各级光放大结构中产生的光放瞬态过冲的现象。
图5a为本申请实施例中提供的光放大器的另一个结构示意图。从图5a可以看出,该光放大器10还可以包括第二器件105,其中,该第二器件105连接于第N级光放大结构102N的输出端、或者连接于第M级光放大结构的输出端与第M+1级光放大结构的输入端之间,所述第二器件105还与所述第一器件104连接;
第二器件105,用于确定所述互补光的波带,或者确定所述互补光的分光功率。
在该示例中,第二器件105可以作为前述光控回路中的组成部分。该第二器件105用于确定互补光的波带或者确定互补光的分光功率。实现在激射互补光的过程中,提供激射波 长的候选范围或者激射功率。
需说明,图5a中所描述的第二器件105,可以增加在前述图2a-图2d、以及图3中任意一个示意图的基础上。在本申请实施例中,仅以第二器件105增加在图2a所描述的光放大器10的结构为例进行说明。
另外,图5a所描述的第二器件105连接于第N级光放大结构102N的输出端,仅仅是一个示意性的描述。在实际应用中,该第二器件105并不限定于图5a所示的连接关系。举例来说,图5b为本申请实施例提供的光放大器的另一个结构示意图。从该5b可以看出,第二器件105可以连接于第N-1级光放大结构102N-1的输出端与第N级光放大结构102N的输入端之间,此处不做限定说明。
值得注意的是,第二器件105与合波器103之间始终需要间隔至少一级光放大结构。
另外,在一些可选的示例中,在上述图5a或图5b所描述的光放大器10的结构的基础上,可以采用多种不同的器件来执行第二器件105所执行的功能。譬如说,可以采用分波器或者耦合器来执行第二器件105所执行的功能。下面将分别从不同的实施例来描述:
(1)、第二器件105包括第一分波器1051。
图6a为本申请实施例提供的光放大器的另一种结构示意图。从图6a可以看出,该第二器件105可以包括第一分波器1051。其中,该第一分波器1051,用于分离所述信号光的波带与所述互补光的波带,以确定所述互补光的波带;或者,该第一分波器1051用于生成滤波谱线以及获取由所述N级光放大结构调制的自发辐射ASE光谱线,并基于所述滤波谱线和所述自发辐射ASE光谱线确定所述互补光的波长。
在该示例中,在上述图5a所描述的光放大器10的结构的基础上,由于第N级光放大结构102N输出的信号光和互补光是混合在一起的。因此,混合在一起的信号光和互补光在经过第一分波器1051后,该第一分波器1051能够将信号光的波带和互补光的波带进行分离,从而得到该互补光的波带。随后,第一分波器1051将该互补光的波带反馈给第一器件104。这样,第一器件104可以从该互补光的波带中选取激射波长,进而在调整回路衰减大小后,依照该互补光的激射波长将互补光激射。
或者说,由于各级光放大结构中包括有增益平坦滤波器(gain flattening filters,GFF),会调制各级光放大结构自身的自发辐射(amplified spontaneous emission,ASE)光谱线。而信号光在从第N级光放大结构102N输出,并经过第一分波器1051时,该第一分波器1051也会生成相应的滤波谱线。因此,第一分波器1051可以在获取由N级光放大结构102调制的ASE光谱线后,结合滤波谱线确定等效滤波带,进而确定该互补光的波长。这样,第一器件104可以在调整回路衰减大小后,直接依照该互补光的波长将互补光激射。
所描述的等效滤波带可以理解成ASE光谱线与滤波谱线相交时得到的滤波带,具体可以参阅图7所示出的等效滤波带的示意图进行理解。
(2)、第二器件105包括耦合器1052。
图6b为本申请实施例提供的光放大器的另一种结构示意图。从图6b可以看出,第二器件105可以包括耦合器1052。其中,该耦合器1052用于确定所述信号光与所述互补光的分光功率。
在该示例中,在上述图5a所描述的光放大器10的结构的基础上,由于第N级光放大结构 102N输出的信号光和互补光是混合在一起的。因此,混合在一起的信号光和互补光在经过耦合器1052后,该耦合器1052无法滤出互补光的波带,而是确定出混合在一起的信号光与互补光的分光功率1052,并反馈给第一器件104。随后,由第一器件104从该信号光与互补光的分光功率中,滤出该互补光的光功率,进而在调整回路衰减大小后,依照该互补光的光功率将互补光激射。
另外,在一些可选的示例中,在上述图2a-图6b所描述的光放大器10的结构的基础上,可以采用多种不同的器件来执行第一器件104所执行的功能。譬如说,可以采用可调式光衰减器和滤波器来执行第一器件104所执行的功能,也可以只采用可调式光衰减器来执行第一器件104所执行的功能。下面将分别从不同的实施例来描述:
(1)、第一器件104包括第一可调式光衰减器1041和第一滤波器1042。
图8a为本申请实施例提供的光放大器的另一种结构示意图。从图8a可以看出,该第一器件104可以包括第一可调式光衰减器1041和第一滤波器1042。其中,第一滤波器1042用于从所述互补光的波带中选取激射波长,以用于在所述第一可调式光衰减器1041调整所述回路衰减大小后,将所述互补光按照所述激射波长激射。
在该示例中,在上述图6a所描述的光放大器10的结构的基础上,由于第N级光放大结构102N输出的信号光和互补光是混合在一起的。因此,混合在一起的信号光和互补光在经过第一分波器1051后,该第一分波器1051能够将信号光的波带和互补光的波带进行分离,从而得到该互补光的波带。随后,第一滤波器1042能够从该互补光的波带中选取任意一个激射波长,并在第一可调式光衰减器1041调整所述回路衰减大小后,将互补光按照激射波长激射,从而使得互补光能够释放或者消耗各级光放大结构在第二泵浦电流值的使能下的泵浦能量。不仅能够实时地精确地控制信号光的增益,保持增益的稳定,而且还能够消除信号光在各级光放大结构中产生的光放瞬态过冲的现象。
另外,在本实施例中激射互补光,既可以在长波位置进行激射,也可以在短波位置进行激射,此处不做限定说明。
(2)、第一器件104包括第二可调式光衰减器1043。
图8b为本申请实施例提供的光放大器的另一种结构示意图。从图8b可以看出,该第一器件104可以包括第二可调式光衰减器1043。其中,第二可调节光衰减器1043用于在调整所述回路衰减大小后,将所述互补光按照所述互补光的波长激射。
在该示例中,在上述图6a所描述的光放大器10的结构的基础上,由于第一分波器1051可以在获取由N级光放大结构调制的ASE光谱线后,结合滤波谱线确定等效滤波带,确定出该互补光的波长。进一步地,在第二可调式光衰减器1043调整所述回路衰减大小后,依旧能够将互补光按照第一分波器1051所确定出的互补光的波长激射,从而使得互补光能够释放或者消耗各级光放大结构在第二泵浦电流值的使能下的泵浦能量。不仅能够实时地精确地控制信号光的增益,保持增益的稳定,而且还能够消除信号光在各级光放大结构中产生的光放瞬态过冲的现象。另外,在本实施例中激射互补光,既可以在长波位置进行激射,也可以在短波位置进行激射,此处不做限定说明。
相较于上述图8a所描述的光放大器10中的第一器件104,该图8b所示的光放大器10中的第一器件104并不包括第一滤波器1042。因此,为了能够在第二可调节光衰减器1043根据光 放控制器101反馈的VOA值调整回路衰减大小之后,也能够将互补光激射出去,此时可以采用自发辐射ASE光谱线和滤波谱线直接确定该互补光的波长。无需再次通过图8a所示的第一滤波器1041从互补光的波带中选取合适的激射波长,节省了成本和体积。
(3)第一器件104包括第三可调式光衰减器1044和第二滤波器1045。
图8c为本申请实施例提供的光放大器的另一种结构示意图。从图8c可以看出,该第一器件104可以包括第三可调式光衰减器1044和第二滤波器1045。其中,所述第二滤波器1045,用于从信号光与互补光的分光功率中确定所述互补光的光功率,以用于在所述第三可调式光衰减器1044调整所述回路衰减大小后,将所述互补光按照所述互补光的光功率激射。
在该示例中,在上述图6b所描述的光放大器10的结构的基础上,由于第N级光放大结构102N输出的信号光和互补光是混合在一起的。因此,混合在一起的信号光和互补光在经过耦合器1052后,该耦合器1052无法滤出互补光的波带,而是确定出混合在一起的信号光与互补光的分光功率,并反馈给第二滤波器1045。随后,第二滤波器1045可以从该信号光与互补光的分光功率中,滤出该互补光的光功率。并且,该第二滤波器1045在第三可调式光衰减器1044调整所述回路衰减大小后,将互补光按照该互补光的光功率激射,从而使得互补光能够释放或者消耗各级光放大结构在第二泵浦电流值的使能下的泵浦能量。不仅能够实时地精确地控制信号光的增益,保持增益的稳定,而且还能够消除信号光在各级光放大结构中产生的光放瞬态过冲的现象。另外,在本实施例中激射互补光,既可以在长波位置进行激射,也可以在短波位置进行激射,此处不做限定说明。
在另一些可选的示例中,图8d为本申请实施例提供的光放大器的另一种结构示意图。从图8d可以看出,该光放大器10还包括第三滤波器106和光放输出端107,该第三滤波器106连接于所述光放输出端107与所述光放控制器101之间。第三滤波器106用于在所述光放控制器101获取所述信号光的当前时刻的光放输出功率之前,过滤互补光。
在上述图8c所示出的光放大器10的基础上,由于第N级光放大结构102N输出的信号光和互补光是混合在一起的,而输出端探测器对于信号光当前时刻的光放输出功率进行检测,应当是对独立的信号光进行检测。因此,在光放控制器101从输出端探测器获取信号光当前时刻的光放输出功率之前,还应当先通过该第三滤波器106将信号光与互补光进行分离,确保得到独立的信号光,进而确保后续能够检测出准确的信号光当前时刻的光放输出功率,从而保证光放控制器101执行闭环调节的过程中不出现差错。
在另一些可选的示例中,图9为本申请实施例提供的光放大器的另一种结构示意图。从图9可以看出,该光放大器10还包括输入端探测器108,所述输入端探测器108的第一端连接于第一级光放大结构1021的输入端,所述输入端探测器108的第二端连接于所述光放控制器光放控制器101。该输入端探测器108用于检测所述信号光当前时刻的光放输入功率,并向所述光放控制器101发送当前时刻的光放输入功率。
在另一些可选的示例中,图10为本申请实施例提供的光放大器的另一种结构示意图。从图10可以看出,该光放大器10还包括输出端探测器109,该输出端探测器109的第一端连接于第N级光放大结构102N的输出端或第二器件105,输出端探测器109的第二端连接于光放控制器101。输出端探测器109,用于检测所述信号光当前时刻的光放输出功率,并向所述光放控制器101发送当前时刻的光放输出功率。
在另一些可选的示例中,图11为本申请实施例提供的光放大器的另一种结构示意图。从图11可以看出,该光放大器10还包括光放输入端1010,该光放输入端1010连接于第一级光放大结构1021的输入端。
为了便于理解,下面图12a-图12b将从光谱的角度来描述应用本实施例提供的光放大器10后的光谱情况。图12a为中间级的光放大结构的光谱示意图。从图12a可以看出,由于互补光的产生是利用前述所描述的光控回路对业务信道外的ASE光环回产生,因此该互补光不会占用传输信号光的业务信道,进而不会对信号光的质量产生影响。需说明,图12a所示出的互补光既可以在长波位置,也可以在短波位置射,此处不做限定说明。
图12b为光放输出端的光谱示意图。由于第二器件105,比如第一分波器1051的使能作用,使得互补光在光放输出端截止。因此,从图12b可以看出,光放输出端只输出通过业务信道传输的信号光。
相较于现有方案通过电控回路只能消除部分光放的瞬态过冲效应,采用本实施例提供的光放大器10,能够完全消除光放的瞬态过冲效应,并且提供稳定的增益。图13a为现有方案在加掉波过程中产生的瞬态过冲示意图,以及图13b为本实施例提供的在加掉波过程中产生的瞬态过冲示意图。从图13a可知,在应用现有方案消除光放的瞬态过冲效应中,加掉波发生时,信号波道中的光放功率放先上冲和震荡,然后恢复稳定。而上冲的过程在光通信系统中会被放大,甚至超过10dB,导致稳态恢复时间也将变长,对光通信系统的稳定造成影响。而相较于现有方案,从图13b可以看出,通过应用本申请提供的光放大器10,光通信系统在加掉波的过程中带来的光放瞬态过冲被消除,系统恢复稳定的时间也大大地缩短。
上述主要描述了光放大器的结构,下面将描述光通信系统。图14a为本实施例提供的光通信系统的一个结构示意图。从图14a可以看出,该光通信系统可以包括光发射机20、光接收机30、第一光复用/解复用器40、第二光复用/解复用器50、光纤链路60以及至少一个光放大器10。
其中,光发射机20产生多路信号光,该多路信号光经由第一光复用/解复用器40的复用后,可以形成波分复用信号。然后,该波分复用信号传输至光纤链路60中,并由至少一个光放大器10补偿损耗。最终通过第二光复用/解复用器50的解复用后,被光接收机30接收。
需说明,所描述的光放大器10可以参照前述图2a至图11所描述的光放大器10进行理解。并且,在图14a所示的光通信系统中,仅以间隔3跨的光纤链路就应用一个图2a至图11中任意一个所描述的光放大器10,进而消除由于加掉波信号带来的系统光放瞬态过冲现象,维持整个光通信系统的稳定。但在实际应用中,还可以间隔w(w≥1,w为整数)跨的光纤链路就应用一个图2a至图11中任意一个所描述的光放大器10,以用于消除或缓解由于加掉波信号带来的系统光放瞬态过冲现象。
图14b为本实施例提供的光通信系统的另一个结构示意图。从图14b可以看出,该光通信系统可以包括光发射机20、光接收机30、第一光复用/解复用器40、第二光复用/解复用器50、滤波器件70、光纤链路60以及至少一个光放大器10。其中,光发射机20产生多路信号光,该多路信号光经由第一光复用/解复用器30的复用后,可以形成波分复用信号。然后,该波分复用信号进入光纤链路60中,并由至少一个光放大器10补偿损耗。最终通过滤波器件70的过滤、以及第二光复用/解复用器50的解复用后,被光接收机30接收。
需说明,所描述的光放大器10可以参照前述图8c至图8d所描述的光放大器10进行理解。图8c至图8d所描述的光放大器应用在图14b所示的光通信系统的时候,可以放置在光通信系统的光复用段(optical multiplex section,OMS)的发端,而其余各级光放大器可以使用现有方案中的光放大器。这样,互补光在应用了本实施例的光放大器10的内部产生,并随着信号光一起输出,在OMS段内传输。而互补光随着信号光在光纤链路60中发生衰减、以及在其余的各级光放大器中被放大,其余的各级光放大器通过本实施例的光放大器10产生的互补光消除瞬态过冲效应,维持整体的光通信系统的信号光的功率稳定。另外,还需要在OMS段的尾端、第二光复用/解复用器50下波之前利用滤波器件70滤出互补光,使得OMS尾端只输出信号光。
在上述各实施例的基础上,本申请实施例还提供了瞬态过冲的处理方法,下面将结合上述图2a-图11提供的光放大器对本申请的处理方法进行详细介绍,关于方法实施例中未详尽的细节请参照上述光放大器10的实施例进行理解。
图15为本申请实施例提供的瞬态过冲的处理方法的一种流程示意图。该处理方法可以应用于上述图2a-图11所示的光放大器10。具体的,参阅图2a-图11可知,该光放大器可以包括:光放控制器、合波器、第一器件以及按照级联的方式排列的N级光放大结构。所述光放控制器与所述第一器件、以及与所述N级光放大结构中的各级光放大结构连接。所述合波器连接于第一级光放大结构的输入端、或者连接于第K级光放大结构的输出端与第K+1级光放大结构的输入端之间。所述第一器件的第一端连接于所述合波器,该第一器件的第二端连接于第N级光放大结构的输出端或者连接于第M级光放大结构的输出端与第M+1级光放大结构的输入端之间,N≥2,1≤K≤M,2≤M≤N,N、M、K为整数。该N级光放大结构,用于放大信号光。相应的,如图15所示,该处理方法可以包括如下步骤:
1501、获取信号光的第一增益值。
1502、根据第一增益值和关联关系,确定与第一增益值对应的第一VOA值和第一泵浦电流值,关联关系为第一增益值、第一VOA值以及第一泵浦电流值之间的关系,第一VOA值反映第一器件的回路衰减大小,第一泵浦电流值反映N级光放大结构中的各级光放大结构所需的泵浦电流。
该示例中,所描述的第一VOA值和第一泵浦电流值均与该第一增益值相对应。并且,第一VOA值能够用来反映出该光放大器中的第一器件所在的光控回路的回路衰减大小,第一泵浦电流值可以反映出各级光放大结构所需的泵浦电流。因此,在用户欲想信号光获取预设的增益时,可以将信号光的第一增益值、第一VOA值以及第一泵浦电流值之间的关联关系设置在配置表中,并将存储该配置表。然后,该光放大器便可以基于该第一增益值和关联关系,确定出与该第一增益值对应的第一VOA值和第一泵浦电流值。
1503、根据第一VOA值调整回路衰减大小,以激射与信号光对应的互补光。
在该示例中,在通过第一泵浦电流值对该光放大器中的各级光放大结构的泵浦功率进行控制,进而控制各级光放大结构对于信号光的泵浦能量的过程中,要想各级光放大结构对于信号光的放大过程不会产生瞬态过冲现象,那么还可以在不同的增益设置情况下,对信号光进行衰减。即:增益需要减少多少,那么相应的衰减大小就需要增加多少;或者,增益需要增加多少,那么相应的衰减大小就需要减少多少,进而实现信号光的平坦输出。
因此,在加掉波发生前,可以先根据第一VOA值调整回路衰减大小,从而保证与信号光对应的互补光能够保持正常工作。这样,在加掉波发生的时候,在根据第一泵浦电流值调整各级光放大结构中的泵浦功率的过程中,互补光能够根据信号光的光放输入功率释放或者消耗各级光放大结构在第一泵浦电流值的使能下的泵浦能量,进而消除信号光在各级光放大结构中产生的光放瞬态过冲的现象。所描述的互补光可以理解成各级光放大结构产生的噪声在光控回路中形成的激射光。
在一些可选的示例中,该处理方法还可以包括:获取所述信号光的第二增益值、以及与所述第二增益值对应的第二VOA值和第二泵浦电流值。并且,在所述第一增益值与所述第二增益值不相等时,将所述第一增益值更新为所述第二增益值、将第一VOA值更新为第二VOA值以及将第一泵浦电流值更新为所述第二泵浦电流值。
在该示例中,在实现消除光放瞬态过冲的现象的基础上,为了进一步地为信号光提供稳定的增益,那么还需要在增益设定值发生改变时,实时地根据增益设定值和配置表调整相应的VOA值,从而保证互补光能够正常工作。因此,首先需要获取该信号光的第二增益值,并且获取与第二增益值对应的第二VOA值和第二泵浦电流值。这样,通过判断第一增益值是否与第二增益值相等。如果该第一增益值与第二增益值不相等,那么就需要将配置表中的第一增益值更新为第二增益值,并且将第一VOA值更新为第二VOA值,将第一泵浦电流值更新为第二泵浦电流值,有效地实现了动态地调节信号光的增益。
在一些可选的示例中,该处理方法还可以包括:获取所述信号光当前时刻的光放输入功率和前一时刻的光放输入功率;根据当前时刻的光放输入功率和所述前一时刻的光放输入功率确定光放输入功率变化大小;在所述光放输入功率变化大小大于开环阈值时,根据第二泵浦电流值控制所述各级光放大结构的泵浦功率,以及根据第二VOA值调整所述回路衰减大小。
在该示例中,在光放输入功率变化大小大于开环阈值时,光放大器可以执行开环调节操作。具体所描述的开环调节操作可以参阅前述图4a进行理解,此处不做赘述。另外,所描述的光放输入功率变化大小、开环阈值等,也可以参阅前述的内容进行理解,此处不做赘述。
在一些可选的示例中,该处理方法还可以包括:获取所述信号光当前时刻的光放输出功率;基于所述当前时刻的光放输入功率和所述当前时刻的光放输出功率,计算所述信号光的实际增益值;计算所述实际增益值与所述第二增益值之间的增益差异值;在所述增益差异值大于或等于闭环阈值时,根据所述增益差异值调整与所述实际增益值对应的泵浦电流值,以用于控制所述各级光放大结构的泵浦功率,以及根据所述增益差异值调整与所述实际增益值对应的第三VOA值,其中,所述闭环阈值小于所述开环阈值;根据与所述实际增益值对应的第三VOA值调整所述回路衰减大小。
在该示例中,为了能够精确地控制增益的稳定,该光放大器还可以执行闭环调节操作。具体所描述的闭环调节操作可以参阅前述图4b进行理解,此处不做赘述。另外,所描述的闭环阈值,也可以参阅前述的内容进行理解,此处不做赘述。
需说明,上述步骤1501-1503中的内容,具体也可以参照前述图2a-图11中所描述的内容进行理解,此处不做赘述。
在另一些可选的示例中,该光放大器还可以包括第二器件,所述第二器件的第一端连接于连接于第M级光放大结构的输出端,该第二器件的第一端连接于第M+1级光放大结构的输入端,第二器件的第三端与第一器件连接。或者,该第二器件的第一端连接于第N级光放大结构的输出端。在上述图15所示的基础上,该处理方法还可以包括:确定所述互补光的波带或者确定所述互补光的分光功率。
需理解的是,第二器件可以参照前述图5a所述的内容进行理解,此处不做赘述。
另外,在上述图5a-图5b所描述的光放大器的结构的基础上,可以采用多种不同的器件来执行该光放大器中第二器件所执行的功能。譬如说,可以采用分波器或者耦合器来执行第二器件所执行的功能。因此,在上述图15所示的可选示例的基础上,针对不同的情况,该处理方法还可以包括以下几种情形:
(1)、在第二器件包括第一分波器的情形中,该处理方法还可以进一步地包括:分离所述信号光的波带与所述互补光的波带,以确定所述互补光的波带;或者,生成滤波谱线以及获取由所述N级光放大结构调制的自发辐射ASE光谱线,并基于所述滤波谱线和所述自发辐射ASE光谱线确定所述互补光的波长。具体可以参照前述图6a所描述的光放大器进行理解,此处不做赘述。
(2)、在第二器件包括耦合器的情形中,该处理方法还可以进一步地包括:确定所述信号光与所述互补光的分光功率。具体可以参照前述图6b所描述的光放大器进行理解,此处不做赘述。
需说明,在上述第(2)中情形中,由于第N级光放大结构输出的信号光和互补光是混合在一起的,而对于信号光的光放输出功率进行检测,应当是对独立的信号光进行检测。因此,在另一些示例中,该处理方法还可以包括:在获取信号光当前时刻的光放输出功率之前,过滤互补光。这样,在通过将信号光与互补光进行分离,确保得到独立的信号光,进而确保后续能够检测出准确的信号光的光放输出功率,从而保证执行闭环调节的过程中不出现差错。
另外,在上述图6a-图6b所描述的光放大器的结构的基础上,也可以采用多种不同的器件来执行该光放大器中第一器件所执行的功能。譬如说,可以采用可调式光衰减器和滤波器来执行第一器件所执行的功能。因此,在上述图15所示的可选示例的基础上,针对不同的情况,该处理方法还可以包括以下几种情形:
(1)、在第一器件包括第一可调式光衰减器和第一滤波器的情形中,该处理方法还可以进一步地包括:从互补光的波带中选取激射波长,以用于在调整所述回路衰减大小后,将所述互补光按照所述激射波长激射。
在该示例中,由于输出的信号光和互补光是混合在一起的。因此,混合在一起的信号光和互补光在经过处理,能够将信号光的波带和互补光的波带进行分离,从而得到该互补光的波带。进一步地从该互补光的波带中选取任意一个激射波长,并在调整所述回路衰减大小后,将互补光按照激射波长激射,从而使得互补光能够释放或者消耗各级光放大结构在第二泵浦电流值的使能下的泵浦能量。不仅能够实时地精确地控制信号光的增益,保持增益的稳定,而且还能够消除信号光在各级光放大结构中产生的光放瞬态过冲的现象。具体可以参照前述图8a所描述的光放大器进行理解,此处不做赘述。
(2)、在第一器件包括第二可调式光衰减器的情形中,该处理方法还可以进一步地包括:在调整所述回路衰减大小后,将所述互补光按照所述互补光的波长激射。
在该示例中,在第一器件中没有包括第一滤波器的情形下,为了能够在调整回路衰减大小之后,也能够将互补光激射出去。那么,此时可以在采用自发辐射ASE光谱线和滤波谱线直接确定该互补光的波长后,将所述互补光按照所述互补光的波长激射。无需再次通过从互补光的波带中再次选取合适的激射波长,效率较高。具体可以参照前述图8b所描述的光放大器进行理解,此处不做赘述。
(3)、在第一器件包括第三可调式光衰减器和第二滤波器的情形中,该处理方法还可以进一步地包括:从信号光与互补光的分光功率中确定所述互补光的光功率,以用于调整所述回路衰减大小后,将所述互补光按照所述互补光的光功率激射。
在该示例中,由于输出的信号光和互补光是混合在一起的,而混合在一起的信号光和互补光在经过处理后,可能无法滤出互补光的波带,而是只能确定出混合在一起的信号光与互补光的分光功率。因此,还可以从该信号光与互补光的分光功率中,滤出该互补光的光功率。并在调整所述回路衰减大小后,将互补光按照该互补光的光功率激射,从而使得互补光能够释放或者消耗各级光放大结构在第二泵浦电流值的使能下的泵浦能量。不仅能够实时地精确地控制信号光的增益,保持增益的稳定,而且还能够消除信号光在各级光放大结构中产生的光放瞬态过冲的现象。具体可以参照前述图8c-图8d所描述的光放大器进行理解,此处不做赘述。
在一些可选的示例中,该处理方法还可以包括:检测所述信号光当前时刻的光放输入功率。
在一些可选的示例中,该处理方法还可以包括:检测所述信号光当前时刻的光放输出功率。
综上,图15以及与图15对应的可选示例中所描述的处理方法,主要应用于前述图2a-图11中提供的光放大器。其更为详尽的内容具体也可以参照前述图2a-图11中所描述的光放大器的内容进行理解成,此处不做赘述说明。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种光放大器,其特征在于,所述光放大器包括光放控制器、合波器、第一器件以及按照级联的方式排列的N级光放大结构;所述光放控制器与所述第一器件、以及与所述N级光放大结构中的各级光放大结构连接,所述合波器连接于第一级光放大结构的输入端、或者连接于第K级光放大结构的输出端与第K+1级光放大结构的输入端之间,所述第一器件的第一端连接于所述合波器,所述第一器件的第二端连接于第N级光放大结构的输出端或者连接于第M级光放大结构的输出端与第M+1级光放大结构的输入端之间,N≥2,1≤K≤M,2≤M≤N,N、M、K为整数;
    所述N级光放大结构,用于放大信号光;
    所述光放控制器,用于:
    获取所述信号光的第一增益值;
    根据所述第一增益值和关联关系,确定与所述第一增益值对应的第一可调光衰减器VOA值和第一泵浦电流值,所述关联关系为所述第一增益值、所述第一VOA值以及第一泵浦电流值之间的关系,所述第一VOA值反映所述第一器件的回路衰减大小,所述第一泵浦电流值反映所述N级光放大结构中的各级光放大结构所需的泵浦电流;
    将所述第一VOA值发送至所述第一器件;
    所述第一器件,用于根据所述第一VOA值调整回路衰减大小,以激射与所述信号光对应的互补光。
  2. 根据权利要求1所述的光放大器,其特征在于,所述光放控制器,还用于:
    获取所述信号光的第二增益值、以及与所述第二增益值对应的第二VOA值和第二泵浦电流值;
    在所述第一增益值与所述第二增益值不相等时,将所述第一增益值更新为所述第二增益值、将所述第一VOA值更新为所述第二VOA值、以及将所述第一泵浦电流值更新为所述第二泵浦电流值。
  3. 根据权利要求2所述的光放大器,其特征在于,所述光放控制器,还用于:
    获取所述信号光当前时刻的光放输入功率和前一时刻的光放输入功率;
    根据所述当前时刻的光放输入功率和所述前一时刻的光放输入功率确定光放输入功率变化大小;
    在所述光放输入功率变化大小大于开环阈值时,根据与所述第二增益值对应的泵浦电流值控制所述各级光放大结构的泵浦功率,以及将所述第二VOA值发送至所述第一器件;
    所述第一器件,还用于:
    根据所述第二VOA值调整所述回路衰减大小。
  4. 根据权利要求3所述的光放大器,其特征在于,所述光放控制器还用于:
    获取所述信号光当前时刻的光放输出功率;
    基于所述当前时刻的光放输入功率和所述当前时刻光放输出功率,计算所述信号光的实际增益值;
    计算所述实际增益值与所述第二增益值之间的增益差异值;
    在所述增益差异值大于或等于闭环阈值时,根据所述增益差异值调整与所述实际增益 值对应的第三泵浦电流值,以用于控制所述各级光放大结构的泵浦功率,以及根据所述增益差异值调整与所述实际增益值对应的第三VOA值,其中,所述闭环阈值小于所述开环阈值;
    所述第一器件,还用于:
    根据所述第三VOA值调整所述回路衰减大小。
  5. 根据权利要求1-4中任一项所述的光放大器,其特征在于,所述光放大器还包括第二器件,所述第二器件的第一端连接于第M级光放大结构的输出端,所述第二器件的第二端连接于第M+1级光放大结构的输入端,所述第二器件的第三端与所述第一器件连接;或者,所述第二器件的第一端连接于第N级光放大结构的输出端;
    所述第二器件,用于确定所述互补光的波带,或者确定所述互补光的分光功率。
  6. 根据权利要求5所述的光放大器,其特征在于,所述第二器件包括第一分波器;
    所述第一分波器,用于分离所述信号光的波带与所述互补光的波带,以确定所述互补光的波带;或者,
    所述第一分波器,用于生成滤波谱线以及获取由所述N级光放大结构调制的自发辐射ASE光谱线,并基于所述滤波谱线和所述自发辐射ASE光谱线确定所述互补光的波长。
  7. 根据权利要求5所述的光放大器,其特征在于,所述第二器件包括耦合器;
    所述耦合器,用于确定所述信号光与所述互补光的分光功率。
  8. 根据权利要求5或6所述的光放大器,其特征在于,所述第一器件包括第一可调式光衰减器和第一滤波器;
    所述第一滤波器,用于从所述互补光的波带中选取激射波长,以用于在所述第一可调式光衰减器调整所述回路衰减大小后,将所述互补光按照所述激射波长激射。
  9. 根据权利要求6所述的光放大器,其特征在于,所述第一器件包括第二可调式光衰减器;
    所述第二可调节光衰减器,用于在调整所述回路衰减大小后,将所述互补光按照所述互补光的波长激射。
  10. 根据权利要求7所述的光放大器,其特征在于,所述第一器件包括第三可调式光衰减器和第二滤波器;
    所述第二滤波器,用于从所述信号光与所述互补光的分光功率中确定所述互补光的光功率,以用于在所述第三可调式光衰减器调整所述回路衰减大小后,将所述互补光按照所述互补光的光功率激射。
  11. 根据权利要求10所述的光放大器,其特征在于,所述光放大器还包括第三滤波器和光放输出端,所述第三滤波器的第一端连接于所述光放输出端,所述第三滤波器的第二端连接于所述光放控制器;
    所述第三滤波器,用于在所述光放控制器获取所述信号光当前时刻的光放输出功率之前,过滤所述互补光。
  12. 根据权利要求3-11中任一项所述的光放大器,其特征在于,所述光放大器还包括输入端探测器,所述输入端探测器的第一端连接于第一级光放大结构的输入端,所述输入端探测器的第二端连接于所述光放控制器;
    所述输入端探测器,用于检测所述信号光当前时刻的光放输入功率,并向所述光放控 制器发送所述当前时刻的光放输入功率。
  13. 根据权利要求5-11中任一项所述的光放大器,其特征在于,所述光放大器还包括输出端探测器,所述输出端探测器的第一端连接于第N级光放大结构的输出端或所述第二器件,所述输出端探测器的第二端连接于所述光放控制器;
    所述输出端探测器,用于检测所述信号光当前时刻的光放输出功率,并向所述光放控制器发送所述当前时刻的光放输出功率。
  14. 根据权利要求1-13中任一项所述的光放大器,其特征在于,所述光放大器还包括光放输入端,所述光放输入端连接于所述第一级光放大结构的输入端。
  15. 一种光通信系统,其特征在于,所述光通信系统包括光发射机、以及至少一个如权利要求1-14中任一项所述的光放大器,其中,所述光发射机用于生成信号光。
PCT/CN2022/100288 2021-06-22 2022-06-22 一种光放大器以及光通信系统 WO2022268097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110694346.6 2021-06-22
CN202110694346.6A CN115514418A (zh) 2021-06-22 2021-06-22 一种光放大器以及光通信系统

Publications (1)

Publication Number Publication Date
WO2022268097A1 true WO2022268097A1 (zh) 2022-12-29

Family

ID=84499058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100288 WO2022268097A1 (zh) 2021-06-22 2022-06-22 一种光放大器以及光通信系统

Country Status (2)

Country Link
CN (1) CN115514418A (zh)
WO (1) WO2022268097A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167379A (zh) * 1996-05-31 1997-12-10 富士通株式会社 光通信系统及光放大器
CN105656561A (zh) * 2016-03-21 2016-06-08 吉林大学 一种双环反馈增益平坦掺铒光纤放大器
US10805008B1 (en) * 2019-10-04 2020-10-13 Neptune Subsea Ip Limited Optical amplifiers that support gain clamping and optionally power loading
CN111934180A (zh) * 2020-07-31 2020-11-13 武汉光迅电子技术有限公司 一种瞬态抑制控制方法、装置、光纤放大器及可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167379A (zh) * 1996-05-31 1997-12-10 富士通株式会社 光通信系统及光放大器
CN105656561A (zh) * 2016-03-21 2016-06-08 吉林大学 一种双环反馈增益平坦掺铒光纤放大器
US10805008B1 (en) * 2019-10-04 2020-10-13 Neptune Subsea Ip Limited Optical amplifiers that support gain clamping and optionally power loading
CN111934180A (zh) * 2020-07-31 2020-11-13 武汉光迅电子技术有限公司 一种瞬态抑制控制方法、装置、光纤放大器及可读存储介质

Also Published As

Publication number Publication date
CN115514418A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
EP0859480B1 (en) Broadband flat gain optical amplifier
US7006282B2 (en) Control system and method for an optical amplifier
JP4481540B2 (ja) 光増幅器
US7826746B2 (en) Transient control solution for optical networks
US6429966B1 (en) Multistage optical amplifier with Raman and EDFA stages
EP3591862B1 (en) Transmitting device, receiving device, optical transmission system, and optical power control method
US20040197105A1 (en) Variable gain multi-stage optical amplifier
US8351112B2 (en) Optical amplifier
JP4771530B2 (ja) 光増幅器
US7844185B2 (en) Method and apparatus for suppressing optical surge in optical burst switching network
JP6070101B2 (ja) 光増幅装置及び伝送システム
WO2022268097A1 (zh) 一种光放大器以及光通信系统
JP2012146785A (ja) 光増幅器
US8164826B2 (en) Multi-stage optical amplifier and method of controlling the same
JP5239223B2 (ja) 光増幅器
JP2007067235A (ja) 光増幅器
JP2004296581A (ja) 光増幅装置およびその制御方法
JP6103159B1 (ja) 光増幅装置
JP2005109074A (ja) 光増幅制御装置
CN114745053A (zh) 光放大器及光放大器的增益调节方法
EP2445124B1 (en) Optical amplification device and method
JP2000349715A (ja) 利得平坦化光増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE