WO2022267216A1 - 可控硅均热控制方法、装置和计算机可读存储介质 - Google Patents

可控硅均热控制方法、装置和计算机可读存储介质 Download PDF

Info

Publication number
WO2022267216A1
WO2022267216A1 PCT/CN2021/114887 CN2021114887W WO2022267216A1 WO 2022267216 A1 WO2022267216 A1 WO 2022267216A1 CN 2021114887 W CN2021114887 W CN 2021114887W WO 2022267216 A1 WO2022267216 A1 WO 2022267216A1
Authority
WO
WIPO (PCT)
Prior art keywords
thyristor
parameter
voltage drop
heating
soaking
Prior art date
Application number
PCT/CN2021/114887
Other languages
English (en)
French (fr)
Inventor
郑书路
卓清锋
Original Assignee
维谛技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维谛技术有限公司 filed Critical 维谛技术有限公司
Priority to EP21946700.8A priority Critical patent/EP4361756A1/en
Publication of WO2022267216A1 publication Critical patent/WO2022267216A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1932Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action

Definitions

  • the present invention relates to the field of thyristor control, and more specifically, to a method, device and computer-readable storage medium for controlling the soaking heat of thyristor.
  • Silicon Controlled Rectifier Silicon Controlled Rectifier
  • SCR Silicon Controlled Rectifier
  • thyristor Silicon Controlled Rectifier
  • AC and DC motor speed control systems power adjustment systems
  • servo systems uninterruptible power supply (Uninterruptible Power Supply, UPS) systems.
  • UPS Uninterruptible Power Supply
  • thyristors are often operated in parallel.
  • parallel operation of multiple devices will also involve the parallel operation of thyristors.
  • the bypass of each UPS can be SCRs operate in parallel.
  • current sharing control can be performed on parallel thyristors.
  • the impedance difference of each circuit can be reduced by controlling the cable length of the parallel thyristor circuit to achieve current sharing, or the output current value of the thyristor circuit can be detected and the firing angle of the corresponding thyristor can be adjusted based on this .
  • these methods have a common defect, that is, the current sharing of the parallel thyristor circuit is regarded as the ultimate goal of regulation and control, while ignoring the essence of the problems caused by the parallel use of thyristors, and it is impossible to directly solve the problem of parallel thyristors. Average heat problem.
  • the present invention provides a simple and reliable thyristor soaking heat control method, device and computer-readable storage medium which can directly solve the heat soaking problem of parallel thyristors.
  • a kind of technical solution that the present invention adopts to solve its technical problem is: construct a kind of thyristor soaking control method, comprising:
  • the at least two thyristors include the first thyristor and the second thyristor, and the heating parameters include the first heating of the first thyristor parameter and the second heating parameter of the second thyristor;
  • step ST3. Repeat step ST1 and step ST2 until the difference between the first heating parameter and the second heating parameter is within the set difference range.
  • the first heating parameter and the second heating parameter may respectively include a temperature parameter or a heat parameter.
  • the step ST1 may further include:
  • the step ST1 may further include:
  • the first loop current for the first thyristor, the second loop current for the second thyristor, and the first loop current for the first thyristor are obtained.
  • the first thyristor voltage drop for the thyristor and the second thyristor voltage drop for the second thyristor may include one of the following:
  • On-line detection obtains the first loop current and the second loop current, uses the segmentally fixed or fixedly set first set voltage drop as the first thyristor voltage drop, and segmentally fixed or fixedly set a second set voltage drop as the second thyristor voltage drop;
  • the online detection obtains the first loop current and the second loop current, calculates the voltage drop of the first thyristor by detecting the voltage value at both ends of the first thyristor, and calculates the voltage drop of the first thyristor by detecting the the voltage across two thyristors to calculate the voltage drop across the second thyristor;
  • the first loop current, the second loop current, the first thyristor voltage drop, and the second thyristor voltage drop are acquired through direct online detection.
  • the step ST1 may further include:
  • a temperature sensor is used to detect the second thyristor to obtain a second temperature parameter of the second thyristor as the second heating parameter.
  • the step ST2 may further include:
  • a firing angle of the first thyristor and/or the second thyristor is adjusted based on the first comparison result and the second comparison result.
  • the first set threshold and the second set threshold may be equal, or the first set threshold may be greater than the second set threshold .
  • the firing angle of the first thyristor and/or the second thyristor is adjusted based on the first comparison result and the second comparison result may include: increasing the firing angle of the first thyristor and controlling the The firing angle of the second thyristor remains unchanged; and when the first heating parameter is less than the second set threshold and the second heating parameter is greater than the first setting threshold, increase the first The firing angle of the two thyristors is controlled and the firing angle of the first thyristor remains unchanged.
  • the first set threshold and the second set threshold may be equal to the average value of the first heating parameter and the second heating parameter.
  • the step ST2 may further include:
  • a thyristor soaking control device including at least a first thyristor and a second thyristor connected in parallel, and for controlling the first thyristor
  • a processor for thermal soaking of the silicon controlled silicon and the second silicon controlled silicon wherein a computer program is stored on the processor, and when the computer program is executed by the processor, the method for controlling heat soaking of the silicon controlled silicon is realized.
  • Another technical solution adopted by the present invention to solve its technical problems is to construct a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the above method for controlling the soaking heat of a thyristor is realized. .
  • Fig. 1 is the functional block diagram of the first preferred embodiment of the thyristor soaking control method of the present invention
  • Fig. 2 is an exemplary circuit schematic diagram of a parallel thyristor circuit applicable to the thyristor soaking control method of the present invention
  • Fig. 3 is a schematic diagram of the principle of the thyristor soaking control device of the present invention.
  • the present invention relates to a silicon controlled silicon soaking control method, comprising: acquiring heating parameters of at least two silicon controlled silicons connected in parallel, the at least two silicon controlled silicons comprising a first silicon controlled silicon and a second silicon controlled silicon, the The heating parameters include the first heating parameters of the first SCR and the second heating parameters of the second SCR (step ST1); the first heating parameters and the second heating parameters are respectively compared with the set threshold comparing, and adjusting the firing angle of the first thyristor and/or the second thyristor based on the comparison result (step ST2); repeating the steps ST1 and ST2 until the first heating parameter and the The difference of the second heating parameter is within the set difference range.
  • the heat soaking control method of the thyristor of the present invention abandons the technical prejudice in the prior art that the heat soaking control of the thyristor must firstly carry out the current equalization control. It is creatively proposed that the firing angle of the thyristors is directly adjusted by comparing the heating parameters without considering the current sharing of the parallel thyristors, so as to directly solve the heat equalization problem of the parallel thyristors from the source.
  • Fig. 1 is a functional block diagram of the first preferred embodiment of the thyristor soaking control method of the present invention.
  • the heating parameters of at least two thyristors connected in parallel are obtained, the at least two thyristors include the first thyristor and the second thyristor, and the heating parameters include The first heating parameter of the first SCR and the second heating parameter of the second SCR.
  • the first heat generation parameter and the second heat generation parameter are temperature parameters, that is, temperature parameters of the first thyristor obtained by using a temperature sensor to detect the first thyristor The first temperature parameter and the second temperature parameter of the second thyristor obtained by detecting the second thyristor by using a temperature sensor.
  • the first heating parameter and the second heating parameter are thermal parameters, that is, the heating parameters within a set period range obtained or calculated by any known method in the art A first thermal parameter of the first SCR and a second thermal parameter of the second SCR.
  • the first thermal parameter of the first thyristor and the second thermal parameter of the second thyristor can be filtered separately, so as to filter out noise points.
  • the first thermal parameter of the first thyristor and the second thermal parameter of the second thyristor may also be used directly.
  • the first heating parameter and the second heating parameter are respectively compared with a set threshold, and based on the comparison result, the first thyristor and/or the second thyristor are adjusted. trigger angle.
  • the set threshold may be the average value of the first heating parameter and the second heating parameter, or any suitable threshold set by those skilled in the art according to the actual situation, It may also be the first heating parameter or the second heating parameter itself.
  • the set threshold may be one or two or more.
  • the firing angle of the first thyristor can be adjusted (that is, increased or reduced as required), while maintaining the firing angle of the second thyristor. It is also possible to adjust the firing angle of the second thyristor (that is, to increase or decrease as required), while maintaining the firing angle of the first thyristor, or to adjust the firing angles of the two at the same time, that is, one of them increases, while the other decreases.
  • the purpose of this adjustment is to make the first heating parameter and the second heating parameter close to each other, for example, the difference is within a set difference range, preferably the difference is set close to zero.
  • the lower of the first heating parameter and the second heating parameter can be used as the set threshold, and the first heating parameter and the second heating parameter can be increased based on the comparison result.
  • the firing angle of the thyristor corresponding to the higher of the second heating parameters and the firing angle of the thyristor corresponding to the lower of the first heating parameter and the second heating parameter are reduced.
  • the firing angle of silicon does not change.
  • the higher one of the first heating parameter and the second heating parameter may also be used as the set threshold for judgment, and the control process is similar.
  • step ST3 the steps ST1 and ST2 are repeatedly executed until the difference between the first heating parameter and the second heating parameter is within a set difference range.
  • the first heating parameter and the second heating parameter are equal or approximately equal, it is considered that the first thyristor and the second thyristor are both heated.
  • the present invention creatively proposes to directly adjust the firing angle of the thyristors by comparing the heating parameters without considering the current sharing of the parallel thyristors, thereby directly solving the heat equalization of the parallel thyristors from the source. question.
  • Fig. 2 is an exemplary schematic circuit diagram of a parallel thyristor circuit applicable to the thyristor soaking control method of the present invention. Various preferred embodiments of the present invention will be further described below with reference to FIG. 2 .
  • the two triacs S1 and S2 operate in parallel, the corresponding loop impedances of their respective loops are Z1 and Z2, and the first loop current and the second loop current are respectively i1 and i2, the voltage drop across the first thyristor S1 is u1, and the voltage drop across the second thyristor S2 is u2.
  • the method for controlling the soaking heat of the thyristor in the preferred embodiment of the present invention includes the following steps (1) to (5).
  • the first loop current i1, the second loop current i2, the first thyristor voltage drop u1 and the second thyristor voltage drop u2 can be directly detected online.
  • only the first loop current i1 and the second loop current i2 can be acquired through online detection, and the first thyristor voltage drop u1 and the second thyristor voltage drop u2 are not detected. Instead, the first thyristor voltage drop u1 and the second thyristor voltage drop u2 are calculated respectively through the conduction voltage drop curve in the device manual provided by the thyristor manufacturer, that is, according to the first thyristor S1 A conduction voltage drop curve obtains the first thyristor voltage drop u1, and obtains the second thyristor voltage drop u2 according to a second conduction voltage drop curve of the second thyristor S2.
  • only the first loop current i1 and the second loop current i2 can be obtained through online detection, and the first thyristor voltage drop u1 and the second thyristor voltage drop u2 are not detected.
  • the first set pressure drop that is fixed or fixed in sections is used as the first thyristor voltage drop u1
  • the second set pressure drop that is fixed or fixed in sections is taken as the second thyristor voltage drop u2 .
  • the first set voltage drop and the second set voltage drop can be selected and set according to the conduction voltage drop curve in the device manual provided by the thyristor manufacturer, or can be set according to circuit requirements. Those skilled in the art can make settings according to any known method.
  • first loop current i1 and the second loop current i2 can be acquired through online detection, and the first thyristor voltage drop u1 and the second thyristor voltage drop u2 are not detected. Instead, the first thyristor voltage drop u1 is calculated by detecting the voltage value at both ends of the first thyristor S1, and the voltage drop u1 is calculated by detecting the voltage value at both ends of the second thyristor S2. The second thyristor voltage drop u2.
  • first thyristor voltage drop u1 and the second thyristor voltage drop u2 are obtained by measurement, and the first loop current i1 and the second loop current i2 are obtained through calculation.
  • T is the power frequency period
  • n is a natural number greater than 0.
  • the average value Qavrg of the first thermal parameter Q1 and the second thermal parameter Q2 is calculated, and the first thermal parameter Q1 and the second thermal parameter Q2 are compared with the average value Qavrg respectively, if Q1> Qavrg and Q2 ⁇ Qavrg, increase the firing angle of the first thyristor S1 and keep the firing angle of the second thyristor S2 unchanged, otherwise if Q2>Qavrg, Q1 ⁇ Qavrg, increase the firing angle of the second thyristor S2 The firing angle of the first thyristor S1 remains unchanged.
  • the average value Qavrg can be replaced by an appropriate fixed threshold.
  • a first set threshold QS1 and a second set threshold QS2 are set, and QS1>QS2.
  • the first heat parameter Q1 and the second heat parameter Q2 are compared with the first set threshold QS1 and the second set threshold QS2 respectively.
  • the first heat parameter Q1 is greater than the first set threshold QS1 and the second heat parameter Q2 is less than the second set threshold QS2
  • increasing the firing angle of the first thyristor S1 and The firing angle of the second thyristor S2 is controlled to remain unchanged.
  • the second thyristor S2 is increased and control the firing angle of the first thyristor S1 to remain unchanged.
  • Q1 ⁇ Q2 can be understood as the difference between the first thermal parameter Q1 and the second thermal parameter Q2 is an acceptable error, which can be set according to actual conditions.
  • Q1 ⁇ Q2 may also be set such that the difference between the first thermal parameter Q1 and the second thermal parameter Q2 is within a set range.
  • the method for controlling the soaking heat of the thyristor according to the preferred embodiment of the present invention includes the following steps (1) to (3).
  • one or more temperature setting thresholds can be directly set, or the average value of the first temperature parameter t1 and the second temperature parameter t2 can be set as the setting threshold .
  • the adjustment process of the firing angle of the first thyristor S1 and/or the second thyristor S2 can refer to step (4) in the heat generation parameter embodiment, and no further Said.
  • Steps (1)-(2) are repeated until t1 ⁇ t2.
  • t1 ⁇ t2 can be understood as the difference between the first temperature parameter t1 and the second temperature parameter t2 is an acceptable error, which can be set according to actual conditions.
  • t1 ⁇ t2 may also be set such that the difference between the first temperature parameter t1 and the second temperature parameter t2 is within a set range.
  • the heat soaking control method of the thyristor of the present invention abandons the technical prejudice in the prior art that the heat soaking control of the thyristor must firstly carry out the current equalization control. It is creatively proposed that the firing angle of the thyristors is directly adjusted by comparing the heating parameters without considering the current sharing of the parallel thyristors, so as to directly solve the heat equalization problem of the parallel thyristors from the source. And it can use a variety of heating parameters to judge, so it is flexible and adaptable to various application scenarios.
  • Fig. 3 is a schematic diagram of the principle of the thyristor soaking control device of the present invention.
  • the thyristor soaking control device includes at least a first thyristor S1 and a second thyristor S2 connected in parallel, and is used to control the first thyristor S1 and the second thyristor
  • a processor 100 for soaking the thyristor S2 the processor 100 stores a computer program, and when the computer program is executed by the processor 100, the thyristor soaking described in any embodiment in Fig. 1-2 is realized. thermal control method.
  • the present invention also relates to a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the silicon controlled silicon soaking control method described in any embodiment in Figs. 1-2 is realized.
  • Said computer program contains all the features capable of realizing the method of the present invention, and when it is installed in a computer system, it can realize the method of the present invention.
  • a computer program in this document refers to: any expression of a set of instructions that can be written in any programming language, code, or symbol, which enables the system to have information processing capabilities to directly implement specific functions, or to perform the following A specific function is achieved after one or two steps: a) conversion into other languages, codes or symbols; b) reproduction in a different format.
  • the present invention can also be realized by hardware, software or a combination of software and hardware.
  • the invention can be implemented in a centralized fashion in at least one computer system, or in a decentralized fashion in different parts distributed over several interconnected computer systems. Any computer system or other device that can implement the method of the present invention is applicable.
  • the combination of commonly used software and hardware can be a general-purpose computer system with computer programs installed, and the computer system is controlled by installing and executing the program to make it run according to the method of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Remote Sensing (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Electrical Variables (AREA)
  • Silicon Compounds (AREA)

Abstract

一种可控硅均热控制方法、装置和计算机可读存储介质,包括:获取并联的至少两个可控硅的发热参数(ST1),所述至少两个可控硅包括第一可控硅和第二可控硅,所述发热参数包括第一可控硅的第一发热参数和第二可控硅的第二发热参数;将所述第一发热参数和所述第二发热参数分别与设定阈值进行比较,并基于比较结果调节所述第一可控硅和/或所述第二可控硅的触发角(ST2);重复执行所述步骤ST1和步骤ST2直至所述第一发热参数和所述第二发热参数的差值位于设定差值范围内(ST3)。该方法不需要对并联的可控硅进行均流,而是通过比较发热参数来直接调节可控硅的触发角,从而直接的从源头上解决并联可控硅的均热问题。

Description

可控硅均热控制方法、装置和计算机可读存储介质
本申请要求于2021年6月24日提交中国专利局、申请号为202110707183.0、发明名称为“一种可控硅均热控制方法、装置和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及可控硅控制领域,更具体地说,涉及可控硅均热控制方法、装置和计算机可读存储介质。
背景技术
可控硅整流器(Silicon Controlled Rectifier,简称“可控硅”),也可称作晶闸管,是一种大功率电器元件。它具有体积小、效率高、寿命长等优点。在自动控制系统中,可作为大功率设备的驱动器件,实现用小功率控件控制大功率设备。因此,在交直流电机调速系统、调功系统、随动系统及不间断电源(Uninterruptible Power Supply,UPS)系统中得到了广泛的应用。
单个可控硅的电流容量有限,为了承载更大的电流,可控硅往往并联运行。另外,在分布式供电方面,多台设备的并联运行也会涉及到可控硅的并联运行,如不间断电压并机系统在系统工作在旁路侧时,一般是各台UPS的旁路可控硅并联运行。
并联运行的各个可控硅发热不同会严重影响系统的可靠性,同时也引发系统带载容量的瓶颈。很多因素会导致并联的可控硅发热不均,如不均流、可控硅导通压降不同、散热条件差异等等。
在实际的应用场景,可以对并联的可控硅进行均流控制。例如,可以通过控制并联可控硅回路的线缆长度来降低各个回路的阻抗差异以达到均流,也可以通过检测可控硅回路的输出电流值并基于此来调整对应可控硅的触发角。但是,这些方法有个共同的缺陷,即把并联可控硅回路的均流作为调节和控制的最终目标,而忽略可控硅并联使用所产生的问题的本质,无法直接解决并联可 控硅的均热问题。
发明内容
针对现有技术的上述缺陷,本发明提供一种简单可靠、可以直接解决并联可控硅的均热问题的可控硅均热控制方法、装置和计算机可读存储介质。
本发明解决其技术问题所采用的一种技术方案是:构造一种可控硅均热控制方法,包括:
ST1、获取并联的至少两个可控硅的发热参数,所述至少两个可控硅包括第一可控硅和第二可控硅,所述发热参数包括第一可控硅的第一发热参数和第二可控硅的第二发热参数;
ST2、将所述第一发热参数和所述第二发热参数分别与设定阈值进行比较,并基于比较结果调节所述第一可控硅和/或所述第二可控硅的触发角;
ST3、重复执行所述步骤ST1和步骤ST2直至所述第一发热参数和所述第二发热参数的差值位于设定差值范围内。
在本发明所述的可控硅均热控制方法中,所述第一发热参数和所述第二发热参数可以分别包括温度参数或热量参数。
在本发明所述的可控硅均热控制方法中,所述步骤ST1可以进一步包括:
获取针对第一可控硅的第一回路电流、针对第二可控硅的第二回路电流、针对第一可控硅的第一可控硅压降和针对第二可控硅的第二可控硅压降;以及
基于所述第一回路电流、所述第一可控硅压降和工频周期计算所述第一可控硅的第一热量参数作为所述第一发热参数;并基于所述第二回路电流、所述第二可控硅压降和所述工频周期计算所述第二可控硅的第二热量参数作为所述第二发热参数。
在本发明所述的可控硅均热控制方法中,所述步骤ST1可以进一步包括:
对所述第一热量参数和所述第二热量参数进行滤波,并且将经滤波的所述第一热量参数和所述第二热量参数分别用作所述第一发热参数和所述第二发热参数。
在本发明所述的可控硅均热控制方法中,获取针对所述第一可控硅的第一 回路电流、针对所述第二可控硅的第二回路电流、针对所述第一可控硅的第一可控硅压降和针对所述第二可控硅的第二可控硅压降可以包括如下中之一:
在线检测获取所述第一回路电流和所述第二回路电流,根据所述第一可控硅的第一导通压降曲线获取所述第一可控硅压降,并且根据所述第二可控硅的第二导通压降曲线获取所述第二可控硅压降;
在线检测获取所述第一回路电流和所述第二回路电流,将分段固定或者固定设置的第一设置压降作为所述第一可控硅压降,并且将分段固定或者固定设置的第二设置压降作为所述第二可控硅压降;
在线检测获取所述第一回路电流和所述第二回路电流,通过检测位于所述第一可控硅两端的电压值来计算所述第一可控硅压降,并且通过检测位于所述第二可控硅两端的电压值来计算所述第二可控硅压降;以及
直接在线检测获取所述第一回路电流、所述第二回路电流、所述第一可控硅压降和第二可控硅压降。
在本发明所述的可控硅均热控制方法中,所述步骤ST1可以进一步包括:
采用温度传感器检测所述第一可控硅以获取所述第一可控硅的第一温度参数作为所述第一发热参数;
采用温度传感器检测所述第二可控硅以获取所述第二可控硅的第二温度参数作为所述第二发热参数。
在本发明所述的可控硅均热控制方法中,所述步骤ST2可以进一步包括:
设置第一设定阈值和第二设定阈值作为所述设定阈值;
将所述第一发热参数与所述第一设定阈值进行比较以获得第一比较结果,将所述第二发热参数与所述第二设定阈值进行比较以获得第二比较结果;以及
基于所述第一比较结果和所述第二比较结果调节所述第一可控硅和/或所述第二可控硅的触发角。
在本发明所述的可控硅均热控制方法中,所述第一设定阈值和所述第二设定阈值可以相等,或者所述第一设定阈值可以大于所述第二设定阈值。
在本发明所述的可控硅均热控制方法中,基于所述第一比较结果和所述第二比较结果调节所述第一可控硅和/或所述第二可控硅的触发角可以包括:在 所述第一发热参数大于所述第一设定阈值且所述第二发热参数小于所述第二设定阈值时,加大所述第一可控硅的触发角且控制所述第二可控硅的触发角不变;以及在所述第一发热参数小于所述第二设定阈值且所述第二发热参数大于所述第一设定阈值时,加大所述第二可控硅的触发角且控制所述第一可控硅的触发角不变。
在本发明所述的可控硅均热控制方法中,所述第一设定阈值和所述第二设定阈值可以等于所述第一发热参数和第二发热参数的平均值。
在本发明所述的可控硅均热控制方法中,所述步骤ST2可以进一步包括:
将所述第一发热参数和所述第二发热参数中的较低者作为所述设定阈值,并基于比较结果加大所述第一发热参数和所述第二发热参数中的较高者对应的可控硅的触发角和/或缩小所述第一发热参数和所述第二发热参数中的较低者对应的可控硅的触发角。
本发明解决其技术问题采用的另一技术方案是,构造一种可控硅均热控制装置,包括并联的至少第一可控硅和第二可控硅,以及用于控制所述第一可控硅和所述第二可控硅均热的处理器,所述处理器上存储有计算机程序,所述计算机程序被所述处理器执行时实现所述的可控硅均热控制方法。
本发明解决其技术问题采用的另一技术方案是,构造一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述的可控硅均热控制方法。
实施本发明的可控硅均热控制方法、装置和计算机可读存储介质,不需要对并联的可控硅进行均流,而是通过比较发热参数直接调节可控硅的触发角,从而直接地从源头上解决并联可控硅的均热问题。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明的可控硅均热控制方法的第一优选实施例的原理框图;
图2是本发明的可控硅均热控制方法适用的并联可控硅电路的示例性电路原理图;
图3是本发明的可控硅均热控制装置的原理示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明涉及一种可控硅均热控制方法,包括:获取并联的至少两个可控硅的发热参数,所述至少两个可控硅包括第一可控硅和第二可控硅,所述发热参数包括第一可控硅的第一发热参数和第二可控硅的第二发热参数(步骤ST1);将所述第一发热参数和所述第二发热参数分别与设定阈值进行比较,并基于比较结果调节所述第一可控硅和/或所述第二可控硅的触发角(步骤ST2);重复执行所述步骤ST1和步骤ST2直至所述第一发热参数和所述第二发热参数的差值位于设定差值范围内。本发明的可控硅均热控制方法摒弃了现有技术中可控硅均热控制必须首先进行均流控制的技术偏见。创造性地提出了不考虑对并联的可控硅进行均流,而直接通过比较发热参数来直接调节可控硅的触发角,从而直接地从源头上解决并联可控硅的均热问题。
图1是本发明的可控硅均热控制方法的第一优选实施例的原理框图。如图1所示,在步骤ST1中,获取并联的至少两个可控硅的发热参数,所述至少两个可控硅包括第一可控硅和第二可控硅,所述发热参数包括第一可控硅的第一发热参数和第二可控硅的第二发热参数。在本发明的一个优选实施例中,所述第一发热参数和所述第二发热参数是温度参数、即采用温度传感器检测所述第一可控硅以获取的所述第一可控硅的第一温度参数和采用温度传感器检测所述第二可控硅以获取的所述第二可控硅的第二温度参数。在本发明的另一个优选实施例中,所述第一发热参数和所述第二发热参数是热量参数,即通过本领域中的任何已知方法获取或计算的设定周期范围内的所述第一可控硅的第一热量参数和所述第二可控硅的第二热量参数。在本发明的进一步的优选实施例中,还可以对所述第一可控硅的第一热量参数和所述第二可控硅的第二热量参数分别进行滤波,从而滤除噪声点。当然,也可以直接采用第一可控硅的第一 热量参数和所述第二可控硅的第二热量参数。
在步骤ST2中,将所述第一发热参数和所述第二发热参数分别与设定阈值进行比较,并基于比较结果调节所述第一可控硅和/或所述第二可控硅的触发角。在本发明的优选实施例中,所述设定阈值可以是所述第一发热参数和所述第二发热参数的平均值,也可以是本领域技术人员根据实际情况设置的任何适合的阈值,也可以是所述第一发热参数或者所述第二发热参数自身。所述设定阈值可以是一个或者两个或者多个。
在本发明的优选实施例中,可以调节所述第一可控硅的触发角(即按照需要加大或者缩小),而维持所述第二可控硅的触发角。也可以调节所述第二可控硅的触发角(即按照需要加大或者缩小),而维持所述第一可控硅的触发角,也可以同时调节两者的触发角,即其中一者加大,而另一者减小。该调节的目的是使得所述第一发热参数和所述第二发热参数彼此接近,比如差值位于设定差值范围内,优选其差值设置成接近于0。
在本发明的一个优选实施例中,可以将所述第一发热参数和所述第二发热参数中的较低者作为所述设定阈值,并基于比较结果加大所述第一发热参数和所述第二发热参数中的较高者对应的可控硅的触发角以及缩小所述第一发热参数和所述第二发热参数中的较低者对应的可控硅的触发角。当然,也可以只加大所述第一发热参数和所述第二发热参数中的较高者对应的可控硅的触发角而维持所述第二发热参数中的较低者对应的可控硅的触发角不变。或者只缩小所述第二发热参数中的较低者对应的可控硅的触发角不变而维持所述第一发热参数和所述第二发热参数中的较高者对应的可控硅的触发角不变。当然,也可以将所述第一发热参数和所述第二发热参数中的较高者作为所述设定阈值,进行判断,其控制过程类似。
在步骤ST3中重复执行所述步骤ST1和步骤ST2直至所述第一发热参数和所述第二发热参数的差值位于设定差值范围内。优选在所述第一发热参数和所述第二发热参数相等或者大约相等时,认为第一可控硅和第二可控硅均热。
本领域技术人员知悉,虽然在图1所示实施例中,是以两个并联的可控硅为例。但是实际上,上述方法可以应用到多个可控硅并联的实施例。基于本发 明的教导,本领域技术人员能够实现该方法在多个并联的可控硅上的应用。
因此,本发明创造性地提出了不考虑对并联的可控硅进行均流,而直接通过比较发热参数来直接调节可控硅的触发角,从而直接地从源头上解决并联可控硅的均热问题。
图2是本发明的可控硅均热控制方法适用的并联可控硅电路的示例性电路原理图。下面结合图2,对于本发明的各个优选的实施例进行进一步说明。
在图2所示的并联可控硅电路中,两路双向可控硅S1和S2并联运行,其各自回路对应的回路阻抗为Z1和Z2,第一回路电流和第二回路电流分别为i1和i2,第一可控硅S1两端压降为u1,第二可控硅S2两端压降为u2。一般Z1≠Z2,i1≠i2。
在本发明的一个优选实施例中,针对图2所示的并联可控硅电路,本发明的优选实施例的可控硅均热控制方法包括如下步骤(1)至(5)。
(1),获取第一回路电流i1、第二回路电流i2、第一可控硅压降u1和第二可控硅压降u2。
在本发明的一个优选实施例中,可以直接在线检测获取第一回路电流i1、第二回路电流i2、第一可控硅压降u1和第二可控硅压降u2。
在本发明的另一个优选实施例中,可以只在线检测获取第一回路电流i1、第二回路电流i2,不检测所述第一可控硅压降u1和第二可控硅压降u2。而是通过可控硅厂家提供的器件手册上的导通压降曲线分别计算第一可控硅压降u1和第二可控硅压降u2,即根据所述第一可控硅S1的第一导通压降曲线获取所述第一可控硅压降u1,根据所述第二可控硅S2的第二导通压降曲线获取所述第二可控硅压降u2。
在本发明的又一个优选实施例中,可以只在线检测获取第一回路电流i1、第二回路电流i2,不检测所述第一可控硅压降u1和第二可控硅压降u2。而将分段固定或者固定设置的第一设置压降作为所述第一可控硅压降u1,将分段固定或者固定设置的第二设置压降作为所述第二可控硅压降u2。所述第一设置压降和第二设置压降可以根据可控硅厂家提供的器件手册上的导通压降曲线选择设置,也可以根据电路需要进行设置。本领域技术人员可以根据任何已 知的方法进行设置。
在本发明的再一个优选实施例中,可以只在线检测获取第一回路电流i1、第二回路电流i2,不检测所述第一可控硅压降u1和第二可控硅压降u2。而是通过检测位于所述第一可控硅S1两端的电压值来计算所述第一可控硅压降u1,并且通过检测位于所述第二可控硅S2两端的电压值来计算所述第二可控硅压降u2。
本领域技术人员知悉,以上仅是优选实施例,本领域技术人员还可以根实际情况,以任何适合的方式获取第一回路电流i1、第二回路电流i2、第一可控硅压降u1和第二可控硅压降u2。比如测量获得第一可控硅压降u1和第二可控硅压降u2,而通过计算获得第一回路电流i1、第二回路电流i2等等。
(2)基于第一回路电流i1、第一可控硅压降u1和工频周期T计算n个工频周期的所述第一可控硅S1的第一热量参数Q1,以及基于第二回路电流i2、第二可控硅压降u2和工频周期T计算所述第二可控硅S2的第二热量参数Q2。
Figure PCTCN2021114887-appb-000001
其中T为工频周期,n为大于0的自然数。
(3)对第一热量参数Q1和第二热量参数Q2进行滤波,以获取经滤波的第一热量参数Q1和第二热量参数Q2。当然在本发明的其他优选实施例,可以省略该滤波步骤。
(4)选择适合的设定阈值,将第一热量参数Q1和第二热量参数Q2分别与设定阈值进行比较,并基于比较结果调节所述第一可控硅和/或所述第二可控硅的触发角。
在本发明的一个优选实施例中,计算第一热量参数Q1和第二热量参数Q2的平均值Qavrg,将第一热量参数Q1和第二热量参数Q2分别与平均值Qavrg进行比较,如果Q1>Qavrg且Q2<Qavrg,则加大第一可控硅S1的触发角,维持第二可控硅S2触发角不变,反之若Q2>Qavrg,Q1<Qavrg,则加大第二可控硅S2的触发角,维持第一可控硅S1的触发角不变。
在本发明的另一个优选实施中,可以将平均值Qavrg替换成适合的固定阈值。
在本发明的另一个优选实施例中,设置第一设定阈值QS1和第二设定阈值QS2,且QS1>QS2。将第一热量参数Q1和第二热量参数Q2分别与第一设定阈值QS1和第二设定阈值QS2进行比较。在所述第一热量参数Q1大于所述第一设定阈值QS1且所述第二热量参数Q2小于所述第二设定阈值QS2时,加大所述第一可控硅S1的触发角且控制所述第二可控硅S2的触发角不变。当然也可以选择缩小所述第二可控硅S2的触发角且维持所述第一可控硅S1的触发角不变。或者加大所述第一可控硅S1的触发角且缩小所述第二可控硅S2的触发角。另一方面,在所述第一热量参数Q1小于所述第二设定阈值QS2且所述第二热量参数Q2大于所述第一设定阈值QS1时,加大所述第二可控硅S2的触发角且控制所述第一可控硅S1的触发角不变。当然也可以选择缩小所述第一可控硅S1的触发角且维持所述第二可控硅S2的触发角不变,又或者缩小所述第一可控硅S1的触发角且加大所述第二可控硅S2的触发角。
(5)重复步骤(1)-(4),直到Q1≈Q2。在此,“Q1≈Q2”可以理解为第一热量参数Q1和第二热量参数Q2的差值为可接受的误差,具体可以根据实际情况设置。此外,例如,也可以将“Q1≈Q2”设置成第一热量参数Q1和第二热量参数Q2的差值位于设定范围内。
在本发明的另一个优选实施例中,针对图2所示的并联可控硅电路,本发明的优选实施例的可控硅均热控制方法包括如下步骤(1)至(3)。
(1)采用温度传感器检测所述第一可控硅S1和所述第二可控硅S2以获取所述第一可控硅S1的第一温度参数t1和所述第二可控硅S2的第二温度参数t2。
(2)选择适合的设定阈值,将所述第一温度参数t1和所述第二温度参数t2分别与设定阈值进行比较,并基于比较结果调节所述第一可控硅S1和/或所述第二可控硅S2的触发角。
在本优选实施例中,如前所述,可以直接设置一个或多个温度设定阈值,也可以将所述第一温度参数t1和所述第二温度参数t2的平均值设置为设定阈值。在本实施例中,所述第一可控硅S1和/或所述第二可控硅S2的触发角的调节过程可以参见发热参数实施例中的步骤(4),在此就不再累述了。
(3)重复步骤(1)-(2),直到t1≈t2。在此,“t1≈t2”可以理解为所述第一温度参数t1和所述第二温度参数t2的差值为可接受的误差,具体可以根据实际情况设置。此外,例如,也可以将“t1≈t2”设置成所述第一温度参数t1和所述第二温度参数t2的差值位于设定范围内。
本发明的可控硅均热控制方法摒弃了现有技术中可控硅均热控制必须首先进行均流控制的技术偏见。创造性地提出了不考虑对并联的可控硅进行均流,而直接通过比较发热参数来直接调节可控硅的触发角,从而直接地从源头上解决并联可控硅的均热问题。并且可以采用多种发热参数进行判断,因此灵活多变,适应各种应用场景。
图3是本发明的可控硅均热控制装置的原理示意图。如图3所示,所述可控硅均热控制装置包括并联的至少第一可控硅S1和第二可控硅S2,以及用于控制所述第一可控硅S1和所述第二可控硅S2均热的处理器100,所述处理器100上存储有计算机程序,所述计算机程序被所述处理器100执行时实现图1-2中任意实施例所述的可控硅均热控制方法。
本发明还涉及一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现图1-2中任意实施例所述的可控硅均热控制方法。所述计算机程序包含能够实现本发明方法的全部特征,当其安装到计算机系统中时,可以实现本发明的方法。本文件中的计算机程序所指的是:可以采用任何程序语言、代码或符号编写的指令组的任何表达式,该指令组使系统具有信息处理能力,以直接实现特定功能,或在进行下述一个或两个步骤之后实现特定功能:a)转换成其它语言、编码或符号;b)以不同的格式再现。
本发明还可以通过硬件、软件或者软、硬件结合来实现。本发明可以在至少一个计算机系统中以集中方式实现,或者由分布在几个互连的计算机系统中的不同部分以分散方式实现。任何可以实现本发明方法的计算机系统或其它设备都是可适用的。常用软硬件的结合可以是安装有计算机程序的通用计算机系统,通过安装和执行程序控制计算机系统,使其按本发明方法运行。
虽然本发明是通过具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明范围的情况下,还可以对本发明进行各种变换及等同替代。另外, 针对特定情形或材料,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种可控硅均热控制方法,其特征在于,包括:
    ST1、获取并联的至少两个可控硅的发热参数,所述至少两个可控硅包括第一可控硅和第二可控硅,所述发热参数包括所述第一可控硅的第一发热参数和所述第二可控硅的第二发热参数;
    ST2、将所述第一发热参数和所述第二发热参数分别与设定阈值进行比较,并基于比较结果调节所述第一可控硅和/或所述第二可控硅的触发角;
    ST3、重复执行所述步骤ST1和步骤ST2直至所述第一发热参数和所述第二发热参数的差值位于设定差值范围内。
  2. 根据权利要求1所述的可控硅均热控制方法,其特征在于,所述第一发热参数和所述第二发热参数分别包括温度参数或热量参数。
  3. 根据权利要求2所述的可控硅均热控制方法,其特征在于,所述步骤ST1进一步包括:
    获取针对所述第一可控硅的第一回路电流、针对所述第二可控硅的第二回路电流、针对所述第一可控硅的第一可控硅压降和针对所述第二可控硅的第二可控硅压降;
    基于所述第一回路电流、所述第一可控硅压降和工频周期计算所述第一可控硅的第一热量参数作为所述第一发热参数;基于所述第二回路电流、所述第二可控硅压降和所述工频周期计算所述第二可控硅的第二热量参数作为所述第二发热参数。
  4. 根据权利要求3所述的可控硅均热控制方法,其特征在于,所述步骤ST1进一步包括:
    对所述第一热量参数和所述第二热量参数进行滤波,并且将经滤波的所述第一热量参数和所述第二热量参数分别用作所述第一发热参数和所述第二发热参数。
  5. 根据权利要求3所述的可控硅均热控制方法,其特征在于,获取针对所述第一可控硅的第一回路电流、针对所述第二可控硅的第二回路电流、针对所述第一可控硅的第一可控硅压降和针对所述第二可控硅的第二可控硅压降 包括以下中之一:
    在线检测获取所述第一回路电流和所述第二回路电流,根据所述第一可控硅的第一导通压降曲线获取所述第一可控硅压降,并且根据所述第二可控硅的第二导通压降曲线获取所述第二可控硅压降;
    在线检测获取所述第一回路电流和所述第二回路电流,将分段固定或者固定设置的第一设置压降作为所述第一可控硅压降,并且将分段固定或者固定设置的第二设置压降作为所述第二可控硅压降;
    在线检测获取所述第一回路电流和所述第二回路电流,通过检测位于所述第一可控硅两端的电压值来计算所述第一可控硅压降,并且通过检测位于所述第二可控硅两端的电压值来计算所述第二可控硅压降;以及
    直接在线检测获取所述第一回路电流、所述第二回路电流、所述第一可控硅压降和第二可控硅压降。
  6. 根据权利要求2所述的可控硅均热控制方法,其特征在于,所述步骤ST1进一步包括:
    采用温度传感器检测所述第一可控硅以获取所述第一可控硅的第一温度参数作为所述第一发热参数;以及
    采用温度传感器检测所述第二可控硅以获取所述第二可控硅的第二温度参数作为所述第二发热参数。
  7. 根据权利要求1-6中任意一项所述的可控硅均热控制方法,其特征在于,所述步骤ST2进一步包括:
    设置第一设定阈值和第二设定阈值作为所述设定阈值;
    将所述第一发热参数与所述第一设定阈值进行比较以获得第一比较结果,将所述第二发热参数与所述第二设定阈值进行比较以获得第二比较结果;以及
    基于所述第一比较结果和所述第二比较结果调节所述第一可控硅和/或所述第二可控硅的触发角。
  8. 根据权利要求7所述的可控硅均热控制方法,其特征在于,所述第一设定阈值和所述第二设定阈值相等,或者所述第一设定阈值大于所述第二设定阈值。
  9. 根据权利要求8所述的可控硅均热控制方法,其特征在于,基于所述第一比较结果和所述第二比较结果调节所述第一可控硅和/或所述第二可控硅的触发角包括:
    在所述第一发热参数大于所述第一设定阈值且所述第二发热参数小于所述第二设定阈值时,加大所述第一可控硅的触发角且控制所述第二可控硅的触发角不变;以及
    在所述第一发热参数小于所述第二设定阈值且所述第二发热参数大于所述第一设定阈值时,加大所述第二可控硅的触发角且控制所述第一可控硅的触发角不变。
  10. 根据权利要求9所述的可控硅均热控制方法,其特征在于,所述第一设定阈值和所述第二设定阈值中的每一者等于所述第一发热参数和第二发热参数的平均值。
  11. 根据权利要求1-6中任意一项所述的可控硅均热控制方法,其特征在于,所述步骤ST2进一步包括:
    将所述第一发热参数和所述第二发热参数中的较低者作为所述设定阈值,并基于比较结果加大所述第一发热参数和所述第二发热参数中的较高者对应的可控硅的触发角和/或缩小所述第一发热参数和所述第二发热参数中的较低者对应的可控硅的触发角。
  12. 一种可控硅均热控制装置,包括并联的至少第一可控硅和第二可控硅,以及用于控制所述第一可控硅和所述第二可控硅均热的处理器,所述处理器上存储有计算机程序,其特征在于,所述计算机程序被所述处理器执行时实现根据权利要求1-11中任意一项权利要求所述的可控硅均热控制方法。
  13. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现根据权利要求1-11中任意一项权利要求所述的可控硅均热控制方法。
PCT/CN2021/114887 2021-06-24 2021-08-27 可控硅均热控制方法、装置和计算机可读存储介质 WO2022267216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21946700.8A EP4361756A1 (en) 2021-06-24 2021-08-27 Silicon controlled rectifier soaking control method and apparatus, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110707183.0 2021-06-24
CN202110707183.0A CN115525072B (zh) 2021-06-24 2021-06-24 一种可控硅均热控制方法、装置和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022267216A1 true WO2022267216A1 (zh) 2022-12-29

Family

ID=84544981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114887 WO2022267216A1 (zh) 2021-06-24 2021-08-27 可控硅均热控制方法、装置和计算机可读存储介质

Country Status (3)

Country Link
EP (1) EP4361756A1 (zh)
CN (1) CN115525072B (zh)
WO (1) WO2022267216A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553361A (zh) * 2016-02-05 2016-05-04 国电南京自动化股份有限公司 一种励磁功率柜的集中式均流控制方法
CN105762785A (zh) * 2016-04-12 2016-07-13 长江三峡能事达电气股份有限公司 一种并联智能整流桥的均流控制方法
CN106452134A (zh) * 2016-10-17 2017-02-22 南京南瑞继保电气有限公司 一种整流桥动态均流控制装置及控制方法
US20190190311A1 (en) * 2017-12-20 2019-06-20 Delta Electronics, Inc. Power bypass apparatus with current-sharing function and method of controlling the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE31723E (en) * 1967-11-09 1984-11-06 Surgical cutting instrument having electrically heated cutting edge
SU541285A1 (ru) * 1973-03-16 1976-12-30 Предприятие П/Я А-7992 Способ распределени тока между параллельно включенными тиристорами
SU877734A1 (ru) * 1980-02-19 1981-10-30 Предприятие П/Я М-5113 Устройство дл управлени @ -параллельного соединенными тиристорами
CN86210440U (zh) * 1986-12-22 1987-12-09 上海绕线机厂 温度可控安全电热毯
CA2144615A1 (en) * 1995-03-14 1996-09-15 Neil B. Eaton Parallel semiconductor cell temperature control
JP2005130555A (ja) * 2003-10-21 2005-05-19 Mitsubishi Electric Corp 同期機の励磁装置
CN100423288C (zh) * 2006-01-19 2008-10-01 国电自动化研究院 一种智能控制励磁可控硅整流桥出力的方法
CN101581755B (zh) * 2009-06-22 2011-06-22 大连美恒时代科技有限公司 可控硅测试装置
CN202679284U (zh) * 2012-07-30 2013-01-16 人民电器集团有限公司 智能电子式起动柜
CN104703355A (zh) * 2015-03-23 2015-06-10 沈阳北星仪表制造有限公司 闭环控制led电源
CN108682672B (zh) * 2018-04-26 2021-11-09 浙江大学 适用于内部功率开关芯片在短路工况下均热的大功率半导体模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553361A (zh) * 2016-02-05 2016-05-04 国电南京自动化股份有限公司 一种励磁功率柜的集中式均流控制方法
CN105762785A (zh) * 2016-04-12 2016-07-13 长江三峡能事达电气股份有限公司 一种并联智能整流桥的均流控制方法
CN106452134A (zh) * 2016-10-17 2017-02-22 南京南瑞继保电气有限公司 一种整流桥动态均流控制装置及控制方法
US20190190311A1 (en) * 2017-12-20 2019-06-20 Delta Electronics, Inc. Power bypass apparatus with current-sharing function and method of controlling the same

Also Published As

Publication number Publication date
CN115525072B (zh) 2024-04-05
EP4361756A1 (en) 2024-05-01
CN115525072A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
TWI630842B (zh) System for LED switch control
US10077780B2 (en) Method for controlling fan speed of electronic apparatus and electronic apparatus using the same
TWI434616B (zh) 適用於發光二極體照明設備之調光電路與控制方法
TWI515525B (zh) 溫度控制電路、溫度控制方法以及充電系統
WO2018094912A1 (zh) 压缩机的控制方法、装置和家用电器
WO2015176533A1 (zh) 一种电池板接入模式的判断方法及逆变器
TW201521514A (zh) 半導體發光器件組的驅動裝置及方法
WO2022267216A1 (zh) 可控硅均热控制方法、装置和计算机可读存储介质
CN102959848B (zh) 整流电路装置
JP5547246B2 (ja) 可変速駆動装置で実施され、停電時に電気モータの減速を制御する制御方法
US10734835B2 (en) Power bypass apparatus with current-sharing function and method of controlling the same
US11031862B2 (en) Systems and methods to balance magnetic flux in a switched mode power supply
WO2012005006A1 (ja) 整流装置
JP6041726B2 (ja) 電力変換装置及び空気調和装置
JP6533839B2 (ja) 電力変換装置
KR100423992B1 (ko) 단상 인버터의 저속 리플전류 억제장치 및 그 방법
WO2015081768A1 (zh) 防止内燃机车辅助发电电路过压的控制方法
US11758701B2 (en) Power supply fan management
US11895747B2 (en) Illumination device, LED driver circuit, bleeder control circuit and control method
JP4300829B2 (ja) 電力制御方法および電力制御装置
WO2018049074A1 (en) Efficient induction motor control
JP7429144B2 (ja) Led点灯装置及び照明器具
JPWO2022044070A5 (zh)
US20220224238A1 (en) Devices, systems, and methods for power supplies
CN108880287B (zh) 功率变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946700

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18289704

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021946700

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021946700

Country of ref document: EP

Effective date: 20240124