WO2022267218A1 - 渗透率检测设备与检测方法 - Google Patents

渗透率检测设备与检测方法 Download PDF

Info

Publication number
WO2022267218A1
WO2022267218A1 PCT/CN2021/115362 CN2021115362W WO2022267218A1 WO 2022267218 A1 WO2022267218 A1 WO 2022267218A1 CN 2021115362 W CN2021115362 W CN 2021115362W WO 2022267218 A1 WO2022267218 A1 WO 2022267218A1
Authority
WO
WIPO (PCT)
Prior art keywords
permeation
cavity
detection
permeability
intake
Prior art date
Application number
PCT/CN2021/115362
Other languages
English (en)
French (fr)
Inventor
陈蓉
吴润卿
单斌
曹坤
陈志平
刘晨曦
Original Assignee
华中科技大学
华中科技大学无锡研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学, 华中科技大学无锡研究院 filed Critical 华中科技大学
Publication of WO2022267218A1 publication Critical patent/WO2022267218A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/0806Details, e.g. sample holders, mounting samples for testing

Definitions

  • the present application relates to the technical field of thin film permeation detection, in particular to a permeability detection device and a detection method.
  • the failure caused by gas permeation is a major engineering and scientific problem of universal significance.
  • the encapsulation film is required to have a high gas barrier rate to prevent water vapor and other gases from penetrating into the OLED. inside the device, affecting its performance. It can be seen that it is very important to detect and study the permeability of the film.
  • rate when testing the permeability of some films with high barrier rate, because the magnitude of the permeation value is too small, the detection accuracy of some existing testing equipment is limited, and it is difficult to measure the permeability of such films. Rate.
  • an aspect of the present application provides a permeability detection device, including:
  • a permeation cavity multiple groups of permeation cavities are connected to the intake cavity, an intake valve is provided between the permeation cavity and the intake cavity, when the intake valve is opened, the The gas inlet cavity communicates with the corresponding permeation cavity, and the permeation cavity is provided with a first sample installation area for installing samples;
  • a detection cavity multiple sets of permeation cavities are connected to the detection cavity, an accumulation valve is provided between the permeation cavity and the detection cavity, when the accumulation valve is opened, the detection cavity communicating with the corresponding permeate cavity;
  • a detection instrument the detection instrument is in communication with the detection cavity.
  • the permeate cavity includes a permeate cavity intake section and a permeate cavity accumulation section, the permeate cavity intake section is connected to the intake cavity, and the permeate cavity accumulation section Connected with the detection chamber, the first sample installation area is formed between the inlet section of the permeation chamber and the accumulation section of the permeation chamber.
  • a standard conductance device is installed at the first sample installation area.
  • a weighing assembly is provided in the inlet section of the permeation chamber, and a second sample installation area for placing samples is provided on the weighing assembly.
  • the weighing assembly protrudes into the inlet section of the permeation chamber, and a groove is provided on one side of the weighing assembly to place samples.
  • the samples in the first sample installation area are different from the samples in the second sample installation area.
  • At least one corresponding area of the permeation cavity is provided with an infrared component, and the infrared component includes a light source, an incident channel, an exit channel and a spectrometer;
  • Both the incident channel and the outgoing channel are in communication with the accumulation section of the permeation cavity, and the incident light emitted by the light source enters the accumulation section of the permeation cavity through the incident channel and reaches the first sample installation area , the outgoing light reflected by the sample in the first sample installation area enters the spectrometer through the outgoing channel.
  • the infrared component further includes a first reflection box, a first lens group is arranged in the first reflection box, the light source includes an infrared light source and a laser light source, and the incident channel includes an infrared light incident channel and laser incident channel, the first reflection box is provided with a first light entrance window and a second light entrance window, the infrared light source is installed at the first light entrance window, and the laser light source is installed at the At the second light entrance window.
  • the infrared assembly further includes a second reflection box, a second lens group is arranged in the second reflection box, a light exit window is arranged on the second reflection box, and the spectrometer is installed on the Describe the light window.
  • the air intake cavity includes an air intake main pipe and a plurality of air intake branch pipes, and the plurality of air intake branch pipes are all in communication with the air intake main pipe, and the gas inlet is located on the air intake main pipe, Among the plurality of intake branch pipes, each end is connected with an intake valve, and the intake valve is provided with an intake valve interface, and the intake valve interface at the end of each intake branch pipe is It is connected with a corresponding permeation cavity.
  • the detection cavity includes a main detection pipe and a plurality of detection branch pipes, and the plurality of detection branch pipes are all connected to the detection main pipe, the detection main pipe is connected to the detection instrument, and the plurality of detection branch pipes are connected to the detection main pipe.
  • Each of the detection branch pipes is connected with an accumulation valve, and the accumulation valve is provided with an accumulation valve interface, and the accumulation valve interface on each of the detection branch pipes is connected with a corresponding permeation chamber.
  • the detection instrument is a mass spectrometer.
  • the permeability detection device further includes one or more vacuum ports for connecting the permeability detection device with a vacuum pump.
  • Another aspect of the present application provides a permeability detection method, comprising the steps of:
  • S10 sets multiple sets of infiltration chambers
  • S20 select at least one group of the permeation chambers, and install the sample into the selected permeation chambers;
  • S40 release the gas accumulated in the permeation cavity into the detection cavity, and detect it through a detection instrument.
  • step S20 at least two groups of the permeation chambers are selected, and the samples installed in each group of the permeation chambers are the same;
  • step S40 the gas accumulated in each group of permeation chambers is released into the detection chamber in sequence, and the gas discharged from the previous group in the detection chamber is emptied between two adjacent groups of detections ; The results of each group detected by the detection instrument are averaged.
  • step S20 at least two groups of the permeation chambers are selected, and the samples installed in each group of the permeation chambers are different;
  • step S30 the gas passed into each group of permeation cavities is the same.
  • step S40 the gas accumulated in each group of permeation chambers is released into the detection chamber in sequence, and the gas discharged from the previous group in the detection chamber is emptied between two adjacent groups of detections .
  • step S20 at least two groups of the permeation chambers are selected, and the samples installed in each group of the permeation chambers are the same;
  • step S30 different gases are passed into each group of the permeation cavities to carry out permeation accumulation
  • step S40 the gas accumulated in each group of permeation chambers is released into the detection chamber in sequence, and the gas discharged from the previous group in the detection chamber is emptied between two adjacent groups of detections .
  • a standard flow conductance device is installed in one of the multiple groups of permeation cavities, and the data measured by the detection instrument is calibrated through the standard flow conductance device.
  • calibrating the detection instrument through the standard conductance device includes the following steps:
  • S02 measures the pressure of the incoming gas, calculates the gas flow, and calculates the permeability based on the obtained gas flow;
  • S03 passes the gas into the permeation cavity selected in S01 for permeation accumulation
  • S05 corresponds the result measured by the detection instrument to the permeability calculated in S02;
  • S06 adjusts the pressure of the incoming gas, repeats S02 to S05, until the preset range data of the detection instrument is covered, and establishes the data measured by the detection instrument and the permeability calculated by the standard flow conductance device corresponding relationship;
  • S07 Use the data measured by the detection instrument in S40 to search for the corresponding standard data in the corresponding relationship established in S06.
  • FIG. 1 is a front view of a permeability detection device according to an embodiment of the present application
  • Fig. 2 is the perspective view of the permeability detection equipment in Fig. 1;
  • Fig. 3 is a perspective view after removing each permeation cavity in the permeability detection device in Fig. 2;
  • Fig. 4 is an exploded perspective view of each permeation cavity of the permeability detection device in Fig. 2;
  • Fig. 5 is a perspective view of a permeation cavity in the permeability detection device in Fig. 4;
  • Fig. 6 is a schematic diagram of the internal structure of the permeation chamber in Fig. 5;
  • FIG. 7 is a flowchart of a permeability detection method according to an embodiment of the present application.
  • FIG. 8 is a flow chart of calibration through a standard conductance device according to an embodiment of the present application.
  • Air intake chamber 100 intake main pipe 110, intake branch pipe 120, vacuum upper interface 130, membrane vacuum gauge 140;
  • the second permeation cavity 300 The second permeation cavity 300;
  • Fourth infiltration chamber 500 fourth infiltration chamber inlet section 510, fourth infiltration chamber accumulation section 520, placement platform 530, weighing assembly 540, probe 541, groove 542, observation window 550, infrared light incident channel 561, laser incident channel 562, exit channel 563, first reflection box 570, first light entrance window 571, second light entrance window 572, second reflection box 580, light exit window 581;
  • Detection cavity 600 detection main pipe 610, detection branch pipe 620, vacuum lower interface 630;
  • Intake valve 810 intake valve interface 811, accumulation valve 820, accumulation valve interface 821;
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include at least one of these features. In the description of the present application, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • a permeability detection device provided by an embodiment of the present application includes an inlet chamber 100 , a permeation chamber, a detection chamber 600 , and detection instruments.
  • the detection instrument is described as the mass spectrometer 710 .
  • Multiple sets of permeation cavities are arranged between the intake cavity 100 and the detection cavity 600, one end of each set of permeation cavities is connected to the intake cavity 100, and the other end is connected to the detection cavity 600, each set of permeation cavities Both are provided with a first sample installation area, and the first sample installation area is used for installing samples.
  • An intake valve 810 is arranged between the permeation cavity and the intake cavity 100.
  • the intake cavity 100 communicates with the corresponding permeation cavity, and the gas in the intake cavity 100 can enter the corresponding In the permeation cavity; when the intake valve 810 is closed, the intake cavity 100 is no longer connected to the corresponding permeation cavity, and the gas cannot flow between the two.
  • An accumulation valve 820 is provided between the permeation cavity and the detection cavity 600. When the accumulation valve 820 is opened, the permeation cavity communicates with the corresponding permeation cavity, and the gas accumulated in the corresponding permeation cavity can flow into the detection cavity 600 ; When the accumulation valve 820 is closed, the detection cavity 600 is no longer connected to the corresponding permeation cavity, and the gas cannot flow between the two.
  • the mass spectrometer 710 communicates with the detection cavity 600 and can detect the gas in the detection cavity 600 .
  • the intake valve 810 is opened and the accumulation valve 820 is closed, the gas in the intake cavity 100 enters the corresponding permeation cavity, and the gas will permeate through the sample at the first sample installation area. Since the accumulation valve 820 is closed, the permeated through The gas of this sample cannot be vented and will gradually accumulate enrichment in the permeation chamber.
  • the accumulation valve 820 is opened, the accumulated and enriched gas in the permeation cavity is discharged into the detection cavity 600, and then can be detected by the mass spectrometer 710, and the pressure in the detection cavity 600 is measured by the mass spectrometer 710 to obtain the permeability .
  • the intake valve 810 when testing, open the intake valve 810 and close the accumulation valve 820, so that the gas in the intake cavity 100 can enter the permeation cavity for permeation and accumulation. After permeation and accumulation reach a certain amount, open the accumulation
  • the valve 820 allows the gas accumulated in the permeation cavity to enter the detection cavity 600, and then enter the mass spectrometer 710.
  • the mass spectrometer 710 measures the pressure in the detection cavity 600 and obtains the permeability.
  • the gas since the gas enters the detection chamber 600 after accumulating in the permeation chamber for a period of time, the original less gas can be gradually accumulated and enriched, so that it is easier to be detected by the mass spectrometer 710, thereby improving detection Sensitivity, thereby realizing the detection of the permeability of the film with high barrier rate.
  • each group of permeation chambers can work independently. When the samples installed in the multiple groups of permeation chambers are different, or the gases introduced are different, multiple situations can be realized on the same device. The penetration rate detection can make the detection more convenient and quick.
  • the detection of gas permeability through various membranes can be realized on the same device. If the same sample is installed in the first sample installation area in each group of permeation chambers, but different gases are introduced into the gas inlet chamber 100 successively, it is possible to pass the same sample for multiple gases on the same device. The detection of the permeability, in this way, can make the detection more convenient and quick. If the same sample is installed in the first sample installation area in each group of permeation cavities, the same gas is always passed into the gas inlet cavity 100. By setting multiple groups of permeation cavities and multiple samples, the detection error can be reduced. Improve the accuracy of test results.
  • the detection sensitivity is high, and the permeability of some films with low permeability and high barrier rate can be detected, thereby further deepening the understanding of the permeability of the film, which is beneficial to the follow-up.
  • the study of the barrier rate film can realize the detection of the permeability of various gases through the film, and can also realize the detection of the permeability of various gases through the film.
  • the intake cavity 100 includes an intake main pipe 110 and a plurality of intake branch pipes 120 , and the plurality of intake branch pipes 120 communicate with the intake main pipe 110 , and the gas inlet is located on the intake main pipe 110 .
  • each end is connected with an intake valve 810
  • the intake valve 810 is provided with an intake valve interface 811
  • the intake valve interface 811 at the end of each intake branch pipe 120 is connected to the Corresponding to a permeate chamber connection.
  • the intake main pipe 110 is also provided with a vacuum upper interface 130 , which can be connected to a vacuum pump, so as to vacuum the intake cavity 100 and the channels connected thereto.
  • a thin-film vacuum gauge 140 is also provided on the intake main pipe 110, which can be used to measure the pressure of the incoming gas.
  • the detection chamber 600 includes a detection main pipe 610 and a plurality of detection branch pipes 620 , and the multiple detection branch pipes 620 are all connected to the detection main pipe 610 , and the detection main pipe 610 is connected to the mass spectrometer 710 .
  • Each of the plurality of detection branch pipes 620 is connected with an accumulation valve 820, and the accumulation valve 820 is provided with an accumulation valve interface 821, and the accumulation valve interface 821 on each detection branch pipe 620 is connected with a corresponding permeation chamber.
  • a lower vacuum interface 630 is also provided on the detection main pipe 610, and the lower vacuum interface 630 can be connected with a vacuum pump, so as to vacuum the detection chamber 600 and the channels connected thereto.
  • the detection main pipe 610 is provided with a plurality of vacuum pumping lower ports 630, which can be connected to a vacuum pump at the same time, so as to speed up the process of vacuum pumping.
  • the permeation cavity includes the permeation cavity intake section and the permeation cavity accumulation section, the permeation cavity intake section is connected with the intake cavity 100, the permeation cavity accumulation section and the permeation cavity accumulation section
  • the detection chamber 600 is connected, and the first sample installation area is formed between the inlet section of the permeation chamber and the accumulation section of the permeation chamber.
  • Each permeation chamber is connected with an ionization vacuum gauge 720, which can be used to measure the gas pressure in the permeation chamber.
  • osmosis chambers namely the first osmosis chamber 200, the second osmosis chamber 300, the third osmosis chamber 400 and the fourth osmosis chamber 500.
  • branch pipes 120 corresponding to the detection branch pipes 620 .
  • the number of permeate cavities can be increased or decreased.
  • the first permeate cavity 200 includes the first permeate cavity intake section 210 and the first permeate cavity accumulation section 220, the top of the first permeate cavity intake section 210 and the end of one of the intake branch pipes 120
  • the inlet valve interface 811 is connected, and the bottom end of the accumulation section 220 of the first permeate cavity is connected with the accumulation valve interface 821 on one of the detection branch pipes 620 .
  • the inlet section 210 of the first permeation chamber is located above the accumulation section 220 of the first permeation chamber, and there is a gap between them, and the aforementioned first sample installation area is formed in the gap.
  • the sample can be placed in the gap, and the first permeation cavity inlet section 210 is fixedly connected to the first permeation cavity accumulation section 220, so that the sample is clamped and fixed between the two. If the inlet valve interface 811 corresponding to the first permeation cavity 200 is opened, and the accumulation valve interface 821 corresponding to the first permeation cavity 200 is closed, the gas in the intake cavity 100 enters the inlet section 210 of the first permeation cavity , and gradually flow downwards, and when flowing to the sample, part of the gas permeates through the sample to reach the accumulation section 220 of the first permeation cavity, and accumulates in the accumulation section 220 of the first permeation cavity.
  • the accumulation valve interface 821 corresponding to the first permeation chamber 200 is opened, and the gas accumulated in the accumulation section 220 of the first permeation chamber will flow downward into the detection chamber 600 .
  • the structure of the first permeation cavity 200 is the same as that of the second permeation cavity 300 , and the structure of the second permeation cavity 300 will not be repeated here.
  • a standard flow conductance device 430 is installed at the first sample installation area of one of the permeation chambers.
  • the third permeate chamber 400 includes the third permeate chamber inlet section 410 and the third permeate chamber accumulation section 420, the structure of the third permeate chamber 400 is similar to that of the first permeate chamber body 200, the difference is that a standard flow guide device 430 is provided in the gap between the third permeate cavity inlet section 410 and the third permeate cavity accumulation section 420.
  • the standard conductance element (Standard conductance element) 430 is a micro-nano porous plug structure made of sintered stainless steel, its average pore diameter is less than 1 micron, which can generate molecular flow effect and maintain constant conductance under preset pressure conditions.
  • the basic principle is to indirectly obtain the corresponding permeability value by measuring the weak gas signal penetrating through the membrane by the relevant vacuum metering device.
  • the corresponding permeability value based on the data measured by the mass spectrometer 710 is usually susceptible to many factors, and there may be large errors so that an accurate permeability cannot be obtained.
  • the standard conductance device 430 can be regarded as a standard barrier sample with high barrier properties, and using the standard conductance device 430 to calibrate the mass spectrometer 710 can reduce errors and improve the accuracy of detection results.
  • the specific calibration process will be introduced in subsequent method embodiments.
  • a weighing assembly 540 is provided in the inlet section of the permeation chamber, and a second sample installation area is provided on the weighing assembly 540, and the second sample installation area is used to place samples.
  • a second sample installation area is used to place samples.
  • the fourth permeation cavity 500 is columnar, and the interior is hollow to form the fourth permeation cavity intake section 510 and the fourth permeation cavity accumulation section 520, the fourth permeation cavity intake section 510 and the fourth permeation chamber accumulation section 520 is provided with a placement platform 530, the placement platform 530 forms the first sample installation area, the sample can be placed on the placement platform 530, and the weighing assembly 540 is located in the fourth permeation cavity air inlet within segment 510.
  • the inlet valve 810 corresponding to the fourth permeation chamber 500 is opened, the gas enters the inlet section of the permeation chamber from the inlet chamber 100 , passes through the sample placed on the weighing component 540 , and increases the weight of the sample.
  • the osmosis process includes adsorption, dissolution, diffusion and desorption.
  • the first direction here only indicates the macroscopic direction, in fact, the permeation direction of each gas molecule may also have an angle with the first direction
  • the gas when the gas reaches the surface of the film, it will be adsorbed on its surface, And partly dissolved on the surface of the film.
  • the dissolved part part of it will diffuse along the first direction, reach the other side of the film, and continue to move toward the first direction to gradually desorb the film to complete the entire permeation process; at the same time, the adsorbed side is absorbed and dissolved by the film.
  • the first direction is the downward direction at the angle shown in the drawing.
  • the component 540 weighs the weight gain of the sample in real time, and can draw the change curve of the weight gain and time.
  • the above variation curve is calculated according to Fick's law to obtain the corresponding diffusion coefficient. Diffusion coefficient is a very important permeation parameter, which is very helpful for a deeper understanding of the intermediate process of permeation. Calculating the diffusion coefficient according to Fick's law is common knowledge in the art, so it will not be repeated here.
  • the sample in the weighing assembly 540 and the sample in the first sample installation area can be the same film, and this device can be used to perform weighing and permeability detection at the same time.
  • this device can be used in the fourth Weighing detection and permeability detection are respectively completed in the inlet section 510 of the permeation cavity and the detection cavity 600 .
  • the weighing detection can also be completed only in the intake section 510 of the fourth permeation chamber, or the permeability detection can also be completed only in the detection chamber 600 .
  • the sample in the weighing assembly 540 and the sample in the first sample installation area can be two kinds of films, and this device can be used for weighing detection of one film, and for infiltration of the other film. rate detection.
  • the gas introduced into the intake cavity 100 is water vapor.
  • the weighing component 540 is a quartz crystal microbalance, and the probe 541 of the quartz crystal microbalance is a quartz crystal. Quartz crystal microbalance is a high-sensitivity mass detection instrument based on the principle of quartz crystal piezoelectric effect, the test accuracy can reach ng level, and it can track and monitor the quality change of microscopic process well online.
  • the probe 541 of the quartz crystal microbalance extends into the air inlet section 510 of the fourth infiltration chamber, the probe 541 is suspended in the air inlet section 510 of the fourth infiltration chamber, the sample is placed on the probe 541, and the gas enters from the fourth infiltration chamber. When the gas section 510 enters the fourth permeation cavity accumulation section 520 , it will pass through the probe 541 to increase the weight of the sample placed on it.
  • a downwardly recessed groove 542 is provided on the top surface of the probe 541 , and a sample can be placed in the groove 542 .
  • the sample can be cut into a shape matching the shape of the groove 542, and then put into the groove 542.
  • the shape of the groove 542 is a regular hexagon, but it is actually not limited thereto, and may also be a triangle, circle, ellipse or other polygons.
  • the depth of the groove 542 only needs to be greater than the thickness of the sample so that the sample is not easy to fall.
  • the sample can be pasted in the groove 542, so that the sample is not easy to fall.
  • At least one region corresponding to the permeable cavity is provided with an infrared component.
  • the fourth permeation cavity 500 is columnar, and the interior is hollow to form the fourth permeation cavity intake section 510 and the fourth permeation cavity accumulation section 520, the fourth permeation cavity intake section A placing platform 530 is provided between the 510 and the fourth permeation chamber accumulation section 520 , and the placing platform 530 forms a first sample installation area, and samples can be placed on the placing platform 530 .
  • Both the incident channel and the outgoing channel 563 are in communication with the accumulation section 520 of the fourth infiltration cavity, and the incident light emitted by the light source enters the accumulation section 520 of the fourth infiltration cavity through the incident channel and reaches the first sample installation area, and passes through the first sample installation area.
  • the outgoing light reflected by the sample in the area enters the spectrometer through the outgoing channel 563 .
  • the permeation process detection equipment in this application can further deepen the understanding of the film permeation process, which is beneficial to the subsequent research on high barrier rate films.
  • the infrared component further includes a first reflection box 570 , and a first lens group is disposed in the first reflection box 570 .
  • the light source includes an infrared light source and a laser light source
  • the incident channel includes an infrared light incident channel 561 and a laser incident channel 562 .
  • the first reflection box 570 is provided with a first light entrance window 571 and a second light entrance window 572 , the infrared light source is installed at the first light entrance window 571 , and the laser light source is installed at the second light entrance window 572 .
  • the infrared light emitted by the infrared light source enters the first reflection box 570 from the first light entrance window 571, and reaches the first lens group, and after being reflected by the first lens group, enters the fourth infiltration cavity accumulation section 520 from the infrared light incident channel 561 .
  • the laser light emitted by the laser light source enters the first reflection box 570 from the second light entrance window 572 and reaches the first lens group. After being reflected by the first lens group, it enters the fourth permeable cavity accumulation section 520 from the laser incident channel 562 .
  • the infrared detection it is necessary to meet the requirements that a beam of visible light with a fixed wavelength and a beam of infrared light with a tunable wavelength are incident on the sample surface at the same point at the same time, and a beam of frequency equal to the sum of the frequencies of the two incident lasers is generated in the reflection direction.
  • An optical signal which enters the spectrometer. Therefore, the position where the infrared light reaches the first sample installation area coincides with the position where the laser light reaches the sample in the first sample installation area coincides.
  • the first lens group is set in the first reflection box 570 to reflect the light, the direction of the light can be adjusted to meet the preset incident direction, and at the same time it can be focused to increase the light intensity.
  • the first lens group can be a single mirror, or multiple mirrors.
  • the infrared component further includes a second reflective box 580 , a second lens group is arranged inside the second reflective box 580 , a light exit window 581 is arranged on the second reflective box 580 , and the spectrometer is installed at the light exit window 581 .
  • the outgoing light reflected by the sample enters the second reflection box 580 through the exit channel 563, and enters the spectrometer after being reflected by the second lens group.
  • the second lens group can be a single reflector or multiple reflectors.
  • an observation window 550 is provided at the accumulation section 520 of the fourth permeate chamber.
  • the observation window 550 is transparent, and the operator can observe whether the direction of the infrared light, the laser light, and the outgoing light meet the requirements from the inside of the observation window 550 .
  • the sample in the second sample installation area and the sample in the first sample installation area can be the same film, and the infrared detection and permeability detection can be performed at the same time by using this device.
  • Infrared detection and permeability detection are respectively completed in the accumulation section 520 and the detection chamber 600 of the four permeation chambers.
  • the infrared detection can also be completed only in the accumulation section 520 of the fourth permeation chamber, or the permeability detection can also be completed only in the detection chamber 600 .
  • the sample in the second sample installation area and the sample in the first sample installation area can be two kinds of films, and the device can be used for infrared detection of one film and penetration of the other film. rate detection.
  • an infrared component is provided in at least one corresponding area of the permeation cavity, and a weighing component 540 protrudes into the permeation cavity inlet section of the permeation cavity. That is to say, weighing detection and infrared detection can be completed in the same permeation chamber. Specifically, referring to Fig. 4 to Fig. 6, in the fourth permeation cavity 500, the weighing assembly 540 is placed in the intake section 510 of the fourth permeation cavity, and the incident channel and the exit channel 563 are connected to the accumulation section of the fourth permeation cavity.
  • the incident light emitted by the light source enters the fourth infiltration cavity accumulation section 520 through the incident channel and reaches the first sample installation area, and the outgoing light reflected by the sample in the first sample installation area enters the spectrometer through the exit channel 563 .
  • the sample in the second sample installation area and the sample in the first sample installation area can be the same film, and this device can be used for weighing detection, infrared detection and permeability detection at the same time.
  • the weighing detection, infrared detection and permeability detection can be completed in the fourth permeation cavity inlet section 510, the fourth permeation cavity accumulation section 520 and the detection cavity 600 respectively. In this way, only one channel of one device can be used to realize weighing detection, infrared detection and permeability detection at the same time, which can reduce the number of required devices, simplify the detection process and shorten the detection time.
  • the weighing detection can also be completed only in the intake section 510 of the fourth osmotic cavity, or the infrared detection can only be completed in the accumulation section 520 of the fourth osmotic cavity, or can only be completed in the detection cavity 600 Permeability testing is completed within.
  • the sample in the second sample installation area and the sample in the first sample installation area can be two kinds of films, and this device can be used to weigh one film and perform infrared measurement on the other film. Detection and permeability detection.
  • FIG. 7 is a flowchart of a permeability detection method according to an embodiment of the present application.
  • a permeability detection method is provided, which can be used to detect the permeability of some films with low permeability and high barrier rate, so as to further deepen the understanding of the permeability of the film, which is beneficial to the follow-up for high barrier rate films It can realize the detection of gas permeability through various membranes, and can also realize the detection of the permeability of various gases through membranes.
  • the permeability detection method comprises the steps:
  • S10 sets multiple sets of infiltration chambers
  • S20 selects at least one set of permeation chambers, and installs the first sample into the selected permeation chambers;
  • each channel before the detection starts, it is necessary to evacuate the inside of each channel, so as to prevent the remaining gas in the channel from affecting the accuracy of the detection.
  • the aforementioned upper vacuum interface 130 and each lower vacuum interface 630 can be connected to a vacuum pump to achieve vacuum.
  • the channel can be heated and baked while vacuuming, for example, the heating temperature is set to 120° C., and the baking time is 5 hours. By heating and baking, the detachment of water vapor and other gases attached to the inner wall of the channel can be accelerated, thereby speeding up the vacuuming process and shortening the detection time.
  • step S20 at least two groups of permeation chambers are selected, and the samples installed in each group of permeation chambers are the same.
  • step S40 the gas permeated and accumulated in each group of permeation chambers is sequentially released into the detection chamber 600, and the gas discharged from the previous group in the detection chamber 600 is emptied between two adjacent groups of detections to avoid The residual gas of the former group affects the detection results of the latter group; the results of each group detected by the mass spectrometer 710 are averaged. That is to say, in this embodiment, the film to be tested is the same, and the gas passed through is also the same, and the detection results of each selected permeation cavity are averaged to reduce errors and improve detection accuracy.
  • the same sample is installed in both the first permeation chamber 200 and the second permeation chamber 300 .
  • the gas entering the intake cavity 100 is the same gas, such as water vapor.
  • First close the accumulation valve 820 between the first permeation cavity 200 and the detection cavity 600 and close the accumulation valve 820 between the second permeation cavity 300 and the detection cavity 600 .
  • Open the intake valve 810 between the first permeation cavity 200 and the intake cavity 100 and open the intake valve 810 between the second permeation cavity 300 and the intake cavity 100 .
  • the water vapor enters the first permeation cavity 200 and the second permeation cavity 300 , and the water vapor permeates downward through the samples provided in the first permeation cavity 200 and the second permeation cavity 300 .
  • the accumulation valve 820 between the first permeation chamber 200 and the detection chamber 600 is opened, and the accumulation valve 820 between the second permeation chamber 300 and the detection chamber 600 remains closed.
  • the water vapor accumulated in the first permeation chamber accumulation section 220 of the first permeation chamber 200 enters the detection chamber 600 for detection.
  • the accumulation valve 820 between the first permeation cavity 200 and the detection cavity 600 vacuumize the detection cavity 600, and then open the accumulation valve 820 between the second permeation cavity 300 and the detection cavity 600, so that the first The water vapor accumulated after infiltration in the second permeation chamber 300 enters the detection chamber 600 for detection.
  • the detection of the first permeation chamber 200 and the second permeation chamber 300 is alternately performed multiple times to obtain multiple sets of relatively stable data. Finally, the average value of the detection results of the first permeation cavity 200 and the second permeation cavity 300 is sufficient.
  • step S20 at least two groups of permeation chambers are selected, and different samples are installed in each group of permeation chambers.
  • step S30 the same gas is passed into each group of permeation chambers.
  • step S40 the gas permeated and accumulated in each group of permeation chambers is sequentially released into the detection chamber 600 , and the gas discharged from the previous group in the detection chamber 600 is emptied between adjacent two groups of detections. That is, in this embodiment, the membranes to be tested are different, and the gas passed through is the same, so that the detection of the permeability of gases permeating through different membranes can be realized.
  • different samples are selected to be installed in the first permeation chamber 200 and the second permeation chamber 300 .
  • the gas entering the intake cavity 100 is the same gas, such as water vapor.
  • First close the accumulation valve 820 between the first permeation cavity 200 and the detection cavity 600 and close the accumulation valve 820 between the second permeation cavity 300 and the detection cavity 600 .
  • Open the intake valve 810 between the first permeation cavity 200 and the intake cavity 100 and open the intake valve 810 between the second permeation cavity 300 and the intake cavity 100 .
  • the water vapor enters the first permeation cavity 200 and the second permeation cavity 300 , and the water vapor infiltrates downward through two different samples set in the first permeation cavity 200 and the second permeation cavity 300 .
  • the accumulation valve 820 between the first permeation chamber 200 and the detection chamber 600 is opened, and the accumulation valve 820 between the second permeation chamber 300 and the detection chamber 600 remains closed.
  • the water vapor accumulated in the first permeation chamber accumulation section 220 of the first permeation chamber 200 enters the detection chamber 600 for detection.
  • the accumulation valve 820 between the first permeation cavity 200 and the detection cavity 600 closes the accumulation valve 820 between the first permeation cavity 200 and the detection cavity 600, vacuumize the detection cavity 600, and then open the accumulation valve 820 between the second permeation cavity 300 and the detection cavity 600, so that the first The water vapor accumulated after infiltration in the second permeation chamber 300 enters the detection chamber 600 for detection.
  • the detection of the first permeation chamber 200 and the second permeation chamber 300 is alternately performed multiple times to obtain multiple sets of relatively stable data.
  • the data output by the mass spectrometer 710 is split into two sets of data corresponding to the first permeation cavity 200 and the second permeation cavity 300, which are the detection results of the gas passing through the two samples.
  • step S20 at least two groups of permeation chambers are selected, and the same sample is installed in each group of permeation chambers.
  • step S30 different gases are passed into each group of permeation cavities to carry out permeation accumulation.
  • step S40 the gas permeated and accumulated in each group of permeation chambers is sequentially released into the detection chamber 600 , and the gas discharged from the previous group in the detection chamber 600 is emptied between adjacent two groups of detections. That is to say, in this embodiment, the membranes to be tested are the same, and the gases passed through are different, so that the detection of the permeability of different gases permeating through the same membrane can be realized.
  • the same sample is chosen to be installed in the first permeation chamber 200 and the second permeation chamber 300 .
  • the first gas is introduced into the gas inlet cavity 100 , the first gas enters the first permeation cavity 200 , and permeates downward through the sample provided in the first permeation cavity 200 .
  • the accumulation valve 820 between the first permeation chamber 200 and the detection chamber 600 is opened.
  • the first gas accumulated in the first permeation chamber accumulation section 220 of the first permeation chamber 200 enters the detection chamber 600 for detection.
  • the intake valve 810 between the first permeation cavity 200 and the intake cavity 100 close the intake valve 810 between the second permeation cavity 300 and the intake cavity 100, and enter the intake cavity 100
  • the second gas is introduced, and the second gas enters the second permeation chamber 300 and permeates downward through the sample provided in the second permeation chamber 300 .
  • the accumulation valve 820 between the second permeation chamber 300 and the detection chamber 600 is opened.
  • the second gas permeated and accumulated in the second permeation chamber 300 enters the detection chamber 600 for detection.
  • the detection of the first permeation chamber 200 and the second permeation chamber 300 is alternately performed multiple times to obtain multiple sets of relatively stable data. According to the opening and closing time of the valve, the data output by the mass spectrometer 710 is split into two sets of data corresponding to the first permeation cavity 200 and the second permeation cavity 300, which are the detection results of the gas passing through the two samples.
  • the data measured by the mass spectrometer 710 can be calibrated through the standard conductance device 430 to reduce errors and improve the accuracy of detection results.
  • the method for calibrating the mass spectrometer 710 through the standard conductance device 430 includes the following steps:
  • S01 Install the standard flow conductance device 430 as a sample in the selected permeation cavity. For example, it is fixed at the gap between the intake section 410 of the third permeate chamber and the accumulation section 420 of the third permeate chamber.
  • S02 measures the pressure of the gas, and calculates the gas flow, and calculates the permeability according to the obtained gas flow.
  • the product of the pressure difference at both ends of the pipeline and the conductance of the pipeline is the flow rate of the pipeline, since the pressure in the detection cavity 600 is already very small. It can be ignored, therefore, the gas flow rate can be obtained by multiplying the gas pressure of the intake chamber 100 measured by the membrane vacuum gauge 140 by the standard conductance of the standard conductance device 430 .
  • the calculation of permeability based on the obtained gas flow rate is a prior art, so it will not be repeated here.
  • S03 passes the gas into the permeation cavity selected in S01 for permeation accumulation.
  • the accumulation valve 820 corresponding to the third permeation cavity 400 is closed, and the intake valve 810 corresponding to the third permeation cavity 400 is opened.
  • the gas in the intake cavity 100 enters the intake section 410 of the third permeation cavity, permeates through the standard flow guide device 430 toward the accumulation section 420 of the third permeation cavity, and accumulates in the accumulation section 420 of the third permeation cavity.
  • S04 releases the permeated and accumulated gas in the permeation cavity into the detection cavity 600 for detection by the mass spectrometer 710 .
  • the accumulation valve 820 corresponding to the third permeation cavity 400 is opened, the gas accumulated in the accumulation section 420 of the third permeation cavity enters the detection cavity 600, and the value measured by the mass spectrometer 710 is the pressure in the detection cavity 600 .
  • S05 corresponds the result measured by the mass spectrometer 710 to the permeability calculated in S02.
  • the value measured by the mass spectrometer 710 is corresponding to the standard value calculated by the standard conductance device 430 , for example, when the pressure measured by the mass spectrometer 710 is P, the corresponding calculated permeability is A.
  • S06 adjusts the pressure of the incoming gas, repeats S02 to S05 until the preset range data of the mass spectrometer 710 is covered, and establishes the corresponding relationship between the data measured by the mass spectrometer 710 and the permeability calculated by the standard flow conductance device 430 . Specifically, repeat the above steps S02 to S05 to cover all the values within the preset range of the measured pressure of the mass spectrometer 710, and the finally established corresponding relationship is that for each pressure value P measured by the mass spectrometer 710, there is a The corresponding calculated permeability A.
  • the corresponding relationship between the two can be expressed in the form of a graph or a table for easy search.
  • the above-mentioned preset range can include all values within the measurement pressure range of the mass spectrometer 710.
  • the preset range can also include the measurement pressure of the mass spectrometer 710. Part of the values within the range can be covered by replacing different types of standard conductance devices 430 .
  • S07 uses the data measured by the mass spectrometer 710 in S40 to search for the corresponding standard data in the corresponding relationship established in S06. Specifically, when setting the sample to measure the permeability, for example, setting the sample in the first permeation cavity 200, and detecting the permeability of the gas permeating through the sample, switch the valve to perform permeation accumulation and detection according to the method in the previous embodiment , when the value measured by the mass spectrometer 710 is P1, search the corresponding relationship obtained above, and when the detected value is P1, what is the corresponding permeability.
  • permeability detection method multiple sets of permeation cavities are provided.
  • the gas enters the permeation cavity for permeation and accumulation, and the gas permeation and accumulation in the permeation cavity reaches a certain level
  • the gas accumulated in the corresponding permeation cavity is released into the detection cavity, and the pressure in the detection cavity is measured by a mass spectrometer to obtain the permeability.
  • the original less gas can be gradually accumulated and enriched, making it easier for the mass spectrometer to detect the gas, thereby realizing the permeability of the film with high barrier rate detection.
  • each group of permeation chambers can work independently. When the samples installed in the multiple groups of permeation chambers are different, or the gases introduced are different, multiple situations can be realized on the same device. The penetration rate detection can make the detection more convenient and quick.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种渗透率检测设备与检测方法。渗透率检测设备包括:进气腔体(100);渗透腔体,多组渗透腔体均与进气腔体(100)连接,渗透腔体与进气腔体(100)间设有进气阀门(810),进气阀门(810)打开时,进气腔体(100)与对应的渗透腔体连通,渗透腔体内设有第一样品安装区;检测腔体(600),多组渗透腔体均与检测腔体(600)连接,渗透腔体与检测腔体(600)间设有积累阀门(820),积累阀门(820)打开时,检测腔体(600)与对应的渗透腔体连通;检测仪器,检测仪器与检测腔体(600)连通。

Description

渗透率检测设备与检测方法 技术领域
本申请涉及薄膜渗透检测技术领域,特别是涉及渗透率检测设备与检测方法。
背景技术
由于气体渗透所引起的失效,是一个具有普遍意义的重大工程科学问题,例如,使用封装膜对OLED器件进行封装时,要求封装膜具有较高的气体阻隔率,以免水蒸气等气体渗透入OLED器件内部,影响其使用性能。由此可见,对薄膜的渗透率进行检测与研究非常重要。然而,在相关技术中,对一些具有高阻隔率的薄膜进行渗透率检测时,由于其渗透数量值量级过于微小,现有的一些检测设备的检测精度有限,难以测出这类薄膜的渗透率。
发明内容
基于此,本申请的一方面提供了一种渗透率检测设备,包括:
进气腔体;
渗透腔体,多组所述渗透腔体均与所述进气腔体连接,所述渗透腔体与所述进气腔体之间设有进气阀门,所述进气阀门打开时,所述进气腔体与对应的所述渗透腔体连通,所述渗透腔体内设置有用于安装样品的第一样品安装区;
检测腔体,多组所述渗透腔体均与所述检测腔体连接,所述渗透腔体与所述检测腔体之间设有积累阀门,所述积累阀门打开时,所述检测腔体与对应的所述渗透腔体连通;以及
检测仪器,所述检测仪器与所述检测腔体连通。
在其中一个实施例中,所述渗透腔体包括渗透腔体进气段与渗透腔体积累段,所述渗透腔体进气段与所述进气腔体连接,所述渗透腔体积累段与所述检测腔体连接,所述第一样品安装区形成在所述渗透腔体进气段与所述渗透腔体积累段之间。
在其中一个实施例中,所述第一样品安装区处安装有标准流导器件。
在其中一个实施例中,在至少一个所述渗透腔体中,所述渗透腔体进气段内设有称重组件,所述称重组件上设有用于放置样品的第二样品安装区。
在其中一个实施例中,所述称重组件伸入到所述渗透腔体进气段内,并且所述称重组件在其一面处设有凹槽以放置样品。
在其中一个实施例中,所述第一样品安装区中的样品与所述第二样品安装区中的样品不同。
在其中一个实施例中,至少一个所述渗透腔体对应区域设有红外组件,所述红外组件包括光源、入射通道、出射通道与光谱仪;
所述入射通道、所述出射通道均与所述渗透腔体积累段连通,所述光源发出的入射光线经所述入射通道进入所述渗透腔体积累段并到达所述第一样品安装区,经所述第一样品安装区中的样品反射后的出射光线经所述出射通道进入所述光谱仪。
在其中一个实施例中,所述红外组件还包括第一反射箱,所述第一反射箱内设置有第一透镜组,所述光源包括红外光源与激光光源,所述入射通道包括红外光入射通道与激光入射通道,所述第一反射箱上设置有第一进光窗与第二进光窗,所述红外光源安装于所述第一进光窗处,所述激光光源安装于所述第二进光窗处。
在其中一个实施例中,所述红外组件还包括第二反射箱,所述第二反射箱内设置有第二透镜组,所述第二反射箱上设置有出光窗,所述光谱仪安装于所述出光窗处。
在其中一个实施例中,所述进气腔体包括进气主管与多个进气支管,多个所述进气支管均与所述进气主管连通,气体入口位于所述进气主管上,多个所述进气支管中,每一个的端部连接有一个进气阀门,所述进气阀门上设置有进气阀门接口,每个所述进气支管端部的所述进气阀门接口处与对应的一个渗透腔体连接。
在其中一个实施例中,所述检测腔体包括检测主管与多个检测支管,多个所述检测支管均与所述检测主管连通,所述检测主管与所述检测仪器连通,多个所述检测支管中,每一个上连接有一个积累阀门,所述积累阀门上设置有积累阀门接口,每个所述检测支管上的所述积累阀门接口处与对应的一个渗透腔体连接。
在其中一个实施例中,所述检测仪器是质谱仪。
在其中一个实施例中,渗透率检测设备还包括一个或多个抽真空接口,以将所述渗透率检测设备与真空泵连接。
本申请的另一方面提供了一种渗透率检测方法,包括如下步骤:
S10设置多组渗透腔体;
S20选择至少一组所述渗透腔体,并将样品安装至所选择的所述渗透腔体内;
S30将气体通入S20中选择的所述渗透腔体内进行渗透积累;以及
S40将所述渗透腔体内积累的气体释放进入检测腔体内,通过检测仪器进行检测。
在其中一个实施例中,在步骤S20中,选择至少两组所述渗透腔体,每组所述渗透腔体内安装的所述样品相同;以及
在步骤S40中,依次将各组所述渗透腔体内积累的气体释放进入所述检测腔体,且在相邻两组检测之间,将所述检测腔体内前一组排入的气体排空;所述检测仪器检测所得的各组结果取平均值。
在其中一个实施例中,在步骤S20中,选择至少两组所述渗透腔体,每组所述渗透腔体内安装的所述样品不同;
在步骤S30中,每组所述渗透腔体内通入的气体相同;以及
在步骤S40中,依次将各组所述渗透腔体内积累的气体释放进入所述检测腔体,且在相邻两组检测之间,将所述检测腔体内前一组排入的气体排空。
在其中一个实施例中,在步骤S20中,选择至少两组所述渗透腔体,每组所述渗透腔体内安装的所述样品相同;
在步骤S30中,向各组所述渗透腔体内通入不同的气体进行渗透积累;以及
在步骤S40中,依次将各组所述渗透腔体内积累的气体释放进入所述检测腔体,且在相邻两组检测之间,将所述检测腔体内前一组排入的气体排空。
在其中一个实施例中,在多组所述渗透腔体中的一个内安装标准流导器件,通过所述标准流导器件对所述检测仪器测得的数据进行校准。
在其中一个实施例中,通过所述标准流导器件对所述检测仪器进行校准包括如下步骤:
S01将所述标准流导器件作为所述样品安装于选择的所述渗透腔体内;
S02测量通入气体的压力,并计算出气体流量,根据所得的气体流量计算出渗透率;
S03将气体通入S01中选择的所述渗透腔体内进行渗透积累;
S04将所述渗透腔体内积累的气体释放进入所述检测腔体内,通过所述检测仪器进行检测;
S05将所述检测仪器测得的结果与S02中计算所得的渗透率对应;
S06调节通入气体的压力,重复S02至S05,直至所述检测仪器的预设量程数据均被覆盖,建立通过所述检测仪器测得的数据与通过所述标准流导器件计算出的渗透率的对应关系;以及
S07用S40中所述检测仪器测得的数据查找S06中建立的对应关系中对应的标准数据。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为根据本申请一实施例的渗透率检测设备的正视图;
图2为图1中渗透率检测设备的透视图;
图3为图2中渗透率检测设备中移除各渗透腔体后的透视图;
图4为图2中渗透率检测设备的各渗透腔体的分解透视图;
图5为图4中渗透率检测设备中的一个渗透腔体的透视图;
图6为图5中的渗透腔体的内部结构示意图;
图7为根据本申请一实施例的渗透率检测方法的流程图;以及
图8为根据本申请一实施例的通过标准流导器件进行校准的流程图。
附图标记:
进气腔体100、进气主管110、进气支管120、抽真空上接口130、薄膜真空计140;
第一渗透腔体200、第一渗透腔体进气段210、第一渗透腔体积累段220;
第二渗透腔体300;
第三渗透腔体400、第三渗透腔体进气段410、第三渗透腔体积累段420、标准流导器件430;
第四渗透腔体500、第四渗透腔体进气段510、第四渗透腔体积累段520、放置台530、称重组件540、探头541、凹槽542、观测窗550、红外光入射通道561、激光入射通道562、出射通道563、第一反射箱570、第一进光窗571、第二进光窗572、第二反射箱580、出光窗581;
检测腔体600、检测主管610、检测支管620、抽真空下接口630;
质谱仪710、电离真空计720;
进气阀门810、进气阀门接口811、积累阀门820、积累阀门接口821;
步骤S10-S40、步骤S01-S07。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包 括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1-3,本申请一实施例提供的渗透率检测设备包括进气腔体100、渗透腔体、检测腔体600、以及检测仪器。在下面的说明中,以检测仪器为质谱仪710来进行说明。多组渗透腔体均设置于进气腔体100与检测腔体600之间,每组渗透腔体的一端与进气腔体100连接,另一端与检测腔体600连接,每组渗透腔体内均设置有第一样品安装区,第一样品安装区处用于安装样品。渗透腔体与进气腔体100之间设置有进气阀门810,当进气阀门810打开时,进气腔体100与对应的渗透腔体连通,进气腔体100内的气体可以进入对应的渗透腔体内;当进气阀门810关闭时,进气腔体100与对应的渗透腔体之间不再连通,气体无法在二者之间流动。渗透腔体与检测腔体600之间设有积累阀门820,当积累阀门820打开时,渗透腔体与对应的渗透腔体连通,对应的渗透腔体的内积累的气体可以流入检测腔体600;当积累阀门820关闭时,检测腔体600与对应的渗透腔体之间不再连通,气体无法在二者之间流动。质谱仪710与检测腔体600连通,可以对检测腔体600内的气体进行检测。当进气阀门810打开,积累阀门820关闭时,进气腔体100内的气体进入对应的渗透腔体内,气体将渗透经过第一样品安装区处的样品,由于积累阀门820关闭,渗透经过该样品的气体无法排出,将会在渗透腔体内逐渐积累富集。当积累阀门820打开时,在渗透腔体内积累富集的气体排出至检测腔体600内,进而能够被质谱仪710检测,通过质谱仪710测得检测腔体600内的压力并得出渗透率。
在该实施例中,在进行检测时,打开进气阀门810,关闭积累阀门820,便可使进气腔体100内的气体进入渗透腔体内进行渗透积累,渗透积累至一定量后,打开积累阀门820,便可使渗透腔体内积累的气体进入检测腔体600内,进而进入质谱仪710,通过质谱仪710测得检测腔体600内的压力并得出渗透率。在对阻隔率较高的薄膜进行检测时,由于气体的渗透率较低,渗透经过样品的气体量非常少,可能无法完成检测。在本实施例中,由于气体在渗透腔体内经过一段时间的积累之后才进入检测腔体600,可以使原本较少的气体逐渐积累富集,从而更易于被质谱仪710检测到,从而提高检测灵敏度,由此实现对高阻隔率的薄膜的渗透率的检测。此外,由于设置有多组渗透腔体,每组渗透腔体可以独立工作,当多组渗透腔体内安装的样品不同,或者通入的气体不同时,可以在同一个设备上实现多种情况下的渗透率检测,可以使检测更加方便快捷。例如,若每组渗透腔体内的第一样品安装区安装的是不同的样品,则可以在同一个设备上实现对气体通过多种薄膜的渗透率的检测。若每组渗透腔体内的第一样品安装区安装的是相同的样品,但进气腔体100内先后通入不同的气体,则可以在同一个设备上实现对多种气体通过同种样品的渗透率的检测,如此,可以使检测更加方便快捷。若每组渗透腔 体内的第一样品安装区安装的是相同的样品,进气腔体100内一直通入相同的气体,通过设置多组渗透腔体与多个样品,可以减少检测误差,提高检测结果的准确性。
在本实施例的渗透率检测设备中,检测灵敏度较高,可以对一些渗透率较低的高阻隔率的薄膜的渗透率进行检测,从而进一步加深对于薄膜渗透性能的了解,有利于后续对于高阻隔率薄膜的研究,并且可以实现气体通过多种薄膜的渗透率的检测,还可以实现对多种气体通过薄膜的渗透率的检测。
参阅图2至图4,具体的,进气腔体100包括进气主管110与多个进气支管120,多个进气支管120均与进气主管110连通,气体入口位于进气主管110上。多个进气支管120中,每一个的端部连接有一个进气阀门810,进气阀门810上设置有进气阀门接口811,每个进气支管120端部的进气阀门接口811处与对应的一个渗透腔体连接。进气主管110上还设有抽真空上接口130,可以将抽真空上接口130与真空泵连接,从而将进气腔体100以及与其连通的通道抽真空。进气主管110上还设有薄膜真空计140,可以用来测量通入气体的压力。
类似的,检测腔体600包括检测主管610与多个检测支管620,多个检测支管620均与检测主管610连通,检测主管610与质谱仪710连通。多个检测支管620中,每一个上连接有一个积累阀门820,积累阀门820上设置有积累阀门接口821,每个检测支管620上的积累阀门接口821处与对应的一个渗透腔体连接。检测主管610上还设有抽真空下接口630,可以将抽真空下接口630与真空泵连接,从而将检测腔体600以及与其连通的通道抽真空。优选的,检测主管610上设有多个抽真空下接口630,可以同时与真空泵连接,以加快抽真空的进程。
参阅图2至图4,在一些实施例中,渗透腔体包括渗透腔体进气段与渗透腔体积累段,渗透腔体进气段与进气腔体100连接,渗透腔体积累段与检测腔体600连接,渗透腔体进气段与渗透腔体积累段之间形成第一样品安装区。每个渗透腔体处均连接有一个电离真空计720,可以用来测量该渗透腔体内的气体压力。在附图所示的实施例中,设置有四个渗透腔体,分别为第一渗透腔体200、第二渗透腔体300、第三渗透腔体400与第四渗透腔体500,进气支管120与检测支管620也对应的设置有四个。当然,在其他实施例中,渗透腔体的数量可以增减。
具体的,第一渗透腔体200包括第一渗透腔体进气段210与第一渗透腔体积累段220,第一渗透腔体进气段210的顶端与其中一个进气支管120端部的进气阀门接口811连接,第一渗透腔体积累段220的底端与其中一个检测支管620上的积累阀门接口821连接。第一渗透腔体进气段210位于第一渗透腔体积累段220的上方,二者之间具有间隙,间隙处形成了前述的第一样品安装区。可以将样品放置于间隙处,并将第一渗透腔体进气段210与第一渗透腔体积累段220固定连接,从而将样品夹持固定于二者之间。若打开第一渗透腔体200对应的进气阀门接口811,并关闭第一渗透腔体200对应的积累阀门接口821,进气腔体100内的气体进入第一渗透腔体进气段210内,并逐渐朝下流动,流动至样品处时,部分气体渗透过样品到达第一渗透腔体积累段220,并在第一渗透腔体积累段220内积累。一段时间后,气体积累至一定量后,打开第一渗透腔体200对应的积累阀门接口821,第一渗透腔体积累段220内积累的气体将会朝下流动进入检测腔体600。第一渗透腔体200与第二渗透腔体300结构相同,第二渗透腔体300的结构不再赘述。
参阅图2至图4,在一些实施例中,其中一个渗透腔体的第一样品安装区处安装有标准流导器件430。具体的,附图所示实施例中,第三渗透腔体400包括第三渗透腔体进气段410与第三渗透腔体积累段420,第三渗透腔体400的结构与第一渗透腔体200类似,不同之处在于第三渗透腔体进气段410与第三渗透腔体积累段420之间的间隙处设置的为标准流导器件430。标准流导器件(Standard conductance element)430为一个由不锈钢烧结制成的微纳多孔塞结构,其平均小孔直径小于1微米,能够在预设压力条件下产生分子流效应并维持恒定流导。使用质谱仪710进行检测时,基本原理是借由相关真空计量器件测量渗透过薄膜的微弱气体信号而间接得出对应的渗透率数值。而根据质谱仪710测得的数据去对应渗透率数值通常易受很 多因素影响,可能存在较大的误差而无法得到准确的渗透率。本实施例中,标准流导器件430可以看作一个高阻隔性的标准阻隔样品,使用标准流导器件430对质谱仪710进行校准,可以减小误差,提高检测结果的准确性。具体的校准过程将在后续方法实施例中进行介绍。
在一些实施例中,至少一个渗透腔体中,渗透腔体进气段内设有称重组件540,称重组件540上设有第二样品安装区,第二样品安装区用于放置样品。具体的,参照图4至图6,第四渗透腔体500呈柱状,内部空心以形成第四渗透腔体进气段510与第四渗透腔体积累段520,第四渗透腔体进气段510与第四渗透腔体积累段520之间设置有放置台530,放置台530形成第一样品安装区,样品可以放置于放置台530上,称重组件540位于第四渗透腔体进气段510内。当打开第四渗透腔体500对应的进气阀门810时,气体从进气腔体100进入渗透腔体进气段,经过放置于称重组件540上的样品,会使该样品增重。
如本领域技术人员所熟知的,渗透过程包括吸附、溶解、扩散与脱附。以气体经薄膜渗透的方向为第一方向(这里仅表示宏观方向,实际上各个气体分子的渗透方向也可能与第一方向间具有角度),气体到达薄膜表面时,将会吸附于其表面,并有部分溶解于薄膜表面。溶解的这部分中,其中部分会沿第一方向进行扩散,到达薄膜的另一侧,并继续朝第一方向运动逐渐脱附薄膜,完成整个渗透过程;同时,吸附侧被薄膜吸附并溶解的气体中,也会有部分沿第一方向的反向不断脱附薄膜表面。本实施例中,第一方向在附图所示的角度下为向下的方向,气体朝下流动时,在称重组件540中的样品处发生吸附侧的吸附、扩散与脱附,称重组件540实时称量出该样品的增重,可以绘制出增重量与时间的变化曲线。对上述变化曲线根据菲克定律进行相应的计算,得到对应的扩散系数。扩散系数是非常重要的一个渗透参数,对于更深入的了解渗透中间过程有很大的帮助。根据菲克定律计算扩散系数为本领域公知常识,故在此不再赘述。
在一些实施例中,称重组件540中的样品与第一样品安装区中的样品可以为同一种薄膜,使用该设备可以同时进行称重与渗透率检测,在使用时,可以在第四渗透腔体进气段510与检测腔体600内分别完成称重检测与渗透率检测。如此,可以仅使用一个设备的一个通道同时实现对扩散系数与渗透率的检测,可以减少所需使用的设备数量,简化检测流程,缩短检测时间。当然,也可以仅在第四渗透腔体进气段510内完成称重检测,或者,也可以仅在检测腔体600内完成渗透率检测。在另一些实施例中,称重组件540中的样品与第一样品安装区中的样品可以为两种薄膜,使用该设备可以对一种薄膜进行称重检测,对另一种薄膜进行渗透率检测。
在一些实施例中,进气腔体100内通入的气体为水蒸气。称重组件540为石英晶体微天平,石英晶体微天平的探头541为石英晶体。石英晶体微天平是基于石英晶体压电效应原理的高灵敏质量检测仪器,测试精度可达ng级别,能良好地在线跟踪监测微观过程的质量变化。石英晶体微天平的探头541伸入第四渗透腔体进气段510内,探头541悬空于第四渗透腔体进气段510内,样品放置于探头541上,气体从第四渗透腔体进气段510进入第四渗透腔体积累段520的过程中,会经过探头541,使其上放置的样品增重。
在一些实施例中,探头541的顶面处设有朝下凹陷的凹槽542,凹槽542内可以放置样品。可以将样品裁剪成与凹槽542形状相匹配的形状,再将其放入凹槽542内即可。在附图所示实施例中,凹槽542的形状为正六边形,实际上不限于此,也可以为三角形、圆形、椭圆形或其他多边形。凹槽542的深度只要保证大于样品的厚度,使样品不易掉落即可。优选的,可以将样品粘贴于凹槽542内,以使样品不易掉落。
在一些实施例中,至少一个渗透腔体对应区域设有红外组件。具体的,参照图4至图6,第四渗透腔体500呈柱状,内部空心以形成第四渗透腔体进气段510与第四渗透腔体积累段520,第四渗透腔体进气段510与第四渗透腔体积累段520之间设置有放置台530,放置台530形成第一样品安装区,样品可以放置于放置台530上。入射通道、出射通道563均与第四渗透腔体积累段520连通,光源发出的入射光线经入射通道进入第四渗透腔体积累段520并到达第 一样品安装区,经第一样品安装区的样品反射后的出射光线经出射通道563进入光谱仪。
第四渗透腔体进气段510内的气体经样品渗透进入第四渗透腔体积累段520时,入射光线经样品反射后最终进入光谱仪。气体渗透过薄膜样品的过程中,会导致样品内部特定的分子间化合键光谱变化,可以通过光谱仪输出其变化曲线,以帮助研究人员对渗透过程进行进一步的研究与分析,还可以借助光谱仪表征样品内部结构缺陷与反应过程,以便于进行内部结构缺陷与渗透机理的研究。综上,本申请中的渗透过程检测设备可以进一步加深对于薄膜渗透过程的了解,有利于后续对于高阻隔率薄膜的研究。
在一些实施例中,红外组件还包括第一反射箱570,第一反射箱570内设置有第一透镜组。光源包括红外光源与激光光源,入射通道包括红外光入射通道561与激光入射通道562。第一反射箱570上设置有第一进光窗571与第二进光窗572,红外光源安装于第一进光窗571处,激光光源安装于第二进光窗572处。红外光源发出的红外光从第一进光窗571处进入第一反射箱570,并到达第一透镜组,经第一透镜组反射后从红外光入射通道561进入第四渗透腔体积累段520。激光光源发出的激光从第二进光窗572处进入第一反射箱570,并到达第一透镜组,经第一透镜组反射后从激光入射通道562进入第四渗透腔体积累段520。红外检测时,需满足一束波长定的可见光波段激光与一束波长可调谐的红外光同时同点入射到样品表面,并在反射方向上产生一束频率为两束入射激光频率之和的和频光信号,该光信号进入光谱仪。因此,要使红外光与激光到达第一样品安装区的位置重合,即红外光与激光到达第一样品安装区中的样品处的位置重合。通过设置第一反射箱570,可以减少外界环境中光源对检测过程的干扰,提高检测的准确性。在第一反射箱570内设置第一透镜组对光线进行反射,可以调节光线方向,使其满足预设的入射方向,同时还可以进行聚焦,提高光线强度。第一透镜组可以为单个反射镜,也可以为多个反射镜。
在一些实施例中,红外组件还包括第二反射箱580,第二反射箱580内设置有第二透镜组,第二反射箱580上设置有出光窗581,光谱仪安装于出光窗581处。经样品反射后的出射光线经出射通道563进入第二反射箱580,经第二透镜组反射后进入光谱仪。第二透镜组可以为单个反射镜,也可以为多个反射镜。
在一些实施例中,第四渗透腔体积累段520处设置有观测窗550。观测窗550处呈透明状,操作者可以从观测窗550内朝内观测红外光、激光以及出射光线的方向是否符合要求。
在一些实施例中,第二样品安装区中的样品与第一样品安装区中的样品可以为同一种薄膜,使用该设备可以同时进行红外检测与渗透率检测,在使用时,可以在第四渗透腔体积累段520与检测腔体600内分别完成红外检测与渗透率检测。如此,可以仅使用一个设备的一个通道同时实现红外检测与渗透率检测,可以减少所需使用的设备数量,简化检测流程,缩短检测时间。当然,也可以仅在第四渗透腔体积累段520内完成红外检测,或者,也可以仅在检测腔体600内完成渗透率检测。在另一些实施例中,第二样品安装区中的样品与第一样品安装区中的样品可以为两种薄膜,使用该设备可以对一种薄膜进行红外检测,对另一种薄膜进行渗透率检测。
在一些实施例中,至少一个渗透腔体对应区域设有红外组件,且该渗透腔体的渗透腔体进气段内伸入有称重组件540。即可以在同一个渗透腔体内完成称重检测与红外检测。具体的,参照图4至图6,第四渗透腔体500中,称重组件540放置于第四渗透腔体进气段510内,入射通道、出射通道563均与第四渗透腔体积累段520连通,光源发出的入射光线经入射通道进入第四渗透腔体积累段520并到达第一样品安装区,经第一样品安装区中的样品反射后的出射光线经出射通道563进入光谱仪。
在一些实施例中,第二样品安装区中的样品与第一样品安装区中的样品可以为同一种薄膜,使用该设备可以同时进行称重检测、红外检测与渗透率检测,在使用时,可以在第四渗透腔体进气段510、第四渗透腔体积累段520与检测腔体600内分别完成称重检测、红外检测与 渗透率检测。如此,可以仅使用一个设备的一个通道同时实现称重检测、红外检测与渗透率检测,可以减少所需使用的设备数量,简化检测流程,缩短检测时间。当然,也可以仅在第四渗透腔体进气段510内完成称重检测,或者,也可以仅在第四渗透腔体积累段520内完成红外检测,或者,也可以仅在检测腔体600内完成渗透率检测。在另一些实施例中,第二样品安装区中的样品与第一样品安装区中的样品可以为两种薄膜,使用该设备可以对一种薄膜进行称重,对另一种薄膜进行红外检测与渗透率检测。
现在参照图7,图7为根据本申请一实施例的渗透率检测方法的流程图。提供了一种渗透率检测方法,使用该检测方法可以对一些渗透率较低的高阻隔率的薄膜的渗透率进行检测,从而进一步加深对于薄膜渗透性能的了解,有利于后续对于高阻隔率薄膜的研究,并且可以实现气体通过多种薄膜的渗透率的检测,还可以实现对多种气体通过薄膜的渗透率的检测。该渗透率检测方法包括如下步骤:
S10设置多组渗透腔体;
S20选择至少一组渗透腔体,并将第一样品安装至选择的渗透腔体内;
S30将气体通入S20中选择的渗透腔体内进行渗透积累;以及
S40将渗透腔体内积累的气体释放进入检测腔体600内,通过质谱仪710进行检测。
具体的,在一些实施例中,检测开始之前,需要先对各个通道内抽真空,以免通道内残留的气体影响检测的准确性。可以将前述的抽真空上接口130与各抽真空下接口630均与真空泵连接,以实现抽真空。优选的,可以在抽真空的同时对通道进行加热烘烤,例如设置加热温度为120℃,烘烤时间为5小时。通过加热烘烤,可以加速附着于通道内壁上的水蒸气等气体的脱离,从而加快抽真空进程,缩短检测时间。
具体的,在一些实施例中,在步骤S20中,选择至少两组渗透腔体,每组渗透腔体内安装的样品相同。在步骤S40中,依次将各组渗透腔体内渗透积累的气体释放进入检测腔体600,且在相邻两组检测之间,将检测腔体600内前一组排入的气体排空,以免前一组的残留气体影响后一组的检测结果;质谱仪710检测所得的各组结果取平均值。即本实施例中,待测的薄膜相同,通入的气体也相同,对选中的各个渗透腔体的检测结果取平均值以减小误差,提高检测准确性。
例如,在附图所示实施例中,选择在第一渗透腔体200与第二渗透腔体300内均安装相同样品。进气腔体100进入的气体为同一种气体,例如水蒸气。先关闭第一渗透腔体200与检测腔体600之间的积累阀门820,并关闭第二渗透腔体300与检测腔体600之间的积累阀门820。打开第一渗透腔体200与进气腔体100之间的进气阀门810,并打开第二渗透腔体300与进气腔体100之间的进气阀门810。水蒸气进入第一渗透腔体200与第二渗透腔体300内,水蒸气经第一渗透腔体200与第二渗透腔体300内设置的样品处朝下渗透。一段时间后,打开第一渗透腔体200与检测腔体600之间的积累阀门820,第二渗透腔体300与检测腔体600之间的积累阀门820依然保持关闭。第一渗透腔体200的第一渗透腔体积累段220内积累的水蒸气进入检测腔体600进行检测。然后关闭第一渗透腔体200与检测腔体600之间的积累阀门820,将检测腔体600抽真空,再打开第二渗透腔体300与检测腔体600之间的积累阀门820,使第二渗透腔体300内渗透后积累的水蒸气进入检测腔体600进行检测。第一渗透腔体200与第二渗透腔体300的检测交替进行多次,以获得多组较为稳定的数据。最后将第一渗透腔体200与第二渗透腔体300检测的结果取平均值即可。
在一些实施例中,在步骤S20中,选择至少两组渗透腔体,每组渗透腔体内安装不同的样品。在步骤S30中,每组渗透腔体内通入的气体相同。在步骤S40中,依次将各组渗透腔体内渗透积累的气体释放进入检测腔体600,且在相邻两组检测之间,将检测腔体600内前一组排入的气体排空。即本实施例中,待测的薄膜不同,通入的气体相同,可以实现对气体渗透过不同薄膜的渗透率的检测。
例如,在附图所示实施例中,选择在第一渗透腔体200与第二渗透腔体300内均安装不同的样品。进气腔体100进入的气体为同一种气体,例如水蒸气。先关闭第一渗透腔体200与检测腔体600之间的积累阀门820,并关闭第二渗透腔体300与检测腔体600之间的积累阀门820。打开第一渗透腔体200与进气腔体100之间的进气阀门810,并打开第二渗透腔体300与进气腔体100之间的进气阀门810。水蒸气进入第一渗透腔体200与第二渗透腔体300内,水蒸气经第一渗透腔体200与第二渗透腔体300内设置的两个不同的样品处朝下渗透。一段时间后,打开第一渗透腔体200与检测腔体600之间的积累阀门820,第二渗透腔体300与检测腔体600之间的积累阀门820依然保持关闭。第一渗透腔体200的第一渗透腔体积累段220内积累的水蒸气进入检测腔体600进行检测。然后关闭第一渗透腔体200与检测腔体600之间的积累阀门820,将检测腔体600抽真空,再打开第二渗透腔体300与检测腔体600之间的积累阀门820,使第二渗透腔体300内渗透后积累的水蒸气进入检测腔体600进行检测。第一渗透腔体200与第二渗透腔体300的检测交替进行多次,以获得多组较为稳定的数据。根据阀门开闭时间,将质谱仪710输出的数据拆分成对应第一渗透腔体200与第二渗透腔体300的两组数据,即为气体经过两种样品的检测结果。
在一些实施例中,在步骤S20中,选择至少两组渗透腔体,每组渗透腔体内安装相同样品。在步骤S30中,向各组渗透腔体内通入不同的气体进行渗透积累。在步骤S40中,依次将各组渗透腔体内渗透积累的气体释放进入检测腔体600,且在相邻两组检测之间,将检测腔体600内前一组排入的气体排空。即本实施例中,待测的薄膜相同,通入的气体不同,可以实现对不同气体渗透过同种薄膜的渗透率的检测。
例如,在附图所示实施例中,选择在第一渗透腔体200与第二渗透腔体300内安装相同样品。先关闭第一渗透腔体200与检测腔体600之间的积累阀门820,并关闭第二渗透腔体300与检测腔体600之间的积累阀门820。打开第一渗透腔体200与进气腔体100之间的进气阀门810,关闭第二渗透腔体300与进气腔体100之间的进气阀门810。向进气腔体100内通入第一种气体,第一种气体进入第一渗透腔体200内,经第一渗透腔体200内设置的样品处朝下渗透。一段时间后,打开第一渗透腔体200与检测腔体600之间的积累阀门820。第一渗透腔体200的第一渗透腔体积累段220内积累的第一种气体进入检测腔体600进行检测。然后关闭第一渗透腔体200与检测腔体600之间的积累阀门820,并停止向进气腔体100通入第一种气体,将检测腔体600抽真空,并将进气腔体100与第一渗透腔体200抽真空。然后关闭第一渗透腔体200与进气腔体100之间的进气阀门810,打开第二渗透腔体300与进气腔体100之间的进气阀门810,向进气腔体100内通入第二种气体,第二种气体进入第二渗透腔体300内,经第二渗透腔体300内设置的样品处朝下渗透。一段时间后,打开第二渗透腔体300与检测腔体600之间的积累阀门820。第二渗透腔体300内渗透积累的第二种气体进入检测腔体600进行检测。第一渗透腔体200与第二渗透腔体300的检测交替进行多次,以获得多组较为稳定的数据。根据阀门开闭时间,将质谱仪710输出的数据拆分成对应第一渗透腔体200与第二渗透腔体300的两组数据,即为气体经过两种样品的检测结果。
如前所述,可以通过标准流导器件430对质谱仪710测得的数据进行校准,以减小误差,提高检测结果的准确性。
具体的,参照图8,通过标准流导器件430对质谱仪710进行校准的方法包括以下步骤:
S01将标准流导器件430作为样品安装于选择的渗透腔体内。例如,将其固定于第三渗透腔体进气段410与第三渗透腔体积累段420之间的间隙处。
S02测量通入气体的压力,并计算出气体流量,根据所得的气体流量计算出渗透率。管道两端的压力差与管道流导的乘积即为管道流量,由于检测腔体600内的压力已经非常小。可以忽略不计,因此,可以直接用薄膜真空计140测得的进气腔体100的气体压力乘以标准流导器件430的标准流导得到气体流量。根据所得的气体流量计算渗透率为现有技术,故此处不再赘 述。
S03将气体通入S01中选择的渗透腔体内进行渗透积累。具体的,关闭第三渗透腔体400对应的积累阀门820,并打开与第三渗透腔体400对应的进气阀门810。进气腔体100内的气体进入第三渗透腔体进气段410内,经过标准流导器件430朝第三渗透腔体积累段420渗透,并在第三渗透腔体积累段420内积累。
S04将渗透腔体内渗透积累的气体释放进入检测腔体600内,通过质谱仪710进行检测。具体的,打开第三渗透腔体400对应的积累阀门820,第三渗透腔体积累段420内积累的气体进入检测腔体600内,质谱仪710测得的数值为检测腔体600内的压力。
S05将质谱仪710测得的结果与S02中计算所得的渗透率对应。具体的,将质谱仪710测得的数值与通过标准流导器件430计算得出的标准数值对应起来,例如,质谱仪710测得的压力为P时,对应计算得出的渗透率为A。
S06调节通入气体的压力,重复S02至S05,直至质谱仪710的预设量程数据均被覆盖,建立通过质谱仪710测得的数据与通过标准流导器件430计算出的渗透率的对应关系。具体的,重复上述S02至S05步骤,将质谱仪710的测量压力预设范围内的全部数值被覆盖,最终建立的对应关系即为,质谱仪710每测得的一个压力值P,都有一个对应的计算得出的渗透率A。可以将二者的对应关系用图线或者表格的方式表示,以便于查找。上述的预设量程可以包括质谱仪710的测量压力范围内的全部数值,当然,若受限于标准流导器件430的型号,无法覆盖全部范围,预设量程也可以包括质谱仪710的测量压力范围内的部分数值,通过更换不同类型的标准流导器件430来实现全量程覆盖。
S07用S40中质谱仪710测得的数据查找S06中建立的对应关系中对应的标准数据。具体的,在设置样品测量渗透率时,例如在第一渗透腔体200内设置样品,并对气体渗透过样品的渗透率进行检测时,按照前述实施例中的方式开关阀门进行渗透积累与检测,质谱仪710测得的数值为P1时,查找前述获得的对应关系中,当检测值为P1时,对应的渗透率为多少即可。
在上述渗透率检测方法中,设置有多组渗透腔体,在进行检测时,选择渗透腔体并安装好样品后,使气体进入渗透腔体内进行渗透积累,渗透腔体内的气体渗透积累至一定量后,将对应的渗透腔体内积累的气体释放进入检测腔体内,通过质谱仪测得检测腔体内的压力并得出渗透率。由于气体在渗透腔体内经过一段时间的积累之后才进入检测腔体,可以使原本较少的气体逐渐积累富集,使质谱仪更易于检测到气体,从而实现对高阻隔率的薄膜的渗透率的检测。此外,由于设置有多组渗透腔体,每组渗透腔体可以独立工作,当多组渗透腔体内安装的样品不同,或者通入的气体不同时,可以在同一个设备上实现多种情况下的渗透率检测,可以使检测更加方便快捷。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求书为准。

Claims (20)

  1. 渗透率检测设备,包括:
    进气腔体;
    渗透腔体,多组所述渗透腔体均与所述进气腔体连接,所述渗透腔体与所述进气腔体之间设有进气阀门,所述进气阀门打开时,所述进气腔体与对应的所述渗透腔体连通,所述渗透腔体内设置有用于安装样品的第一样品安装区;
    检测腔体,多组所述渗透腔体均与所述检测腔体连接,所述渗透腔体与所述检测腔体之间设有积累阀门,所述积累阀门打开时,所述检测腔体与对应的所述渗透腔体连通;以及
    检测仪器,所述检测仪器与所述检测腔体连通。
  2. 根据权利要求1所述的渗透率检测设备,其中,所述渗透腔体包括渗透腔体进气段与渗透腔体积累段,所述渗透腔体进气段与所述进气腔体连接,所述渗透腔体积累段与所述检测腔体连接,所述第一样品安装区形成在所述渗透腔体进气段与所述渗透腔体积累段之间。
  3. 根据权利要求2所述的渗透率检测设备,其中,所述第一样品安装区处安装有标准流导器件。
  4. 根据权利要求2所述的渗透率检测设备,其中,在至少一个所述渗透腔体中,所述渗透腔体进气段内设有称重组件,所述称重组件上设有用于放置样品的第二样品安装区。
  5. 根据权利要求4所述的渗透率检测设备,其中,所述称重组件伸入到所述渗透腔体进气段内,并且所述称重组件在其一面处设有凹槽以放置样品。
  6. 根据权利要求4所述的渗透率检测设备,其中,所述第一样品安装区中的样品与所述第二样品安装区中的样品不同。
  7. 根据权利要求2所述的渗透率检测设备,其中,至少一个所述渗透腔体对应区域设有红外组件,所述红外组件包括光源、入射通道、出射通道与光谱仪;
    所述入射通道、所述出射通道均与所述渗透腔体积累段连通,所述光源发出的入射光线经所述入射通道进入所述渗透腔体积累段并到达所述第一样品安装区,经所述第一样品安装区中的样品反射后的出射光线经所述出射通道进入所述光谱仪。
  8. 根据权利要求7所述的渗透率检测设备,其中,所述红外组件还包括第一反射箱,所述第一反射箱内设置有第一透镜组,所述光源包括红外光源与激光光源,所述入射通道包括红外光入射通道与激光入射通道,所述第一反射箱上设置有第一进光窗与第二进光窗,所述红外光源安装于所述第一进光窗处,所述激光光源安装于所述第二进光窗处。
  9. 根据权利要求8所述的渗透率检测设备,其中,所述红外组件还包括第二反射箱,所 述第二反射箱内设置有第二透镜组,所述第二反射箱上设置有出光窗,所述光谱仪安装于所述出光窗处。
  10. 根据权利要求1所述的渗透率检测设备,其中,所述进气腔体包括进气主管与多个进气支管,多个所述进气支管均与所述进气主管连通,气体入口位于所述进气主管上,多个所述进气支管中,每一个的端部连接有一个进气阀门,所述进气阀门上设置有进气阀门接口,每个所述进气支管端部的所述进气阀门接口处与对应的一个渗透腔体连接。
  11. 根据权利要求1所述的渗透率检测设备,其中,所述检测腔体包括检测主管与多个检测支管,多个所述检测支管均与所述检测主管连通,所述检测主管与所述检测仪器连通,多个所述检测支管中,每一个上连接有一个积累阀门,所述积累阀门上设置有积累阀门接口,每个所述检测支管上的所述积累阀门接口处与对应的一个渗透腔体连接。
  12. 根据权利要求1至11中任一项所述的渗透率检测设备,其中,所述检测仪器是质谱仪。
  13. 根据权利要求1至11中任一项所述的渗透率检测设备,其中,还包括一个或多个抽真空接口,以将所述渗透率检测设备与真空泵连接。
  14. 渗透率检测方法,包括如下步骤:
    S10设置多组渗透腔体;
    S20选择至少一组所述渗透腔体,并将样品安装至所选择的所述渗透腔体内;
    S30将气体通入S20中选择的所述渗透腔体内进行渗透积累;以及
    S40将所述渗透腔体内积累的气体释放进入检测腔体内,通过检测仪器进行检测。
  15. 根据权利要求14所述的渗透率检测方法,其特征在于,
    在步骤S20中,选择至少两组所述渗透腔体,每组所述渗透腔体内安装的所述样品相同;以及
    在步骤S40中,依次将各组所述渗透腔体内积累的气体释放进入所述检测腔体,且在相邻两组检测之间,将所述检测腔体内前一组排入的气体排空;所述检测仪器检测所得的各组结果取平均值。
  16. 根据权利要求14所述的渗透率检测方法,其中,
    在步骤S20中,选择至少两组所述渗透腔体,每组所述渗透腔体内安装的所述样品不同;
    在步骤S30中,每组所述渗透腔体内通入的气体相同;以及
    在步骤S40中,依次将各组所述渗透腔体内积累的气体释放进入所述检测腔体,且在相邻两组检测之间,将所述检测腔体内前一组排入的气体排空。
  17. 根据权利要求14所述的渗透率检测方法,其中,
    在步骤S20中,选择至少两组所述渗透腔体,每组所述渗透腔体内安装的所述样品相同;
    在步骤S30中,向各组所述渗透腔体内通入不同的气体进行渗透积累;以及
    在步骤S40中,依次将各组所述渗透腔体内积累的气体释放进入所述检测腔体,且在相邻两组检测之间,将所述检测腔体内前一组排入的气体排空。
  18. 根据权利要求14所述的渗透率检测方法,其中,在多组所述渗透腔体中的一个内安装标准流导器件,通过所述标准流导器件对所述检测仪器测得的数据进行校准。
  19. 根据权利要求18所述的渗透率检测方法,其中,通过所述标准流导器件对所述检测仪器进行校准包括如下步骤:
    S01将所述标准流导器件作为所述样品安装于选择的所述渗透腔体内;
    S02测量通入气体的压力,并计算出气体流量,根据所得的气体流量计算出渗透率;
    S03将气体通入S01中选择的所述渗透腔体内进行渗透积累;
    S04将所述渗透腔体内积累的气体释放进入所述检测腔体内,通过所述检测仪器进行检测;
    S05将所述检测仪器测得的结果与S02中计算所得的渗透率对应;
    S06调节通入气体的压力,重复S02至S05,直至所述检测仪器的预设量程数据均被覆盖,建立通过所述检测仪器测得的数据与通过所述标准流导器件计算出的渗透率的对应关系;以及
    S07用S40中所述检测仪器测得的数据查找S06中建立的对应关系中对应的标准数据。
  20. 根据权利要求14至19中任一项所述的渗透率检测方法,其中,所述检测仪器是质谱仪。
PCT/CN2021/115362 2021-06-24 2021-08-30 渗透率检测设备与检测方法 WO2022267218A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110706803.9 2021-06-24
CN202110706803.9A CN113466101B (zh) 2021-06-24 2021-06-24 渗透率检测设备与检测方法

Publications (1)

Publication Number Publication Date
WO2022267218A1 true WO2022267218A1 (zh) 2022-12-29

Family

ID=77872853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115362 WO2022267218A1 (zh) 2021-06-24 2021-08-30 渗透率检测设备与检测方法

Country Status (2)

Country Link
CN (1) CN113466101B (zh)
WO (1) WO2022267218A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118329787A (zh) * 2024-06-12 2024-07-12 杭州海康威视数字技术股份有限公司 检测窗及检测装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858461A (en) * 1987-09-29 1989-08-22 General Electric Company Permeation cell gas detector
CN1657911A (zh) * 2004-09-30 2005-08-24 清华大学 一种水氧渗透率的测试方法及其测试设备
JP2010249609A (ja) * 2009-04-14 2010-11-04 Ulvac Japan Ltd 水蒸気透過量測定装置及び水蒸気透過量測定方法
CN102628785A (zh) * 2012-03-27 2012-08-08 济南兰光机电技术有限公司 气体渗透性测试装置
CN102928326A (zh) * 2012-11-08 2013-02-13 济南兰光机电技术有限公司 一种测试有机气体对膜的渗透性的装置及方法
CN104483227A (zh) * 2014-12-12 2015-04-01 西南石油大学 基于磁悬浮天平的硫沉积装置
CN105466831A (zh) * 2015-11-20 2016-04-06 中国特种设备检测研究院 一种气体渗透率测试装置
CN105814421A (zh) * 2013-12-25 2016-07-27 日本普瑞伦有限公司 微孔过滤器的制造方法
CN106525683A (zh) * 2016-10-27 2017-03-22 华中科技大学 一种薄膜渗透率测量装置和测量方法
CN108287128A (zh) * 2018-01-29 2018-07-17 中国科学院武汉岩土力学研究所 一种岩土干湿循环渗透率测量系统及其方法
CN209311289U (zh) * 2018-12-26 2019-08-27 济南思克测试技术有限公司 一种正负压一体的膜分离测试装置
CN111551476A (zh) * 2020-04-24 2020-08-18 广州西唐机电科技有限公司 基于压差法的气体渗透性能测试系统及方法
CN112098292A (zh) * 2019-06-18 2020-12-18 哈尔滨工业大学 一种基于二维渗流效应的微纳孔隙材料高温气体渗透率的测量装置及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015775A (en) * 1959-01-09 1962-01-02 Coulter Electronics Fluid metering system and apparatus
US7178384B2 (en) * 2004-02-04 2007-02-20 General Atomics Method and apparatus for measuring ultralow permeation
GB0903110D0 (en) * 2009-02-24 2009-04-08 Halliburton Energy Serv Inc Methods and apparatus for determining the permeability and diffusivity of a porous solid
CN101949813B (zh) * 2010-07-27 2012-01-11 中国科学院苏州纳米技术与纳米仿生研究所 用于检测器件封装水氧渗透指标的方法及其检测装置
US20120210770A1 (en) * 2010-09-10 2012-08-23 Aziz Mahfoud Familia Systems and methods for permeability rate testing of barrier films using vapor accumulation
WO2012044402A1 (en) * 2010-09-29 2012-04-05 Conocophillips Company-Ip Services Group High-pressure quartz crystal microbalance
CN104020185B (zh) * 2014-06-18 2016-09-21 东南大学 一种高分子超薄膜相转变温度的测定方法
CN105547956B (zh) * 2015-12-10 2019-05-24 电子科技大学 一种真空计测量薄膜气体渗透率的装置和方法
CN106290117B (zh) * 2016-10-19 2023-11-03 中国科学院光电研究院 一种用于测试材料辐射致气体渗透的装置和方法
CN107894376A (zh) * 2017-12-12 2018-04-10 中国计量大学 水蒸气扩散系数测量装置及其测量方法
US10663389B2 (en) * 2018-03-29 2020-05-26 The United States Of America As Represented By The Secretary Of The Army Spectroscopic membrane permeation cell for simultaneous measurements of gas permeation rates and infrared reflection absorption spectroscopic analysis of membrane surfaces
CN108918381A (zh) * 2018-07-12 2018-11-30 南京林业大学 一种快速、同时测定生物质材料水分扩散性和透湿性的方法
KR20210104651A (ko) * 2018-09-06 2021-08-25 상뜨르 나쇼날 드 라 러쉐르쉬 샹띠피끄 (씨엔알에스) 샘플에 의한 레이저 방출 흡수 측정 시스템
CN112444471A (zh) * 2020-11-13 2021-03-05 大连卡瑞博纳科技有限公司 一种全自动气体分离膜渗透性测试装置及方法
CN112964619B (zh) * 2021-02-05 2022-06-10 浙江大学 一种多层多孔材料界面水蒸气渗透系数测定装置及方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858461A (en) * 1987-09-29 1989-08-22 General Electric Company Permeation cell gas detector
CN1657911A (zh) * 2004-09-30 2005-08-24 清华大学 一种水氧渗透率的测试方法及其测试设备
JP2010249609A (ja) * 2009-04-14 2010-11-04 Ulvac Japan Ltd 水蒸気透過量測定装置及び水蒸気透過量測定方法
CN102628785A (zh) * 2012-03-27 2012-08-08 济南兰光机电技术有限公司 气体渗透性测试装置
CN102928326A (zh) * 2012-11-08 2013-02-13 济南兰光机电技术有限公司 一种测试有机气体对膜的渗透性的装置及方法
CN105814421A (zh) * 2013-12-25 2016-07-27 日本普瑞伦有限公司 微孔过滤器的制造方法
CN104483227A (zh) * 2014-12-12 2015-04-01 西南石油大学 基于磁悬浮天平的硫沉积装置
CN105466831A (zh) * 2015-11-20 2016-04-06 中国特种设备检测研究院 一种气体渗透率测试装置
CN106525683A (zh) * 2016-10-27 2017-03-22 华中科技大学 一种薄膜渗透率测量装置和测量方法
CN108287128A (zh) * 2018-01-29 2018-07-17 中国科学院武汉岩土力学研究所 一种岩土干湿循环渗透率测量系统及其方法
CN209311289U (zh) * 2018-12-26 2019-08-27 济南思克测试技术有限公司 一种正负压一体的膜分离测试装置
CN112098292A (zh) * 2019-06-18 2020-12-18 哈尔滨工业大学 一种基于二维渗流效应的微纳孔隙材料高温气体渗透率的测量装置及方法
CN111551476A (zh) * 2020-04-24 2020-08-18 广州西唐机电科技有限公司 基于压差法的气体渗透性能测试系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118329787A (zh) * 2024-06-12 2024-07-12 杭州海康威视数字技术股份有限公司 检测窗及检测装置

Also Published As

Publication number Publication date
CN113466101B (zh) 2023-05-12
CN113466101A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
Fraga et al. A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation
US8424367B2 (en) Systems and methods for measurement of gas permeation through polymer films
US5138870A (en) Apparatus for measuring water vapor permeability through sheet materials
WO2022267218A1 (zh) 渗透率检测设备与检测方法
WO2016176898A1 (zh) 一种混凝土气渗性测试设备及其测试方法
US8729472B2 (en) Systems and methods for permeability rate testing of barrier films
EP3385696B1 (fr) Dispositif et procede de determination de la taille d'un trou de fuite
CN110376136B (zh) 高温加载下测量薄膜光学常数及形貌参数的装置及方法
JP3963340B2 (ja) ガス測定方法およびこれを利用する装置
CN106525683A (zh) 一种薄膜渗透率测量装置和测量方法
JP2014527172A (ja) 冷媒を同定するための装置及び方法
CN109991179B (zh) 用于光学薄膜光谱测量的使用环境模拟装置及测量方法
Su et al. Establishment and verification of a primary low-pressure gas flow standard at NIMT
CN113588481B (zh) 渗透过程检测设备与检测方法
CN108303376B (zh) 内置反射镜的多腔室串联气体样品池
RU2310825C1 (ru) Способ приготовления парогазовых смесей для градуировки газоанализаторов
WO2012033649A2 (en) Systems and methods for permeation rate testing of barrier films using vapor accumulation
JP2019056560A (ja) 検査方法及び検査システム
FR2978247A1 (fr) Dispositif de detection de trace de gaz
JP5661859B2 (ja) バリアエレメント及び超バリアエレメントの浸透率の測定装置及び測定方法
CN112113923A (zh) 一种基于回音壁模式微泡腔耦合co2传感器及制作方法
RU2823440C1 (ru) Устройство для определения газопроницаемости полимерных материалов
CN206920272U (zh) 一种测量一氧化碳透过率的装置
RU2350925C1 (ru) Газовый плотномер (варианты)
Chang et al. Detection of O18 and D Isotopes in Water Vapor using a Fiber-Coupled Tunable Diode Laser Absorption Spectroscopy Multi-Pass Cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946702

Country of ref document: EP

Kind code of ref document: A1