WO2022267224A1 - 一种变结构的堆叠缆线拓扑及其封装方法 - Google Patents

一种变结构的堆叠缆线拓扑及其封装方法 Download PDF

Info

Publication number
WO2022267224A1
WO2022267224A1 PCT/CN2021/116079 CN2021116079W WO2022267224A1 WO 2022267224 A1 WO2022267224 A1 WO 2022267224A1 CN 2021116079 W CN2021116079 W CN 2021116079W WO 2022267224 A1 WO2022267224 A1 WO 2022267224A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
tapes
stacking
superconducting
stacked
Prior art date
Application number
PCT/CN2021/116079
Other languages
English (en)
French (fr)
Inventor
盛杰
王雪亮
李柱永
王龙彪
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US18/032,806 priority Critical patent/US20230386704A1/en
Publication of WO2022267224A1 publication Critical patent/WO2022267224A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/10Multi-filaments embedded in normal conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • H01B7/0018Strip or foil conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to the technical field of cables, and more specifically relates to a variable-structure stacking cable topology and a packaging method thereof.
  • the second-generation high-temperature superconducting material (REBCO coated conductor) superconducting material has become a research hotspot in the field of power equipment due to its characteristics of no DC resistance loss and high conduction current density, and related applications have developed rapidly, such as superconducting cables, superconducting Energy storage, superconducting transformers, superconducting current limiters, superconducting motors, etc., have great advantages in the application of strong field magnets due to their high upper critical magnetic field.
  • the second-generation high-temperature superconducting tape has anisotropic characteristics. In order to obtain higher engineering current density and weaken the anisotropy, researchers have proposed many different types of high-temperature superconducting cables.
  • the topological structure of the cable including transposed braided Roble cable, twisted stacked cable (TSTC), round copper core bundled cable (CORC), etc.
  • TSTC twisted stacked cable
  • CORC round copper core bundled cable
  • These cables have their own advantages, but also have their own disadvantages.
  • due to the high engineering current density stacked cables have great potential in the field of high-field magnet applications.
  • stacked cables When stacked cables are used to wind the coil, its function is equivalent to a partial non-insulated coil wound by strip material, and the current can be shared and shunted arbitrarily inside the cable, which improves the robustness of the magnet itself.
  • the commonly used stacking cable preparation process in the industry is to use solder at 215 degrees Celsius to directly compress and package multiple second-generation high-temperature superconducting tapes. After the solder is cured, the preparation of the stacking cable is completed. The number can be combined according to the thickness of the stacked cables and the thickness of the tape.
  • the critical current of the second-generation high-temperature superconducting strip is greatly affected by the magnetic field of the vertical strip, and the stronger the magnetic field, the lower the critical current. Since the magnetic field in a strong field magnet is often unevenly distributed in the entire space, the critical current of the superconducting material in the coil magnet is also unevenly distributed. At this time, the actual operating current mainly depends on a certain critical current in the entire magnet. area, the so-called short-board effect. In order to overcome this short plate effect, it is necessary to further optimize the existing cable structure, so that the critical current of the coil made of the cable can reach a relatively uniform level under the influence of different magnetic fields.
  • the present invention aims to solve one of the technical problems of low etching efficiency at least to a certain extent. For this reason, the object of the present invention is to propose a stacking cable topology with a variable structure and a packaging method thereof. In order to achieve the above object, the present invention adopts the following technical solutions:
  • a variable-structure stacking cable topology includes: multiple sections of stacking cables, the multiple sections of the stacking cables are connected in sequence, and each section of the stacking cables includes an equal number of A plurality of base bands are connected to each other, and at least one of the base bands is a superconducting band.
  • At least one of the plurality of base tapes is a copper tape.
  • the base tapes of the corresponding layers in the stacked cables of adjacent sections are all superconducting tapes or copper tapes, the base tapes of the adjacent sections are integrally formed;
  • the base bands are respectively a superconducting band and a copper band, and the joints of the base bands are welded.
  • the plurality of base strips are connected by soldering.
  • variable-structure stacking cable topology further includes an encapsulation layer, and the encapsulation layer is provided on the outer wall of the stacking cable.
  • the present invention provides a variable-structure stacking cable topology, in which multiple sections of the stacking cables are sequentially connected to form a cable topology structure, wherein each section of the stacking cable There are only superconducting tapes in the line, or a combination of superconducting tapes and copper tapes to form a variable-structure cable topology.
  • the number of superconducting tapes encapsulated in each area is different, and this section of cable is used for winding coils , the critical current of the coil as a whole can be made approximately uniform along the length of the cable.
  • the stacked cable topology design of this variable structure can not only improve the magnetic field parameters of the coil, but also save the amount of superconducting tape to the greatest possible extent.
  • the packaging method of the variable-structure stacking cable topology specifically includes the following steps:
  • the stacked cable is composed of several sections, and the number of baseband layers in each section of the cable, as well as the number of superconducting tapes and the number of copper tapes are determined;
  • solder furnace use the solder furnace to package the multi-layer baseband formed in S30, press it together through the cooperation of the pay-off reel and the guide wheel, and then pass through the solder pool, the baseband melts from the solder liquid at an ambient temperature of 150°C-200°C After passing through the solder pool, the solder carried on the baseband solidifies in the air to form a complete cable.
  • the packaging method of the variable-structure stacking cable topology also includes external packaging, and copper or aluminum is used to package the outside of the cable formed by soldering oven packaging to form a packaging layer.
  • variable structure stacking cable topology uses the above-mentioned variable structure stacking cable topology.
  • connection relationship and positional relationship between the components of the variable structure stacking cable topology have been described above.
  • variable structure The technical effect achieved by the encapsulation method of the stacking cable topology has been described in the above-mentioned variable structure stacking cable topology, and will not be repeated here.
  • Fig. 1 accompanying drawing is a kind of structure diagram of the variable structure stacking cable topology provided by the present invention
  • FIG. 2 is a schematic diagram of another structure of the variable-structure stacking cable topology provided by the present invention.
  • FIG. 3 accompanying drawing is the structural representation of embodiment 1 provided by the present invention.
  • Fig. 4 accompanying drawing is the structural representation of the equipotential lines of the magnetic force lines on the pie coil when the operating current is 135A provided by the present invention
  • FIG. 5 is a schematic structural diagram of the equipotential lines of the magnetic field intensity on the pie coil provided by the present invention when the operating current is 135A.
  • 1 is superconducting tape
  • 2 is copper tape
  • 3 is solder
  • 4 is encapsulation layer.
  • the embodiment of the present invention discloses a variable-structure stacking cable topology, including: multiple stacking cables, which are connected in sequence to form a complete cable, and each stacking cable
  • the line includes multiple basebands of the same number, and the multiple basebands are connected to each other.
  • At least one of the multiple basebands is a superconducting strip 1.
  • the superconducting strip 1 is a second-generation high-temperature superconducting material, a REBCO coated conductor, and has a higher Engineering current density is the main conductor used to transmit current.
  • the baseband of each section includes two methods. First, the baseband in a certain section of the cable area is superconducting tape 1. Second, the section of the cable area includes The superconducting tape 1 and the copper tape 2 are made of two materials, and are composed of a combination of the superconducting tape 1 and the copper tape 2.
  • the base tapes of the corresponding layers in the adjacent stacked cables are all superconducting tapes 1 or copper tapes 2, the base tapes of the adjacent segments are integrally formed; if the corresponding layers of the adjacent stacked cables
  • the basebands are superconducting strips 1 and copper strips 2 respectively, the joints of the basebands are spot welded, the multiple basebands are connected by solder 3, and the multiple basebands are in a tiled structure.
  • variable-structure stacking cable topology further includes an encapsulation layer 4, the encapsulation layer 4 is arranged on the outer wall of the stacking cable, and the encapsulation layer 4 is a copper layer, an aluminum layer or other layers, preferably a copper layer .
  • variable-structure stacking cable topology packaging method which specifically includes the following steps:
  • S20 determine that the stacked cable consists of several sections, and determine the number of baseband layers in each section of the cable, as well as the number of superconducting tapes 1 and the number of copper tapes 2;
  • solder furnace uses the solder furnace to package the multi-layer baseband formed in S30, press it together through the cooperation of the pay-off reel and the guide wheel, and then pass through the solder pool, the baseband melts from the solder liquid at an ambient temperature of 150°C-200°C The preferred ambient temperature is 200°C.
  • the solder 3 carried on the base tape solidifies in the air to form a complete cable.
  • the packaging method of the variable-structure stacking cable topology further includes external packaging, and copper or aluminum is used to package the outside of the cable formed by soldering 3 furnace packaging to form the packaging layer 4 .
  • this embodiment uses three sections of five-layer stacking cables to further explain the stacking cable topology of variable structure.
  • the specific three sections are respectively A area, B area and C area.
  • the number of segments of stacking cables and the number of basebands are specifically set according to actual requirements, and will not be listed here.
  • a stacking cable topology with variable structure including: three sections of stacking cables, the three sections of stacking cables are connected in sequence to form a complete cable, and each section of stacking cable includes five basebands, among which, area A includes two basebands Superconducting strip 1 and three copper strips 2, B area includes three superconducting strips 1 and two copper strips 2, C area includes two superconducting strips 1 and three copper strips 2, in this embodiment, in the three sections
  • the base tapes of the first layer and the fifth layer are all integrally formed superconducting tapes 1
  • the base tapes of the second layer and the fourth layer are all integrally formed copper tapes 2
  • the base tapes in the third layer are in areas A, B and
  • the basebands in area C are copper strip 2, superconducting strip 1, and copper strip 2.
  • Superconducting strip 1 and copper strip 2 are connected by spot welding.
  • the five-layer baseband adopts a tiled structure. The baseband between them is fixedly connected with solder 3.
  • the cable is wound into a cake coil
  • the magnetic field strength range of A area is 0.000274-0.2058T
  • the magnetic field strength range of B area is 0.0846-0.2511T
  • the magnetic field strength range of C area is 0.0002575-0.2059T
  • the magnetic field lines and magnetic field intensity equipotential lines on the pie coil are specifically shown in Fig. 4 and Fig. 5 .
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related part, please refer to the description of the method part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

本发明公开了一种变结构的堆叠缆线拓扑及其封装方法,涉及电缆线技术领域,其中,变结构的堆叠缆线拓扑包括:多段堆叠缆线,多段堆叠缆线依次连接,每段堆叠缆线包括同等数量的多条基带,多条基带之间相互连接,多条基带中至少一条为超导带。本发明通过多段堆叠缆线依次连接形成缆线拓扑结构,其中,每段堆叠缆线中只设有超导带,或超导带和铜带的组合体以形成变结构的缆线拓扑结构,通过各区域封装的超导带数量不同,将这段缆线用于绕制线圈时,就能够使线圈整体的临界电流沿缆线长度方向上近似均匀,该变结构的堆叠缆线拓扑设计不仅可以提高线圈的磁场参数,还能最大可能地节省超导带材的用量。

Description

一种变结构的堆叠缆线拓扑及其封装方法 技术领域
本发明涉及电缆线技术领域,更具体的说是涉及一种变结构的堆叠缆线拓扑及其封装方法。
背景技术
二代高温超导材料(REBCO涂层导体)超导材料因其无直流电阻损耗和高传导电流密度的特性,成为了电力设备领域的研究热点,相关应用发展迅速,如超导电缆、超导储能、超导变压器、超导限流器、超导电机等,由于其较高的上临界磁场,在强场磁体应用方面具有巨大的优势。但由于存在较高的宽厚比,使得二代高温超导带材具有各向异性的特征,为了获得更高的工程电流密度并且弱化各向异性,研究人员提出了许多不同类型的高温超导缆线的拓扑结构,包括换位编织的Roble缆线、扭绞堆叠缆线(TSTC)、圆铜芯集束缆线(CORC)等。这些缆线有各自的优势,但又有自身的缺点,其中,由于较高的工程电流密度,堆叠缆线在强场磁体应用领域具有极大的潜力。当采用堆叠缆线绕制线圈时,其作用相当于一个由带材绕制的局部无绝缘线圈,电流可以在缆线内部任意共享分流,提高了磁体本身的鲁棒性。目前业界常用的堆叠缆线制备工艺是采用焊锡在215摄氏度下,直接将多根二代高温超导带材压紧封装,当焊锡固化后就完成了堆叠缆线的制备,其中超导带材的数量可根据堆叠缆线的厚度和带材的厚度进行组合。
二代高温超导带材的临界电流受垂直带材的磁场影响较大,磁场越强,临界电流越低。由于强场磁体中磁场在整个空间中分布往往是不均匀的,导致在线圈磁体中超导材料的临界电流也是分布不均匀的,此时实际运行电流主要取决于整个磁体中某个临界电流最低的区域,即所谓短板效应。为了克 服这种短板效应,则需要对现有的缆线结构进一步优化,使得缆线绕制成的线圈在不同磁场的影响下的临界电流也能达到比较均匀的水平。
发明内容
本发明旨在至少在一定程度上解决刻蚀效率低的技术问题之一。为此,本发明的目的在于提出一种变结构的堆叠缆线拓扑及其封装方法,为了实现上述目的,本发明采用如下技术方案:
有鉴于此,根据本发明第一方面实施例的一种变结构的堆叠缆线拓扑,包括:多段堆叠缆线,多段所述堆叠缆线依次连接,每段所述堆叠缆线包括同等数量的多条基带,多条所述基带之间相互连接,多条所述基带中至少一条为超导带。
进一步地,多条所述基带中至少一条为铜带。
进一步地,若相邻段堆叠缆线中对应层的所述基带均为超导带或铜带,相邻段的所述基带为一体成型;若相邻段堆叠缆线中对应层的所述基带分别为超导带和铜带,所述基带的连接处为焊接。
进一步地,多条所述基带之间通过焊锡连接。
进一步地,多条所述基带之间为平铺结构。
进一步地,该变结构的堆叠缆线拓扑还包括封装层,所述封装层设于所述堆叠缆线的外壁。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种变结构的堆叠缆线拓扑,通过多段所述堆叠缆线依次连接形成缆线拓扑结构,其中,每段堆叠缆线中只设有超导带,或超导带和铜带的组合体以形成变结构的缆线拓扑结构,通过各区域封装的超导带数量不同,将这段缆线用于绕制线圈时,就能够使线圈整体的临界电流沿缆线长度方向上近似均匀,该变 结构的堆叠缆线拓扑设计不仅可以提高线圈的磁场参数,还能最大可能地节省超导带材的用量。
有鉴于此,根据本发明第二方面实施例的变结构的堆叠缆线拓扑的封装方法,具体包括以下步骤:
S10,通过有限元仿真计算分析出线圈的磁场分布;
S20,根据磁场分布确定堆叠缆线由几段组成,并确定每一段缆线中的基带层数,以及超导带的数量和铜带的数量;
S30,将缆线同一层中各段的基带形成一体结构,其中,若相邻段堆叠缆线中对应层的基带均为超导带或铜带,相邻段的基带采用一体成型结构;若相邻段堆叠缆线中对应层的基带分别为超导带和铜带,将相邻段之间的超导带和铜带进行点焊连接;
S40,利用焊锡炉对S30中形成的多层基带进行封装,通过放线盘与导轮的配合压在一起,再穿过焊锡池,基带从150℃-200℃的环境温度下融化的焊锡液体中穿过,从焊锡池出来后,基带上携带的焊锡在空气中凝固形成一根完整的缆线。
进一步地,该变结构的堆叠缆线拓扑的封装方法还包括外部封装,在焊锡炉封装形成的缆线外部利用铜或铝进行封装,形成封装层。
该变结构的堆叠缆线拓扑的封装方法使用上述一种变结构的堆叠缆线拓扑,该变结构的堆叠缆线拓扑各部件之间的连接关系和位置关系均在上述已描述,该变结构的堆叠缆线拓扑的封装方法所达到的技术效果在上述变结构的堆叠缆线拓扑已经描述,在此不做赘述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面 描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明提供的变结构的堆叠缆线拓扑的一种结构示意图;
图2附图为本发明提供的变结构的堆叠缆线拓扑的另一种结构示意图;
图3附图为本发明提供的实施例1的结构示意图;
图4附图为本发明提供的在运行电流为135A时饼式线圈上磁力线等位线的结构示意图;
图5附图为本发明提供的在运行电流为135A时饼式线圈上磁场强度等位线的结构示意图。
其中:1为超导带;2为铜带;3为焊锡;4为封装层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1和2,一方面,本发明实施例公开了一种变结构的堆叠缆线拓扑,包括:多段堆叠缆线,多段堆叠缆线依次连接形成一根完整的缆线,每段堆叠缆线包括同等数量的多条基带,多条基带之间相互连接,多条基带中至少一条为超导带1,超导带1为二代高温超导材料,REBCO涂层导体,具有较高的工程电流密度,是主要的用于传输电流的导体,每一段的基带具体包括两种方式,其一,在某一段缆线区域基带均为超导带1,其二,该段缆线区域包括超导带1和铜带2两种材质,由超导带1和铜带2的组合体组成。
根据本发明的一个实施例,若相邻段堆叠缆线中对应层的基带均为超导带1或铜带2,相邻段的基带为一体成型;若相邻段堆叠缆线中对应层的基带 分别为超导带1和铜带2,基带的连接处为点焊焊接,多条基带之间通过焊锡3连接,多条基带之间为平铺结构。
根据本发明的一个实施例,该变结构的堆叠缆线拓扑还包括封装层4,封装层4设于堆叠缆线的外壁,封装层4为铜层、铝层或其它层,优选为铜层。
另一方面,本发明还公开了一种变结构的堆叠缆线拓扑的封装方法,具体包括以下步骤:
S10,通过有限元仿真计算分析出线圈的磁场分布;
S20,根据磁场分布确定堆叠缆线由几段组成,并确定每一段缆线中的基带层数,以及超导带1的数量和铜带2的数量;
S30,将缆线同一层中各段的基带形成一体结构,其中,若相邻段堆叠缆线中对应层的基带均为超导带1或铜带2,相邻段的基带采用一体成型结构;若相邻段堆叠缆线中对应层的基带分别为超导带1和铜带2,将相邻段之间的超导带1和铜带2进行点焊连接;
S40,利用焊锡炉对S30中形成的多层基带进行封装,通过放线盘与导轮的配合压在一起,再穿过焊锡池,基带从150℃-200℃的环境温度下融化的焊锡液体中穿过,优选的环境温度为200℃,从焊锡池出来后,基带上携带的焊锡3在空气中凝固形成一根完整的缆线。
在另一些实施例中,该变结构的堆叠缆线拓扑的封装方法还包括外部封装,在焊锡3炉封装形成的缆线外部利用铜或铝进行封装,形成封装层4。
实施例1
参见图3,本实施例以三段五层式堆叠缆线对变结构的堆叠缆线拓扑进行进一步地解释说明,具体三段分别为A区域、B区域和C区域,在另一些实施例中堆叠缆线的段数和基带的条数根据实际需求具体设置,在此不进行一一列举。
一种变结构的堆叠缆线拓扑,包括:三段堆叠缆线,三段堆叠缆线依次连接形成一根完整的缆线,每段堆叠缆线均包括五条基带,其中,A区域包括 两条超导带1和三条铜带2,B区域包括三条超导带1和两条铜带2,C区域包括两条超导带1和三条铜带2,在本实施例中,三段中在第一层和第五层的基带均为一体成型的超导带1,第二层和第四层的基带均为一体成型的铜带2,第三层中的基带在A区域、B区域和C区域的基带分别为铜带2、超导带1和铜带2,超导带1与铜带2之间采用点焊的方式进行连接,五层基带采用平铺的结构,层与层之间的基带采用焊锡3固定连接。
具体地,将该缆线绕制为饼式线圈,A区域的磁场强度范围0.000274-0.2058T,B区域的磁场强度范围0.0846-0.2511T;C区域的磁场强度范围0.0002575-0.2059T,在运行电流为135A时饼式线圈上磁力线和磁场强度等位线具体参见图4和图5。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种变结构的堆叠缆线拓扑,其特征在于,包括:多段堆叠缆线,多段所述堆叠缆线依次连接,每段所述堆叠缆线包括同等数量的多条基带,多条所述基带之间相互连接,多条所述基带中至少一条为超导带。
  2. 根据权利要求1所述的一种变结构的堆叠缆线拓扑,其特征在于,多条所述基带中至少一条为铜带。
  3. 根据权利要求2所述的一种变结构的堆叠缆线拓扑,其特征在于,若相邻段堆叠缆线中对应层的所述基带均为超导带或铜带,相邻段的所述基带为一体成型;若相邻段堆叠缆线中对应层的所述基带分别为超导带和铜带,所述基带的连接处为焊接。
  4. 根据权利要求1所述的一种变结构的堆叠缆线拓扑,其特征在于,多条所述基带之间通过焊锡连接。
  5. 根据权利要求1所述的一种变结构的堆叠缆线拓扑,其特征在于,多条所述基带之间为平铺结构。
  6. 根据权利要求1所述的一种变结构的堆叠缆线拓扑,其特征在于,还包括封装层,所述封装层设于所述堆叠缆线的外壁。
  7. 一种变结构的堆叠缆线拓扑的封装方法,其特征在于,具体包括以下步骤:
    S10,通过有限元仿真计算分析出线圈的磁场分布;
    S20,根据磁场分布确定堆叠缆线由几段组成,并确定每一段缆线中的基带层数,以及超导带的数量和铜带的数量;
    S30,将缆线同一层中各段的基带形成一体结构,其中,若相邻段堆叠缆线中对应层的基带均为超导带或铜带,相邻段的基带采用一体成型结构;若相邻段堆叠缆线中对应层的基带分别为超导带和铜带,将相邻段之间的超导带和铜带进行点焊连接;
    S40,利用焊锡炉对S30中形成的多层基带进行封装,通过放线盘与导轮的配合压在一起,再穿过焊锡池,基带从150℃-200℃的环境温度下融化的焊 锡液体中穿过,从焊锡池出来后,基带上携带的焊锡在空气中凝固形成一根完整的缆线。
  8. 根据权利要求7所述的一种变结构的堆叠缆线拓扑的封装方法,其特征在于,还包括外部封装,在焊锡炉封装形成的缆线外部利用铜或铝进行封装,形成封装层。
PCT/CN2021/116079 2021-06-24 2021-09-02 一种变结构的堆叠缆线拓扑及其封装方法 WO2022267224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/032,806 US20230386704A1 (en) 2021-06-24 2021-09-02 Variable-structure stacked cable topology and packaging method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110706940.2 2021-06-24
CN202110706940.2A CN113436788B (zh) 2021-06-24 2021-06-24 一种变结构的堆叠缆线拓扑的结构

Publications (1)

Publication Number Publication Date
WO2022267224A1 true WO2022267224A1 (zh) 2022-12-29

Family

ID=77754097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116079 WO2022267224A1 (zh) 2021-06-24 2021-09-02 一种变结构的堆叠缆线拓扑及其封装方法

Country Status (3)

Country Link
US (1) US20230386704A1 (zh)
CN (1) CN113436788B (zh)
WO (1) WO2022267224A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103210455A (zh) * 2010-09-15 2013-07-17 美国超能公司 减少电镀的稳定剂含量的结构
EP2717341A2 (de) * 2012-10-05 2014-04-09 Bruker HTS GmbH Supraleiterstruktur mit verketteten Bandstücken, die jeweils von unmittelbar aufeinanderfolgenden, weiteren Bandstücken überlappt werden
WO2018236102A1 (ko) * 2017-06-19 2018-12-27 한국전기연구원 금속-절연체 전이 물질을 구비한 고온 초전도 선재
CN110356242A (zh) * 2019-08-02 2019-10-22 成都睿逸谷科技有限责任公司 高温超导带材曲面堆叠单元及方法、阵列、磁悬浮系统
CN112614623A (zh) * 2020-11-30 2021-04-06 广东电网有限责任公司 一种二代高温超导堆叠导体的长线化接线方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6712125B2 (ja) * 2015-09-04 2020-06-17 株式会社フジクラ 酸化物超電導線材の接続構造体およびその製造方法
CN105632648B (zh) * 2016-04-07 2019-01-15 华北电力大学 一种基于高温超导材料的各向同性cicc导体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103210455A (zh) * 2010-09-15 2013-07-17 美国超能公司 减少电镀的稳定剂含量的结构
EP2717341A2 (de) * 2012-10-05 2014-04-09 Bruker HTS GmbH Supraleiterstruktur mit verketteten Bandstücken, die jeweils von unmittelbar aufeinanderfolgenden, weiteren Bandstücken überlappt werden
WO2018236102A1 (ko) * 2017-06-19 2018-12-27 한국전기연구원 금속-절연체 전이 물질을 구비한 고온 초전도 선재
CN110356242A (zh) * 2019-08-02 2019-10-22 成都睿逸谷科技有限责任公司 高温超导带材曲面堆叠单元及方法、阵列、磁悬浮系统
CN112614623A (zh) * 2020-11-30 2021-04-06 广东电网有限责任公司 一种二代高温超导堆叠导体的长线化接线方法

Also Published As

Publication number Publication date
US20230386704A1 (en) 2023-11-30
CN113436788A (zh) 2021-09-24
CN113436788B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
JP6155195B2 (ja) 超電導ケーブルの接続構造
US7633014B2 (en) Superconductor cable
JP5123604B2 (ja) 超電導コイル
CN108711472B (zh) 一种基于rebco超导带材的准圆截面高温超导导体
US20160240297A1 (en) High-Temperature Superconducting High-Current Cables
CN105869782A (zh) 高温超导线的制备方法
CN102810378A (zh) 一种超导磁体及其制作方法
CN112331406A (zh) 三相同轴超导电缆本体线芯及其制备方法
JP2019509612A (ja) 第2世代超伝導フィラメント及びケーブル
KR20120127053A (ko) 초전도 선재의 레이어 권선용 보빈 및 이를 이용한 레이어 권선 방법
US7383625B2 (en) Method of manufacturing continuous disk winding for high-voltage superconducting transformers
JP5375042B2 (ja) 誘導機器の超電導コイル
US20110155417A1 (en) Conducting wire structure and method of manufacturing a conducting wire core
JP3892605B2 (ja) 限流素子用超電導コイル装置
WO2022267224A1 (zh) 一种变结构的堆叠缆线拓扑及其封装方法
JP2011040567A (ja) 超電導コイル装置及び該超電導コイル装置を具備した超電導回転機
CN206271494U (zh) 一种叠层式平面电感器
CN110752063B (zh) 一种含内外超导层的高温超导复合导体
CN206558297U (zh) 高散热性环型扁线立绕电感器
JP7146449B2 (ja) 高周波コイル用電線及びコイル
JP6539024B2 (ja) コイル、及びコイル部品
JP2017147288A (ja) トロイダルコイル
CN206250028U (zh) 一种单相大功率磁集成高频变压器
JP4423581B2 (ja) 超電導ケーブル
CN221175927U (zh) 电感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946708

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18032806

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946708

Country of ref document: EP

Kind code of ref document: A1