USRE31723E - Surgical cutting instrument having electrically heated cutting edge - Google Patents

Surgical cutting instrument having electrically heated cutting edge Download PDF

Info

Publication number
USRE31723E
USRE31723E US05/852,470 US85247077A USRE31723E US RE31723 E USRE31723 E US RE31723E US 85247077 A US85247077 A US 85247077A US RE31723 E USRE31723 E US RE31723E
Authority
US
United States
Prior art keywords
tissue
iaddend
iadd
cutting edge
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/852,470
Inventor
Robert F. Shaw
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US05/780,031 priority Critical patent/US4198957A/en
Priority claimed from US05/780,031 external-priority patent/US4198957A/en
Application filed filed Critical
Priority to US05/852,470 priority patent/USRE31723E/en
Application granted granted Critical
Publication of USRE31723E publication Critical patent/USRE31723E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • G05D23/2401Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor using a heating element as a sensing element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0813Accessories designed for easy sterilising, i.e. re-usable

Definitions

  • the present invention provides a surgical cutting instrument having a cutting edge which is electrically heated to a constant high temperature for sterilizing the blade, cutting the tissue and cauterizing the surfaces of the incision, thereby allowing surgery to be more rapidly performed.
  • This is accomplished in accordance with the illustrated embodiment of this invention by providing an electrically heated element disposed as the cutting edges of the blade and by providing a control system which maintains the cutting edge at a high substantially constant temperature during its use.
  • the hot cutting edge according to the present invention decreases the amount of tissue that is damaged and reduces the tendency of the instrument to stick to the heated tissue in the incision.
  • the material used in the electrically heated cutting edge has a negative temperature coefficient of resistance to insure that electrical power applied to the cutting edge is dissipated primarily in the regions thereof which tend to be cooled by contact with tissue.
  • the temperature at which the cutting edge of the blade is maintained depends upon such factors as the nature of the tissue to be cut, the speed of cutting desired, the degree of tissue coagulation desired, and the non-adherence of the blade to the incised tissue and generally is maintained between 300°-1,000° C. for typical incisions.
  • the instantaneous temperature of the cutting edge is monitored by measuring the resistance of the heating element itself or through the use of thermocouple elements disposed in the blade near the cutting edge, and the monitoring signal thus derived controls the power applied to the heating element.
  • the handle of the cutting instrument is thermally insulated from the blade to permit comfortable use of the instrument and the handle and blade with its electrically heated cutting edge are detachable for easy replacement and interchangeability with blade, scoops and cutting edges of various shapes and sizes determined by the nature of the incision to be made and the tissue to be cut.
  • FIG. 1 is a schematic diagram showing the cutting instrument and the temperature control system therefor, according to the preferred embodiment of the present invention
  • FIGS. 2 and 3 are pictorial views of other embodiments of cutting instruments according to the present invention for use with circuitry as shown in FIG. 1.
  • the surgical cutting instrument 9 connected to a temperature-measuring and power-controlling system 11.
  • the cutting instrument 9 includes a thin ceramic card 12 in the desired shape of a surgical cutting blade which is detachable from the handle or holder 10.
  • An electrically heated element 13 is disposed along the leading edge of the card 12 to form its cutting edge and is electrically connected to the control circuit through the cable 14 and the connectors 16.
  • the element 13 may be a single filament attached to the edge of the card 12, for example, using conventional ceramic welding materials or may be a layer of electrically conductive material vapor-deposited along the edge of the card 12.
  • the heating element 13 may have sufficient cross-sectional area to be self-supporting, as shown in FIG.
  • the material used in the element 13 ideally should have a negative temperature coefficient of resistance so that as selected portions of the element cool when in contact with tissue, the resistance of such portions will increase and thereby localize the portions of the element 13 in which additional power supplied by the control system will be dissipated.
  • the temperature of the element may thus be maintained substantially constant over the entire length thereof as portions of the element 13 contact tissue.
  • Suitable materials having negative temperature coefficients of resistance include silicon carbide, carbon, boron silicate and such semiconductor materials as silicon and germanium. Of course, material having a positive coefficient of resistance may also be used. However, when materials of this type are used, care should be taken to shape the element 13 so that substantially the entire length of the element 13 contacts tissue in use.
  • the element 13 may consist of a plurality of electrically isolated elements 13 and 13', as shown in FIG. 3, with each of the elements 13 and 13' connected to a separate temperature measuring and power-controlling system of the type shown in FIG. 1.
  • the resistance of the element 13 is included in a bridge circuit 15 which is connected to receive alternating signal appearing on lines 17 and 19.
  • the level of alternating signal appearing on lines 17 and 19 and, hence, the power applied to element 13 is determined by the conduction angles of the controlled rectifiers 21 and 23 which are connected in conduction opposition in parallel across the series resistor 25.
  • Power is supplied to the control system 11 through the primary and secondary windings 26 and 27 of power input transformer 29.
  • Alternating line signal 28 applied to the transformer 29 is stepped down typically to about 24 volts for the safety of the patient and the surgeon and the average current flow per half cycle of the alternating signal is determined in part by the series resistor 25 and by the conduction angle of a silicon-controlled rectifier 21, 23.
  • the operating temperature of the element 13 may be determined by adjusting one of the resistors say resistor 31, in the bridge circuit 15. Any variation in the operating temperature of element 13 from a set value unbalances the bridge 15 and produces a control signal 33 across the diagonal terminals 35, 37 of the bridge circuit 15 which is either in phase or out of phase with the applied line signal, depending upon whether the operating temperature of the element is above or below the set value of operating temperature.
  • a phase-shifting network 39 is connected to the output terminals of the bridge circuit 15 for applying the error signal 44 with respect to ground to the input of error amplifier 41 with a small amount of phase shift relative to the applied line signal 28. This provides control of the conduction angle of the controlled rectifiers 21, 23 over a greater portion of a half cycle of the applied line signal.
  • the output of amplifier 41 is applied to the threshold detectors 43, 45 which respond to the amplified error signal attaining selected values slightly above and below zero.
  • the threshold detectors 47 and 48 thus activate the trigger pulse generators 47 and 49 at the proper times in alternate half cycles of applied line signal 28 to apply conduction-initiating pulses to the gate electrodes 51, 53 of the controlled rectifiers 21, 23.
  • increased conduction angle of the controlled rectifiers 21 and 23 increases the power applied to the element 13 to maintain the element at a preselected operating temperature as the element tends to cool down in contact with skin tissue.
  • the phase of the error signal 33 with respect to the applied line signal reverses.
  • This causes the trigger pulse generators to supply conduction-initiating pulses to the gate electrodes of the controlled rectifiers 21, 23 during alternate half cycles when these rectifiers are back biased.
  • This causes a decrease in the power delivered to the element 13 with a concomitant drop in its operating temperature to about the set value of operating temperature.
  • thermocouple sensor may be disposed on the card 12 in close proximity with the element 13 or a thermocouple element may even be formed on element 13 using another material or dissimilar work function to form the thermocouple junction. The signal from such thermocouple may then be used to control the operating temperature of the element 13 by controlling the power supplied thereto.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Surgical Instruments (AREA)

Abstract

A surgical cutting instrument includes an electrically heated cutting edge and an automatic control system for maintaining the cutting edge at a constant high temperature for sterilizing the blade, cutting tissue, and cauterizing the incised tissue to reduce hemorrhage from the cut surfaces of the tissues (hemostasis).

Description

.Iadd.This is a divisional of reissue application Ser. No. 656,730, now Pat. No. Re. 30,190, filed Feb. 9, 1976 for reissue of Pat. No. 3,826,263 which matured from application Ser. No. 278,684 filed Aug. 7, 1972 and which is a divisional of application Ser. No. 63,645 filed Aug. 13, 1970, now abandoned, which is a continuation of application Ser. No. 681,737 filed Nov. 9, 1967, now abandoned. .Iaddend.
The control of bleeding during surgery accounts for a major portion of the total time involved in an operation. The bleeding that occurs when tissue is incised obscures the surgeon's vision, reduces his precision and often dictates slow and elaborate procedures in surgical operations. Each bleeding vessel must be grasped in pincer-like clamps to stop the flow of blood and the tissue and vessel within each clamp must then be tied with pieces of fine thread. These ligated masses of tissue die and decompose and thus tend to retard healing and promote infection.
SUMMARY OF THE INVENTION
Accordingly, the present invention provides a surgical cutting instrument having a cutting edge which is electrically heated to a constant high temperature for sterilizing the blade, cutting the tissue and cauterizing the surfaces of the incision, thereby allowing surgery to be more rapidly performed. This is accomplished in accordance with the illustrated embodiment of this invention by providing an electrically heated element disposed as the cutting edges of the blade and by providing a control system which maintains the cutting edge at a high substantially constant temperature during its use. The hot cutting edge according to the present invention decreases the amount of tissue that is damaged and reduces the tendency of the instrument to stick to the heated tissue in the incision. The material used in the electrically heated cutting edge has a negative temperature coefficient of resistance to insure that electrical power applied to the cutting edge is dissipated primarily in the regions thereof which tend to be cooled by contact with tissue. The temperature at which the cutting edge of the blade is maintained depends upon such factors as the nature of the tissue to be cut, the speed of cutting desired, the degree of tissue coagulation desired, and the non-adherence of the blade to the incised tissue and generally is maintained between 300°-1,000° C. for typical incisions. The instantaneous temperature of the cutting edge is monitored by measuring the resistance of the heating element itself or through the use of thermocouple elements disposed in the blade near the cutting edge, and the monitoring signal thus derived controls the power applied to the heating element. The handle of the cutting instrument is thermally insulated from the blade to permit comfortable use of the instrument and the handle and blade with its electrically heated cutting edge are detachable for easy replacement and interchangeability with blade, scoops and cutting edges of various shapes and sizes determined by the nature of the incision to be made and the tissue to be cut.
DESCRIPTION OF THE DRAWING
FIG. 1 is a schematic diagram showing the cutting instrument and the temperature control system therefor, according to the preferred embodiment of the present invention, and FIGS. 2 and 3 are pictorial views of other embodiments of cutting instruments according to the present invention for use with circuitry as shown in FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to FIG. 1 of the drawing, there is shown the surgical cutting instrument 9 connected to a temperature-measuring and power-controlling system 11. The cutting instrument 9 includes a thin ceramic card 12 in the desired shape of a surgical cutting blade which is detachable from the handle or holder 10. An electrically heated element 13 is disposed along the leading edge of the card 12 to form its cutting edge and is electrically connected to the control circuit through the cable 14 and the connectors 16. The element 13 may be a single filament attached to the edge of the card 12, for example, using conventional ceramic welding materials or may be a layer of electrically conductive material vapor-deposited along the edge of the card 12. Also, the heating element 13 may have sufficient cross-sectional area to be self-supporting, as shown in FIG. 2, so that the blade 18 is formed entirely by the element 13 alone. The material used in the element 13 ideally should have a negative temperature coefficient of resistance so that as selected portions of the element cool when in contact with tissue, the resistance of such portions will increase and thereby localize the portions of the element 13 in which additional power supplied by the control system will be dissipated. The temperature of the element may thus be maintained substantially constant over the entire length thereof as portions of the element 13 contact tissue. Suitable materials having negative temperature coefficients of resistance include silicon carbide, carbon, boron silicate and such semiconductor materials as silicon and germanium. Of course, material having a positive coefficient of resistance may also be used. However, when materials of this type are used, care should be taken to shape the element 13 so that substantially the entire length of the element 13 contacts tissue in use. This is required to prevent the additional power supplied by the control system 11 from being dissipated in the portions of the element which do not cool when in contact with tissue and, hence, which have higher resistance than the cooler portions. For cutting applications where it is not convenient to shape the element 13 so that its entire length is in contact with tissue each time it is used, the element 13 may consist of a plurality of electrically isolated elements 13 and 13', as shown in FIG. 3, with each of the elements 13 and 13' connected to a separate temperature measuring and power-controlling system of the type shown in FIG. 1.
The resistance of the element 13 is included in a bridge circuit 15 which is connected to receive alternating signal appearing on lines 17 and 19. The level of alternating signal appearing on lines 17 and 19 and, hence, the power applied to element 13 is determined by the conduction angles of the controlled rectifiers 21 and 23 which are connected in conduction opposition in parallel across the series resistor 25. Power is supplied to the control system 11 through the primary and secondary windings 26 and 27 of power input transformer 29. Alternating line signal 28 applied to the transformer 29 is stepped down typically to about 24 volts for the safety of the patient and the surgeon and the average current flow per half cycle of the alternating signal is determined in part by the series resistor 25 and by the conduction angle of a silicon-controlled rectifier 21, 23.
The operating temperature of the element 13 may be determined by adjusting one of the resistors say resistor 31, in the bridge circuit 15. Any variation in the operating temperature of element 13 from a set value unbalances the bridge 15 and produces a control signal 33 across the diagonal terminals 35, 37 of the bridge circuit 15 which is either in phase or out of phase with the applied line signal, depending upon whether the operating temperature of the element is above or below the set value of operating temperature. A phase-shifting network 39 is connected to the output terminals of the bridge circuit 15 for applying the error signal 44 with respect to ground to the input of error amplifier 41 with a small amount of phase shift relative to the applied line signal 28. This provides control of the conduction angle of the controlled rectifiers 21, 23 over a greater portion of a half cycle of the applied line signal. The output of amplifier 41 is applied to the threshold detectors 43, 45 which respond to the amplified error signal attaining selected values slightly above and below zero. The threshold detectors 47 and 48 thus activate the trigger pulse generators 47 and 49 at the proper times in alternate half cycles of applied line signal 28 to apply conduction-initiating pulses to the gate electrodes 51, 53 of the controlled rectifiers 21, 23. Thus, increased conduction angle of the controlled rectifiers 21 and 23 increases the power applied to the element 13 to maintain the element at a preselected operating temperature as the element tends to cool down in contact with skin tissue. However, if the operating temperature of the element 13 should exceed the set value due, for example, to thermal overshoot upon removal of the element 13 from contact with skin tissue, the phase of the error signal 33 with respect to the applied line signal reverses. This causes the trigger pulse generators to supply conduction-initiating pulses to the gate electrodes of the controlled rectifiers 21, 23 during alternate half cycles when these rectifiers are back biased. This causes a decrease in the power delivered to the element 13 with a concomitant drop in its operating temperature to about the set value of operating temperature. When this occurs, the proper phase relationship between error signal and line signal is restored and power is again supplied to the element 13. Conversion of the control system 11 for operation with elements 13 having negative or positive temperature coefficients of resistance merely requires that the trigger pulses fom the generators 47 and 49 be applied through reversing switch 55 to the proper controlled rectifier 21, 23 during the forward-biasing half cycle of line signal 28.
It should be apparent that other temperature control systems may also be used to maintain the operating temperature of the element 13 substantially constant at a preselected value. For example, a thermocouple sensor may be disposed on the card 12 in close proximity with the element 13 or a thermocouple element may even be formed on element 13 using another material or dissimilar work function to form the thermocouple junction. The signal from such thermocouple may then be used to control the operating temperature of the element 13 by controlling the power supplied thereto.

Claims (6)

    I claim: .[.1. A surgical instrument for cutting tissue with simultaneous hemostasis, the instrument comprising:
  1. said element..]. .[.3. A surgical instrument as in claim 2 wherein each of said circuit means comprise a plurality of circuit elements and said corresponding section connected in a bridge circuit having first and second pairs of bridge terminals, and including control means coupling said input to the first pair of bridge terminals, and bridge-balance sensing means connected to the second pair of bridge terminals and to said control means for altering the electrical power applied through the bridge circuit to said corresponding section for maintaining the resistance
  2. thereof substantially at a preselected value..]. .Iadd.4. A hemostatic surgical cutting blade comprising:
    a cutting blade having a tissue-cutting edge; and
    a plural number of heater means disposed along regions of the tissue-cutting edge and each capable of being maintained at a selected temperature range in response to selective cooling of the corresponding region upon contact with tissue being cut such that each of said regions of the tissue-cutting edge is also capable of being maintained at a selected temperature range. .Iaddend. .Iadd.5. A hemostatic surgical cutting blade as in claim 4 wherein:
    a cutting blade having a tissue cutting edge; and
    each of said plural number of heater means includes electrically conductive material having a resistance which varies as a function of the temperature thereof; and
    each of said plural number of heater means conducting electrical current
  3. for heating regions along said edge. .Iaddend. .Iadd.6. A hemostatic surgical cutting blade as in claim 4 wherein:
    each of said heater means is capable of elevating the temperature in the corresponding region of said tissue-cutting edge to within the range between 300° C. and 1000° C. .Iaddend. .Iadd.7. A hemostatic surgical cutting blade as in claim 4 wherein:
    said cutting blade is formed of non-metallic material. .Iaddend. .Iadd.8. A hemostatic surgical cutting blade as in claim 4 wherein:
  4. said cutting blade includes a ceramic material. .Iaddend. .Iadd.9. A hemostatic surgical cutting blade as in claim 4 wherein:
    a cutting blade having a tissue cutting edge; and each of said plural number of heater means includes electrically conductive material having a resistance which varies as a function of the temperature thereof; and
    each of said plural number of heater means conducting electrical current for heating regions along said edge. .Iaddend. .Iadd.10. A hemostatic surgical cutting blade as in claim 4 wherein:
    each of said heater means is capable of elevating the temperature in the corresponding region of said tissue-cutting edge to within the range between 300° C. and 1000° C. .Iaddend. .Iadd.11. A hemostatic surgical cutting blade as in claim 4 wherein:
    said cutting blade is formed of non-metallic material. .Iaddend. .Iadd.12. A hemostatic surgical cutting blade as in claim 4 wherein:
  5. said cutting blade includes a ceramic material..Iaddend. .Iadd.13. The method of cutting tissue with simultaneous hemostasis comprising the steps of:
    contacting tissue to be cut with a tissue-cutting edge which has a plural number of regions that are each independently operable at an elevated temperature; and
    increasing the power dissipation in each of said regions along the edge which are cooled upon contact with tissue for maintaining the temperature of each of the regions substantially within a selected operating range.
  6. .Iaddend. .Iadd.14. The method according to claim 13 wherein:
    in the step of contacting tissue, the temperature of each of said regions of the tissue-cutting edge is independently elevated to within the range between 300° C. and 1000° C. .Iaddend. .Iadd.15. The method according to claim 13 wherein:
    in the step of contacting tissue, the temperature of each of said regions of the tissue-cutting edge is elevated in response to independently applied electrical signals. .Iaddend. .Iadd.16. The method according to claim 13 wherein:
    in the step of increasing power dissipation, a flow of electrical current from a source of electrical signal is independently controlled in each of the regions along the tissue-cutting edge to maintain the average operating temperature of each region within said range. .Iaddend. .Iadd.17. The method according to claim 13 wherein:
    in the step of contacting tissue, the temperature of each of said regions of the tissue-cutting edge is elevated in response to independently applied electrical signals. .Iaddend. .Iadd.18. The method according to claim 13 wherein:
    in the step of increasing power dissipation, a flow of electrical current from a souce of electrical signal is independently controlled in each of the regions along the tissue-cutting edge to maintain the average operating temperature of each region within same range. .Iaddend. .Iadd.19. A method of cutting tissue with simultaneous hemostasis comprising the steps of:
    contacting the tissue to be cut with a tissue-cutting edge of an elevated temperature; and
    establishing the elevated temperature by conducting current along a plurality of independent current paths located along the tissue-cutting edge. .Iaddend. .Iadd.20. A method according to claim 19 wherein:
    in the step of establishing the elevated temperature, separately sensing the current in and the voltage across each of said independent current paths; and
    altering at least one of the currents in and voltage across each of said independent current paths for maintaining the ratios thereof substantially constant. .Iaddend. .Iadd.21. The method according to claim 17 including:
    measuring the resistance of a heating element disposed adjacent said tissue-cutting edge and establishing said elevated temperature of said tissue-cutting edge in response thereto. .Iaddend. .Iadd.22. The method according to claim 19 including:
    measuring the temperature of said tissue-cutting edge using thermocouple means disposed near said tissue-cutting edge and establishing said elevated temperature of said tissue-cutting edge in response thereto. .Iaddend.
US05/852,470 1967-11-09 1977-11-17 Surgical cutting instrument having electrically heated cutting edge Expired - Lifetime USRE31723E (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US05/780,031 US4198957A (en) 1967-11-09 1977-03-22 Method of using an electrically heated surgical cutting instrument
US05/852,470 USRE31723E (en) 1967-11-09 1977-11-17 Surgical cutting instrument having electrically heated cutting edge

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US68173767A 1967-11-09 1967-11-09
US6364570A 1970-08-13 1970-08-13
US05/780,031 US4198957A (en) 1967-11-09 1977-03-22 Method of using an electrically heated surgical cutting instrument
US05/852,470 USRE31723E (en) 1967-11-09 1977-11-17 Surgical cutting instrument having electrically heated cutting edge

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US00278684A Reissue US3826263A (en) 1970-08-13 1972-08-07 Electrically heated surgical cutting instrument
US05/656,730 Division USRE30190E (en) 1967-11-09 1976-02-09 Electrically heated surgical cutting instrument

Publications (1)

Publication Number Publication Date
USRE31723E true USRE31723E (en) 1984-11-06

Family

ID=38657897

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/852,470 Expired - Lifetime USRE31723E (en) 1967-11-09 1977-11-17 Surgical cutting instrument having electrically heated cutting edge

Country Status (1)

Country Link
US (1) USRE31723E (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558318A2 (en) * 1992-02-27 1993-09-01 G2 Design Limited Apparatus for radio frequency bipolar electrosurgery
US5308311A (en) * 1992-05-01 1994-05-03 Robert F. Shaw Electrically heated surgical blade and methods of making
US20020116022A1 (en) * 2000-07-25 2002-08-22 Lebouitz Kyle S. Method of making a cutting instrument having integrated sensors
US20030055360A1 (en) * 2001-09-05 2003-03-20 Zeleznik Matthew A. Minimally invasive sensing system for measuring rigidity of anatomical matter
US6740085B2 (en) * 2000-11-16 2004-05-25 Olympus Corporation Heating treatment system
US20040149728A1 (en) * 2002-10-23 2004-08-05 Metz Bruce E. Heating unit with temperature sensor
US20050015080A1 (en) * 2003-07-16 2005-01-20 Paul Ciccone Device for cutting or heating medical implants
US20100268216A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated multi-mode ultrasonic surgical tool
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8840609B2 (en) 2010-07-23 2014-09-23 Conmed Corporation Tissue fusion system and method of performing a functional verification test
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
CN115525072A (en) * 2021-06-24 2022-12-27 维谛技术有限公司 Silicon controlled soaking control method and device and computer readable storage medium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US359506A (en) * 1887-03-15 David h
US1735271A (en) * 1928-03-14 1929-11-12 Sutten H Groff Diathermy knife
US1794296A (en) * 1927-08-24 1931-02-24 Mortimer N Hyams Surgical instrument
US1930214A (en) * 1931-03-23 1933-10-10 Wappler Frederick Charles Surgical electrode
US2012937A (en) * 1934-11-27 1935-09-03 George H Beuoy Electrical caponizing forceps
US2012938A (en) * 1934-11-27 1935-09-03 George H Beuoy Electrical caponizing knife
US2120598A (en) * 1937-03-06 1938-06-14 George H Beuoy Electrical cutting instrument
US2795697A (en) * 1949-06-11 1957-06-11 Westinghouse Electric Corp Temperature control
US2917614A (en) * 1957-09-18 1959-12-15 Vincent J Caliri Cauterizing device
US3234356A (en) * 1963-05-07 1966-02-08 Raymond F Babb Electrically heated medical implement
US3526750A (en) * 1967-06-02 1970-09-01 William J Siegel Thermal tool

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US359506A (en) * 1887-03-15 David h
US1794296A (en) * 1927-08-24 1931-02-24 Mortimer N Hyams Surgical instrument
US1735271A (en) * 1928-03-14 1929-11-12 Sutten H Groff Diathermy knife
US1930214A (en) * 1931-03-23 1933-10-10 Wappler Frederick Charles Surgical electrode
US2012937A (en) * 1934-11-27 1935-09-03 George H Beuoy Electrical caponizing forceps
US2012938A (en) * 1934-11-27 1935-09-03 George H Beuoy Electrical caponizing knife
US2120598A (en) * 1937-03-06 1938-06-14 George H Beuoy Electrical cutting instrument
US2795697A (en) * 1949-06-11 1957-06-11 Westinghouse Electric Corp Temperature control
US2917614A (en) * 1957-09-18 1959-12-15 Vincent J Caliri Cauterizing device
US3234356A (en) * 1963-05-07 1966-02-08 Raymond F Babb Electrically heated medical implement
US3526750A (en) * 1967-06-02 1970-09-01 William J Siegel Thermal tool

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558318A2 (en) * 1992-02-27 1993-09-01 G2 Design Limited Apparatus for radio frequency bipolar electrosurgery
EP0558318A3 (en) * 1992-02-27 1993-12-08 G2 Design Ltd Apparatus for radio frequency bipolar electrosurgery
US5451224A (en) * 1992-02-27 1995-09-19 G2 Design Limited Apparatus for radio frequency bipolar electrosurgery
US5308311A (en) * 1992-05-01 1994-05-03 Robert F. Shaw Electrically heated surgical blade and methods of making
US20020116022A1 (en) * 2000-07-25 2002-08-22 Lebouitz Kyle S. Method of making a cutting instrument having integrated sensors
US6494882B1 (en) 2000-07-25 2002-12-17 Verimetra, Inc. Cutting instrument having integrated sensors
US6972199B2 (en) 2000-07-25 2005-12-06 Verimetra, Inc. Method of making a cutting instrument having integrated sensors
US6740085B2 (en) * 2000-11-16 2004-05-25 Olympus Corporation Heating treatment system
US20030055360A1 (en) * 2001-09-05 2003-03-20 Zeleznik Matthew A. Minimally invasive sensing system for measuring rigidity of anatomical matter
US20040149728A1 (en) * 2002-10-23 2004-08-05 Metz Bruce E. Heating unit with temperature sensor
US6933476B2 (en) * 2002-10-23 2005-08-23 Bruce E. Metz Heating unit with temperature sensor
US20050015080A1 (en) * 2003-07-16 2005-01-20 Paul Ciccone Device for cutting or heating medical implants
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US9730749B2 (en) 2009-04-17 2017-08-15 Domain Surgical, Inc. Surgical scalpel with inductively heated regions
US8292879B2 (en) 2009-04-17 2012-10-23 Domain Surgical, Inc. Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool
US8372066B2 (en) 2009-04-17 2013-02-12 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
US8377052B2 (en) 2009-04-17 2013-02-19 Domain Surgical, Inc. Surgical tool with inductively heated regions
US8414569B2 (en) 2009-04-17 2013-04-09 Domain Surgical, Inc. Method of treatment with multi-mode surgical tool
US8419724B2 (en) 2009-04-17 2013-04-16 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US8425503B2 (en) 2009-04-17 2013-04-23 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US8430870B2 (en) 2009-04-17 2013-04-30 Domain Surgical, Inc. Inductively heated snare
US8491578B2 (en) 2009-04-17 2013-07-23 Domain Surgical, Inc. Inductively heated multi-mode bipolar surgical tool
US8506561B2 (en) 2009-04-17 2013-08-13 Domain Surgical, Inc. Catheter with inductively heated regions
US8523851B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Inductively heated multi-mode ultrasonic surgical tool
US8523850B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Method for heating a surgical implement
US8523852B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Thermally adjustable surgical tool system
US20100268216A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated multi-mode ultrasonic surgical tool
US11123127B2 (en) 2009-04-17 2021-09-21 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US10639089B2 (en) 2009-04-17 2020-05-05 Domain Surgical, Inc. Thermal surgical tool
US10441342B2 (en) 2009-04-17 2019-10-15 Domain Surgical, Inc. Multi-mode surgical tool
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US10405914B2 (en) 2009-04-17 2019-09-10 Domain Surgical, Inc. Thermally adjustable surgical system and method
US9220557B2 (en) 2009-04-17 2015-12-29 Domain Surgical, Inc. Thermal surgical tool
US9265554B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical system and method
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9265553B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
US9265555B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Multi-mode surgical tool
US9320560B2 (en) 2009-04-17 2016-04-26 Domain Surgical, Inc. Method for treating tissue with a ferromagnetic thermal surgical tool
US10213247B2 (en) 2009-04-17 2019-02-26 Domain Surgical, Inc. Thermal resecting loop
US10149712B2 (en) 2009-04-17 2018-12-11 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9549774B2 (en) 2009-04-17 2017-01-24 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US20100268206A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Method of treatment with multi-mode surgical tool
US8840609B2 (en) 2010-07-23 2014-09-23 Conmed Corporation Tissue fusion system and method of performing a functional verification test
US9149321B2 (en) 2011-04-08 2015-10-06 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US11266459B2 (en) 2011-09-13 2022-03-08 Domain Surgical, Inc. Sealing and/or cutting instrument
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
US11701160B2 (en) 2014-05-14 2023-07-18 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
CN115525072A (en) * 2021-06-24 2022-12-27 维谛技术有限公司 Silicon controlled soaking control method and device and computer readable storage medium
CN115525072B (en) * 2021-06-24 2024-04-05 维谛技术有限公司 Silicon controlled soaking control method and device and computer readable storage medium

Similar Documents

Publication Publication Date Title
US4198957A (en) Method of using an electrically heated surgical cutting instrument
US6726683B1 (en) Electrically heated surgical cutting instrument
US4089336A (en) Electrically heated surgical cutting instrument and method of using the same
US3826263A (en) Electrically heated surgical cutting instrument
USRE31723E (en) Surgical cutting instrument having electrically heated cutting edge
USRE30190E (en) Electrically heated surgical cutting instrument
USRE29088E (en) Surgical cutting instrument having electrically heated cutting edge
US3768482A (en) Surgical cutting instrument having electrically heated cutting edge
US4219025A (en) Electrically heated surgical cutting instrument
US4185632A (en) Surgical instrument having self-regulated electrical skin-depth heating of its cutting edge and method of using the same
US4091813A (en) Surgical instrument having self-regulated electrical proximity heating of its cutting edge and method of using the same
US4231371A (en) Electrically heated surgical cutting instrument
US5443463A (en) Coagulating forceps
US8382749B2 (en) Temperature monitoring return electrode
JP4819062B2 (en) High frequency surgical device
US6132426A (en) Temperature and current limited ablation catheter
US4114623A (en) Cutting and coagulation apparatus for surgery
US5472443A (en) Electrosurgical apparatus employing constant voltage and methods of use
AU681046B2 (en) Electrosurgical generator adaptors
US5496314A (en) Irrigation and shroud arrangement for electrically powered endoscopic probes
US4485810A (en) Surgical cutting blade
US8216222B2 (en) Temperature sensing return electrode pad
EP0566731A1 (en) Radiofrequency ablation with phase sensitive power detection
JP2002513620A (en) RF rejection device with high output impedance driver
EP0783274B1 (en) Coagulating forceps