WO2022267707A1 - 一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺 - Google Patents

一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺 Download PDF

Info

Publication number
WO2022267707A1
WO2022267707A1 PCT/CN2022/091378 CN2022091378W WO2022267707A1 WO 2022267707 A1 WO2022267707 A1 WO 2022267707A1 CN 2022091378 W CN2022091378 W CN 2022091378W WO 2022267707 A1 WO2022267707 A1 WO 2022267707A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
steel
slag
continuous casting
ladle
Prior art date
Application number
PCT/CN2022/091378
Other languages
English (en)
French (fr)
Inventor
王昆鹏
彭磊
王郢
徐建飞
赵阳
谢立
陈廷军
Original Assignee
中天钢铁集团有限公司
常州中天特钢有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天钢铁集团有限公司, 常州中天特钢有限公司 filed Critical 中天钢铁集团有限公司
Publication of WO2022267707A1 publication Critical patent/WO2022267707A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of iron and steel metallurgy, and relates to a production process for increasing the number of continuous casting furnaces of aluminum deoxidized bearing steel.
  • Bearings are the key parts of mechanical parts, and have extremely high requirements on their fatigue life and performance stability. Studies have shown that the purity of bearing steel has an important impact on the fatigue life and performance stability of bearings. Therefore, in the refining process of bearing steel, metal aluminum is usually used for deoxidation, and high-alkalinity refining slag is used to ensure the purity of bearing steel.
  • the current process can usually control the total oxygen in the steel below 6ppm, and realize the control of ultra-high cleanliness of bearing steel.
  • the use of aluminum deoxidation high-alkalinity refining slag refining often produces magnesium-aluminum spinel inclusions in the steel.
  • the melting point of magnesia-aluminum spinel inclusions is 2053°C, the size is below 10 microns, and it is solid under steelmaking temperature conditions. These fine solid spinel inclusions will gather on the tip of the stopper rod and the inner wall of the submerged nozzle during the pouring process. It causes the stopper rod to rise and the nozzle to be blocked, which eventually leads to the interruption of continuous casting production. In addition, the spinel inclusions attached to the tip of the stopper rod and the inner wall of the submerged nozzle will peel off and enter the molten steel under the scouring of molten steel, and eventually remain in the molten steel to form large-sized macroscopic inclusions, which will cause the product to fail the water immersion flaw detection.
  • spinel inclusions will not only affect the continuous casting production of bearing steel, resulting in too low number of continuous casting furnaces (usually less than 6 furnaces), high production costs, but also affect the quality of bearing steel products, especially resulting in large The size of macro inclusions exceeds the standard.
  • patent CN 102851443 B discloses "a method for increasing the number of continuous casting furnaces for aluminum deoxidized bearing steel", which mainly improves castability through Ca treatment after RH vacuum, After RH vacuum treatment, 0.10Kg/ton of steel is fed to silicon-calcium wire, which can increase the number of continuous casting furnaces of bearing steel to more than 6 furnaces.
  • Studies have shown that the higher the Ca content in steel, the greater the probability of calcium-aluminate inclusions exceeding the standard in bearing steel. Medium and high-end bearing steels clearly require that any form of Ca treatment is strictly prohibited in the production process.
  • Patent CN 110093553 A discloses "a production method for significantly increasing the number of continuous casting furnaces for carbon-chromium bearing steel", which mainly uses zirconium-calcium carbon submerged nozzles and supplemented by blowing argon to increase the number of continuous casting furnaces to 15 ⁇ 18 furnaces.
  • the principle is that the zirconium-calcium carbon nozzle can form liquid calcium-aluminate with the spinel in the steel, and at the same time supplemented with argon blowing to prevent the spinel from accumulating on the inner wall of the refractory material. It can be seen that the patented method improves castability by preventing the angle of inclusion aggregation, and the number of inclusions in the steel cannot be reduced.
  • the accumulation of magnesium-aluminum spinel in the steel on the surface of the refractory is the main reason for the rise of the stopper rod and the blockage of the submerged nozzle. The reason for the discrepancy.
  • Magnesium-aluminum spinel is an inclusion that should be reduced or avoided when improving the pouring performance of bearing steel.
  • the amount of spinel produced increases with the increase of alkalinity and decreases with the decrease of alkalinity.
  • bearing steel is required to have extremely low oxygen content (premium grade bearing steel requires total oxygen content ⁇ 6ppm), and only by reducing the basicity of refining slag will lead to an increase in the oxygen content of bearing steel, which will bring many other unfavorable factors , thereby reducing the quality of bearing steel.
  • the purpose of the present invention is to propose a production process for increasing the number of continuous casting furnaces of aluminum-deoxidized high-carbon chromium bearing steel.
  • the technical solution adopted in the present invention is: a production process for increasing the number of continuous pouring furnaces for aluminum deoxidized high-carbon chromium bearing steel.
  • the production process flow is: converter/electric furnace-LF refining-RH vacuum treatment-billet continuous casting Casting, and other unspecified processes are conventional processes, which can be controlled according to product requirements.
  • RH vacuum treatment - billet continuous casting can be controlled according to product requirements, and additional control is required for the main refractory components involved in the smelting process, among which
  • the ladle molten pool and the bottom of the ladle are made of aluminum carbon, and its composition is: C: 7-12%, Al 2 O 3 : 75-86%, SiO 2 : 5-10%, Al: 0.5-1.5%, and the ladle
  • the slag line adopts conventional magnesia carbonaceous slag line.
  • the slag line of the ladle is built with magnesia-carbon ladle bricks.
  • the magnesium oxide in the slag line will dissolve into the refining slag. If the composition of the refining slag and the oxygen potential of the molten steel are not properly controlled, This part of the dissolved magnesium oxide will be reduced into the molten steel, and then react with the aluminum oxide in the steel to form spinel.
  • the tundish adopts alumina dry material, and its composition is: Al 2 O 3 : 80-90%, SiO 2 : 3-8%.
  • the stopper rod adopts an integral stopper rod, and its composition is: C: 10-20%, Al 2 O 3 : 70-80%, SiO 2 : 3-7%, Al: 0.1-0.5%;
  • the component composition of the submerged nozzle bowl is: ZrO 2 : 80-90%, SiO 2 : 10-20%.
  • the present invention can effectively reduce the Mg content in the steel at first, reduce the generation amount of spinel, and guarantee the extremely low oxygen content of molten steel, can improve the purity of molten steel, secondly, Al 2 O 3 -C refractories can effectively reduce the aggregation of spinel inclusions in steel on the surface of refractories, thereby greatly increasing the number of continuous casting furnaces.
  • the invention can also effectively solve the problem of unqualified water immersion testing caused by large inclusions.
  • test steel is high-carbon chromium bearing steel, the grade is GCr15, and the production process is "converter/electric furnace—LF refining—RH vacuum treatment—billet continuous casting”:
  • the molten steel is subjected to RH vacuum treatment according to the conventional process, and the treatment time is required to be no less than 25 minutes;
  • the molten steel is continuously casted by a "five-machine five-strand" continuous casting machine, and the cross-section of the billet is 280mm ⁇ 320mm.
  • composition of the final slag of LF refining is shown in Table 1, Examples 1-8.
  • the molten pool of the ladle and the bottom of the ladle are built with aluminum-carbon ladle bricks.
  • the composition of the ladle bricks is shown in Table 1, Examples 1-8.
  • the composition of refractory materials for continuous casting tundish, stopper rod and submerged nozzle bowl is shown in Examples 1-8 in Table 2.
  • the molten steel is subjected to RH vacuum treatment according to the conventional process, and the treatment time is required to be no less than 25 minutes;
  • the molten steel is continuously casted by a "five-machine five-strand" continuous casting machine, and the cross-section of the billet is 280mm ⁇ 320mm.
  • the molten pool of the ladle and the bottom of the ladle are built with aluminum-carbon ladle bricks.
  • the composition of the ladle bricks is shown in Table 1, Comparative Examples 1-10.
  • the composition of refractory materials for continuous casting tundish, stopper and submerged nozzle bowl mouth is shown in Table 2 Comparative Examples 1-10.
  • the content of MgO in the refining slag is 3-5%, and the data in the table does not consider the content of MgO.
  • the Mg content in the steel can be controlled at 2-5ppm, the number density of spinels in the slab is 20-47 pieces/mm 2 , and at the same time, the number of continuous casting furnaces can reach 12-15 Furnace/pour times.
  • the Mg content in the process steel of the conventional comparative example is 9-13 ppm, and the number of spinels in the slab reaches 103-176 pieces/mm 2 , which are higher than the process proposed by the present invention.
  • Due to the high amount of spinel the number of continuous pouring furnaces in the conventional comparative process is only 4 to 8 furnaces per pouring time, which is far lower than the process proposed by the present invention.
  • the results of Test Example 1 are shown in Table 3 in detail. The above comparison results show that the control measures proposed by the present invention can greatly reduce the amount of spinel in the steel and significantly increase the number of continuous casting furnaces.
  • Test Example 2 show that no inclusions larger than 120 microns are detected in the steel grade produced by the proposed process of the present invention, and the water immersion flaw detection is all qualified, while the water immersion flaw detection pass rate of the comparative example is only 20-50%.
  • the total oxygen content of the rolling material of the embodiment is 4.3-5.5 ppm, and the total oxygen content of the rolling material of the comparative example is 5.1-6.7 ppm.
  • the above test results show that, while increasing the number of continuous pouring furnaces, the measures proposed by the present invention can reduce the total oxygen content of the rolled material and greatly increase the qualified rate of the water immersion flaw detection of the rolled material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明属于钢铁冶金领域,涉及一种提高铝脱氧轴承钢连浇炉数的生产工艺,本发明LF精炼渣采用CaO-Al2O3-SiO2渣系,终渣碱度CaO/SiO2控制范围3.0~4.5,终渣CaO/Al2O3控制范围1.3~2.5,精炼渣加入量8~10kg/t,同时要求终渣FeO+MnO<0.8%;钢包熔池和包底部位采用铝碳质,中包采用氧化铝质干式料,塞棒采用整体铝碳材质。本发明抑制渣钢反应的同时可减少钢水和耐材间的反应,减少尖晶石夹杂生成,显著提高连浇炉数和水浸探伤合格率。

Description

一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺 技术领域
本发明属于钢铁冶金领域,涉及一种提高铝脱氧轴承钢连浇炉数的生产工艺。
背景技术
轴承是机械零部件的关键部位,对其疲劳寿命和性能稳定性要求极高。研究表明,轴承钢的纯净度对轴承的疲劳寿命和性能稳定性有重要影响。因此,轴承钢在精炼过程通常采用金属铝脱氧,并使用高碱度精炼渣,以保证轴承钢的纯净度。现行工艺通常可将钢中的全氧控制在6ppm以下,实现轴承钢超高洁净度的控制。然而,采用铝脱氧高碱度精炼渣精炼,钢中往往生成镁铝尖晶石夹杂。镁铝尖晶石夹杂熔点为2053℃,尺寸在10微米以下,炼钢温度条件下为固态,这些细小的固态尖晶石夹杂在浇注过程会聚集在塞棒棒尖和浸入式水口的内壁,造成塞棒上扬和水口堵塞,最终导致连铸生产中断。另外,塞棒棒尖和浸入式水口内壁附着的尖晶石夹杂在钢水的冲刷下会剥落进入钢液,最终存留在钢水中形成大尺寸宏观夹杂造成产品水浸探伤不合格。因此,尖晶石夹杂不但会影响轴承钢的连铸生产,导致连浇炉数过低(通常6炉以下),生产成本高,还会影响轴承钢产品质量,尤其是带来轴承钢中大尺寸宏观夹杂超标问题。
为解决轴承钢连浇炉数低的问题,专利CN 102851443 B公开了“一种提高铝脱氧轴承钢连浇炉数的方法”,其主要是通过RH真空后的Ca处理来改善可浇性,RH真空处理后按照0.10Kg/吨钢喂入硅钙线,可将轴承钢连浇炉数提高到6炉以上。研究表明,钢中Ca含量越高轴承钢中钙铝酸盐类夹杂物超标的几率越大。中高端轴承钢均明确要求生产过程严禁任何形式的Ca处理。
专利CN 110093553 A公开了“一种大幅提高碳铬轴承钢连浇炉数的生产方法”,其主要是通过采用锆钙碳质浸入式水口并辅以吹氩可将连浇炉数提高到15~18炉。其原理是锆钙碳质水口可与钢中尖晶石形成液态钙铝酸盐同时辅以吹氩达到防止尖晶石在耐材内壁聚集的目的。可以看出,该专利方法是通过防止夹杂物聚集的角度改善可浇性,钢中夹杂物的数量并不能减少。
钢中镁铝尖晶石在耐火材料表面的聚集是造成塞棒上扬、浸入式水口堵塞的主要原因,聚集后的尖晶石在钢水的冲刷作用下剥落进入钢液是造成最终产品水浸探伤不合的原因。
镁铝尖晶石是改善轴承钢浇注性能时应减少或避免的夹杂物,尖晶石的生成量随 着碱度的增加而增加,随碱度的降低而降低。但是轴承钢又要求具有极低的氧含量(特优级轴承钢要求全氧含量<6ppm),仅通过降低精炼渣碱度会导致轴承钢氧含量增加,会带来很多其它不利于的影响因素,进而降低轴承钢的品质。
因此,如何在保证轴承钢具有极低的氧含量的同时,还能抑制尖晶石生成,大幅提高连浇炉数,是本发明所要解决的技术问题。
发明内容
针对背景技术中指出轴承钢可浇性差和水浸探伤不合格的问题,本发明的目的是提出一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺。
为实现上述目的,本发明采用的技术方案是:一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺,生产工艺流程为:转炉/电炉-LF精炼-RH真空处理-方坯连铸,其他未说明的为常规工艺,按产品要求控制即可。
(1)出钢过程一次性加入铝粒脱氧,要求钢中铝含量加入到0.03~0.06%,同时加入低钛低铝硅铁,要求钢中Si含量达到0.10%~0.16%,LF处理前进行扒渣或捞渣;
(2)LF精炼渣加入石灰、石英砂,CaO-Al 2O 3系预熔渣中的一种或几种,要求LF精炼结束终渣碱度CaO/SiO 2控制范围3.0~4.5,终渣CaO/Al 2O 3控制范围1.3~2.5,同时要求终渣0.3%<FeO+MnO<1.0%,LF处理过程严禁补加铝粒;所述精炼渣加入量8~10kg/t;
(3)RH真空处理-方坯连铸按产品要求控制即可,对于冶炼工艺涉及的主要耐材成分需要额外控制,其中
钢包熔池和包底部位采用铝碳质,其成分为:C:7~12%,Al 2O 3:75~86%,SiO 2:5~10%,Al:0.5~1.5%,而钢包渣线采用常规镁碳质渣线。
为保证钢包对精炼渣的抗侵蚀性,钢包渣线部位均采用镁碳质钢包砖砌筑,渣线中的氧化镁会溶解到精炼渣中,若精炼渣成分和钢液氧势控制不当,这部分溶解的氧化镁就会被还原进入钢液,进而与钢中的氧化铝反应生成尖晶石。为防止溶解到渣中的氧化镁被还原,还需要控制精炼渣的CaO/SiO 2、CaO/Al 2O 3等条件间的协同作用,进而达到抑制尖晶石析出的目的。
中包采用氧化铝质干式料,其组成为:Al 2O 3:80~90%,SiO 2:3~8%。
塞棒采用整体塞棒,成分组成:C:10~20%,Al 2O 3:70~80%,SiO 2:3~7%,Al:0.1~0.5%;
浸入式水口碗部成分组成为:ZrO 2:80~90%,SiO 2:10~20%。
与现有技术相比,本发明的有益效果为:
本发明通过试验摸索得到了最佳精炼渣系组成,如碱度CaO/SiO 2=3~4.5时,适当控制CaO/Al 2O 3等条件,相互之间具有协同作用,使该渣系可最大限度的降低渣钢反应导致的钢液增Mg并保证钢液极低的氧含量,同时采用铝碳质耐材可减少耐材向钢中的供Mg。因此与现有技术相比,本发明首先能有效地降低钢中Mg含量,减少尖晶石的生成量,并保证钢液极低的氧含量,即可提高钢液纯净度,其次,Al 2O 3-C质耐材可有效降低钢中尖晶石夹杂在耐材表面的聚集,从而大幅提高连浇炉数。本发明还可有效解决大尺寸夹杂物导致的水浸探伤不合格问题。
具体实施方式
实施例
试验钢种为高碳铬轴承钢,牌号为GCr15,生产流程“转炉/电炉—LF精炼—RH真空处理—方坯连铸”:
(1)出钢过程一次性加入铝粒脱氧,要求钢中铝含量加入到0.03~0.06%,同时加入低钛低铝硅铁,要求钢中Si含量达到0.10%~0.16%,LF处理前进行扒渣或捞渣;
(2)LF精炼渣加入石灰、石英砂或CaO-Al 2O 3系预熔渣中的一种或几种,要求保证LF精炼结束精炼渣终渣碱度CaO/SiO 2控制范围3.0~4.5,终渣CaO/Al 2O 3控制范围1.3~2.5,精炼渣加入量8~10kg/t,同时要求终渣0.3%<FeO+MnO<1.0%,LF处理过程严禁向钢中补加铝粒;
(3)LF精炼完成后,钢水按常规工艺进行RH真空处理,处理时间要求不低于25min;
(4)RH破空后,钢水采用“五机五流”连铸机进行连续浇铸,铸坯断面为280mm×320mm。
LF精炼终渣成分见表1实施例1~8,钢包熔池和包底部位采用铝碳质钢包砖砌筑,钢包砖成分见表1实施例1~8。连铸中间包、塞棒和浸入式水口碗口耐材成分如表2实施例1~8。
其余未明确说明的工艺操作,均为行业内常规操作。
对比例
生产流程“转炉/电炉—LF精炼—RH真空处理—方坯连铸”:
(1)出钢过程加入铝粒脱氧,同时加入部分低钛低铝硅铁,LF处理前进行扒渣或捞渣;
(2)LF精炼渣加入石灰、石英砂或CaO-Al 2O 3系预熔渣,精炼终渣成分见表1对比例1~6;
(3)LF精炼完成后,钢水按常规工艺进行RH真空处理,处理时间要求不低于25min;
(4)RH破空后,钢水采用“五机五流”连铸机进行连续浇铸,铸坯断面为280mm×320mm。
钢包熔池和包底部位采用铝碳质钢包砖砌筑,钢包砖成分见表1对比例1~10。连铸中间包、塞棒和浸入式水口碗口耐材成分如表2对比例1~10。
其余未明确说明的工艺操作,均为行业内常规操作。
试验例1
按上述对比例和实施例进行轴承钢连续生产,直至塞棒涨棒到极限,钢水断流。统计各工艺条件下,最大连浇炉数。并对铸坯进行取样,分析各工艺条件下铸坯的Mg含量以及钢中尖晶石夹杂的数量密度,Mg含量的测定使用ICP,尖晶石的数量密度采用自动扫描电镜,扫描面积为100mm 2
试验例2
将实施例和对比例所得的铸坯,轧制成直径60mm的棒材,使用频率为10MHz的超声波水浸探伤对所得棒材进行探伤,每炉抽探1支,只要出现尺寸120微米以上的缺陷就认为不合格,统计各工艺条件下的合格率,并分析棒材的全氧含量。
表1实施例和对比例精炼终渣和钢包砖主要成分,%
Figure PCTCN2022091378-appb-000001
Figure PCTCN2022091378-appb-000002
注:精炼渣中MgO含量3~5%,表中数据没有考虑MgO含量。
表2实施例和对比例连铸耐材主要成分,%
Figure PCTCN2022091378-appb-000003
表3实施例和对比例生产实绩对比
Figure PCTCN2022091378-appb-000004
Figure PCTCN2022091378-appb-000005
本发明所提出的工艺条件下,钢中Mg含量可控制在2~5ppm,铸坯中尖晶石数量密度为20~47个/mm 2,与此同时,连浇炉数可达12~15炉/浇次。而常规对比例工艺钢中Mg含量为9~13ppm,铸坯尖晶石数量达103~176个/mm 2,均高于本发明所提出的工艺。由于尖晶石数量高,常规对比例工艺连浇炉数仅为4~8炉/浇次,远低于本发明所提出的工艺。试验例1的结果详见表3。以上对比结果说明,本发明所提出的控制措施可大幅降低钢中尖晶石数量,显著提高连浇炉数。
同时,试验例2的结果表明,本发明所提工艺生产的钢种未检测到大于120微米的夹杂物,水浸探伤全部合格,而对比例的水浸探伤合格率仅为20~50%,实施例轧材全氧含量为4.3~5.5ppm,对比例轧材全氧含量5.1~6.7ppm。以上试验结果说明,本发明所提措施提高连浇炉数的同时,可降低轧材全氧含量,大幅提高轧材水浸探伤合格率。
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

  1. 一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺,其特征在于:所述生产工艺流程为:转炉/电炉-LF精炼-RH真空处理-方坯连铸;
    (1)转炉/电炉炼钢,出钢过程一次性加入铝粒脱氧,要求钢中铝含量达到0.03~0.06%,同时加入低钛低铝硅铁,要求钢中Si含量达到0.10%~0.16%;
    (2)LF处理前进行扒渣或捞渣,LF精炼结束后终渣碱度CaO/SiO 2控制范围3.0~4.5,终渣CaO/Al 2O 3控制范围1.3~2.5,同时要求终渣0.3%<FeO+MnO<1.0%,LF处理过程不再向钢中补加铝粒;
    (3)控制生产工艺中的耐材成分:
    其中,钢包熔池和包底部位采用铝碳质,钢包渣线采用常规镁碳质渣线;
    中包采用氧化铝质干式料;
    塞棒采用整体铝碳材质,成分组成:C:10~20%,Al 2O 3:70~80%,SiO 2:3~7%,Al:0.1~0.5%;
    浸入式水口碗部成分组成为:ZrO 2:80~90%,SiO 2:10~20%。
  2. 根据权利要求1所述提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺,其特征在于:钢包熔池和包底部位采用铝碳质具体成分为:C:7~12%,Al 2O 3:75~86%,SiO 2:5~10%,Al:0.5~1.5%。
  3. 根据权利要求1所述提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺,其特征在于:中包采用氧化铝质干式料,其具体成分:Al 2O 3:80~90%,SiO 2:3~8%。
PCT/CN2022/091378 2021-06-22 2022-05-07 一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺 WO2022267707A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110693371.2 2021-06-22
CN202110693371.2A CN113444857B (zh) 2021-06-22 2021-06-22 一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺

Publications (1)

Publication Number Publication Date
WO2022267707A1 true WO2022267707A1 (zh) 2022-12-29

Family

ID=77812153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091378 WO2022267707A1 (zh) 2021-06-22 2022-05-07 一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺

Country Status (2)

Country Link
CN (1) CN113444857B (zh)
WO (1) WO2022267707A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116043045A (zh) * 2023-02-08 2023-05-02 广东中南钢铁股份有限公司 一种ch1t超低碳冷镦钢及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444857B (zh) * 2021-06-22 2022-04-26 中天钢铁集团有限公司 一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺
CN114790504A (zh) * 2022-04-02 2022-07-26 张家港广大特材股份有限公司 一种脱氧造渣工艺及采用该工艺的炼钢方法
CN115401177B (zh) * 2022-08-02 2024-06-07 首钢京唐钢铁联合有限责任公司 一种避免塞棒堵塞的低碳钢连铸连轧冶炼方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154877A (ja) * 2003-11-28 2005-06-16 Jfe Steel Kk 軸受鋼の溶製方法
CN107338342A (zh) * 2017-07-04 2017-11-10 北京科技大学 单嘴精炼炉冶炼高洁净轴承钢精炼工艺
CN112662832A (zh) * 2020-12-18 2021-04-16 芜湖新兴铸管有限责任公司 一种高碳铬轴承钢特殊断面方坯生产方法
CN113444857A (zh) * 2021-06-22 2021-09-28 中天钢铁集团有限公司 一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4257368B2 (ja) * 2007-06-05 2009-04-22 株式会社神戸製鋼所 高清浄度鋼の製造方法
CN102851443B (zh) * 2012-09-19 2014-09-17 武汉钢铁(集团)公司 一种提高铝脱氧轴承钢连浇炉数的方法
CN104087719B (zh) * 2014-07-04 2016-05-04 常州东大中天钢铁研究院有限公司 一种高碳轴承钢的冶炼工艺
CN109055664A (zh) * 2018-10-08 2018-12-21 中天钢铁集团有限公司 一种无Ds类夹杂物的轴承钢钢液脱氧控制方法
CN110093553B (zh) * 2019-03-29 2021-04-30 邢台钢铁有限责任公司 一种大幅提升高碳铬轴承钢连续浇注炉数的生产方法
CN111793772B (zh) * 2020-06-19 2021-04-30 中天钢铁集团有限公司 一种高标准轴承钢高效化生产工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154877A (ja) * 2003-11-28 2005-06-16 Jfe Steel Kk 軸受鋼の溶製方法
CN107338342A (zh) * 2017-07-04 2017-11-10 北京科技大学 单嘴精炼炉冶炼高洁净轴承钢精炼工艺
CN112662832A (zh) * 2020-12-18 2021-04-16 芜湖新兴铸管有限责任公司 一种高碳铬轴承钢特殊断面方坯生产方法
CN113444857A (zh) * 2021-06-22 2021-09-28 中天钢铁集团有限公司 一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG HUA, ZHU SHOUXIN: "Practice of Optimizing Smelting Process of National Standard Bearing Steel of Nangang", MODERN METALLURGY, vol. 42, no. 3, 1 June 2014 (2014-06-01), pages 84 - 87, XP093016652, ISSN: 2097-017X *
XU CHUANBING, ZHOU TONGJUN; LI YUE: "PROCESS OPTIMIZATION AND ANALYSIS OF THE EAF STEEL MAKING WITH BEARING STEEL", HENAN METALLURGY, vol. 24, no. 3, 1 June 2016 (2016-06-01), pages 31 - 33,45, XP093016656, ISSN: 1006-3129 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116043045A (zh) * 2023-02-08 2023-05-02 广东中南钢铁股份有限公司 一种ch1t超低碳冷镦钢及其制备方法

Also Published As

Publication number Publication date
CN113444857B (zh) 2022-04-26
CN113444857A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2022267707A1 (zh) 一种提高铝脱氧高碳铬轴承钢连浇炉数的生产工艺
CN108531807B (zh) 一种厚壁大口径x80m管线洁净钢及冶炼方法
CN114438398B (zh) 帘线钢的脆性夹杂物控制方法
KR100941841B1 (ko) 오스테나이트계 스테인리스강 제조방법
WO2024082921A1 (zh) 一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法
CN109880970B (zh) 一种提升if钢连浇炉数的工艺
CN117026092A (zh) 一种高强弹簧钢及其制备方法
CN111940715B (zh) 防堵塞浸入式水口
RU2764914C2 (ru) Способ плавки сверхнизкоуглеродистой нержавеющей стали марки 13cr
KR101243246B1 (ko) 오스테나이트계 스테인리스강의 고청정 정련 방법
CN113981306A (zh) 高洁净度轴承钢的生产方法
CN114351035A (zh) 一种提高轴承钢纯净度的过氩站预精炼方法
CN110106311B (zh) 一种减少对耐材侵蚀的精炼渣控制工艺
CN115537504A (zh) 一种含钛超低碳钢的制备方法
CN113186445A (zh) 不锈钢产品夹杂物含量控制方法
CN106811573A (zh) 提高钢水浇铸性能的钢的制造方法
JP4061687B2 (ja) Sus301のバネ用オーステナイト系ステンレス鋼の精錬方法
JP4295836B2 (ja) Al含有ステンレス鋼の高清浄化方法
CN115612776B (zh) 一种普碳钢不经精炼的生产方法
JP3953626B2 (ja) 絞り加工性に優れたフェライト系ステンレス鋼及びその製造方法
KR20010009041A (ko) 심가공용 고청정 페라이트계 스테인레스강의 정련방법
CN115961119B (zh) 一种减少非钙处理铝脱氧钢中水浸探伤缺陷的冶炼工艺
CN113789425B (zh) 一种转炉冶炼回炉高硅钢水的方法
JP3631629B2 (ja) 条用の軟鋼およびその製造方法
CN108330247A (zh) 防止铝镇静钢侵入式水口堵塞的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827205

Country of ref document: EP

Kind code of ref document: A1