WO2016176898A1 - 一种混凝土气渗性测试设备及其测试方法 - Google Patents

一种混凝土气渗性测试设备及其测试方法 Download PDF

Info

Publication number
WO2016176898A1
WO2016176898A1 PCT/CN2015/081895 CN2015081895W WO2016176898A1 WO 2016176898 A1 WO2016176898 A1 WO 2016176898A1 CN 2015081895 W CN2015081895 W CN 2015081895W WO 2016176898 A1 WO2016176898 A1 WO 2016176898A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ring
concrete
test
permeability
Prior art date
Application number
PCT/CN2015/081895
Other languages
English (en)
French (fr)
Inventor
王中平
倪晓旭
孙荣龙
周龙
程飞
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Publication of WO2016176898A1 publication Critical patent/WO2016176898A1/zh
Priority to US15/803,767 priority Critical patent/US10488319B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/10Analysing materials by measuring the pressure or volume of a gas or vapour by allowing diffusion of components through a porous wall and measuring a pressure or volume difference

Definitions

  • the invention relates to a concrete durability testing technology, in particular to a mixed concrete gas permeability testing device and a testing method thereof.
  • the permeability of concrete is characterized by the permeability coefficient of water and O2, N2 and air according to the osmotic medium. There are field tests and laboratory tests at the test site.
  • the gas permeability test method for the permeability coefficient is commonly used in the Figg method and the Cembureau method.
  • the Figg method can be used to determine the semi-damage of concrete compactness in the laboratory and on-site environment.
  • a small hole of 10 mm is drilled on the concrete surface, and the depth is about 40 mm.
  • the floating ash in the hole is removed and then punched into a close hole.
  • the rubber stopper of the wall forms a sealed area in the lower part of the hole, and then a fine needle tube is placed in the center of the rubber plug.
  • the needle tube is externally connected with a vacuum pump with a valve, and the sealing area is evacuated during the experiment, and the absolute pressure in the area is If the vacuum pump is to be less than 0.45 MPa, the vacuum will be gradually reduced with time due to the leakage of the concrete micropores.
  • the measured index is the time taken by the absolute pressure in the sealing area to change from 0.45 MPa to 0.50 MPa in seconds. .
  • the sealing effect is not satisfactory.
  • the reliability and repeatability of the test results have been questioned by the academic community.
  • Kollek proposed the Cembureau method for determining the concrete permeability coefficient using O2 gas as the osmotic medium, which was widely accepted internationally.
  • the principle is to apply a stable gas pressure to the sample, record the gas flow rate through the sample at this pressure, and then convert to the permeability coefficient to compare the concrete permeability.
  • the method adopts a tire-type sealing structure, the sealing effect is very satisfactory, and the test procedure is also very strict.
  • this method can only test samples in the laboratory, and can not test the gas permeability of concrete in the field environment.
  • the actual determination of the durability of the concrete on the site is only the impermeability of the surface layer, so the results of the tests in the laboratory. It does not completely reflect the true impermeability and durability of concrete.
  • test method for the permeability coefficient of the concrete gas is a research target of those skilled in the art.
  • the object of the present invention is to provide a concrete gas permeability testing device and a testing method thereof for facilitating field testing in order to overcome the defects of the prior art described above.
  • a concrete gas permeability testing device for testing air permeability of a concrete sample, comprising a gas supply device and a gas flow meter, the device further comprising an instrument body, the instrument body comprising a frame body, the frame body An intake ring, an air outlet ring and a connecting plate are arranged from the inside to the outside, the input end of the air inlet ring is connected with the air supply device, and the output end is connected to the input end of the air outlet ring through the concrete sample, the air outlet ring The output end is connected to the gas flow meter, and the connecting plate is connected to the concrete sample;
  • the gas supply device supplies a constant gas pressure test gas to the instrument body, and the test gas flows from the gas inlet ring through the concrete sample and the gas outlet ring to the gas flow meter in sequence, and then calculates the concrete gas permeability coefficient according to the gas flow meter.
  • the intake ring has a circular shape on the bottom surface, and the bottom surface of the air outlet ring has a circular shape, and the bottom area of the air inlet ring is the same as the bottom area of the air outlet ring.
  • An inner sealing ring is disposed between the air inlet ring and the air outlet ring, and an outer sealing ring is disposed between the air outlet ring and the connecting plate.
  • the air supply device includes a gas source and a first gas transmission channel, a second gas transmission channel and a third gas transmission channel, both of which are connected to the gas source, the output end of the first gas transmission channel and the inlet gas ring
  • the input end is connected
  • the output end of the second gas transmission channel is connected to the input end of the inner sealing ring
  • the output end of the third gas transmission channel is connected to the input end of the outer sealing ring.
  • a test gas dehumidifying device is disposed on the first gas pipe.
  • the gas source includes a pressure reducing valve, and the first gas pipe is provided with a precision pressure reducing valve.
  • the instrument body further includes a plurality of fixing screws, and the connecting plates are connected to the concrete sample by a fixing screw.
  • a concrete gas permeability testing method characterized in that the method comprises the steps of:
  • D is the permeability coefficient
  • L is the effective penetration thickness
  • Q is the gas flow rate
  • is the gas viscosity
  • Pa is the local atmospheric pressure
  • A is the gas permeable area
  • P is the test pressure
  • R 1 is the radius of the bottom surface of the inlet ring
  • R 2 is the radius of the inner circle of the bottom surface of the outlet ring
  • R 3 is the radius of the outer circle of the bottom surface of the outlet ring.
  • the present invention has the following advantages:
  • test equipment of the invention does not need to take out the whole concrete sample, and only needs to connect the main body of the instrument with the surface of the concrete sample, thereby avoiding the cost of dividing the concrete, greatly simplifying the cumbersome operation and facilitating on-site testing.
  • the sealing ring can guide the test gas to flow from the inlet to the outlet through the concrete sample, thereby improving the accuracy of measuring the gas flow, thereby improving the test accuracy.
  • the supply device is divided into three gas transmission channels. Therefore, while the test gas is supplied, the gas pressure in the two sealing rings can be ensured, and the air pressure in the sealing ring is not enough due to long time.
  • the test gas dehumidification device can heat the test gas and then dry the concrete sample by the test gas.
  • the pressure reducing valve and the precision pressure reducing valve can adjust the test air pressure, and also ensure the stability of the test gas pressure entering the intake ring to complete the test.
  • Figure 1 is a schematic view of the structure of the present invention
  • FIG. 2 is a bottom view of the main body of the apparatus in the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the main body of the apparatus in the first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of an inner seal ring according to a first embodiment of the present invention.
  • Figure 5 is a three-dimensional cross-sectional view of the inner seal ring in the first embodiment of the present invention.
  • Figure 6 is a schematic view showing the movement path of the test gas on the surface of the concrete sample
  • FIG. 7 is a schematic structural view of an apparatus main body according to Embodiment 2 of the present invention.
  • Figure 8 is a schematic view of the calculation process of the penetration thickness
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the main body 3 of the apparatus includes a frame body 36.
  • the frame body 36 is provided with an intake ring 31, an air outlet ring 32 and a connecting plate 33 from the inside to the outside.
  • the input end of the intake ring 31 and the air supply device 2 are provided.
  • the output end is connected to the input end of the air outlet ring 32 through the concrete sample 1, the output end of the air outlet ring 32 is connected to the gas flow meter 4, and the connecting plate 33 is connected to the concrete sample 1, wherein, in this embodiment, the gas flow rate Meter 4 is a soap membrane flow meter;
  • the air supply device 2 supplies the test gas to the instrument body 3, and the test gas flows from the intake ring 31 to the gas flow meter 4 via the concrete sample 1 and the air outlet 32 in order, and the concrete gas permeability coefficient is calculated based on the gas flow meter.
  • An inner seal ring 34 is disposed between the intake ring 31 and the air outlet ring 32, and between the air outlet ring 32 and the connecting plate 33
  • An outer seal ring 35 is provided.
  • an inner seal ring 34 is disposed between the intake ring 31 and the air outlet ring 32, and an outer seal ring 35 is disposed between the air outlet ring 32 and the connecting plate 33.
  • the air supply device 2 includes a gas source 21 and a first gas delivery channel 22, a second gas delivery channel 23 and a third gas delivery channel 24, both of which are connected to the gas source 21, and the output end of the first gas delivery channel 22 is forwarded.
  • the input end of the gas ring 31 is connected, the output end of the second gas transfer passage 23 is connected to the input end of the inner seal ring 34, and the output end of the third gas supply passage 24 is connected to the input end of the outer seal ring 35.
  • an intake hole 38 is disposed in the center of the intake ring 31, and an air outlet 39 is disposed in the air outlet 32.
  • the first air delivery passage 22 is connected to the intake ring 31 through the air inlet 38.
  • the gas flow meter 4 is connected to the gas outlet ring 32 through the air outlet 39.
  • the inner seal ring 34 is provided with an inner seal ring intake pipe 341, and the second gas transfer passage 23 is connected to the inner seal ring 34 through the inner seal ring intake pipe 341; the outer seal ring 35
  • the structure is similar to the inner seal ring 34.
  • the third gas transfer passage 24 is connected to the outer seal ring 35 through the outer seal ring intake pipe 351.
  • a test gas dehumidifying device 221 is disposed on the first gas delivery pipe 22.
  • the gas source 21 includes a pressure reducing valve 211, and the first gas delivery pipe 22 is provided with a precision pressure reducing valve 222.
  • the instrument body 3 further includes a plurality of fixing screws 37.
  • the connecting plate 33 is connected to the concrete sample 1 through a fixing screw 37.
  • the connecting plate 33 is provided with a plurality of screw holes for passing the fixing screw 37, and the number of the screw holes and the fixing screw 37 are provided. The number is the same. In the present embodiment, the number of the fixing screws 37 and the screw holes is six.
  • the air source 21 in this embodiment further includes a liquid nitrogen cylinder 214, a plastic connecting hose 213, a liquid nitrogen cylinder screwing valve 212, a gas filter 215 and a safety valve 216, a liquid nitrogen cylinder 214, and a plastic connection.
  • the hose 213, the liquid nitrogen cylinder screwing valve 212, the pressure reducing valve 211, the gas filter 215, and the safety valve 216 are sequentially connected.
  • the first gas delivery passage 22 further includes two shut-off check valves 223 and 224, and a splitter section 225, a shut-off check valve 223, a precision pressure reducing valve 222, a splitter section 225, and a test gas dehumidifying apparatus 221 Connected in sequence, the test gas dehumidifying device 221 is connected to the intake port 38, and the branching section 225 is connected to the shut-off check valve 224.
  • the second gas delivery passage 23 includes a shut-off check valve 231
  • the third gas delivery passage 24 includes a shut-off check valve 241.
  • the gas supply device 2 further includes two branching sections 25 and 26, and the branching section 25 The input end is connected to the air source 21, one output end is connected to the shut-off check valve 223, and the other output end is connected to the shunt section.
  • the input end of the branch 26 is connected, and the input end of the splitter section 26 is connected to the shutoff check valve 231 and the shutoff check valve 241, respectively.
  • shut-off check valve 231 and the shut-off check valve 241 are first opened, then the liquid nitrogen cylinder screwing valve 212 and the pressure reducing valve 211 are opened, and the pressure reducing valve 211 is adjusted to the inner seal ring 34 and the outer seal ring.
  • the internal pressure of 35 is charged to 6 to 7 atmospheres;
  • D is the permeability coefficient
  • L is the effective penetration thickness
  • Q is the gas flow rate
  • is the gas viscosity
  • Pa is the local atmospheric pressure
  • A is the gas permeable area
  • P is the test pressure
  • R 1 is the radius of the bottom surface of the inlet ring
  • R 2 is the radius of the inner circle of the bottom surface of the outlet ring
  • R 3 is the radius of the outer circle of the bottom surface of the outlet ring.
  • R 1 is an intake ring 31 bottom radius
  • R 2 is the radius of the circle 32-1 bottom surface of the outlet ring
  • R 3 is a bottom surface of the outlet ring outer radius 32-2
  • R 2 is 100 mm
  • R 3 is 112 mm.
  • Gas infiltration from the intake ring 31 is equivalent to infiltration from the circumference of the circle A.
  • the circle A and the intake ring 31 are concentric circles, and the area is equal to half of the intake ring 31.
  • the gas oozing out from the gas outlet ring 32 can be equivalent to oozing from the circumference of the circle B, and the circle B is equally divided into the area of the inlet ring 32.
  • L 1 is the difference between the radius R 1 of the intake ring 31 and the radius R A of the circle A, and the calculation process is:
  • L 2 is the thickness of the seal ring.
  • the calculation process is:
  • the test data is considered to be effective under the condition of an error of 10%.
  • test gas pressure Change the test gas pressure to 0.2 MPa and 0.3 MPa, respectively, and repeat step B to measure the gas flow rate under various conditions.
  • the test data is shown in Table 2.
  • the measured plurality of permeability coefficients were averaged as test values for Concrete Sample 1.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the connecting plate 33 is as shown in FIG. 7.
  • the connecting plate 33 is provided with protrusions for connecting the clamping members on both sides, when the concrete sample 1 is a beam.
  • the instrument body 3 of the present embodiment is used, and it is fixed by a hoop member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种混凝土气渗性测试设备及其测试方法,测试设备用于测试混凝土试样的气渗性,包括供气装置(2)和气体流量计(4),该设备还包括仪器主体(3),仪器主体(3)包括框体(36),框体(36)上由内至外依次设有进气圈(31)、出气圈(32)和连接板(33),进气圈(31)的输入端与供气装置(2)连接,输出端通过混凝土试样(1)与出气圈(31)的输入端连接,出气圈(32)的输出端与气体流量计(3)连接,连接板(33)与混凝土试样(1)连接;供气装置(2)向仪器主体(3)提供测试气体,测试气体自进气圈(31)依次经由混凝土试样(1)和出气圈(32)流至气体流量计(4),进而根据气体流量计算出混凝土气体渗透系数。与现有技术相比,该设备和测试方法具有使用方便的优点。

Description

一种混凝土气渗性测试设备及其测试方法 技术领域
本发明涉及一种混凝土耐久性测试技术,尤其是涉及一种混混凝土气渗性测试设备及其测试方法。
背景技术
提高混凝土的耐久性,延长混凝土的实际使用寿命,是当前混凝土学术界研究的重点,其关键在于控制混凝土的渗透性。目前,表征混凝土的渗透性能,按渗透介质有水和O2、N2、空气等渗透系数。按测试地点有现场测试与实验室测试。
以气体为渗透介质的渗透系数测试方法,目前常用的有Figg法和Cembureau法。
Figg法可以在实验室与现场环境中测定混凝土密实性属于半破损的方法,测试时,在混凝土表面钻10mm的小孔,深度约40mm,将孔中的浮灰清除后打入一个紧贴孔壁的橡胶塞子,在孔的下部形成一个密封的区域,再在橡胶塞的中心穿上一根细针管,该针管外接一个带阀门的真空泵,实验时将密封区域抽真空,区域内的绝对压力要小于0.45MPa,关闭真空泵,由于混凝土微孔的泄露,真空度将随时间逐步减小,其测量的指标为密封区域内的绝对压力从0.45MPa变到0.50MPa所要花费的时间,单位为秒。此方法虽然所需设备简单,但密封效果不理想。试验结果的可靠性与重复性受到学术界的质疑。
1989年,Kollek提出以O2气为渗透介质测定混凝土渗透系数的Cembureau法,获得国际上的广泛接受。其原理为:给试样施加稳定的气压,纪录在此压力下通过试样的气体流量,再转换到渗透系数,以此比较混凝土渗透性能。该法采用了轮胎式的密封结构,密封效果非常理想,试验步骤也非常严格。但是该方法依然只能在实验室测试试样,不能在现场环境中测试混凝土的气体渗透性,然而真正决定现场混凝土耐久性的仅仅是表层那部分的抗渗性能,所以实验室中测试的结果并不能完全反应混凝土的真实抗渗性与耐久性。
因此,研究一种操作简单、密封效果好、设备便于携带、能在现场测试混 凝土气体渗透系数的测试方法是本领域技术人员的研究目标。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种便于现场测试的混凝土气渗性测试设备及其测试方法。
本发明的目的可以通过以下技术方案来实现:
一种混凝土气渗性测试设备,该设备用于测试混凝土试样的气渗性,包括供气装置和气体流量计,该设备还包括仪器主体,所述仪器主体包括框体,所述框体上由内至外依次设有进气圈、出气圈和连接板,所述进气圈的输入端与供气装置连接,输出端通过混凝土试样与出气圈的输入端连接,所述出气圈的输出端与气体流量计连接,所述连接板与混凝土试样连接;
所述供气装置向仪器主体提供恒定气压的测试气体,所述测试气体自进气圈依次经由混凝土试样和出气圈流至气体流量计,进而根据气体流量计算出混凝土气体渗透系数。
所述进气圈为底面为圆形,所述出气圈底面为圆环形,所述进气圈底面积与出气圈底面积相同。
所述进气圈和出气圈之间设有内密封圈,所述出气圈和连接板之间设有外密封圈。
所述供气装置包括气源以及输入端均与气源连接的第一输气通道、第二输气通道和第三输气通道,所述第一输气通道的输出端与进气圈的输入端连接,所述第二输气通道的输出端与内密封圈的输入端连接,所述第三输气通道的输出端与外密封圈的输入端连接。
所述第一输气管上设有测试气体除湿装置。
所述气源包括减压阀,所述第一输气管上设有精密减压阀。
所述仪器主体还包括多个固定螺杆,所述连接板通过固定螺杆与混凝土试样连接。
一种混凝土气渗性测试方法,其特征在于,该方法包括步骤:
A.将仪器主体固定至达到龄期的结构混凝土试样上,并将内密封圈和外密封圈内气压充至6~7个大气压;
B.向进气圈通入气压恒定为测试气压的测试气体,记录气流稳定后透过混凝土试样的气体流量,并计算渗透系数:
Figure PCTCN2015081895-appb-000001
其中:D为渗透系数,L为有效渗透厚度,Q为气体流量,μ为气体黏度,Pa为当地大气压力,A为透气面积,P为测试气压;
C.改变测试气压,重复步骤B三至五次,将测得的多个渗透系数取平均值作为混凝土试样的测试值。
所述有效渗透厚度L为:
Figure PCTCN2015081895-appb-000002
其中:R1为进气圈底面半径,R2为出气圈底面内圆半径,R3为出气圈底面外圆半径。
与现有技术相比,本发明具有以下优点:
1)本发明测试设备不需要将整个混凝土试样取出,只需要将仪器主体与混凝土试样表面连接即可,可以避免分割混凝土的成本,可以大大简化操作繁琐度,便于现场测试。
2)密封圈可以引导测试气体经由混凝土试样从进气圈流至出气圈,提高测量气体流量的精度,进而提高测试精度。
3)供给装置分为三个输气通道,因此在提供测试气体的同时,也可以保证两个密封圈内气压的稳定,不至于因长时间放置密封圈内气压不足的情况。
4)测试气体除湿装置可以加热测试气体,进而通过测试气体烘干混凝土试样。
5)减压阀和精密减压阀可以调节测试气压,同时也可以保证进入进气圈的测试气体气压的稳定,从而完成测试。
附图说明
图1为本发明的结构示意图;
图2为本发明实施例一中仪器主体的仰视示意图;
图3为本发明实施例一中仪器主体的剖视示意图;
图4为本发明实施例一中内密封圈的结构示意图;
图5为本发明实施例一中内密封圈三维剖面示意图;
图6为测试气体在混凝土试样表层的运动路径示意图;
图7为本发明实施例二中仪器主体的结构示意图;
图8为渗透厚度计算过程示意图;
其中:1、混凝土试样,3、仪器主体,4、气体流量计,25、分流节,26、分流节,211、减压阀,212、液氮缸旋紧阀,213、塑料连接软管,214、液氮缸,215、气体过滤器,216、安全阀,221、测试气体除湿装置,222、精密减压阀,223、截流止回阀,224、截流止回阀,225、分流节,231、截流止回阀,241、截流止回阀,31、进气圈,32、出气圈,33、连接板,34、内密封圈,35、外密封圈,36、框体,37、固定螺杆,38、进气孔,39、出气孔,341、内密封圈进气管,351、外密封圈进气管。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例一:
一种混凝土气渗性测试设备,该设备用于测试混凝土试样1的气渗性,如图1所示,包括供气装置和气体流量计4,该设备还包括仪器主体3,如图2和图3所示,仪器主体3包括框体36,框体36上由内至外依次设有进气圈31、出气圈32和连接板33,进气圈31的输入端与供气装置2连接,输出端通过混凝土试样1与出气圈32的输入端连接,出气圈32的输出端与气体流量计4连接,连接板33与混凝土试样1连接,其中,本实施例中,气体流量计4为皂膜流量计;
供气装置2向仪器主体3提供测试气体,测试气体自进气圈31依次经由混凝土试样1和出气圈32流至气体流量计4,进而根据气体流量计算出混凝土气体渗透系数。
进气圈31和出气圈32之间设有内密封圈34,出气圈32和连接板33之间 设有外密封圈35。
如图2所示,进气圈31和出气圈32之间设有内密封圈34,出气圈32和连接板33之间设有外密封圈35。
供气装置2包括气源21以及输入端均与气源21连接的第一输气通道22、第二输气通道23和第三输气通道24,第一输气通道22的输出端与进气圈31的输入端连接,第二输气通道23的输出端与内密封圈34的输入端连接,第三输气通道24的输出端与外密封圈35的输入端连接。
如图1和图2所示,进气圈31中央设有一个进气孔38,出气圈32上设有一个出气孔39,第一输气通道22通过进气孔38与进气圈31连接,气体流量计4通过出气孔39与出气圈32连接。
如图1、图4、图5所示,内密封圈34上设有内密封圈进气管341,第二输气通道23通过内密封圈进气管341与内密封圈34连接;外密封圈35结构与内密封圈34类似,如图1所示,第三输气通道24通过外密封圈进气管351与外密封圈35连接。
第一输气管22上设有测试气体除湿装置221。
气源21包括减压阀211,第一输气管22上设有精密减压阀222。
仪器主体3还包括多个固定螺杆37,连接板33通过固定螺杆37与混凝土试样1连接,连接板33上设有多个用于通过固定螺杆37的螺孔,螺孔数目与固定螺杆37的数目一致,本实施例中,固定螺杆37和螺孔的个数均为6个。
如图1所示,本实施例中气源21还包括液氮缸214、塑料连接软管213、液氮缸旋紧阀212、气体过滤器215和安全阀216,液氮缸214、塑料连接软管213、液氮缸旋紧阀212、减压阀211、气体过滤器215和安全阀216依次连接。
如图1所示,第一输气通道22还包括两个截流止回阀223和224,以及分流节225,截流止回阀223、精密减压阀222、分流节225和测试气体除湿装置221依次连接,测试气体除湿装置221与进气孔38连接,分流节225与截流止回阀224连接。
如图1所示,第二输气通道23包括截流止回阀231,第三输气通道24包括截流止回阀241,供气装置2还包括两个分流节25和26,分流节25的输入端与气源21连接,一个输出端与截流止回阀223连接,另一个输出端与分流节 26的输入端连接,分流节26的输入端分别与截流止回阀231和截流止回阀241对应连接。
运用上述混凝土气渗性测试设备的对如表1所示的不同的混凝土试样1进行测试。
表1 实验用混凝土配合比
Figure PCTCN2015081895-appb-000003
具体包括步骤:
A.关闭所有的截流止回阀以及减压阀211、精密减压阀222、液氮缸旋紧阀212、安全阀216,在达到龄期的混凝土试样1上,用冲击钻按照仪器主体3螺孔的位置钻6个孔,用快硬粘结剂将固定螺杆37埋进混凝土的内部,将仪器主体3对准螺杆放置,拧紧螺帽将仪器主体3与混凝土试样1紧密接触。在测试时,首先将截流止回阀231和截流止回阀241打开,随后将液氮缸旋紧阀212和减压阀211打开,并调节减压阀211将内密封圈34和外密封圈35内气压均充至6~7个大气压;
B.关闭截流止回阀231和截流止回阀241并打开截流止回阀223和测试气体除湿装置221,调节精密减压阀222,使进入仪器主体3的测试气体压力为0.1MPa,气体流量计4记录气流稳定后透过混凝土试样1的气体流量,并计算渗透系数:
Figure PCTCN2015081895-appb-000004
其中:D为渗透系数,L为有效渗透厚度,Q为气体流量,μ为气体黏度,Pa为当地大气压力,A为透气面积,P为测试气压;
有效渗透厚度L为:
Figure PCTCN2015081895-appb-000005
其中:R1为进气圈底面半径,R2为出气圈底面内圆半径,R3为出气圈底面外圆半径。
具体的,L=L1+L2+L3
如图6和图8所示:R1为进气圈31底面半径,R2为出气圈底面内圆32-1半径,R3为出气圈底面外圆32-2半径,本实施例中R1为50mm,R2为100mm,R3为112mm,气体从进气圈31渗入可等效为从圆A圆周渗入,圆A与进气圈31为同心圆,面积等于进气圈31的一半,同理可得气体从出气圈32渗出可等效为从圆B圆周渗出,圆B均分进气圈32面积。L1为进气圈31半径R1与圆A半径RA之差,计算过程为:
Figure PCTCN2015081895-appb-000006
L2为密封圈厚度,计算过程为L2=R2-R1,L3为圆B半径RB与出气圈底面内圆半径R2之差,计算过程为:
Figure PCTCN2015081895-appb-000007
当从混凝土试样1内部渗透出来的气体量大于进入混凝土试样1内部的气体量的90%时(在误差10%的条件下)认为测试数据有效。
C.改变测试气压分别为0.2MPa和0.3MPa,重复步骤B,测得各种条件的气体流量,测试数据如表2所示。
表2 混凝土渗透气体流速结果汇总 单位:ml/min
Figure PCTCN2015081895-appb-000008
求得被测样品在渗透压力为0.1MPa、0.2MPa、0.3MPa时的气体渗透系数值;测试结果见表3。
表3 混凝土渗透系数结果汇总 单位:×10-15m2
Figure PCTCN2015081895-appb-000009
将测得的多个渗透系数取平均值作为混凝土试样1的测试值。
实施例二:
本实施例中与实施例一中相同之处不再叙述,仅叙述不同之处。
本实施例与实施例一的显著区别在于连接板33的形状,如图7所示,本实施例中,连接板33两边设有用于连接紧箍件的凸起,当混凝土试样1是梁与柱的情况时,使用本实施例的仪器主体3,用紧箍件使之固定。

Claims (9)

  1. 一种混凝土气渗性测试设备,该设备用于测试混凝土试样(1)的气渗性,包括供气装置(2)和气体流量计(4),其特征在于,该设备还包括仪器主体(3),所述仪器主体(3)包括框体(36),所述框体(36)上由内至外依次设有进气圈(31)、出气圈(32)和连接板(33),所述进气圈(31)的输入端与供气装置(2)连接,输出端通过混凝土试样(1)与出气圈(32)的输入端连接,所述出气圈(32)的输出端与气体流量计(4)连接,所述连接板(33)与混凝土试样(1)连接;
    所述供气装置(2)向仪器主体(3)提供恒定气压的测试气体,所述测试气体自进气圈(31)依次经由混凝土试样(1)和出气圈(32)流至气体流量计(4),进而根据气体流量计算出混凝土气体渗透系数。
  2. 根据权利要求1所述的一种混凝土气渗性测试设备,其特征在于,所述进气圈(31)为底面为圆形,所述出气圈(32)底面为圆环形,所述进气圈(31)底面积与出气圈(32)底面积相同。
  3. 根据权利要求1所述的一种混凝土气渗性测试设备,其特征在于,所述进气圈(31)和出气圈(32)之间设有内密封圈(34),所述出气圈(32)和连接板(33)之间设有外密封圈(35)。
  4. 根据权利要求3所述的一种混凝土气渗性测试设备,其特征在于,所述供气装置(2)包括气源(21)以及输入端均与气源(21)连接的第一输气通道(22)、第二输气通道(23)和第三输气通道(24),所述第一输气通道(22)的输出端与进气圈(31)的输入端连接,所述第二输气通道(23)的输出端与内密封圈(34)的输入端连接,所述第三输气通道(24)的输出端与外密封圈(35)的输入端连接。
  5. 根据权利要求4所述的一种混凝土气渗性测试设备,其特征在于,所述第一输气管(22)上设有测试气体除湿装置(221)。
  6. 根据权利要求4所述的一种混凝土气渗性测试设备,其特征在于,所述气源(21)包括减压阀(211),所述第一输气管(22)上设有精密减压阀(222)。
  7. 根据权利要求1所述的一种混凝土气渗性测试设备,其特征在于,所述 仪器主体(3)还包括多个固定螺杆(37),所述连接板(33)通过固定螺杆(37)与混凝土试样(1)连接。
  8. 一种如权利要求1所述的混凝土气渗性测试设备的测试方法,其特征在于,该方法包括步骤:
    A.将仪器主体(3)固定至达到龄期的结构混凝土试样(1)上,并将内密封圈(34)和外密封圈(35)内气压充至6~7个大气压;
    B.向进气圈(31)通入气压恒定为测试气压的测试气体,记录气流稳定后透过混凝土试样(1)的气体流量,并计算渗透系数:
    Figure PCTCN2015081895-appb-100001
    其中:D为渗透系数,L为有效渗透厚度,Q为气体流量,μ为气体黏度,Pa为当地大气压力,A为透气面积,P为测试气压;
    C.改变测试气压,重复步骤B三至五次,将测得的多个渗透系数取平均值作为混凝土试样(1)的测试值。
  9. 根据权利要求8所述的一种混凝土气渗性测试方法,其特征在于,所述有效渗透厚度L为:
    Figure PCTCN2015081895-appb-100002
    其中:R1为进气圈底面半径,R2为出气圈底面内圆半径,R3为出气圈底面外圆半径。
PCT/CN2015/081895 2015-05-04 2015-06-19 一种混凝土气渗性测试设备及其测试方法 WO2016176898A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/803,767 US10488319B2 (en) 2015-05-04 2017-11-04 Testing apparatus for gas permeability in concrete and testing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510225420.4A CN104880394B (zh) 2015-05-04 2015-05-04 一种混凝土气渗性测试设备及其测试方法
CN201510225420.4 2015-05-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/803,767 Continuation US10488319B2 (en) 2015-05-04 2017-11-04 Testing apparatus for gas permeability in concrete and testing method therefor

Publications (1)

Publication Number Publication Date
WO2016176898A1 true WO2016176898A1 (zh) 2016-11-10

Family

ID=53947971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081895 WO2016176898A1 (zh) 2015-05-04 2015-06-19 一种混凝土气渗性测试设备及其测试方法

Country Status (3)

Country Link
US (1) US10488319B2 (zh)
CN (1) CN104880394B (zh)
WO (1) WO2016176898A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090540A1 (zh) * 2016-11-15 2018-05-24 广东中科华大工程技术检测有限公司 混凝土抗渗试件套及抗渗性能检测装置
CN108519320A (zh) * 2018-05-28 2018-09-11 中铁十七局集团第三工程有限公司 建筑物表面抗渗水性能检测装置
EP3482818A1 (de) * 2017-11-10 2019-05-15 MS2 Engineering und Anlagenbau GmbH Vorrichtung zum prüfen von membranen
CN111413260A (zh) * 2020-03-12 2020-07-14 浙江工业大学 可精确测量混凝土水、气径向渗透系数的简易测试装置及方法
CN113686751A (zh) * 2021-08-24 2021-11-23 华南农业大学 一种透水混凝土渗透系数的测试方法
CN115184208A (zh) * 2022-09-08 2022-10-14 青岛旭域土工材料股份有限公司 测试导流网平面导气率的设备及测试方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105430728B (zh) * 2015-12-08 2018-12-18 同济大学 用于微小区的基于最优化理论的上行链路功率控制方法
CN106483041A (zh) * 2016-11-14 2017-03-08 济南轨道交通集团有限公司 基于混凝土吸水性的测试混凝土结构密实度的装置和方法
CN106644894B (zh) * 2017-03-08 2019-01-29 东南大学 用于混凝土渗透现场测量的装置及方法
CN107063968B (zh) * 2017-05-02 2023-06-13 三峡大学 混凝土气体渗透性测试装置及方法
CN107014737A (zh) * 2017-06-05 2017-08-04 重庆大学 一种表层混凝土透气性自动化测试装置
CN107449705B (zh) * 2017-06-06 2024-04-26 广东省建筑科学研究院集团股份有限公司 混凝土抗渗性现场测试仪
CN108195737A (zh) * 2017-12-21 2018-06-22 中国林业科学研究院木材工业研究所 一种木材气体渗透性分析测试装置
CN110320146A (zh) * 2019-07-24 2019-10-11 北京耐尔得智能科技有限公司 一种混凝土透气性测定装置及测定方法
CN112213251A (zh) * 2020-10-26 2021-01-12 山东华材工程检测鉴定有限公司 一种既有工程抗渗性能检测方法
CN112611700B (zh) * 2021-01-06 2022-11-22 常州工学院 一种混凝土气体渗透性测试装置及方法
CN113588472A (zh) * 2021-07-22 2021-11-02 江苏科技大学 一种测定持续荷载作用下混凝土环向气体扩散通量的装置
CN113866071B (zh) * 2021-12-03 2022-02-15 中国核工业中原建设有限公司 一种混凝土抗渗性试验装置
CN114486087A (zh) * 2022-03-21 2022-05-13 湖南路桥建设集团有限责任公司 一种桥梁工程施工混凝土抗渗检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU759958A1 (ru) * 1977-02-14 1980-08-30 Vnii Transportnogo Str Tsniis Способ определения воздухопроницаемости бетона1
DE3628955A1 (de) * 1986-08-26 1988-03-10 Klaus Dipl Ing Schoenlin Schnellpruefverfahren zur zerstoerungsfreien bestimmung der permeabilitaet von betonoberflaechen
CN1815174A (zh) * 2006-01-26 2006-08-09 同济大学 混凝土气体渗透系数环形测试仪及其测试方法
CN101358916A (zh) * 2008-09-09 2009-02-04 同济大学 荷载作用下混凝土渗透仪
CN201583477U (zh) * 2010-01-15 2010-09-15 清华大学 一种混凝土气体渗透率测试系统
CN203299097U (zh) * 2013-06-09 2013-11-20 交通运输部公路科学研究所 混凝土原位无损气体渗透率测量装置
JP2014032125A (ja) * 2012-08-03 2014-02-20 Central Research Institute Of Electric Power Industry コンクリートの透気試験装置、並びに、コンクリートの透気係数分布の推定方法、推定装置及び推定プログラム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH548598A (it) * 1972-07-03 1974-04-30 Domenighetti Domenico Apparecchio per misurare ''in situ'' la permeabilita di uno strato di materiale e procedimento per la messa in esercizio di detto apparecchio.
DD129934B1 (de) * 1976-12-09 1980-11-26 Peter Giese Luftdurchlaessigkeitsbestimmung an poroesen konstruktionsschichten zur ermittlung des hohlraumgehaltes
SU615396A1 (ru) * 1977-01-17 1978-07-15 Всесоюзный научно-исследовательский институт горной геомеханики и маркшейдерского дела Способ определени газопроницаемости горных пород
SU811110A1 (ru) * 1979-04-04 1981-03-07 Украинский Научно-Исследовательскийинститут Гидротехники И Мелиорации Устройство дл определени водо-пРОНицАЕМОСТи МАТЕРиАлОВ
SU935752A2 (ru) * 1980-09-18 1982-06-15 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Гидротехники И Мелиорации Им.А.Н.Костякова Устройство дл определени водонепроницаемости строительных конструкций
US4979390A (en) * 1988-12-01 1990-12-25 Morris Schupack Method and apparatus for testing relative permeability of materials
JPH0587726A (ja) * 1991-03-08 1993-04-06 Osaka Gas Co Ltd 舗装面の透気性評価装置および方法
US5616828A (en) * 1993-08-30 1997-04-01 Pfizer Inc. Apparatus and method for testing hydrophobic filters
FR2716536B1 (fr) * 1994-02-22 1996-04-26 Geophysique Cie Gle Procédé et dispositif pour mesurer la perméabilité d'un milieu rocheux .
JPH1078370A (ja) * 1996-09-04 1998-03-24 Nisshin Steel Co Ltd タンク底板の欠陥部検出方法
JP2002214117A (ja) * 2001-01-22 2002-07-31 Asahi Kasei Corp 簡易透水試験装置
GB0112903D0 (en) * 2001-05-26 2001-07-18 Univ Heriot Watt Permeability measurement apparatus and method
JP4009118B2 (ja) * 2002-03-08 2007-11-14 富士テック株式会社 構造物のコンクリートの圧縮強度推定方法
DE102005019666B3 (de) * 2005-04-26 2006-08-31 Heraeus Electro-Nite International N.V. Eintauchmesssonde
CN201622157U (zh) * 2010-02-08 2010-11-03 吕京 可有效验证气密性的隔离密闭装置
CN101813604B (zh) * 2010-04-23 2011-11-16 同济大学 一种抗水压注浆岩体耐久性试验装置
CN101975734B (zh) * 2010-09-09 2012-05-30 西北工业大学 多孔材料流—固—热多场耦合渗透率测量装置及其测量方法
FR2965053B1 (fr) * 2010-09-21 2012-08-31 Renault Sa Procede de test du niveau d'etancheite d'un assemblage d'un element a un organe de chassis d'un vehicule automobile
US9429558B2 (en) * 2012-06-26 2016-08-30 Baker Hughes Incorporated Multi-function testing apparatus for cement and methods of using the same
CN103115843A (zh) * 2012-12-26 2013-05-22 中国人民解放军63653部队 一种岩体气体渗透率现场原位测量方法
CN103323380B (zh) * 2013-06-09 2015-01-21 交通运输部公路科学研究所 混凝土原位无损气体渗透率的测量方法
CN203811338U (zh) * 2014-03-12 2014-09-03 武汉纺织大学 一种管材气体渗透性测试装置
CN104034647B (zh) * 2014-06-25 2016-03-02 哈尔滨工业大学 一种气体渗透特性参数测试装置及使用其测量微纳米多孔材料气体渗透特性参数的方法
CN204101416U (zh) * 2014-09-05 2015-01-14 中国葛洲坝集团国际工程有限公司 土工原位双环渗透试验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU759958A1 (ru) * 1977-02-14 1980-08-30 Vnii Transportnogo Str Tsniis Способ определения воздухопроницаемости бетона1
DE3628955A1 (de) * 1986-08-26 1988-03-10 Klaus Dipl Ing Schoenlin Schnellpruefverfahren zur zerstoerungsfreien bestimmung der permeabilitaet von betonoberflaechen
CN1815174A (zh) * 2006-01-26 2006-08-09 同济大学 混凝土气体渗透系数环形测试仪及其测试方法
CN101358916A (zh) * 2008-09-09 2009-02-04 同济大学 荷载作用下混凝土渗透仪
CN201583477U (zh) * 2010-01-15 2010-09-15 清华大学 一种混凝土气体渗透率测试系统
JP2014032125A (ja) * 2012-08-03 2014-02-20 Central Research Institute Of Electric Power Industry コンクリートの透気試験装置、並びに、コンクリートの透気係数分布の推定方法、推定装置及び推定プログラム
CN203299097U (zh) * 2013-06-09 2013-11-20 交通运输部公路科学研究所 混凝土原位无损气体渗透率测量装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090540A1 (zh) * 2016-11-15 2018-05-24 广东中科华大工程技术检测有限公司 混凝土抗渗试件套及抗渗性能检测装置
EP3482818A1 (de) * 2017-11-10 2019-05-15 MS2 Engineering und Anlagenbau GmbH Vorrichtung zum prüfen von membranen
CN108519320A (zh) * 2018-05-28 2018-09-11 中铁十七局集团第三工程有限公司 建筑物表面抗渗水性能检测装置
CN111413260A (zh) * 2020-03-12 2020-07-14 浙江工业大学 可精确测量混凝土水、气径向渗透系数的简易测试装置及方法
CN113686751A (zh) * 2021-08-24 2021-11-23 华南农业大学 一种透水混凝土渗透系数的测试方法
CN115184208A (zh) * 2022-09-08 2022-10-14 青岛旭域土工材料股份有限公司 测试导流网平面导气率的设备及测试方法
CN115184208B (zh) * 2022-09-08 2023-01-17 青岛旭域土工材料股份有限公司 测试导流网平面导气率的设备及测试方法

Also Published As

Publication number Publication date
CN104880394A (zh) 2015-09-02
CN104880394B (zh) 2017-12-26
US20180058997A1 (en) 2018-03-01
US10488319B2 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2016176898A1 (zh) 一种混凝土气渗性测试设备及其测试方法
WO2017128479A1 (zh) 岩石全自动气体渗透率测试系统及测算方法
CN103575630B (zh) 一种同时测定混合气各组成气体的膜渗透性的测定方法
AU2009290420B2 (en) Method and device for detecting leaks in an underground liquid pipe, particularly a water pipe
CN107631973B (zh) 一种超低渗岩样气测渗透率多方法同机测试装置
US8447537B2 (en) Methods and apparatus for determining the permeability and diffusivity of a porous solid
WO2023240817A1 (zh) 一种连续测试变吸力下非饱和土体气体渗透系数的装置和方法
CN106769667B (zh) 纳米尺度气体流动规律实验系统及实验方法
CN107036769A (zh) 一种用于校准不同示漏气体真空漏孔漏率的系统及方法
CN106525683B (zh) 一种薄膜渗透率测量装置和测量方法
JP6281915B2 (ja) ガス透過度測定装置
CN103149140A (zh) 一种多孔介质透气性评估装置
CN106644605B (zh) 一种地热水中气泡气体的收集装置及其收集方法
CN111266015B (zh) 一种气体透过率的恒体积变压法测试系统
CN207816538U (zh) 一种进气歧管真空执行器泄漏量测试装置
CN111610129A (zh) 一种多工况下多孔介质渗透系数的测定方法及测试装置
CN112444471A (zh) 一种全自动气体分离膜渗透性测试装置及方法
JP5486896B2 (ja) 透気性中詰め材の透気性確認試験方法及び透気性確認試験装置
CN103926179A (zh) 一种沥青混凝土渗透的检测装置
CN203672755U (zh) 一种气体渗透池及同时测定混合气各组成气体的膜渗透性的测定装置
CN111474099A (zh) 一种岩石孔隙度、比面测试装置
CN212228680U (zh) 一种多工况下多孔介质渗透系数的测试装置
CN107219046B (zh) 一种呼吸管的测试装置及测试方法
KR20230125043A (ko) 흡입력의 변화 하에 불포화 토양의 가스 투과 계수를연속 테스트하는 장치와 방법
CN212483266U (zh) 一种岩石孔隙度和比面测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15891150

Country of ref document: EP

Kind code of ref document: A1