WO2024082921A1 - 一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法 - Google Patents

一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法 Download PDF

Info

Publication number
WO2024082921A1
WO2024082921A1 PCT/CN2023/120789 CN2023120789W WO2024082921A1 WO 2024082921 A1 WO2024082921 A1 WO 2024082921A1 CN 2023120789 W CN2023120789 W CN 2023120789W WO 2024082921 A1 WO2024082921 A1 WO 2024082921A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc welding
welding wire
steel
submerged arc
wire
Prior art date
Application number
PCT/CN2023/120789
Other languages
English (en)
French (fr)
Inventor
王纳
张宇
麻晗
Original Assignee
张家港荣盛特钢有限公司
江苏省沙钢钢铁研究院有限公司
江苏沙钢集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港荣盛特钢有限公司, 江苏省沙钢钢铁研究院有限公司, 江苏沙钢集团有限公司 filed Critical 张家港荣盛特钢有限公司
Publication of WO2024082921A1 publication Critical patent/WO2024082921A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present application belongs to the technical field of steel smelting, and specifically relates to a steel for submerged arc welding wire, a wire rod, a submerged arc welding wire and a preparation method thereof.
  • Titanium-containing welding wire steel is widely used in pipeline steel welding. Adding Ti element to alloy welding wire can refine the grains and improve the low-temperature impact toughness and tensile strength of the cladding metal.
  • titanium-containing pipeline submerged arc welding wire steel encounters smelting problems in production: (1) nozzle nodules during casting, which is manifested as the rise of the plug rod during casting; (2) The Ti yield in the refining process is low, less than 40%.
  • many steel companies control the mass percentage of Ti content in welding wire to ⁇ 0.07%, and then add expensive Mo to meet the mechanical properties requirements of the cladding metal. Some steel companies choose to produce large square billets. No matter which method is chosen, the cost is greatly increased.
  • Patent document CN201110242037.1 discloses a wire rod for producing pipeline submerged arc welding wire, the chemical composition of the wire rod is as follows by weight percentage: C 0.04-0.11%, Si 0.10-0.40%, Mn 1.40-1.90%, Ni 0.40-0.60%, Mo 0.20-0.40%, Ti 0.03-0.10%, B 0.004-0.007%, A 10.010-0.030%, S ⁇ 0.003%, P ⁇ 0.008%, O ⁇ 0.0015%, N ⁇ 0.0040%, the balance is Fe and unavoidable impurities. Considering the difficulty of steelmaking, its Ti content is only 0.03-0.10%, and the cost is greatly increased by adding alloy elements such as Mo, Ni, and B to meet the mechanical properties of the weld.
  • Patent document CN112011718A provides a low-aluminum high-titanium welding wire steel and a smelting method thereof, comprising the following steps: step S1, deoxidation and alloying of steel tapping from a converter: when tapping steel from a converter, high-silicon silicon manganese and high-purity ferrosilicon are added in sequence for deoxidation and alloying, and then lime and fluorite are added in sequence; step S2, LF refining: lime and fluorite are added to the LF furnace according to the fluidity of the refined slag; calcium carbide and ferrosilicon powder are added in batches for slag surface deoxidation during the first power-on of refining; sampling is conducted after power-on for a period of time, and high-purity ferrosilicon and metallic manganese are added to adjust the composition to the target value according to the test results; ferrosilicon powder is added after the alloy is added until the end of refining to maintain the reducibility of the refined slag; in the later stage of
  • the sulfur content is supplemented in the sulfur line, and then soft blowing is performed before continuous casting.
  • the stable control of the composition of low-aluminum high-titanium welding wire steel is achieved, and the continuous casting performance of low-aluminum high-titanium welding wire steel is greatly improved, and the production cost is reduced.
  • this patent can achieve stable control of the composition of low-aluminum high-titanium welding wire steel, it is only applicable to welding wire steel that does not contain Al. For welding wire steel containing Al, it will cause secondary oxidation of Al 2 O 3 during casting.
  • the technical problem to be solved by the present application is to overcome the defects of high cost and easy nodulation of submerged arc welding wire in the prior art, thereby providing a steel for submerged arc welding wire, wire rod, submerged arc welding wire and a preparation method thereof.
  • the present application provides a method for preparing high-Ti pipeline submerged arc welding wire steel, comprising converter smelting, LF refining, continuous casting, rolling and cooling;
  • the refining slag components are as follows by weight percentage: (CaO+CaF 2 ) 40-50%, Al 2 O 3 30%-40%, SiO 2 ⁇ 5%, MnO 10%-20%;
  • the feeding of pure calcium wire before steel tapping includes: feeding 250-400 m/ton of pure calcium wire with a diameter of 5-10 mm 15-18 minutes before steel tapping.
  • a layer of refractory material is placed around the upper edge of the tundish before pouring, and then the tundish cover is closed, and argon gas is blown into the tundish to replace the air in the tundish;
  • the superheat of the tundish is 30-50°C
  • the pulling speed is 2.5 ⁇ 0.1m/s
  • the temperature difference between the inlet and outlet water of the crystallizer is ⁇ 10°C
  • the secondary cooling and crystallizer inlet water temperature is ⁇ 30°C
  • the stopper rod is opened to start pouring when the depth of the molten steel in the tundish is higher than the height of the hole on the slag retaining wall.
  • argon is blown into the tundish through an argon blowing tube, the height of the argon blowing tube is kept consistent with the depth of the tundish, and the argon blowing time is 5-6 minutes.
  • 870°C ⁇ finishing rolling inlet temperature ⁇ 900°C, 90m/s ⁇ rolling speed ⁇ 100m/s;
  • temperature-controlled cooling is performed on the Stelmor cooling line, wherein the spinning temperature is 880-900° C. and the cooling speed is ⁇ 6 m/s.
  • a high-Ti steel for pipeline submerged arc welding wire prepared by the above method is provided.
  • the chemical composition of the above-mentioned high-Ti pipeline submerged arc welding wire steel measured in mass percentage, includes C 0.07-0.10%, Si 0.15-0.25%, Mn 1.50-1.80%, Ti 0.25-0.35%, Al 0.02-0.03%, 0.0020% ⁇ Ca ⁇ 0.0040%, O ⁇ 0.004%, and the rest is Fe and unavoidable impurities.
  • a wire rod for high-Ti pipeline submerged arc welding wire wherein the wire rod has a tensile strength of ⁇ 600 MPa, Sectional shrinkage rate ⁇ 75%.
  • a high-Ti pipeline submerged arc welding wire is provided, which is made using the above-mentioned high-Ti pipeline submerged arc welding wire wire rod.
  • a method for preparing a high-Ti pipeline submerged arc welding wire in which the wire rod is directly drawn without annealing, and the drawing speed is ⁇ 15m/s.
  • the continuous casting in this application is the continuous casting of small square billets with a cross-sectional area of 140 mm*140 mm.
  • the preparation method of steel for high-Ti pipeline submerged arc welding wire provided by the present application, in the LF refining, pure calcium wire is fed before steel tapping, the fed calcium wire can absorb oxygen in molten steel, generate calcium oxide with oxygen in steel, reduce the oxide content in steel, and float to the slag surface with stirring. After the oxygen is reduced, the amount of generated titanium and aluminum oxides is reduced, and the size of composite inclusions becomes smaller.
  • the oxygen content of the steel grade is effectively controlled below 0.004% by mixing the refining slag, thereby fundamentally solving the problem of nozzle nodules in the continuous casting process. Feeding calcium wire can not only solve the problem of nodules and stop casting caused by secondary oxidation of TiO2 during the pouring process, but also improve the yield of Ti. It can also solve the nodule problem of molten steel with high Al content.
  • the high-Ti pipeline submerged arc welding wire steel provided in this application has a chemical composition, measured in mass percentage, including C 0.07-0.10%, Si 0.15-0.25%, Mn 1.50-1.80%, Ti 0.25-0.35%, 0.0020% ⁇ Ca ⁇ 0.0040%, O ⁇ 0.004%, and the rest is Fe and unavoidable impurities.
  • the present invention has a high Ti content of 0.25-0.35%, which can improve the toughness of the weld metal, and does not require the addition of other alloying elements to improve the mechanical properties of the weld, thus reducing the cost of steel.
  • the high Si design allows the use of Si deoxidation during the steelmaking process, further reducing Ti oxide inclusions in the molten steel, and helps solve the problem of nozzle nodules during the continuous casting process.
  • the addition of Ca element in this application can reduce the oxide content in the steel, reduce the amount of titanium and aluminum oxides generated, and reduce the size of composite inclusions (Ti and Al oxide inclusions tend to aggregate during the casting process and then block the nozzle), fundamentally solving the problem of nozzle nodules during the continuous casting process, while improving the Ti yield.
  • dispersed thermally stable second phase calcium-containing oxide particles can be formed in the steel. This can pin the austenite grain boundary migration in the coarse-grained heat-affected zone (CGHAZ) during the welding thermal cycle, limit the growth of austenite grains, obtain a finer weld CGHAZ grain size, and thus improve the strength and toughness of the micro-calcium steel welded CGHAZ.
  • CGHAZ coarse-grained heat-affected zone
  • the tensile strength of the wire rod of the present application is ⁇ 600MPa, and the cross-sectional shrinkage is ⁇ 75%. Annealing is not required when preparing the submerged arc welding wire, which reduces the production cost.
  • the submerged arc welding wire of the present application is used for the deposited metal test, and the tensile strength of the weld is ⁇ 560MPa, and the low-temperature impact toughness at -40°C is ⁇ 150J.
  • the preparation method of the submerged arc welding wire of embodiment 1-4 comprises the following steps:
  • argon blowing tubes Before pouring, place a thick layer of refractory wool around the upper edge of the tundish, then cover the tundish with the lid, and use three argon blowing tubes to blow argon into the tundish to displace the air in the tundish.
  • the height of the argon blowing tubes should be kept consistent with the depth of the tundish, and the argon blowing time should be 5-6 minutes.
  • the superheat is 40°C
  • the pulling speed is 2.5m/s
  • the inlet and outlet water temperature difference is 10°C
  • the secondary cooling and crystallizer inlet water temperature is 35°C
  • the stopper rod is opened for pouring when the depth of molten steel in the tundish is higher than the height of the hole on the slag retaining wall.
  • the small square billet is heated in a heating furnace and then continuously rolled.
  • the finishing rolling inlet temperatures of Examples 1-4 are 870°C, 900°C, 880°C, and 900°C, respectively, and the rolling speeds are 90m/s, 100m/s, 92m/s, and 98m/s, respectively.
  • the spinning wire enters the Stelmore cooling line for temperature-controlled cooling, where the spinning temperatures are 880°C, 900°C, 900°C, and 890°C, respectively.
  • the fans and insulation covers are all closed, the roller speed of the Stelmore cooling line is 0.15m/s, and the cooling speeds in the insulation cover are 6m/s, 6m/s, 5m/s, and 5m/s, respectively.
  • the wire rod obtained in step (5) is directly drawn without annealing at a drawing speed of 15 m/s, and then copper-plated and coiled.
  • Comparative Example 1 is substantially the same as Example 1, except that no calcium wire is added in Comparative Example 1.
  • Comparative Example 2 is basically the same as Example 1, except that the refined slag is a low basicity slag system, and the components by weight percentage are: "CaO+CaF 2 " 30%, Al 2 O 3 10%, SiO 2 42%, MnO 18%, which does not conform to the slag system composition described in this application.
  • the deposited metal test was carried out according to the standard GBT 8110-2008, and then the mechanical properties test was carried out. The test results are shown in Table 5.
  • the tensile strength of the weld formed by the submerged arc welding wire of the present application is ⁇ 560MPa, and the low-temperature impact toughness of -40°C is ⁇ 150J.
  • the wire rod of Comparative Example 1 has insufficient Ca content in its composition, and the weld strength and toughness are reduced.
  • Comparative Example 1 does not add calcium wire, resulting in nodules, and the number of continuous casting furnaces is only 3.
  • the refined slag system components do not meet the technical requirements, so the O content is too high, and the number of continuous casting furnaces is only 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

一种高Ti管线埋弧焊丝用钢的制备方法,包括转炉冶炼、LF精炼、连铸、轧制和冷却;LF精炼中,精炼炉渣组分以重量百分比计为:(CaO+CaF 2)40-50%,Al 2O 330%-40%,SiO 2≤5%,MnO 10%-20%,且LF精炼过程中,出钢前喂入纯钙线。以及一种埋弧焊丝用钢及其制备方法、一种埋弧焊丝用盘条、一种埋弧焊丝及其制备方法。埋弧焊丝用钢和埋弧焊丝的制备方法克服了埋弧焊丝成本高、易结瘤的缺陷;制备埋弧焊丝用钢时,可连浇10炉以上。

Description

一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法
本申请要求在2022年10月19日提交中国专利局、申请号为202211276565.3、发明名称为“一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于钢铁冶炼技术领域,具体涉及一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法。
背景技术
相比气保焊,埋弧焊生产效率高,自动化程度高。含钛焊丝钢广泛应用于管线钢焊接中。合金焊丝中加入Ti元素可细化晶粒,同时提高熔覆金属低温冲击韧性和抗拉强度。然而含钛管线埋弧焊丝钢在生产中碰到冶炼问题:(1)浇铸过程中水口结瘤,表现为浇铸过程中塞棒上涨;(2)精炼过程Ti收得率较低,不足40%。不少钢企考虑到炼钢连浇困难,焊丝中Ti含量质量百分比控制在<0.07%,再加入昂贵的Mo,来满足熔覆金属对力学性能的要求,还有一些钢企选择大方坯生产,不管选择哪一种方式,成本都大大提高。
专利文献CN201110242037.1公开了一种生产管线埋弧焊丝用的盘条,盘条的化学成分按重量百分比为:C 0.04-0.11%、Si 0.10-0.40%、Mn 1.40-1.90%、Ni 0.40-0.60%、Mo 0.20-0.40%、Ti 0.03-0.10%、B 0.004-0.007%、A l0.010-0.030%、S≤0.003%、P≤0.008%、O≤0.0015%、N≤0.0040%,余量为Fe及不可避免杂质。考虑炼钢困难,其Ti含量仅为0.03-0.10%,此外通过增加Mo、Ni、B等合金元素来满足焊缝力学性能,成本大大增加。
专利文献CN112011718A提供了一种低铝高钛焊丝钢及其冶炼方法,包括以下步骤:步骤S1、转炉出钢脱氧合金化:转炉出钢时依次加入高硅硅锰、高纯硅铁进行脱氧合金化,再依次加入石灰、萤石;步骤S2、LF精炼:LF炉根据精炼渣流动性加入石灰和萤石;精炼第一次通电分多批次加入电石和硅铁粉进行渣面脱氧;通电一段时间后取样化验,并根据化验结果加入高纯硅铁和金属锰调整成分至目标值;合金加入后至精炼结束加入硅铁粉保持精炼渣还原性;精炼后期,一次性喂入钛铁线使钛含量至目标值,并根 据化验结果硫含量补位硫磺线后进行软吹后上机连铸。实现低铝高钛焊丝钢成分的稳定控制,同时大幅度提高低铝高钛焊丝钢的连续浇注的性能,降低生产成本。该专利虽然能实现低铝高钛焊丝钢成分的稳定控制,但是只适用于不含Al的焊丝钢,对于含Al焊丝钢,则会造成Al2O3在浇筑时的二次氧化。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的埋弧焊丝成本高、易结瘤的缺陷,从而提供一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法。
为此,本申请提供了以下技术方案。
第一方面,本申请提供了一种高Ti管线埋弧焊丝用钢的制备方法,包括转炉冶炼、LF精炼、连铸、轧制和冷却;
所述LF精炼中,精炼炉渣组分以重量百分比计为:(CaO+CaF2)40-50%,Al2O3 30%-40%,SiO2≤5%,MnO 10%-20%;
所述LF精炼过程中,出钢前喂入纯钙线。
可选的,所述出钢前喂入纯钙线为:出钢前15-18分钟喂入直径5-10mm的纯钙线250-400米/吨。
可选的,所述连铸过程中,浇筑前在中间包上沿的四周垫上一层耐火材料,之后盖上中间包盖,并向中间包内吹入氩气,以置换中间包内的空气;
中间包过热度为30-50℃,拉速为2.5±0.1m/s,结晶器进出水温差≤10℃,二冷及结晶器进水温度≥30℃,当中间包内钢液深度高于挡渣墙上孔高度后开启塞棒开浇。
可选的,采用吹氩管向中间包内吹入氩气,所述吹氩管的高度保持与中间包内深一致、吹氩时间为5-6分钟。
可选的,所述轧制过程中,870℃≤精轧入口温度≤900℃,90m/s≤轧制速度≤100m/s;
所述冷却过程中,在斯太尔摩冷却线上进行控温冷却,其中,吐丝温度为880-900℃,冷却速度≤6m/s。
第二方面,提供了一种上述方法制备的高Ti管线埋弧焊丝用钢。
可选的,上述高Ti管线埋弧焊丝用钢的化学成分以质量百分数计,包括C 0.07-0.10%、Si 0.15-0.25%、Mn 1.50-1.80%、Ti 0.25-0.35%、Al 0.02-0.03%、0.0020%≤Ca≤0.0040%、O≤0.004%,其余为Fe和不可避免的杂质。
第三方面,提供了一种高Ti管线埋弧焊丝用盘条,所述盘条抗拉强度≤600MPa, 断面收缩率≥75%。
第四方面,提供了一种高Ti管线埋弧焊丝,采用上述高Ti管线埋弧焊丝用盘条制得。
第五方面,提供了一种高Ti管线埋弧焊丝的制备方法,直接对盘条进行拉丝,无需退火,拉丝速度≤15m/s。
本申请中连铸为截面积为140mm*140mm的小方坯连铸。
本申请技术方案,具有如下优点:
1.本申请提供的高Ti管线埋弧焊丝用钢的制备方法,所述LF精炼中,出钢前喂入纯钙线,喂入钙线可吸收钢水中的氧,与钢中氧生成钙的氧化物,降低钢中氧化物含量,伴随着搅拌,上浮到渣面,氧减少后,生成的钛和铝的氧化物数量降低,复合夹杂物尺寸变小。另外精炼过程中,通过调配精炼炉渣,有效地将钢种氧含量控制在0.004%以下,进而可以从根本上解决连铸过程水口结瘤问题。喂入钙线既可以解决开浇过程中因TiO2二次氧化引起的结瘤停浇问题,又可以提高Ti的收得率。也可解决Al含量较高的钢水的结瘤问题。
不用加入昂贵的Mo来替代部分Ti,合金成本低,炼钢连铸选用小方坯即可连浇10炉以上,无水口结瘤等现象出现。
2.本申请提供的高Ti管线埋弧焊丝用钢,化学成分以质量百分数计,包括C 0.07-0.10%、Si 0.15-0.25%、Mn 1.50-1.80%、Ti 0.25-0.35%、0.0020%≤Ca≤0.0040%、O≤0.004%,其余为Fe和不可避免的杂质。
本申请具有较高的Ti含量0.25-0.35%,可以提高焊缝金属的强韧性,不需要加入其它合金元素来提高焊缝力学性能,降低了钢的成本。高Si的设计使得炼钢过程中可以使用Si脱氧,进一步减小钢水中的Ti的氧化夹杂物,有助于解决连铸过程水口结瘤问题。
本申请添加Ca元素,可降低钢中氧化物含量,降低生成的钛和铝的氧化物数量,复合夹杂物尺寸(Ti和Al的氧化夹杂物在浇筑过程中易聚集,进而堵塞水口),从根本上解决连铸过程中水口结瘤的问题,同时提高Ti的收得率。
通过向碳素钢中添加钙元素,还可以在钢中形成弥散的热稳定的第二相含钙的氧化物粒子。可以钉扎焊接热循环过程中粗晶热影响区(CGHAZ)的奥氏体晶界迁移,限制奥氏体晶粒的长大,获得较细的焊接CGHAZ晶粒度,进而改善微钙钢焊接CGHAZ的强韧度。
3.本申请盘条的抗拉强度≤600MPa,断面收缩率≥75%。制备埋弧焊丝时不需要进行退火,降低生产成本。采用本申请埋弧焊丝进行熔敷金属试验,焊缝抗拉强度≥560MPa,-40℃低温冲击韧性≥150J。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1-4埋弧焊丝的制备方法包括以下步骤:
(1)转炉冶炼。
(2)LF精炼:精炼出钢前18分钟喂入直径8mm的纯钙线,吹氩搅拌,吹氩搅拌时间不少于10分钟。
表1 LF精炼参数
表2精炼炉渣组分(wt%)

(3)小方坯连铸:
浇筑前在中间包上沿的四周垫上一层厚的耐火棉,之后盖上中间包盖,并使用三支吹氩管向中间包内吹入氩气,以置换中间包内的空气,吹氩管的高度保持与中间包内深一致、吹氩时间为5-6分钟。
过热度为40℃,拉速为2.5m/s,进出水温差10℃,二冷及结晶器进水温度35℃,当中间包内钢液深度高于挡渣墙上孔高度后再开启塞棒开浇。
(4)轧制
将小方坯经加热炉加热后连续轧制,实施例1-4精轧入口温度依次为870℃、900℃、880℃、900℃,轧制速度依次为90m/s、100m/s、92m/s、98m/s。
(5)冷却
吐丝进入斯太尔摩冷却线上进行控温冷却,其中,吐丝温度为依次为880℃、900℃、900℃、890℃,风机和保温罩全部关闭,斯太尔摩冷却线的辊道速度为0.15m/s,在保温罩内冷却速度依次为6m/s、6m/s、5m/s、5m/s。
(6)拉丝镀铜
步骤(5)中制得的盘条不经退火处理,直接拉丝,拉丝速度15m/s,之后镀铜盘卷。
对比例1
对比例1与实施例1基本相同,不同之处在于,对比例1未添加钙线。
对比例2
对比例2与实施例1基本相同,不同之处在于,精炼渣为低碱度渣系,组分以重量百分比计为:“CaO+CaF2”30%,Al2O3 10%,SiO2 42%,MnO 18%,不符合本申请所述渣系组配。
试验例
(1)记录炼钢最大连浇炉数,并采用ICP和CS仪对盘条成分进行测试,化学成分组成以重量百分比计,见表3。
表3盘条成分
(2)测试盘条抗拉强度和断面收缩率
剪取盘条30cm,在250kN拉伸试验机(Instron 5585)上测试盘条抗拉强度和断面收缩率。测试结果见表4。
表4抗拉强度和断面收缩率
(3)焊缝力学性能测试
参照标准GBT 8110-2008进行熔敷金属试验,然后进行力学性能检测试验,测试结果见表5。
表5熔敷焊缝

采用本申请的埋弧焊丝形成的焊缝抗拉强度≥560MPa,-40℃低温冲击韧性≥150J。
由上可知,与实施例1相比,对比例1所述盘条因成分中Ca含量不足,焊缝强度和韧性都有所降低,另外,对比例1因未加入钙线,导致结瘤,连浇炉数仅为3炉。对比例2所述盘条在炼钢过程中,精炼渣系组分不满足本技术要求,因此O含量过高,连浇炉数仅为5炉。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本申请的保护范围之中。

Claims (9)

  1. 一种高Ti管线埋弧焊丝用钢的制备方法,其特征在于,包括转炉冶炼、LF精炼、连铸、轧制和冷却;
    所述LF精炼中,精炼炉渣组分以重量百分比计为:(CaO+CaF2)40-50%,Al2O330%-40%,SiO2≤5%,MnO 10%-20%;
    所述LF精炼过程中,出钢前喂入纯钙线;
    制备得到的所述高Ti管线埋弧焊丝用钢的化学成分以质量百分数计,包括C 0.07-0.10%、Si 0.15-0.25%、Mn 1.50-1.80%、Ti 0.25-0.35%、Al 0.02-0.03%、0.0020%≤Ca≤0.0040%、O≤0.004%,其余为Fe和不可避免的杂质。
  2. 根据权利要求1所述的高Ti管线埋弧焊丝用钢的制备方法,其特征在于,所述出钢前喂入纯钙线为:出钢前15-18分钟喂入直径5-10mm的纯钙线250-400米/吨。
  3. 根据权利要求1所述的高Ti管线埋弧焊丝用钢的制备方法,其特征在于,所述连铸过程中,浇筑前在中间包上沿的四周垫上一层耐火材料,之后盖上中间包盖,并向中间包内吹入氩气,以置换中间包内的空气;
    中间包过热度为30-50℃,拉速为2.5±0.1m/s,结晶器进出水温差≤10℃,二冷及结晶器进水温度≥30℃,当中间包内钢液深度高于挡渣墙上孔高度后开启塞棒开浇。
  4. 根据权利要求3所述的高Ti管线埋弧焊丝用钢的制备方法,其特征在于,采用吹氩管向中间包内吹入氩气,所述吹氩管的高度保持与中间包内深一致、吹氩时间为5-6分钟。
  5. 根据权利要求1所述的高Ti管线埋弧焊丝用钢的制备方法,其特征在于,所述轧制过程中,870℃≤精轧入口温度≤900℃,90m/s≤轧制速度≤100m/s;
    所述冷却过程中,在斯太尔摩冷却线上进行控温冷却,其中,吐丝温度为880-900℃,冷却速度≤6m/s。
  6. 根据权利要求1-5中任一项所述的制备方法制得的高Ti管线埋弧焊丝用钢。
  7. 一种高Ti管线埋弧焊丝用盘条,采用权利要求1-5中任一项所述的制备方法制得的钢,其特征在于,所述盘条抗拉强度≤600MPa,断面收缩率≥75%。
  8. 一种高Ti管线埋弧焊丝,其特征在于,采用权利要求7所述的高Ti管线埋弧焊丝用盘条制得。
  9. 一种权利要求8所述的高Ti管线埋弧焊丝的制备方法,其特征在于,直接对盘条进行拉丝,无需退火,拉丝速度≤15m/s。
PCT/CN2023/120789 2022-10-19 2023-09-22 一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法 WO2024082921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211276565.3A CN115351458B (zh) 2022-10-19 2022-10-19 一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法
CN202211276565.3 2022-10-19

Publications (1)

Publication Number Publication Date
WO2024082921A1 true WO2024082921A1 (zh) 2024-04-25

Family

ID=84008532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120789 WO2024082921A1 (zh) 2022-10-19 2023-09-22 一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法

Country Status (2)

Country Link
CN (1) CN115351458B (zh)
WO (1) WO2024082921A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115351458B (zh) * 2022-10-19 2023-02-14 张家港荣盛特钢有限公司 一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104531A (ja) * 2004-10-06 2006-04-20 Sumitomo Metal Ind Ltd Ti含有ステンレス鋼の製造方法
CN102950392A (zh) * 2011-08-19 2013-03-06 鞍钢股份有限公司 一种生产管线埋弧焊丝用的盘条及其制造方法
CN103060526A (zh) * 2013-01-24 2013-04-24 宝山钢铁股份有限公司 一种管线钢夹杂物控制用熔渣
CN104831014A (zh) * 2015-03-31 2015-08-12 青岛钢铁控股集团有限责任公司 一种高钛特种焊丝钢的冶炼方法
CN110453150A (zh) * 2019-09-18 2019-11-15 中天钢铁集团有限公司 一种Cr-B系低碳高强度冷镦钢盘条及其制造方法
CN110982982A (zh) * 2019-11-13 2020-04-10 甘肃酒钢集团宏兴钢铁股份有限公司 一种含钛奥氏体不锈钢的lf精炼方法
CN111485052A (zh) * 2020-04-22 2020-08-04 青岛特殊钢铁有限公司 一种97级超高强度帘线钢的冶炼方法
GB202113700D0 (en) * 2020-10-22 2021-11-10 Jiangsu Yonggang Group Co Ltd No details
CN113699457A (zh) * 2021-08-31 2021-11-26 重庆钢铁股份有限公司 一种高钛含量高强度低合金汽车结构钢及其冶炼工艺
CN115351458A (zh) * 2022-10-19 2022-11-18 张家港荣盛特钢有限公司 一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381574B (zh) * 2022-01-18 2023-04-11 山西太钢不锈钢股份有限公司 高钛钢夹杂物的控制方法、高钛钢及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104531A (ja) * 2004-10-06 2006-04-20 Sumitomo Metal Ind Ltd Ti含有ステンレス鋼の製造方法
CN102950392A (zh) * 2011-08-19 2013-03-06 鞍钢股份有限公司 一种生产管线埋弧焊丝用的盘条及其制造方法
CN103060526A (zh) * 2013-01-24 2013-04-24 宝山钢铁股份有限公司 一种管线钢夹杂物控制用熔渣
CN104831014A (zh) * 2015-03-31 2015-08-12 青岛钢铁控股集团有限责任公司 一种高钛特种焊丝钢的冶炼方法
CN110453150A (zh) * 2019-09-18 2019-11-15 中天钢铁集团有限公司 一种Cr-B系低碳高强度冷镦钢盘条及其制造方法
CN110982982A (zh) * 2019-11-13 2020-04-10 甘肃酒钢集团宏兴钢铁股份有限公司 一种含钛奥氏体不锈钢的lf精炼方法
CN111485052A (zh) * 2020-04-22 2020-08-04 青岛特殊钢铁有限公司 一种97级超高强度帘线钢的冶炼方法
GB202113700D0 (en) * 2020-10-22 2021-11-10 Jiangsu Yonggang Group Co Ltd No details
CN113699457A (zh) * 2021-08-31 2021-11-26 重庆钢铁股份有限公司 一种高钛含量高强度低合金汽车结构钢及其冶炼工艺
CN115351458A (zh) * 2022-10-19 2022-11-18 张家港荣盛特钢有限公司 一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法

Also Published As

Publication number Publication date
CN115351458B (zh) 2023-02-14
CN115351458A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
CN110373600B (zh) 一种高铝含硫控钙钢冶炼工艺方法
CN104862443B (zh) 一种低碳低硅焊丝钢的冶炼方法
CN102248142B (zh) 一种中低碳铝镇静钢的生产方法
CN102277534B (zh) 气瓶用热轧型钢的生产方法
CN109252008A (zh) 一种低碳低氮超低硫钢的生产方法
CN102268513B (zh) 一种改善中低碳钢钢水可浇性的方法
WO2022143363A1 (zh) 一种含Zr焊丝钢热轧盘条及其生产工艺
CN103436657A (zh) 一种防止焊接飞溅的焊丝钢冶炼工艺
CN101948983B (zh) 一种钢轨钢的制备方法
WO2023151228A1 (zh) 帘线钢的脆性夹杂物控制方法
CN113073252A (zh) 一种提升高铝轴承钢浇注性能的生产方法
CN107574385B (zh) 一种提高双稳定铁素体不锈钢连铸坯等轴晶率的工艺方法
WO2024082921A1 (zh) 一种埋弧焊丝用钢、盘条、埋弧焊丝及其制备方法
CN112029961B (zh) 一种含氮超级不锈钢的铝脱氧方法
CN112442572A (zh) 高端轴承钢夹杂物的脱氧控制方法
CN106191375B (zh) 无缝钢管用含钛奥氏体不锈钢圆管坯连铸生产方法
CN107365949A (zh) 一种冶炼超低碳高合金不锈钢的方法
CN114395657A (zh) 一种高洁净铁路货车用电渣轴承钢及其冶炼方法
CN114410890B (zh) 一种极低铝铁路钢轨钢的造渣工艺
CN117026092A (zh) 一种高强弹簧钢及其制备方法
CN111945062A (zh) 机械结构管用2131低碳钢及其冶炼方法
CN114959426A (zh) 一种汽车刹车线金属材料的制备方法
CN106811573A (zh) 提高钢水浇铸性能的钢的制造方法
CN114350899B (zh) 一种感应炉冶炼高钛钢控制Ti2O3、TiN夹杂的方法
CN114107600B (zh) 一种含有形核剂的27SiMn钢的冶炼方法